
On the volume ratio of two 
onvex bodiesA. Giannopoulos and M. HartzoulakiAbstra
tLet K and L be two 
onvex bodies in Rn . The volume ratio vr(K;L) ofK and L is de�ned by vr(K;L) = inf(jKj=jT (L)j)1=n, where the in�mum isover all aÆne transformations T of Rn for whi
h T (L) � K. We show thatvr(K;L) � 
pn log n, where 
 > 0 is an absolute 
onstant. This is optimalup to the logarithmi
 term.1 Introdu
tionLet K and L be two 
onvex bodies in Rn . The volume ratio of K and L is thequantity vr(K;L) := inf � jKjjT (L)j�1=n ;where the in�mum is taken over all aÆne transformations T of Rn for whi
h T (L) �K (by j � j we denote n-dimensional volume).Let Bn denote the Eu
lidean unit ball in Rn . Using the Bras
amp-Lieb in-equality, Ball [1℄ proved that vr(K;Bn) is maximal when K is the simplex Sn. A
onsequen
e of Barthe's reverse Bras
amp-Lieb inequality [2℄ is that vr(Bn; L) isalso maximal when L = Sn. It follows thatvr(K;L) � vr(K;Bn)vr(Bn; L) � vr(Sn; Bn)vr(Bn; Sn) = nfor every pair of 
onvex bodies K and L. A dire
t proof of the same fa
t was givenin [5℄ where the \maximal volume position" of L inside K is studied.The purpose of this note is to prove the following general estimate.Theorem. Let K and L be two 
onvex bodies in Rn . Then,vr(K;L) � 
pn lognwhere 
 > 0 is an absolute 
onstant.12000 Mathemati
s Subje
t Classi�
ation: Primary 52A40, 46B07; Se
ondary 52A21,52A20. 1



The example of the ball and the simplex shows that this estimate is optimal upto the logarithmi
 term. The proof of the theorem is based on the method of randomorthogonal fa
torizations; a
tually, an essentially dire
t appli
ation of this methodgives the estimate vr(K;L) = O(pn log2 n). We 
an remove one logarithmi
 termusing an idea of Rudelson [11℄ who started with the same method to obtain theestimate O(n4=3 log� n) for the Bana
h-Mazur distan
e of two 
onvex bodies K andL in Rn .2 Proof of the theoremWe assume that Rn is equipped with a Eu
lidean stru
ture h�; �i and denote the
orresponding Eu
lidean norm by j � j. Bn is the Eu
lidean unit ball and Sn�1 is theunit sphere. We also write j � j for the volume (Lebesgue measure) in Rn , � for therotationally invariant probability measure on Sn�1, and � for the Haar probabilitymeasure on the orthogonal group O(n). The letters 
; 
1; 
2 et
. denote absolutepositive 
onstants whi
h may 
hange from line to line.LetW be a symmetri
 
onvex body in Rn . Then, the fun
tion kxkW = inff� �0 : x 2 �Kg is a norm on Rn andW is the unit ball of the normed spa
e (Rn ; k�kW ).We write `n2 for the Eu
lidean spa
e (Rn ; j � j). The polar body of W is de�ned byW Æ = fy 2 Rn : jhx; yij � 1 for all x 2Wg:In other words, kykWÆ = maxx2W jhx; yij. Note that XWÆ = X�W ; W Æ is the unitball of the dual spa
e of XW . Note also that (TW )Æ = (T�1)�(W Æ) for everyT 2 GL(n).If XW1 and XW2 are two n-dimensional normed spa
es as above, their Bana
h-Mazur distan
e d(XW1 ; XW2) is de�ned byd(XW1 ; XW2) = infT2GL(n) kT : XW1 ! XW2k � kT�1 : XW2 ! XW1k:We write dW for the Bana
h-Mazur distan
e d(XW ; `n2 ).For every origin symmetri
 
onvex body W in Rn we de�ne the mean widthb(W ) of W by b(W ) = ZSn�1 maxy2W jh�; yij�(d�) = ZSn�1 k�kWÆ�(d�):Then, Urysohn's inequality (see [10℄, pp. 6) states that(1) � jW jjBnj�1=n � b(W )with equality if and only if W is a ball.Let L(`n2 ; XW ) denote the spa
e of all linear operators from `n2 to XW . The`-norm of an operator T 2 L(`n2 ; XW ) is de�ned by`(T ) = �ZRn kT (x)k2W
n(dx)�1=22



where 
n is the 
anoni
al Gaussian probability measure on Rn .Figiel and Tom
zak-Jaegermann [4℄ introdu
ed the `-norm and, using a generalresult of Lewis [7℄ about tra
e dual norms of operators, they proved that for everyW there exists T 2 L(`n2 ; XW ) su
h that(2) `(T )`((T�1)�) � nK(XW );where K(XW ) is the K-
onvexity 
onstant of XW (see [10℄, pp. 20). On the otherhand, an important inequality of Pisier [9℄ (see also [10℄, Chapter 2) states that(3) K(XW ) � 
1 log(dW + 1)for every W , where 
1 > 0 is an absolute 
onstant.We will alternatively write `(T�1(W )) instead of `(T ). With this notation, our�rst tool will be the following immediate 
onsequen
e of (2) and (3):Lemma 1 Let W be a symmetri
 
