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Abstract

We study some classical positions (minimal surface area position, mini-
mal mean width position, John’s position, Löwner’s position and the isotropic
position) of a centrally symmetric convex bodyK in Rn. Using their isotropic
characterizations, we provide upper bounds for the “trace distance” of any
two of them. Most of these bounds are of the order of

√
n.

1 Introduction

Let SK[n] denote the class of all centrally symmetric convex bodies of volume 1
in Rn (in the sequel we call them just symmetric for simplicity). If K ∈ SK[n] then
the family of positions of K is the set {T (K) : T ∈ SL(n)}. The aim of this note
is to discuss and to compare some of the classical positions of a body K ∈ SK[n]

which are extensively used in the study of finite dimensional normed spaces. A
common feature of all these positions is that they appear as solutions of extremal
problems of the following type: we are given a functional f on convex bodies and
we ask for the maximum or minimum of the map T 7→ f(T (K)) over all T ∈ SL(n).
The positions which are listed below appear as solutions of such problems:

(i) The isotropic position K(i) of K minimizes the functional

T 7→ I2(T (K)) =

(∫
T (K)

‖x‖22dx

)1/2

.

(ii) The minimal surface area position K(s) of K minimizes the surface area
functional T 7→ ∂(T (K)).

(iii) The minimal mean width position K(w) of K minimizes the mean width
functional T 7→ w(T (K)).

(iv) John’s position K(j) of K maximizes the inradius functional T 7→ r(T (K)).

(v) Löwner’s position K(`) of K minimizes the circumradius functional T 7→
R(T (K)).

For relevant definitions of these functionals see Section 2.
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A second important common feature of all these positions is that they admit
an isotropic characterization (we provide background information in Section 2).
Moreover, they are essentially uniquely determined; ifK(x) is in one of these classical
positions then K ′(x) is in the same position if and only if there exists U ∈ O(n) such

that K ′(x) = U(K(x)). In this note, positions which have these properties will be
called isotropic.

Our aim is to study some natural notions of distance between positions of a
body K ∈ SK[n] and to provide upper bounds for them, for all possible pairs of the
classical positions which were introduced above. We are mainly interested in the
trace distance which we now define.

Definition 1.1. Let K ∈ SK[n] and let K(x), K(y) be two isotropic positions of
K. There exists T ∈ SL(n) such that T (K(x)) = K(y). Then, we define the trace
distance of K(x) and K(y) by

(1.1) dtr(K(x),K(y)) :=
tr(
√
T ∗T )

n
.

Since all isotropic positions are uniquely determined up to orthogonal transforma-
tions, for any U, V ∈ O(n) we have that UTV maps the position of K(x) to the
position of K(y). So, we may assume that T is symmetric and positive definite, and

hence
√
T ∗T = T . Actually, we may assume that T is diagonal with positive entries

λ1, · · · , λn. We can also arrange the entries λi in increasing order. This diagonal
matrix is uniquely determined by the pair of positions we study. Finally, we define
the symmetric distance

(1.2) Dtr(K(x),K(y)) := max{dtr(K(x),K(y)), dtr(K(y),K(x))}.

In Section 3 we collect general arguments that lead to upper bounds for the
distance dtr(K(x),K(y)). They all exploit the isotropic characterization of the clas-
sical positions. In order to give a flavor of the results, we list some of them in the
next theorem.

Theorem 1.2. Let K ∈ SK[n]. Then, we have

dtr(K(i),K(x)) 6
c1I2(K(x))

I2(K(i))
and dtr(K(x),K(i)) 6

c2
√
n

r(K(x))

dtr(K(x),K(s)) 6
∂(K(x))

∂(K(s))
and dtr(K(s),K(x)) 6

c3∂(K(s))I2(K(x))

n

dtr(K(w),K(x)) 6
w(K(x))

w(K(w))
and dtr(K(x),K(w)) 6

c4w(K(w))

r(K(x))

dtr(K(x),K(j)) 6
r(K(j))

r(K(x))
and dtr(K(j),K(x)) 6

R(K(x))

r(K(j))

dtr(K(`),K(x)) 6
R(K(x))

R(K(`))
and dtr(K(x),K(`)) 6

R(K(`))

r(K(x))
,

where ci > 0 are absolute constants.
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In Section 2 we recall some simple estimates on the basic geometric parameters
of bodies in classical position. Combined with the estimates of Theorem 1.2, they
lead to upper bounds for the trace distance. We provide short proofs in Section 4;
the results are summarized in the next table.

