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Abstract

We investigate a Maclaurin inequality for vectors and its connection to an Aleksandrov-type

inequality for parallelepipeds.

1 Introduction

The classical Maclaurin inequality compares consecutive symmetric sums for any sequence of positive
real numbers:

Theorem 1 (Maclaurin inequality). For any sequence of positive real numbers x1, . . . , xm and any
1   k ¤ m, the following inequality holds:���
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This was �rst proved in [15] and a proof of this result using elementary methods can be found also in
[8]. The Maclaurin inequality can be seen as a re�nement of the arithmetic-geometric mean inequality
by noting that the geometric mean and arithmetic mean appear as the smallest and largest quantities
respectively in the following chain of inequalities:
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which follows directly from Theorem 1.
In this note, we explore a variant of this classical result, with sequences of numbers replaced by

families of vectors, and the standard product replaced by the wedge product operator. More precisely,
let v1, . . . , vm P Rd with d ¤ m, and for any 1 ¤ i1   � � �   ik ¤ m with k ¤ d denote by |vi1^� � �^vik | the
k-dimensional volume of the parallelotope spanned by vi1 , . . . , vik . We are interested in "vector-valued"
inequalities of the form���
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, (1)

with p P r0,8s and 2 ¤ k ¤ d. Note that if m � d and v1, . . . , vm are orthogonal, then each term
|vi1 ^ � � � ^ vik |

p will just be equal to a k-fold product of numbers, namely }vi1}
p � � � }vik}

p. It follows
that (1) reduces to a special case of the classical Maclaurin inequality for any p P p0,8q.

Given a general family of vectors v1, . . . , vm P Rd, the value of p plays a more important role. Using
elementary results from linear algebra, we are able to establish (1) for p � 2 and m � d:
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Theorem 2. For any d-tuple of vectors v1, . . . , vd P Rd and any 1   k ¤ d, the following inequality
holds: ���
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Moreover, taking limits as pÑ8, we can write

lim
pÑ8
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|vi1 ^ � � � ^ vik |.

Again using purely linear algebra, namely Szasz's inequality for subdeterminants, we are able to prove
the following endpoint case:

Theorem 3. Fix vectors v1, . . . , vm P Rd with 1 ¤ d ¤ m. Then, for any 1   k ¤ d, the following
inequality holds:�

max
ti1,...,iku�rms

|vi1 ^ � � � ^ vik |
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k

¤

�
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k�1

. (2)

By a similar argument, we also prove (1) for p � 0:

Theorem 4. Fix vectors v1, . . . , vm P Rd with 1 ¤ d ¤ m. Then, for any 1   k ¤ d, the following
inequality holds:�� ¹

ti1,...,iku�rms

|vi1 ^ � � � ^ vik |

� 1
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.

It is not di�cult to verify that (1) fails to hold in general for negative values of p.
If we take p � 1, it seems more di�cult to establish the desired inequality for a general family of

vectors. However, in the case where m � d, we have some partial results:

Theorem 5. If m � d, then for any v1, . . . , vm P Rd, inequality (1) holds with p � 1 and k � 2, 3, d in
all dimensions d.

Using a certain duality between families of vectors, one can also prove the case for p � 1 and k � d� 1,
which includes the only remaining case in R5 where k � 4 see [13], Section 6 for details. To prove
Theorem 5, in each case we essentially construct a new family of orthogonal vectors ṽ1, . . . , ṽm P Rd such
that ���
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|vi1 ^ � � � ^ vik�1
|�

m
k�1

�
��

1
k�1

¥

���
°

ti1,...,ik�1u�rms
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.

The desired result then follows by a simple application of Theorem 1.
In light of these results, we conjecture that the vector-valued Maclaurin inequalities should hold in

the full range 0 ¤ p ¤ 8:
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Conjecture 1 (Vector-valued Maclaurin inequality). Fix vectors v1, . . . , vm P Rd with 1 ¤ d ¤ m. Then
for all p P r0,8s and 2 ¤ k ¤ d, the following inequality holds:���
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,

with equality if and only if m � d and the vectors vi form an orthonormal basis.

It should be noted that for p � 1, the vector-valued Maclaurin inequality is of particular interest, as it
turns out to be closely related to the far-reaching Aleksandrov�Fenchel inequality from convex geometry.
By a simple argument one can deduce the classical Maclaurin inequality as a consequence of Newton's
inequality, and similarly one would be able to deduce the vector-valued Maclaurin inequality for p � 1
from a corresponding vector-valued version of Newton's inequality of the following form���
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where 2 ¤ k ¤ d � 1. It is worth noting the explicit connection between Newton's inequality and the
Aleksandrov�Fenchel inequality. Up until this point, in the literature, the Aleksandrov�Fenchel inequality
has been referred to as a Newton-type inequality, simply because it is of the same form (square greater
than a product).

To illustrate the connection between the vector-valued Maclaurin inequality and the Aleksandrov�
Fenchel inequality, let us denote by P the following Minkowski sum of line segments

P �
m̧

j�1

1

2
r�vj , vjs.

