
On the volume ratio of two onvex bodiesA. Giannopoulos and M. HartzoulakiAbstratLet K and L be two onvex bodies in Rn . The volume ratio vr(K;L) ofK and L is de�ned by vr(K;L) = inf(jKj=jT (L)j)1=n, where the in�mum isover all aÆne transformations T of Rn for whih T (L) � K. We show thatvr(K;L) � pn log n, where  > 0 is an absolute onstant. This is optimalup to the logarithmi term.1 IntrodutionLet K and L be two onvex bodies in Rn . The volume ratio of K and L is thequantity vr(K;L) := inf � jKjjT (L)j�1=n ;where the in�mum is taken over all aÆne transformations T of Rn for whih T (L) �K (by j � j we denote n-dimensional volume).Let Bn denote the Eulidean unit ball in Rn . Using the Brasamp-Lieb in-equality, Ball [1℄ proved that vr(K;Bn) is maximal when K is the simplex Sn. Aonsequene of Barthe's reverse Brasamp-Lieb inequality [2℄ is that vr(Bn; L) isalso maximal when L = Sn. It follows thatvr(K;L) � vr(K;Bn)vr(Bn; L) � vr(Sn; Bn)vr(Bn; Sn) = nfor every pair of onvex bodies K and L. A diret proof of the same fat was givenin [5℄ where the \maximal volume position" of L inside K is studied.The purpose of this note is to prove the following general estimate.Theorem. Let K and L be two onvex bodies in Rn . Then,vr(K;L) � pn lognwhere  > 0 is an absolute onstant.12000 Mathematis Subjet Classi�ation: Primary 52A40, 46B07; Seondary 52A21,52A20. 1



The example of the ball and the simplex shows that this estimate is optimal upto the logarithmi term. The proof of the theorem is based on the method of randomorthogonal fatorizations; atually, an essentially diret appliation of this methodgives the estimate vr(K;L) = O(pn log2 n). We an remove one logarithmi termusing an idea of Rudelson [11℄ who started with the same method to obtain theestimate O(n4=3 log� n) for the Banah-Mazur distane of two onvex bodies K andL in Rn .2 Proof of the theoremWe assume that Rn is equipped with a Eulidean struture h�; �i and denote theorresponding Eulidean norm by j � j. Bn is the Eulidean unit ball and Sn�1 is theunit sphere. We also write j � j for the volume (Lebesgue measure) in Rn , � for therotationally invariant probability measure on Sn�1, and � for the Haar probabilitymeasure on the orthogonal group O(n). The letters ; 1; 2 et. denote absolutepositive onstants whih may hange from line to line.LetW be a symmetri onvex body in Rn . Then, the funtion kxkW = inff� �0 : x 2 �Kg is a norm on Rn andW is the unit ball of the normed spae (Rn ; k�kW ).We write `n2 for the Eulidean spae (Rn ; j � j). The polar body of W is de�ned byW Æ = fy 2 Rn : jhx; yij � 1 for all x 2Wg:In other words, kykWÆ = maxx2W jhx; yij. Note that XWÆ = X�W ; W Æ is the unitball of the dual spae of XW . Note also that (TW )Æ = (T�1)�(W Æ) for everyT 2 GL(n).If XW1 and XW2 are two n-dimensional normed spaes as above, their Banah-Mazur distane d(XW1 ; XW2) is de�ned byd(XW1 ; XW2) = infT2GL(n) kT : XW1 ! XW2k � kT�1 : XW2 ! XW1k:We write dW for the Banah-Mazur distane d(XW ; `n2 ).For every origin symmetri onvex body W in Rn we de�ne the mean widthb(W ) of W by b(W ) = ZSn�1 maxy2W jh�; yij�(d�) = ZSn�1 k�kWÆ�(d�):Then, Urysohn's inequality (see [10℄, pp. 6) states that(1) � jW jjBnj�1=n � b(W )with equality if and only if W is a ball.Let L(`n2 ; XW ) denote the spae of all linear operators from `n2 to XW . The`-norm of an operator T 2 L(`n2 ; XW ) is de�ned by`(T ) = �ZRn kT (x)k2Wn(dx)�1=22