Theorem 1.3. For every K ∈ SK[n] we have the following upper bounds for the
distance dtr(K(x),K(y)):

K(i) K(s) K(w) K(j) K(`)

K(i) 1
√
n

LK

√
n logn
LK

√
n

LK

√
n

LK

K(s)

√
nLK 1

√
n logn
rs(n)

√
n

rs(n)
n

rs(n)

K(w)
4
√
nLK

√
n 1

√
n

√
n

K(j)

√
n

√
n

√
n log n 1

√
n

K(`)

√
n

√
n

√
n log n

√
n 1

where rs(n) = min{r(K(s)) : K ∈ SK[n]} and LK is the isotropic constant of K.

It is often useful to be able to combine two different positions of a body K or
to compare their behaviour with respect to basic functionals. For example, it is
natural to ask for the exact dependence on n of the quantity

(1.3) I
(x)
2 (n) = max

{
I2(K(x)) : K ∈ SK[n]

}
,

where x ∈ {j, `, w, s}. In other words, to see how the other four positions behave
with respect to the “I2-functional”. We discuss this question in Section 5.

Theorem 1.4. Let K ∈ SK[n]. Then, we have the estimates

(i) c1n√
logn

6 I
(j)
2 (n) 6 c2n,

(ii) I
(s)
2 (n) > c3n√

logn
,

(iii) c4n
1−ε 6 I

(`)
2 (n) 6 c5n,

where the left hand-side inequality in (iii) is satisfied for all small enough ε > 0
provided that n > n0(ε), and c1, . . . , c5 > 0 denote absolute constants.

The same question arises for the other functionals that we study in this note:
surface area, mean width, inradius and circumradius. In Section 5 we briefly discuss
them as well, and we provide examples on the sharpness of the estimates in Theorem
1.3. We conclude with some natural questions which arise from this work; the
answer to them would clarify the picture completely.

Acknowledgments. We would like to thank Apostolos Giannopoulos for many
interesting discussions. We would also like to thank the referee for useful suggestions
on the presentation of the results of this article.

3



2 Classical positions of convex bodies

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote
by ‖ · ‖2 the corresponding Euclidean norm, and write Bn2 for the Euclidean unit
ball, Dn for the Euclidean ball of volume 1 and Sn−1 for the unit sphere. We denote
the unit ball of `np by Bnp , 1 6 p 6∞. In particular, we also write Qn for the cube

Bn∞ = [−1, 1]n and Cn =
[
− 1

2 ,
1
2

]n
for the cube of volume 1. Volume is denoted

by | · |. We write ωn for the volume of Bn2 and σ for the rotationally invariant
probability measure on Sn−1. We will denote by PF the orthogonal projection
from Rn onto an (n − 1)-dimensional subspace F . We also define BF := Bn2 ∩ F
and SF := Sn−1 ∩ F . Finally, we write A for the homothetic image of volume 1 of
a symmetric convex body A ⊆ Rn, i.e. A := A

|A|1/n .

The letters c, c′, c1, c2 etc. denote absolute positive constants which may change
from line to line. Whenever we write a ' b, we mean that there exist absolute
constants c1, c2 > 0 such that c1a 6 b 6 c2a. Also, if K,L ⊆ Rn we will write
K ' L if there exist absolute constants c1, c2 > 0 such that c1K ⊆ L ⊆ c2K.

We refer to the books [4] and [23] for basic facts from the Brunn-Minkowski
theory and to the books [17], [20] and [24] for basic facts from the local theory
of normed spaces. We also refer to [16] and [5] for more information on isotropic
convex bodies.