Using this notation, Conjecture 1 with p � 1 exactly states that for 1   k ¤ d we have�
VkpP q�
m
k

� � 1
k

¤

�
Vk�1pP q�

m
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� � 1
k�1

, (4)

or �
VkpP q

VkpCmq


 1
k

¤

�
Vk�1pP q

Vk�1pCmq


 1
k�1

,

where Vk denotes the k-th intrinsic volume and Cm is the m-dimensional unit cube. This is a general
isoperimetric-type inequality. For example, the case m � d and and k � d, which is proved here, says
that among all parallelepipeds (non necessarily orthogonal) with the same volume, the cube has the
smallest surface area. This particular case was �rst proved by Hadwiger in [7] (see also [6]) using Steiner
symmetrisation. Moreover, if (4) holds for an arbitrary sum of line segments, then one would recover the
dimension free estimate of McMullen [11] restricted to the class of zonoids. Furthermore, (4) is related
to isoperimetric-type inequalities proved in [9].

Despite the fact that we don't have a proof for the sharp inequality (4), we are able to prove it with
a constant that it is bounded by an absolute constant that doesn't depend on the dimension.

Theorem 6. For any d-tuple of vectors v1, . . . , vd P Rd and any 2   k ¤ d, the following inequality
holds: ���
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Note that the constant appearing on the right-hand side is greater than 1, but smaller than 2.
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Structure of paper

In Section 2 we introduce some relevant notation and terminology. Section 3 is dedicated to proving
Theorems 2, 3 and 4. In Section 4, we discuss a general approach for attempting to establish (1) with
p � 1, and prove the special cases listed in Theorem 5. At the beginning of Section 5, we introduce tools
from convex geometry which allow us to rewrite the vector-valued Maclaurin inequality with p � 1 in
terms of convex bodies and mixed volumes. In Section 5.1, we then use these tools to establish Theorem
6.

2 Notation and background information

We work in Rd, which is equipped with a Euclidean structure x�, �y and we �x an orthonormal basis
te1, . . . , edu. We denote by Bd2 and Sd�1 the Euclidean unit ball and sphere in Rd respectively. We write
σ for the normalised rotationally invariant probability measure on Sd�1 and ν for the Haar probability
measure on the orthogonal group Opdq. Let Gd,k denote the Grassmannian of all k-dimensional subspaces
of Rd. Then, Opdq equips Gd,k with a Haar probability measure νd,k. The letters c, c

1, c1, c2 etc. denote
absolute positive constants which may change from line to line. Whenever we write a � b, we mean that
there exist absolute constants c1, c2 ¡ 0 such that c1a ¤ b ¤ c2a.

Let Kd denote the class of all non-empty compact convex subsets of Rd. If K P Kd has non-
empty interior, we will say that K is a convex body. If A P Kd, we will denote by |A| the volume
of A in the appropriate a�ne subspace unless otherwise stated. The volume of Bd2 is denoted by κd.
We say that a convex body K in Rd is symmetric if x P K implies that �x P K, and that K is
centred if its centre of mass 1

|K|

³
K
x dx is at the origin. The support function of a convex body K is

de�ned by hKpyq � maxtxx, yy : x P Ku. For any E P Gd,k we denote by EK the orthogonal subspace
of E, i.e. EK � tx P Rd : xx, yy � 0 for all y P Eu. In particular, for any u P Sd�1 we de�ne
uK � tx P Rd : xx, uy � 0u. The section of K P Kd with a subspace E of Rd is KXE, and the orthogonal
projection of K onto E is denoted by PEpKq.

Mixed volumes are introduced by a classical theorem of Minkowski which describes the way volume
behaves with respect to the operations of addition and multiplication of compact convex sets by non-
negative reals: if K1, . . . ,KN P Kd, N P N, then the volume of t1K1 � � � � � tNKN is a homogeneous
polynomial of degree d in ti ¥ 0 (see [3] and [16]):��t1K1 � � � � � tNKN

�� � ¸
1¤i1,...,id¤N

V pKi1 , . . . ,Kidqti1 . . . tid , (5)

where the coe�cients V pKi1 , . . . ,Kidq are invariant under permutations of their arguments. The coef-
�cient V pKi1 , . . . ,Kidq is called the mixed volume of the d-tuple pKi1 , . . . ,Kidq. We will often use the
fact that V is positive, linear with respect to each of its arguments, and that V pK, . . . ,Kq � |K| (the
d-dimensional Lebesgue measure of K) for all K P Kd.

Steiner's formula is a special case of Minkowski's theorem. If K P Kd then the volume of K � tBd2 ,
t ¡ 0, can be expanded as a polynomial in t:

|K � tBd2 | �
ḑ

k�0

�
d

k



WkpKqt

k, (6)

where WkpKq :� V pKrd� ks, Bd2 rksq is the k-th quermassintegral of K. Moreover, for k � 1, . . . , d, the
k-th intrinsic volume of a convex body L � Rd is de�ned as

VkpLq �

�
d

k



V pLrks, Bd2 rd� ksq

κd�k
.