where n is the anonial Gaussian probability measure on Rn .Figiel and Tomzak-Jaegermann [4℄ introdued the `-norm and, using a generalresult of Lewis [7℄ about trae dual norms of operators, they proved that for everyW there exists T 2 L(`n2 ; XW ) suh that(2) `(T )`((T�1)�) � nK(XW );where K(XW ) is the K-onvexity onstant of XW (see [10℄, pp. 20). On the otherhand, an important inequality of Pisier [9℄ (see also [10℄, Chapter 2) states that(3) K(XW ) � 1 log(dW + 1)for every W , where 1 > 0 is an absolute onstant.We will alternatively write `(T�1(W )) instead of `(T ). With this notation, our�rst tool will be the following immediate onsequene of (2) and (3):Lemma 1 Let W be a symmetri onvex body in Rn . There exists T 2 GL(n) suhthat `(TW )`((TW )Æ) � 1n log(dW + 1);where 1 > 0 is an absolute onstant. 2We will also use some simple fats about the `-funtional W 7! `(W ).Lemma 2 Let W be a symmetri onvex body in Rn . Then,pnb(W ) � `(W Æ)(in fat, the two quantities are equivalent up to absolute onstants). Also, if Idenotes the identity operator, then `((I + S)(W )) � `(W ) for every positive linearoperator S on Rn .Proof: For the proof of the �rst assertion we apply the Cauhy-Shwarz inequalityto get `(W Æ) � ZRn kxkWÆn(dx)and then use polar integration. For the seond assertion, observe that`((I + S)(W )) � k(I + S)�1 : `n2 ! `n2k � `(W )(see also [10℄, pp. 35) and use the fat that S is positive. 2Our seond tool will be Chevet's inequality whih will be used in the spirit ofBenyamini and Gordon (see [3℄ and [13, pp. 325℄).Lemma 3 Let K and L be two symmetri onvex bodies in Rn . Then,ZO(n) kU : XL ! XKk �(dU) � 2pn�kI : `n2 ! X�Lk`(K) + kI : `n2 ! XKk`(LÆ)�;where 2 > 0 is an absolute onstant. 23



Proposition. Let K and L be two symmetri onvex bodies in Rn . Then,vr(K;L) � 3�dL log(dK + 1) + dK log(dL + 1)�where 3 > 0 is an absolute onstant.Proof: By Lemma 1 we may assume that K and LÆ satisfy`(K) � pn ; `(KÆ) � 1pn log(dK+1) ; `(LÆ) � pn and `(L) � 1pn log(dL+1):Let EK be a distane ellipsoid of K and let S 2 GL(n) be a positive linear operatorsuh that S(EK) = Bn. Then, Bn � S(K) � dKBn; therefore,`(S(K)) � pn and `((S(K))Æ) � pndK :If T = I + aS, a = log(dK + 1)=dK , we havekI : `n2 ! XTKk = k(I + aS)�1 : `n2 ! XKk� k((aS)�1 + I)�1 : `n2 ! `n2k � k(aS)�1 : `n2 ! XKk� k(aS)�1 : `n2 ! XKk = kI : `n2 ! XaSKk� 1=a = dK= log(dK + 1)and, by the seond assertion of Lemma 2,`(TK) � `(K) � pn:Also, `((TK)Æ) � `(KÆ) + a`((SK)Æ) � 1pn log(dK + 1) + apndK� pn log(dK + 1):Working in the same way with LÆ we an �nd an operator R suh thatkI : `n2 ! XRLÆk � dL= log(dL + 1)and `(RLÆ) � pn, while `((R�1)�(L)) � pn log(dL + 1).Let K1 = TK and L1 = (R�1)�(L). Applying Lemma 3 for XK1 and XL1 weget ZO(n) kU : XL1 ! XK1k�(dU) � � dKlog(dK + 1) + dLlog(dL + 1)� :This shows that there exists U0 2 O(n) suh thatU0(L1) � � dKlog(dK + 1) + dLlog(dL + 1)�K1:Therefore,vr(K;L) � � dKlog(dK + 1) + dLlog(dL + 1)�� jK1jjBnj�1=n� jBnjjU0(L1)j�1=n :4



Urysohn's inequality (1) and the �rst assertion of Lemma 2 give� jK1jjBnj�1=n � b(K1) � `(KÆ1 )pn � 0 log(dK + 1)while H�older's inequality implies that� jBnjjU0(L1)j�1=n = � jBnjjL1j�1=n = �ZSn�1 kxk�n�(dx)��1=n� b(LÆ1) � `(L1)pn � 0 log(dL + 1):Combining the above, we getvr(K;L) � 3�dL log(dK + 1) + dK log(dL + 1)�: 2Remark. John's theorem [6℄ states that dW � pn for every symmetri onvexbody W in Rn . It follows from the Proposition thatvr(K;L) � pn lognfor every pair of symmetri onvex bodies in Rn . For the general ase we are usingthe following standard argument:Proof of the Theorem: Let K and L be two onvex bodies in Rn . We mayassume that their entre of gravity is at the origin. An inequality of Rogers andShephard [12℄ shows that jL� Lj1=n � 4jLj1=n:On the other hand, Milman and Pajor [8℄ proved thatjKj1=n � 2jK \ (�K)j1=n:By the Proposition, there exists T 2 GL(n) suh that T (L� L) � K \ (�K) andjK \ (�K)j1=n � pn lognjT (L� L)j1=n. We obviously have T (L) � K andvr(K;L) � � jKjjK \ (�K)j jK \ (�K)jjT (L� L)j jT (L� L)jjT (L)j �1=n� 8pn logn: 2
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