A convex body in Rn is a compact convex subset K of Rn with non-empty
interior. We say that K is symmetric if x ∈ K implies that −x ∈ K. In this note, we
fix an orthonormal basis {e1, . . . , en} of Rn and say that a convex body K ∈ SK[n]

is unconditional if T (K) = K for every diagonal matrix T = diag(ε1, . . . , εn) with
εi = ±1.

The support function of a convex body K is defined by hK(y) = max{〈x, y〉 :
x ∈ K}, and the mean width of K is

(2.1) w(K) =

∫
Sn−1

hK(u)σ(du).

Note that hK(Ty) = hT∗(K)(y) for all y ∈ Rn. The circumradius of K is the
quantity R(K) = max{‖x‖2 : x ∈ K} i.e. the smallest R > 0 for which K ⊆ RBn2 .
We write r(K) for the inradius of K (the largest r > 0 for which rBn2 ⊆ K) and
we define the polar body K◦ of K by K◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K}.

Every symmetric convex body C in Rn is the unit ball C = {x ∈ Rn : ‖x‖C 6 1}
for a norm ‖ · ‖C . We will use the fact that hC(x) = ‖x‖C◦ for all x ∈ Rn and
ρC(x)‖x‖C = 1 for all x 6= 0, where ρC is the radial function of C, defined by
ρC(x) = max{t > 0 : tx ∈ C} for all x 6= 0.

A Borel measure µ on Sn−1 is called isotropic if

(2.2) n

∫
Sn−1

〈u, θ〉2dµ(u) = µ(Sn−1)

for every θ ∈ Sn−1. It is easily checked that µ is isotropic if and only if, for every
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i, j = 1, . . . , n,

(2.3) n

∫
Sn−1

uiujdµ(u) = µ(Sn−1)δi,j .

This is in turn equivalent to the fact that, for every linear transformation T : Rn →
Rn,

(2.4)

∫
Sn−1

〈u, T (u)〉dµ(u) =
tr(T )

n
µ(Sn−1).

Next, we introduce the classical positions that we are going to discuss; we set the
notation and provide some background information.

2.1. Minimal surface area position. The surface measure σK of a convex body
K ∈ SK[n] is the Borel measure σK on Sn−1 defined by σK(A) = ν({x ∈ bd(K) :
uK(x) ∈ A}), where uK(x) is the outer unit normal vector to K at x, and ν is the
(n − 1)-dimensional Lebesgue measure on bd(K). The surface area of K is equal
to ∂(K) = σK(Sn−1). We say that K has minimal surface area if ∂(K) 6 ∂(T (K))
for every T ∈ SL(n). Petty ([18], see also [9]) proved that K has minimal surface
area if and only if σK is isotropic. Equivalently, if

(2.5) ∂(K) = n

∫
Sn−1

〈u, θ〉2σK(du)

for every θ ∈ Sn−1. We write K(s) for the position of K which minimizes surface
area. Note that there is no ambiguity; up to orthogonal transformations, we have
a unique such body of volume 1 in the linear class of K. By the isoperimetric
inequality

(2.6) ∂(K) > nω1/n
n |K|

n−1
n

(see e.g. [23] or [4]) for every K ∈ SK[n] we have ∂(K) > ∂(Dn) > c1
√
n where

c1 > 0 is an absolute constant. K. Ball proved in [1] that ∂(K(s)) 6 ∂(Cn) = 2n;
this is the reverse isoperimetric inequality for SK[n].

2.2. Minimal mean width position. We say that K ∈ SK[n] is in minimal mean
width position if w(K) 6 w(T (K)) for every T ∈ SL(n). It was proved in [6] that
K has minimal mean width if and only if

(2.7) w(K) = n

∫
Sn−1

〈u, θ〉2hK(u)σ(du)

for every θ ∈ Sn−1. Equivalently, if and only if the measure dνK = hKdσ is
isotropic. We write K(w) for the position of K which minimizes mean width. Again,
there is no ambiguity; we have uniqueness of K(w) up to orthogonal transformations.