The Aleksandrov-Fenchel inequality states that if K,L,K3, . . . ,Kd P Kd, then

V pK,L,K3, . . . ,Kdq
2 ¥ V pK,K,K3, . . . ,KdqV pL,L,K3, . . . ,Kdq. (7)

In particular, this implies that the sequence pW0pKq, . . . ,WdpKqq is log-concave. From the Aleksandrov-
Fenchel inequality one can recover the Brunn-Minkowski inequality as well as the following generalisation
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for the quermassintegrals:

WkpK � Lq
1

d�k ¥WkpKq
1

d�k �WkpLq
1

d�k , k � 0, . . . , d� 1. (8)

We write SpKq for the surface area of K. From Steiner's formula and the de�nition of surface area we
see that SpKq � dW1pKq. Finally, let us mention Kubota's integral formula

WkpKq �
κd
κd�k

»
Gd,d�k

|PEpKq| dνd,d�kpEq, 1 ¤ k ¤ d� 1. (9)

The case k � 1 is Cauchy's surface area formula

SpKq �
κd

dκd�1

»
Sd�1

|PuKpKq| dσpuq. (10)

We refer to the books [4] and [16] for basic facts from the Brunn-Minkowski theory and to the books [1]
and [2] for basic facts from asymptotic convex geometry.

3 Principal minors and Szasz's inequality

In this section we introduce some elementary tools from linear algebra, and use them to prove Theorems
2, 3 and 4.

Vector-valued Maclaurin inequality with p � 2 Firstly, for any family of vectors v1 . . . , vd P Rd,
we write the square of each k-dimensional volume |vi1^� � �^vik |

2 as the determinant of a k�k submatrix
of some �xed d� d matrix. Let us introduce the notion of a principal minor:

De�nition 1 (Principal minors). Let M be an n� n matrix. For S � rns, de�ne MS to be submatrix
constructed by removing rows and columns with indices not in S. The set of principal submatrices of M
is de�ned as tMS |S � rnsu. Furthermore, the set of principal minors of M is de�ned as tdet pMSq |S �
rnsu. For 1 ¤ k ¤ n, we de�ne the principal k-submatrices and principal k-minors of M by adding the
condition that |S| � k.

Let A denote the square d�d matrix with columns v1, . . . , vd and let B be the d�k matrix with columns
v1, . . . , vk for some 1 ¤ k ¤ d, then we can write

|v1 ^ � � � ^ vk|
2 � detpBTBq.

A short proof of this identity can be found in [10]. The matrix BTB is a principal k-submatrix of ATA,
and can be constructed by removing the last pd� kq rows and columns. In this way we see that the sum
of terms |vi1 ^ � � � ^ vik |

2 over all 1 ¤ i1   � � �   ik ¤ d is equal to the sum of all principal k-minors of
ATA. The next lemma allows us to work with the sum of all principal minors of ATA:

Lemma 1 (Sum of principal minors). LetM be a n�n matrix with eigenvalues λ1, . . . , λn (not necessarily
distinct). For 1 ¤ k ¤ n we have that¸

|S|�k

detpMT
SMSq �

¸
|S|�k

¹
iPS

λ2
i .

A proof of this lemma can be found in [12]. Now we are ready to establish the vector-valued Maclaurin
inequality with p � 2:

Proof of Theorem 2. As before, let A denote the square matrix with columns v1, . . . , vd and (not neces-
sarily distinct) eigenvalues λ1, . . . , λd. Then for 1 ¤ i1   � � �   ik ¤ d, de�ne Bi1,...,ik to be the d � k
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matrix with columns vi1 , . . . , vik . Now we use Lemma 1 along with Theorem 1, which is precisely the
classical Maclaurin inequality, to write���
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|2�

d
k�1

�
��

1
k�1

.

This proves the desired result.

Endpoint cases p � 0 and p � 8 To begin, let us state a result of Szasz regarding principal minors:

Lemma 2 (Szasz's inequality). Let M be some n � n matrix. For 1   k   n the following inequality
holds �� ¹

|A|�k

detpMAq

� 1

pn�1
k�1q

¤

�� ¹
|B|�k�1

detpMBq

� 1

pn�1
k�2q

.

A proof of this using elementary methods can be found in [10]. Simple applications of this lemma
allow us to deduce the vector-valued Maclaurin inequality with p � 0 and p � 8.

Proof of Theorem 4. Let A denote the d � m matrix with columns v1, . . . , vm and let Ai1,...,ik be the
d� k matrix with columns vi1 , . . . , vik for some 1 ¤ k ¤ d, then we have

|vi1 ^ � � � ^ vik |
2 � detpATi1,...,ikAi1,...,ikq.

As we mentioned earlier, ATi1,...,ikAi1,...,ik can also be seen as a principal submatrix of ATA, which is an
m�m matrix. Hence, by Szasz's lemma we have�� ¹

ti1,...,iku�rms

|vi1 ^ � � � ^ vik |
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pm�1
k�1q

¤
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.

Taking square roots, and noting that
�
m�1
k�1

�
�
�
m
k

�
� km and

�
m�1
k�2

�
�
�
m
k�1

�
� k�1
m , the above inequality

can be written as���
�� ¹
ti1,...,iku�rms

|vi1 ^ � � � ^ vik |

� 1

pmk q
��

1
k

¤

���
�� ¹
ti1,...,ik�1u�rms

|vi1 ^ � � � ^ vik�1
|

� 1

p m
k�1q

��
1

k�1

, (11)

as required.
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Remark 1. In (11) we see that we have geometric means appearing inside the �rst set of parenthesis on
both sides. Intriguingly, simply replacing these geometric means by arithmetic means reveals the vector
valued Maclaurin inequality with p � 1. So, if we think of the vector-valued Maclaurin inequality with
p � 1 as a chain of inequalities for a sequence of arithmetic means, then (11) can be thought of as an
analogous chain of inequalities for the corresponding geometric means.