onvex body in Rn . There exists T 2 GL(n) su
hthat `(TW )`((TW )Æ) � 
1n log(dW + 1);where 
1 > 0 is an absolute 
onstant. 2We will also use some simple fa
ts about the `-fun
tional W 7! `(W ).Lemma 2 Let W be a symmetri
 
onvex body in Rn . Then,pnb(W ) � 
`(W Æ)(in fa
t, the two quantities are equivalent up to absolute 
onstants). Also, if Idenotes the identity operator, then `((I + S)(W )) � `(W ) for every positive linearoperator S on Rn .Proof: For the proof of the �rst assertion we apply the Cau
hy-S
hwarz inequalityto get `(W Æ) � ZRn kxkWÆ
n(dx)and then use polar integration. For the se
ond assertion, observe that`((I + S)(W )) � k(I + S)�1 : `n2 ! `n2k � `(W )(see also [10℄, pp. 35) and use the fa
t that S is positive. 2Our se
ond tool will be Chevet's inequality whi
h will be used in the spirit ofBenyamini and Gordon (see [3℄ and [13, pp. 325℄).Lemma 3 Let K and L be two symmetri
 
onvex bodies in Rn . Then,ZO(n) kU : XL ! XKk �(dU) � 
2pn�kI : `n2 ! X�Lk`(K) + kI : `n2 ! XKk`(LÆ)�;where 
2 > 0 is an absolute 
onstant. 23



Proposition. Let K and L be two symmetri
 
onvex bodies in Rn . Then,vr(K;L) � 
3�dL log(dK + 1) + dK log(dL + 1)�where 
3 > 0 is an absolute 
onstant.Proof: By Lemma 1 we may assume that K and LÆ satisfy`(K) � pn ; `(KÆ) � 
1pn log(dK+1) ; `(LÆ) � pn and `(L) � 
1pn log(dL+1):Let EK be a distan
e ellipsoid of K and let S 2 GL(n) be a positive linear operatorsu
h that S(EK) = Bn. Then, Bn � S(K) � dKBn; therefore,`(S(K)) � 
pn and `((S(K))Æ) � 
pndK :If T = I + aS, a = log(dK + 1)=dK , we havekI : `n2 ! XTKk = k(I + aS)�1 : `n2 ! XKk� k((aS)�1 + I)�1 : `n2 ! `n2k � k(aS)�1 : `n2 ! XKk� k(aS)�1 : `n2 ! XKk = kI : `n2 ! XaSKk� 1=a = dK= log(dK + 1)and, by the se
ond assertion of Lemma 2,`(TK) � `(K) � pn:Also, `((TK)Æ) � `(KÆ) + a`((SK)Æ) � 
1pn log(dK + 1) + apndK� 
pn log(dK + 1):Working in the same way with LÆ we 
an �nd an operator R su
h thatkI : `n2 ! XRLÆk � dL= log(dL + 1)and `(RLÆ) � pn, while `((R�1)�(L)) � 
pn log(dL + 1).Let K1 = TK and L1 = (R�1)�(L). Applying Lemma 3 for XK1 and XL1 weget ZO(n) kU : XL1 ! XK1k�(dU) � 
� dKlog(dK + 1) + dLlog(dL + 1)� :This shows that there exists U0 2 O(n) su
h thatU0(L1) � 
� dKlog(dK + 1) + dLlog(dL + 1)�K1:Therefore,vr(K;L) � 
� dKlog(dK + 1) + dLlog(dL + 1)�� jK1jjBnj�1=n� jBnjjU0(L1)j�1=n :4



Urysohn's inequality (1) and the �rst assertion of Lemma 2 give� jK1jjBnj�1=n � b(K1) � 
`(KÆ1 )pn � 
0 log(dK + 1)while H�older's inequality implies that� jBnjjU0(L1)j�1=n = � jBnjjL1j�1=n = �ZSn�1 kxk�n�(dx)��1=n� b(LÆ1) � 
`(L1)pn � 
0 log(dL + 1):Combining the above, we getvr(K;L) � 
3�dL log(dK + 1) + dK log(dL + 1)�: 2Remark. John's theorem [6℄ states that dW � pn for every symmetri
 
onvexbody W in Rn . It follows from the Proposition thatvr(K;L) � 
pn lognfor every pair of symmetri
 
onvex bodies in Rn . For the general 
ase we are usingthe following standard argument:Proof of the Theorem: Let K and L be two 
onvex bodies in Rn . We mayassume that their 
entre of gravity is at the origin. An inequality of Rogers andShephard [12℄ shows that jL� Lj1=n � 4jLj1=n:On the other hand, Milman and Pajor [8℄ proved thatjKj1=n � 2jK \ (�K)j1=n:By the Proposition, there exists T 2 GL(n) su
h that T (L� L) � K \ (�K) andjK \ (�K)j1=n � 
pn lognjT (L� L)j1=n. We obviously have T (L) � K andvr(K;L) � � jKjjK \ (�K)j jK \ (�K)jjT (L� L)j jT (L� L)jjT (L)j �1=n� 8
pn logn: 2
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