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Abstract

Let K and L be two convex bodies in R*. The volume ratio vr(K, L) of
K and L is defined by vr(K, L) = inf(|K|/|T(L)|)*/", where the infimum is
over all affine transformations 7' of R® for which T'(L) C K. We show that
vr(K, L) < ¢y/nlogn, where ¢ > 0 is an absolute constant. This is optimal
up to the logarithmic term.

1 Introduction

Let K and L be two convex bodies in R®. The volume ratio of K and L is the

quantity
) |K| >1/1’L
vr(K, L) := inf (— ,
(7]

where the infimum is taken over all affine transformations T" of R™ for which T'(L) C
K (by |- | we denote n-dimensional volume).

Let B, denote the Euclidean unit ball in R®. Using the Brascamp-Lieb in-
equality, Ball [1] proved that vr(K, B,) is maximal when K is the simplex S,. A
consequence of Barthe’s reverse Brascamp-Lieb inequality [2] is that vr(B,, L) is
also maximal when L = S,,. It follows that

vi(K, L) < vr(K, By)vr(By, L) < vr(Sy, Bp)vr(Bn, Sp) =n

for every pair of convex bodies K and L. A direct proof of the same fact was given
in [5] where the “maximal volume position” of L inside K is studied.

The purpose of this note is to prove the following general estimate.

Theorem. Let K and L be two convex bodies in R™. Then,
vi(K, L) < ¢y/nlogn

where ¢ > 0 is an absolute constant.

12000 Mathematics Subject Classification: Primary 52A40, 46B07; Secondary 52A21,
52A20.



The example of the ball and the simplex shows that this estimate is optimal up
to the logarithmic term. The proof of the theorem is based on the method of random
orthogonal factorizations; actually, an essentially direct application of this method
gives the estimate vr(K, L) = O(y/nlog®n). We can remove one logarithmic term
using an idea of Rudelson [11] who started with the same method to obtain the
estimate O(n*/? log® n) for the Banach-Mazur distance of two convex bodies K and
Lin R™.

2 Proof of the theorem

We assume that R is equipped with a Euclidean structure (-, -) and denote the
corresponding Euclidean norm by |-|. B, is the Euclidean unit ball and S™~! is the
unit sphere. We also write | - | for the volume (Lebesgue measure) in R", o for the
rotationally invariant probability measure on S™ !, and p for the Haar probability
measure on the orthogonal group O(n). The letters ¢, c1,co etc. denote absolute
positive constants which may change from line to line.

Let W be a symmetric convex body in R™. Then, the function ||z||w = inf{\ >
0:x € AK} is anorm on R™ and W is the unit ball of the normed space (R™, ||-||w).
We write % for the Euclidean space (R™,| -|). The polar body of W is defined by

We={yeR":|(z,y)| < lforalzec W}

In other words, ||y|lwe = maxzew |(z,y)|.- Note that Xy = X}j,; W° is the unit
ball of the dual space of Xy . Note also that (TW)° = (T1)*(W°) for every
T € GL(n).

If Xw, and Xw, are two n-dimensional normed spaces as above, their Banach-
Mazur distance d(Xw,, Xw,) is defined by

d(XW17XW2) = Tegl[{.(n) ||T : XWI - XW2|| : ||T71 : XWz - XW1||

We write dy for the Banach-Mazur distance d(Xw, €5).
For every origin symmetric convex body W in R we define the mean width
b(W) of W by

W) = [ masl0.0)lo@) = [ 16lhw-o(as)

n—1 yeEW
Then, Urysohn’s inequality (see [10], pp. 6) states that
|W| 1/n
) ( <o)
| Bu|

with equality if and only if W is a ball.
Let L(¢%, Xw) denote the space of all linear operators from ¢% to Xy . The
l-norm of an operator T' € L(¢%, Xw) is defined by

(@ = ([ 1r@lhanw)
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where 7,, is the canonical Gaussian probability measure on R™.

Figiel and Tomczak-Jaegermann [4] introduced the £-norm and, using a general
result of Lewis [7] about trace dual norms of operators, they proved that for every
W there exists T € L(¢%, Xy ) such that

(2) UT)(T)") < nK (Xw),

where K (Xw) is the K-convexity constant of Xw (see [10], pp. 20). On the other
hand, an important inequality of Pisier [9] (see also [10], Chapter 2) states that

(3) K(Xw) < cilog(dw + 1)

for every W, where ¢; > 0 is an absolute constant.
We will alternatively write (T ~1(W)) instead of £(T"). With this notation, our
first tool will be the following immediate consequence of (2) and (3):

Lemma 1 Let W be a symmetric convez body in R™. There exists T € GL(n) such
that
LTW)HL(TW)?) < exnlog(dw + 1),

where ¢1 > 0 is an absolute constant. O
We will also use some simple facts about the ¢-functional W +— £(W).