The case for p � 8 also follows directly from Szasz's inequality.

Proof of Theorem 3. Let i1   � � �   ik ¤ m be the indices where the left hand side is maximised and
let B be the matrix with columns vi1 , . . . , vik . Now, using Szasz's inequality for M � BTB, n � k and
taking square root to both sides, we get

|vi1 ^ � � � ^ vik | ¤

�
k¹
j�1

|vi1 ^ � � � ^ xvij ^ � � � ^ vik |

� 1
k�1

¤

�
k¹
j�1

�
max

ti1,...,ik�1u�rds
|vi1 ^ � � � ^ vik�1

|


� 1
k�1

�

�
max

ti1,...,ik�1u�rds
|vi1 ^ � � � ^ vik�1

|


 k
k�1

,

which concludes the proof.

4 Partial results for p � 1 and monotonicity argument

In the next section we prove the special cases of vector-valued Maclaurin inequalities with p � 1 and
m � d listed in Theorem 5. Our method is somewhat inspired by a monotonicity argument given in [8]
to prove the classical Maclaurin inequality. Given vectors v1, . . . , vd P Rd, we attempt to construct a
second family of orthogonal vectors ṽ1, . . . , ṽd P Rd, such that���

°
ti1,...,iku�rds

|vi1 ^ � � � ^ vik |�
d
k

�
��

1
k

¤

���
°

ti1,...,iku�rds

|ṽi1 ^ � � � ^ ṽik |�
d
k

�
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1
k

,

and ���
°

ti1,...,ik�1u�rds

|vi1 ^ � � � ^ vik�1
|�

d
k�1

�
��

1
k�1

¥

���
°

ti1,...,ik�1u�rds

|ṽi1 ^ � � � ^ ṽik�1
|�

d
k�1

�
��

1
k�1

.
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If such an orthogonal family exists, then applying Theorem 1 with positive numbers }v1}, . . . , }vd}, we
can write ���

°
ti1,...,iku�rds

|vi1 ^ � � � ^ vik |�
d
k

�
��

1
k

¤

���
°

ti1,...,iku�rds

|ṽi1 ^ � � � ^ ṽik |�
d
k

�
��

1
k

�

���
°

ti1,...,iku�rds

}ṽi1} � � � }ṽik}�
d
k

�
��

1
k

¤

���
°

ti1,...,ik�1u�rds

}ṽi1} � � � }ṽik�1
}�

d
k�1

�
��

1
k�1

�

���
°

ti1,...,ik�1u�rds

|ṽi1 ^ � � � ^ ṽik�1
|�

d
k�1

�
��

1
k�1

¤

���
°

ti1,...,ik�1u�rds

|vi1 ^ � � � ^ vik�1
|�

d
k�1

�
��

1
k�1

.

In order to streamline the argument slightly, we introduce the following convenient notation

Skpv1, . . . , vdq :�
¸

ti1,...,iku�rds

|vi1 ^ � � � ^ vik |.

Notice that by symmetry, instead of constructing a whole family of orthogonal vectors, it su�ces to
construct ṽ1 P tv2, . . . , vdu

K such that

Skpv1, . . . , vdq ¤ Skpṽ1, v2, . . . , vdq,

and

Sk�1pv1, . . . , vdq ¥ Sk�1pṽ1, v2, . . . , vdq.

Since we only need to worry about the terms involving v1, these last two conditions can be written
respectively as ¸

ti1,...,ik�1u�rdsz1

|v1 ^ vi1 ^ � � � ^ vik�1
| ¤

¸
ti1,...,ik�1u�rdsz1

|ṽ1 ^ vi1 ^ � � � ^ vik�1
|,

and ¸
ti1,...,ik�2u�rdsz1

|v1 ^ vi1 ^ � � � ^ vik�2
| ¥

¸
ti1,...,ik�2u�rdsz1

|ṽ1 ^ vi1 ^ � � � ^ vik�2
|.

Note that ṽ1 is orthogonal to the vectors v2, . . . , vd, so for any tvi1 , . . . , viru � tv2, . . . , vdu

|ṽ1 ^ vi1 ^ � � � ^ vir | � }ṽ1}|vi1 ^ � � � ^ vir |.

Hence we can rewrite the previous two inequalities as follows,°
ti1,...,ik�1u�rdsz1

|v1 ^ vi1 ^ � � � ^ vik�1
|°

ti1,...,ik�1u�rdsz1

|vi1 ^ � � � ^ vik�1
|

¤ }ṽ1} ¤

°
ti1,...,ik�2u�rdsz1

|v1 ^ vi1 ^ � � � ^ vik�2
|°

ti1,...,ik�2u�rdsz1

|vi1 ^ � � � ^ vik�2
|

.

So the question is can we choose a length }ṽ1} satisfying the above? Let us summarise what we have
just derived with the following result:
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Theorem 7. Fix 1   k ¤ d. Suppose that for any v1, . . . , vd P Rd°
ti1,...,ik�1u�rdsz1

|v1 ^ vi1 ^ � � � ^ vik�1
|°

ti1,...,ik�1u�rdsz1

|vi1 ^ � � � ^ vik�1
|

¤

°
ti1,...,ik�2u�rdsz1

|v1 ^ vi1 ^ � � � ^ vik�2
|°

ti1,...,ik�2u�rdsz1

|vi1 ^ � � � ^ vik�2
|

, (12)

where we interpret the k � 2 case as °
iPrdsz1

|v1 ^ vi|°
iPrdsz1

}vi}
¤ }v1}.