Urysohn’s inequality w(C) > (|C|/|Bn2 |)1/n which holds true for every convex body
C in Rn (see e.g. [20] for a proof) implies that w(K(w)) > w(Dn) > c2

√
n, where

c2 > 0 is an absolute constant. It is also known that every K ∈ SK[n] has a
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position K̃ with w(K̃) 6 c3
√
n log n, where c3 > 0 is an absolute constant (see

§5.3 for a more detailed discussion, and [24], [20] and [7] for references). Therefore,
w(K(w)) 6 w(K̃) 6 c3

√
n log n.

2.3. Isotropic position. We say that K ∈ SK[n] is in isotropic position if I2(K) 6
I2(T (K)) for every T ∈ SL(n). This is equivalent to the existence of a constant
LK > 0 such that

(2.8)

∫
K

〈x, θ〉2dx = L2
K

for every θ ∈ Sn−1. We will make use of the close connection of the “moments of
inertia” of a body K ∈ SK[n] with the areas of its corresponding central hyperplane
sections: for every θ ∈ Sn−1 one has

(2.9)

∫
K

〈x, θ〉2dx '
∫
K

|〈x, θ〉| dx ' 1

|K ∩ θ⊥|

(see [16] or [5] for a proof of both assertions). We writeK(i) for the isotropic position
of K; again, K(i) is uniquely determined up to orthogonal transformations. It is
easily checked that LK > LDn > c4 > 0 for every K ∈ SK[n], where c4 > 0 is
an absolute constant. On the other hand, the well-known slicing problem asks if
there exists an absolute constant C > 0 such that LK 6 C for every K ∈ SK[n].
Bourgain proved in [2] the general upper bound LK 6 c 4

√
n log n, and the best

known general estimate is currently LK 6 c 4
√
n; see [12] (and [13]).

2.4. John’s position. In this article we say that K ∈ SK[n] is in John’s position
if r(K) > r(T (K)) for every T ∈ SL(n). This is the case when the ellipsoid
of maximal volume inscribed in K is a multiple rBn2 of the Euclidean unit ball
Bn2 . We write K(j) for John’s position of K; one can check that K(j) is uniquely
determined up to orthogonal transformations. John’s theorem [10] states that K =
K(j) is in John’s position if and only if Bn2 ⊆ r−1K(j) and there exist u1, . . . , um ∈
bd(r−1K(j)) ∩ Sn−1 and positive real numbers c1, . . . , cm such that the identity
operator can be decomposed in the form

(2.10) I =

m∑
j=1

cjuj ⊗ uj ,

where (uj ⊗ uj)(y) = 〈uj , y〉uj . From this representation of the identity we get

(2.11)

m∑
j=1

cj〈uj , θ〉2 = 1

for all θ ∈ Sn−1. Therefore, if we consider the measure µ on Sn−1 which is supported
by {u1, . . . , um} and gives mass cj to {uj}, j = 1, . . . ,m, then µ is isotropic.

2.5. Löwner’s position. In analogy to 2.4 we say that a convex body K ∈ SK[n]

is in Löwner’s position if R(K) 6 R(T (K)) for every T ∈ SL(n). One can check
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that this holds true if and only if the ellipsoid of minimal volume containing K is a
multiple RBn2 of the Euclidean unit ball Bn2 . We write K(`) for Löwner’s position
of K; again, K(`) is uniquely determined up to orthogonal transformations. By
John’s theorem, K = K(`) is in Löwner’s position if and only if K(`) ⊆ RBn2 and
there exist u1, . . . , um ∈ bd(R−1K(`)) ∩ Sn−1 and positive real numbers c1, . . . , cm
such that the measure µ on Sn−1 which is supported by {u1, . . . , um} and gives
mass cj to {uj}, j = 1, . . . ,m, is isotropic.

We close this Section with a Lemma which provides simple, but useful, bounds
for the inradius and the circumradius of K(i), K(j) and K(`).

Lemma 2.1. Let K ∈ SK[n]. Then, we have:

(i) R(K(i)) 6 c1nLK and r(K(i)) > LK .

(ii) c2
√
n 6 R(K(j)) 6 c3n, c4 6 r(K(j)) 6 c5

√
n and R(K(j)) 6

√
nr(K(j)).