Lemma 2 Let W be a symmetric convex body in R™. Then,
Vnb(W) < ct(W°)

(in fact, the two quantities are equivalent up to absolute constants). Also, if I
denotes the identity operator, then (((I + S)(W)) < L(W) for every positive linear
operator S on R™.

Proof: For the proof of the first assertion we apply the Cauchy-Schwarz inequality
to get

() 2 [ ellwera(de)
and then use polar integration. For the second assertion, observe that
LI+ S)(W)) <N +8)7" =65 = £3]] - L(W)
(see also [10], pp. 35) and use the fact that S is positive. i

Our second tool will be Chevet’s inequality which will be used in the spirit of
Benyamini and Gordon (see [3] and [13, pp. 325]).

Lemma 3 Let K and L be two symmetric convex bodies in R™. Then,

/ U = X1, = Xcl| pldU) < (|11 8 — XFNEE) + |1 68 — Xrclle(L)),
O(n) \/”_l

where ca > 0 is an absolute constant. O



Proposition. Let K and L be two symmetric convex bodies in R™. Then,
vr(K, L) < cs(dr, log(di + 1) + di log(d, + 1))
where c3 > 0 is an absolute constant.
Proof: By Lemma 1 we may assume that K and L° satisfy
UK) <vn, ((K°) < erv/nlog(di +1) , £(L°) < v/n and (L) < c1v/nlog(dr +1).

Let Ex be a distance ellipsoid of K and let S € GL(n) be a positive linear operator
such that S(Ek) = By,. Then, B, C S(K) C dk By; therefore,

US(K)) < ey and €((S(K))?) < cv/mdic.
T =1I+aS, a=Ilog(dx +1)/dr, we have

||I : 67; — XTK“ ||(I+GS)_1 67; — XK“
1((@S) "t + 1)1ty = &3] - ||(aS)F = 5 — Xk
1(@aS)™t - 4y = Xgel| = ||T: 05 = X5k

1/a = di/log(dx + 1)

(AN VAN VAN

and, by the second assertion of Lemma 2,
UTEK) < U(K) < /.
Also,

t(TK)®) U(K°) +al((SK)°) < erv/nlog(di + 1) + av/ndk

cv/nlog(dg + 1).

Working in the same way with L° we can find an operator R such that

<
<

||[ : 67; — XRL°|| < dL/log(dL + 1)

and ¢(RL°) < y/n, while £((R™1)*(L)) < ey/nlog(dL, + 1).
Let K; = TK and Ly = (R7!)*(L). Applying Lemma 3 for Xg, and X, we
get

dx dg >
U: X1, = Xg, |ludU) < e + .
/O(n) l L s |p(dU) <log(dK +1)  log(dr +1)

This shows that there exists Uy € O(n) such that

di dr,
Uo(Ly) C + K.
oll1) S e <10g(dK +1)  log(dp + 1)> !

Therefore,

di dy |K1|>””< |B.| )”"
K L)< Bl T
v, )—C<log<dK+1>+log(dL+1>> <|Bn| [Oo(Ly)]
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Urysohn’s inequality (1) and the first assertion of Lemma 2 give

1K\ cl(K7)
<|Bn|> shE) s =7

while Hélder’s inequality implies that

(i) = () = (Lo otrroan)

< (L) < \/_) < c'log(dy, +1).

< 'log(dg + 1)

Combining the above, we get
vr(K, L) < cs(dp log(dix + 1) + di log(d, +1)). O

Remark. John’s theorem [6] states that dy < \/n for every symmetric convex
body W in R™. It follows from the Proposition that

vi(K, L) < ¢y/nlogn
for every pair of symmetric convex bodies in R™. For the general case we are using

the following standard argument:

Proof of the Theorem: Let K and L be two convex bodies in R*. We may
assume that their centre of gravity is at the origin. An inequality of Rogers and
Shephard [12] shows that

|L — L|*/™ < 4|L|*™.

On the other hand, Milman and Pajor [8] proved that
KM < 20K N (=K)[Y"

By the Proposition, there exists 7' € GL(n) such that T(L — L) C K N (—K) and
|K N (=K)|"" < ey/nlogn|T(L — L)|*/". We obviously have T(L) C K and

: K| K0 (B)] T - DY
vr(K,L) < <|Kﬂ(—K)| IT(L—-L)] |T(L)] >
< 8cy/nlogn. O
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