Then, for any w1, . . . , wd P Rd, we have�
Skpw1, . . . , wdq�

d
k

� � 1
k

¤

�
Sk�1pw1, . . . , wdq�

d
k�1

� � 1
k�1

.

4.1 Proof of Theorem 5

Now we will prove various special cases of (12) which then imply the corresponding cases listed in
Theorem 5:

Lemma 3. If k � 2 or k � d, then p12q holds for arbitrary v1, . . . , vd P Rd.

Proof. To begin, let us deal with the case where k � d. Observe that for 2 ¤ i ¤ d we have

|v1 ^ � � � ^ vd|

|v2 ^ � � � ^ vd|
� }Ptv2,...,vduKv1} ¤ }Ptv2,...,xvi,...,vduKv1} �

|v1 ^ � � � ^ pvi ^ � � � ^ vd|

|v2 ^ � � � ^ pvi ^ � � � ^ vd|
.

Rearranging this gives

|v1 ^ � � � ^ vd||v2 ^ � � � ^ pvi ^ � � � ^ vd| ¤ |v1 ^ � � � ^ pvi ^ � � � ^ vd||v2 ^ � � � ^ vd|.

Summing over i yields

ḑ

i�2

|v1 ^ � � � ^ vd||v2 ^ � � � ^ pvi ^ � � � ^ vd| ¤
ḑ

i�2

|v1 ^ � � � ^ pvi ^ � � � ^ vd||v2 ^ � � � ^ vd|

which implies that

|v1 ^ � � � ^ vd|

|v2 ^ � � � ^ vd|
¤

°d
i�2 |v1 ^ � � � ^ pvi ^ � � � ^ vd|°d
i�2 |v2 ^ � � � ^ pvi ^ � � � ^ vd|

,

which is exactly p12q for k � d. Now for the case where k � 2. Simply note that

ḑ

i�2

|v1 ^ vi| ¤ }v1}
ḑ

i�2

}vi},

which immediately gives °d
i�2 |v1 ^ vi|°d
i�2 }vi}

¤ }v1},

which concludes the proof.

Next we deal with the case k � 3, which requires a little more work:

Lemma 4. If k � 3, then p12q holds in all dimensions d.
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In order to prove Lemma 4, we �rst prove the following variant of (12):

Lemma 5. °
ti1,...,id�2u�rdsz1

|v1 ^ vi1 ^ � � � ^ vid�2
|°

ti1,...,id�2u�rdsz1

|vi1 ^ � � � ^ vid�2
|

¤

d°
i�2

|v1 ^ vi|

d°
i�2

}vi}

. (13)

Of course when d � 4, (13) is exactly (12) with k � 3.
To prove Lemma 5 we need to use an elementary fact regarding barycentric coordinates with respect

to a simplex. The next result is originally due to Möbius [14]:

Proposition 1 (Barycentric coordinates with respect to a simplex). Let v1, . . . , vd P Rd�1 be the vertices
of a pd � 1q-simplex ∆. Given a vector u P ∆, there exists a unique d-tuple pβ1, . . . , βdq P Rd with°d
j�1 βj � 1, satisfying the following identity

ḑ

j�1

βjvj � u.

Furthermore, we can write such numbers β1, . . . , βd explicitly using the following formula

βj �
|pv1 � uq ^ � � � ^ {pvj � uq ^ � � � ^ pvd � uq|

2Volp∆q
.

Proof of Lemma 5. By rearranging it su�ces to prove�� ¸
ti1,...,id�2u�rdsz1

|v1 ^ vi1 ^ � � � ^ vid�2
|

�� ḑ

i�2

}vi}

�
¤

�
ḑ

i�2

|v1 ^ vi|

�

�

�� ¸
ti1,...,id�2u�rdsz1

|vi1 ^ � � � ^ vid�2
|

�.
(14)

For j � 1, . . . , d� 2, it is always true that

|v1 ^ vi1 ^ � � � ^ vid�2
|

|vi1 ^ � � � ^ vid�2
|

�
���Ptvi1 ,...,vid�2

uKv1

��� ¤ ���PvijKv1

��� � |v1 ^ vij |��vij �� .

Rearranging this we get

|v1 ^ vi1 ^ � � � ^ vid�2
|}vij } ¤ |v1 ^ vij ||vi1 ^ � � � ^ vid�2

|. (15)

Summing over ti1, . . . , id�2u � rds and j P t1, . . . , d� 2u, we get

¸
ti1,...,id�2u�rdsz1

d�2̧

j�1

|v1 ^ vi1 ^ � � � ^ vid�2
|}vij } ¤

¸
ti1,...,id�2u�rdsz1

d�2̧

j�1

|v1 ^ vij ||vi1 ^ � � � ^ vid�2
|. (16)

After multiplying out the brackets in (14), we see that it su�ces to prove the following estimate involving
terms |v1 ^ vi1 ^ � � � ^ vid�2

|}vi} with i R ti1, . . . , id�2u:

ḑ

j�2

|v1 ^ v2 ^ � � � ^ pvj ^ � � � ^ vd|}vj} ¤
ḑ

j�2

|v1 ^ vj ||v2 ^ � � � ^ pvj ^ � � � ^ vd|.

Without loss of generality we may assume that

|v1 ^ v2|

}v2}
¤ � � � ¤

|v1 ^ vd|

}vd}
,
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then, bearing this in mind, we can apply a particular choice of (15) to each term on the left hand side
to get

ḑ

j�2

|v1 ^ v2 ^ � � � ^ pvj ^ � � � ^ vd|}vj} ¤
|v1 ^ v2|

}v2}

�
ḑ

j�3

|v2 ^ � � � ^ pvj ^ � � � ^ vd|}vj}

�

�
|v1 ^ v3|

}v3}
|v3 ^ � � � ^ vd|}v2}.

Supposing we know that

ḑ

j�3

|v2 ^ � � � ^ pvj ^ � � � ^ vd|}vj} ¥ |v3 ^ � � � ^ vd|}v2},

then by a simple application of the rearrangement inequality for numbers, along with our assumption on

the ordering of |v1^v2|
}v2}

, . . . , |v1^vd|}vd}
, we see that

|v1 ^ v2|

}v2}

�
ḑ

j�3

|v2 ^ � � � ^ pvj ^ � � � ^ vd|}vj}

�
�
|v1 ^ v3|

}v3}
|v3 ^ � � � ^ vd|}v2}

¤
|v1 ^ v2|

}v2}
|v3 ^ � � � ^ vd|}v2} �

|v1 ^ v3|

}v3}

�
ḑ

j�3

|v2 ^ � � � ^ pvj ^ � � � ^ vd|}vj}

�

¤
ḑ

j�2

|v1 ^ vj ||v2 ^ � � � ^ pvj ^ � � � ^ vd|,

which is what we want. It su�ces to prove the following claim:

Claim 1. For any u1, . . . , ud P Rd we have

ḑ

j�2

|u1 ^ � � � ^ puj ^ � � � ^ ud|}uj} ¥ |u2 ^ � � � ^ ud|}u1}.

Proof of Claim 1. Supposing that all the vectors lie in a pd � 1q-dimensional subspace, then it is clear
that they must be linearly dependent. In particular, one can �nd coe�cients α1, . . . , αd P R, which are
not all equal to zero, such that

ḑ

j�1

αjuj � 0. (17)

By assumption, we have
°d
j�1 |αj | � 0, so by setting

βj �
|αj |°d
j�1 |αj |

,

and

ξj � sgnpαjquj ,

we can rewrite (17) as

ḑ

j�1

βjξj � 0. (18)

By de�nition, we have

ḑ

j�1

βj � 1,

11



so applying Proposition 1 we can write

βj �
|ξ1 ^ � � � ^ pξj ^ � � � ^ ξd|

Vol p∆ξ1,...,ξdq
�
|u1 ^ � � � ^ puj ^ � � � ^ ud|

Vol p∆ξ1,...,ξdq
,

where ∆ξ1,...,ξd denotes the simplex with vertices ξ1, . . . , ξd. So, (18) becomes

ḑ

j�1

|u1 ^ � � � ^ puj ^ � � � ^ ud|

Vol p∆ξ1,...,ξdq
ξj � 0,

and then multiplying through by Vol p∆ξ1,...,ξdq we get

ḑ

j�1

|u1 ^ � � � ^ puj ^ � � � ^ ud|ξj � 0.

By the reverse triangle inequality, we have

0 �

����� ḑ

j�1

|u1 ^ � � � ^ puj ^ � � � ^ ud|ξj

�����
¥ |u2 ^ � � � ^ ud|}ξ1} �

����� ḑ

j�2

|u1 ^ � � � ^ puj ^ � � � ^ ud|ξj

����� .
Now by simply rearranging and applying the standard triangle inequality, we see that

|u2 ^ � � � ^ ud|}u1} � |u2 ^ � � � ^ ud|}ξ1} ¤

����� ḑ

j�2

|u1 ^ � � � ^ puj ^ � � � ^ ud|ξj

�����
¤

ḑ

j�2

|u1 ^ � � � ^ puj ^ � � � ^ ud|}ξj}

�
ḑ

i�2

|u1 ^ � � � ^ puj ^ � � � ^ ud|}uj}.

Suppose that the vectors u1, . . . , ud do not lie in a pd � 1q-dimensional subspace. Let us de�ne a new
family w1, . . . , wd of vectors from the original family by simply projecting u1 onto the subspace spanned
by u2, . . . , ud and scaling appropriately. More precisely de�ne

w1 :�
}u1}��Pspantu2,...,uduu1

��u1,

and for j � 2, . . . , d set wj :� uj . Clearly

|w2 ^ � � � ^ wd|}w1} � |u2 ^ � � � ^ ud|}u1}.

Applying the previous case, it su�ces to prove that for j � 2, . . . , d

|w1 ^ � � � ^xwj ^ � � � ^ wd|}wj} ¤ |u1 ^ � � � ^ puj ^ � � � ^ ud|}uj},

which follows from the fact that���Pspantu2,...,uduu1

�
^ u2 ^ � � � ^ puj ^ � � � ^ ud

����Pspantu2,...,uduu1

�� ¤
|u1 ^ � � � ^ puj ^ � � � ^ ud|

}u1}

This concludes the proof of Lemma 5.
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By a simple argument we can now establish p12q for k � 3 in all dimensions:

Proof of Lemma 4. Directly applying Lemma 5 with d � 4, for any v1, . . . , v4 P R4 we have°
ti,ju�t2,3,4u

|v1 ^ vi ^ vj |°
ti,ju�t2,3,4u

|vi ^ vj |
¤

°
kPt2,3,4u

|v1 ^ vk|°
kPt2,3,4u

}vk}
.

Multiplying out the denominators and expanding the brackets, this last inequality can be rewritten as¸
ti,ju�t2,3,4u

¸
kPt2,3,4u

|v1 ^ vi ^ vj |}vk} ¤
¸

ti,ju�t2,3,4u

¸
kPt2,3,4u

|vi ^ vj ||v1 ^ vk|. (19)

For higher dimensions simply note that using (19), we can deduce that¸
ti,ju�rdsz1

¸
kPrdsz1

|v1 ^ vi ^ vj |}vk} �
¸

ta,b,cu�rdsz1

¸
ti,ju�ta,b,cu

¸
kPta,b,cu

|v1 ^ vi ^ vj |}vk}

¤
¸

ta,b,cu�rdsz1

¸
ti,ju�ta,b,cu

¸
kPta,b,cu

|vi ^ vj ||v1 ^ vk|

�
¸

ti,ju�rdsz1

¸
kPrdsz1

|vi ^ vj ||v1 ^ vk|,

which directly implies that °
ti,ju�rdsz1

|v1 ^ vi ^ vj |°
ti,ju�rdsz1

|vi ^ vj |
¤

°
kPrdsz1

|v1 ^ vk|°
kPrdsz1

}vk}
.

5 Connection to intrinsic volumes

As mentioned in the introduction, the vector-valued Maclaurin inequality with p � 1 can be rewritten
as a sequence of inequalities between intrinsic volumes of certain polytopes. Firstly, let us state a useful
formula for calculating the mixed volume of a zonoid:

Theorem 8 (Theorem 5.3.2 in [16]). For 1 ¤ j ¤ d and 1 ¤ i ¤ j let Zi be a generalised zonoid with
generating measure ρi, and let K1, . . . ,Kd�j � Rd be convex bodies. Then

V pZ1, . . . , Zj ,K1, . . . ,Kd�jq �

2jpd� jq!

d!

»
Sd�1

� � �

»
Sd�1

|u1 ^ � � � ^ uj | v
pd�jq

�
Ptu1,...,ujuKK1, . . . , Ptu1,...,ujuKKd�j

�
dρ1pu1q � � � dρjpujq,

where vpd�jq denotes the j-dimensional mixed volume.

Note that any zonotope Z �
m°
i�1

αir�vi, vis has a support function de�ned by

hZpuq �
m̧

i�1

αi |xu, viy| �

»
Sd�1

|xu, vy| dρpvq,

where ρ is concentrated at �vi and assigns mass αi

2 to each of these points. So by Theorem 8, given
zonoids Z1 �

°
k1

αk1r�vk1 , vk1s, . . . , Zj �
°
kj

αkj r�vkj , vkj s and a �xed convex body K � Rd, we have

V pZ1, . . . , Zj ,Krd� jsq �
2jpd� jq!

d!

¸
k1,...,kj

αk1 � � �αkj
��vk1 ^ � � � ^ vkj

�� ���PK
tvk1

,...,vkj
uK
���
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In particular, if P is a centred parallelotope with edges of lengths }v1}, . . . , }vd} in the directions of
v1
}v1}

, . . . , vd
}vd}

, then we have

hP puq �
ḑ

i�1

1

2
|xu, viy| .

It follows that

VkpP q �

�
d

k



V pP, k;Bd2 , d� kq

κd�k
�

2kpd�kq!
d!

°
ti1,...,iku�rds

�
1
2

�k
|vi1 ^ � � � ^ vik |

���Ptvi1 ,...,vik uKBd2 ���
κd�k

�

�
d

k



k!pd� kq!

d!

¸
1¤i1 ��� ik¤d

|vi1 ^ � � � ^ vik |

�
¸

1¤i1 ��� ik¤d

|vi1 ^ � � � ^ vik |.

In this language, Conjecture 1 for p � 1 states that for all parallelotopes P � Rd and 1   j ¤ d, the
following inequality holds �

VjpP q�
d
j

� � 1
j

¤

�
Vj�1pP q�

d
j�1

� � 1
j�1

, (20)

with equality if and only if P is a cube. Suppose instead we consider the zonotope Z �
m°
i�1

1
2 r�vi, vis � Rd,

then by the same argument we have

VkpZq �

�
d

k



V pZ, k;Bd2 , d� kq

κd�k
�

2kpd�kq!
d!

°
ti1,...,iku�rms

�
1
2

�k
|vi1 ^ � � � ^ vik |

���Ptvi1 ,...,vik uKBd2 ���
κd�k

�

�
d

k



k!pd� kq!

d!

¸
1¤i1 ��� ik¤m

|vi1 ^ � � � ^ vik |

�
¸

1¤i1 ��� ik¤m

|vi1 ^ � � � ^ vik |.

So for k ¤ d we can also write Conjecture 1 as�
VjpZq�
m
j

� � 1
j

¤

�
Vj�1pZq�

m
j�1

� � 1
j�1

. (21)

Rearranging this gives

Vj�1pZq
j

VjpZqj�1
¥

�
m
j�1

�j�
m
j

�j�1
. (22)

Now, (22) implies log-concavity,

VjpZq
2 ¥

�
m
j

�2�
m
j�1

��
m
j�1

�Vj�1pZqVj�1pZq,

which can be simpli�ed to

VjpZq
2 ¥

pj � 1qpm� j � 1q

jpm� jq
Vj�1pZqVj�1pZq. (23)

14



Note that (22) is an Aleksandrov-type inequalitity. Indeed, the Aleksandrov inequalities for quermass-
integrals are given by: �

WipKq

|Bn2 |


 1
n�i

¥

�
WjpKq

|Bn2 |


 1
n�j

n ¡ i ¡ j ¥ 0.

Taking into account that VjpKq �
�
n
j

�Wn�jpKq
κn�j

we can rewrite the last one as

Vj�1pKq
j

VjpKqj�1
¥
Vj�1pB

d
2 q
j

VjpBd2 q
j�1

. (24)

Therefore (22) is a restriction of the general (24), in the class of zonotopes and it is also sensitive to the
number of segments that make the zonotope, while (24) is not.

Moreover, (23) can be compared with an inequality of McMullen, who proved the following dimension-
free bound for the intrinsic volumes. Namely,

VjpKq
2 ¥

j � 1

j
Vj�1pKqVj�1pKq.

The factor that appears in the right-hand side of (23) is always at least j�1
j , which implies McMullen's

inequality. Moreover, we attain this bound as mÑ8. This was exprected, since we can �nd a sequence
of zonotopes that converge to Bd2 as mÑ8.

Note also that in [9] the following inequalities were proved: for zonoids Z

sup
ΛPGLpdq

VjpΛZq

V1pΛZqj
¥

1

dj

�
d

j



(25)

if dimpZq � d and j ¥ 2, with equality if and only if Z is a parallelotope. These are reverse, in a sense,
to a consequence of (24), namely for any convex body K

VjpKq

V1pKqj
¤

VjpB
d
2 q

V1pBd2 q
j
. (26)

The equality case in (25) exactly says that for any parallelotope P � Rd, the following inequality holds:�
VjpP q�

d
j

� � 1
j

¤
V1pP q�

d
1

� . (27)

This is of course a special case of (20). If this more general equality case can be established, one might
hope to prove the corresponding generalisation to (25).

5.1 A non-sharp vector-valued Maclaurin inequality with p � 1

Let us see how we can use this language borrowed from convex geometry to reinterpret the reduction
described at the beginning of Section 4. In particular, let us try to rewrite (12) purely in terms of
intrinsic volumes. Firstly, we �x v1, . . . , vm�1 P Rm�1 � Rm and u P Rm�1 � R � Rm , then setting
Z �

°m�1
i�1

1
2 r�vi, vis � Rm�1, we can apply Theorem 8 to get

VkpPuKZq �

�
m� 1

k



V
�
PuKZ, k;Bm�1

2 ,m� k � 1
�

κm�k�1

�

�
m

m� 1


�
m� 1

k



V
�
Z, k;Bm2 ,m� k � 1; 1

2 r�u, us
�

κm�k�1

�
pmq!

pm� k � 1q!k!

�
2k�1pm�k�1q!

m!

	 °
ti1,...,iku�rm�1s

�
1
2

�k�1
|vi1 ^ � � � ^ vik ^ u|

���Ptvi1 ,...,vik ,uuKBm2 ���
κm�k�1

�
¸

ti1,...,iku�rm�1s

|vi1 ^ � � � ^ vik ^ u|.
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For any u1, . . . , um P Rm, if we set Z �
°m
i�2

1
2 r�ui, uis, then using the calculation we have just made

along with Theorem 8, inequality (12) can be rewritten as

Vk�1

�
PuK1 Z

	
Vk�1 pZq

¤
Vk�2

�
PuK1 Z

	
Vk�2 pZq

(28)

for 1   k ¤ m� 1. Theorem 1.2 in [5] implies the following result: let K � Rd be a convex body, then
for any u P Rd we have

Vk�1 pPuKKq

Vk�1 pKq
¤

2pd� k � 1q

d� k � 2

Vk�2 pPuKKq

Vk�2 pKq
, (29)

for all 3 ¤ k ¤ d. In the special case where m � d�1 and u1 lies in the span of u2, . . . , um, one can view
(28) as the sharp version of (29) when we restrict ourselves to zonotopes. Using an analogous derivation
to the one given at the beginning of Section 4, we can deduce the following result as a consequence of
(29):

Theorem 9. For any d-tuple of vectors v1, . . . , vd P Rd and any 2   k ¤ d, the following inequality
holds: ���

°
ti1,...,iku�rds

|vi1 ^ � � � ^ vik |�
d
k

�
��

1
k

¤
2pd� k � 1q

pd� k � 2q

���
°

ti1,...,ik�1u�rds

|vi1 ^ � � � ^ vik�1
|�

d
k�1

�
��

1
k�1

Note that the constant appearing on the right-hand side is greater than 1, but smaller than 2. As a
consequence of Theorem 5, we know that the sharp constant is equal to 1 in dimensions d � 3, 4. Thus,
it seems likely that the constant given in Theorem 9 is suboptimal.
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