(iii) c6
√
n 6 R(K(`)) 6 c7n, c8 6 r(K(`)) 6 c9

√
n and R(K(`)) 6

√
nr(K(`)).

Proof. (i) It is proved in [11] that every isotropic convex bodyK(i) in Rn is contained
in the ball (n+ 1)LKB

n
2 . On the other hand, for every u ∈ Sn−1 we have

(2.12) hK(i)
(u) = ‖〈·, u〉‖L∞(K) > ‖〈·, u〉‖L2(K) = LK .

This shows that r(K(i)) > LK . Both bounds are sharp up to an absolute constant;

this can be checked from the examples of B
n

1 (the multiple of Bn1 of volume 1) and
Cn respectively.

(ii) The fact that R(K(j)) 6
√
nr(K(j)) is a consequence of John’s theorem. Since

K(j) ⊆ R(K(j))B
n
2 and |K(j)| = 1 while |Bn2 |1/n ' 1/

√
n, comparison of volumes

shows that R(K(j)) > c2
√
n, and hence r(K(j)) > c4 = c2. Similarly, from the

fact that r(K(j))B
n
2 ⊆ K(j) we see that r(K(j)) 6 c5

√
n, and hence R(K(j)) 6 c3n,

where c3 = c5. All the bounds are sharp up to an absolute constant; this can be
checked from the examples of B

n

1 and Cn respectively.

(iii) We argue as in (ii). 2

Remark. It is easily checked that R(K) 6 c1
√
nw(K) for every symmetric convex

body in Rn. The concluding remarks of §2.2 show that

(2.13) R(K(w)) 6 c1
√
nw(K(w)) 6 c2n log n.

We will discuss bounds for r(K(w)), r(K(s)) and R(K(s)) in Section 5.

3 Bounds for the trace

In this Section we provide some general arguments that lead to upper bounds for
the trace distance dtr(K(x),K) or dtr(K,K(x)), where K(x) is one of the five classical
positions of K. Each one of the arguments is based on the isotropic condition which
is satisfied by K(x).
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3.1 On dtr(K(i),K) and dtr(K,K(i))

For any C ∈ SK[n] we set

(3.1) J(C) :=

∫
C

‖x‖1dx.

Proposition 3.1. Let K(i) be an isotropic convex body in Rn. Let K = T (K(i))
for some diagonal positive definite operator T = diag(λ1, . . . , λn) in SL(n). Then,

(3.2)
tr(T )

n
6
c1J(K)

J(K(i))
,

where c1 > 0 is an absolute constant.

Proof. We will use the fact (see [16] or [5]) that
∫
K(i)
|〈x, u〉| dx ' LK for all

u ∈ Sn−1. For every j = 1, . . . , n we have

(3.3) λjLK ' λj
∫
K(i)

|〈x, ej〉| dx =

∫
K

|〈x, ej〉| dx.

It follows that

(3.4)
tr(T )

n
' 1

nLK

∫
K

‖x‖1dx.

Since nLK ' J(K(i)), this proves the proposition. 2

Remark. Note that J(K) 6
√
nI2(K) and J(K(i)) '

√
nI2(K(i)) ' nLK . There-

fore, we also have

(3.5)
tr(T )

n
6
c2I2(K)

I2(K(i))
.

Proposition 3.2. Let K(i) be an isotropic convex body. Assume that K(i) = T (K)
for some symmetric and positive definite T ∈ SL(n). Then,

(3.6)
tr(T )

n
6
c3
√
n

r(K)
,

where c3 > 0 is an absolute constant.

Proof. Since K(i) is isotropic, from the obvious analogue of (2.4) we have

(3.7) [tr(T )]L2
K =

∫
K(i)

〈x, Tx〉 dx.

Using the fact that 〈x, y〉 6 ‖x‖ChC(y) for every x, y ∈ Rn and any C ∈ SK[n] and
taking into account the upper bound O(nLK) for R(K(i)) from Lemma 2.1 (i), we
write

(3.8) 〈x, Tx〉 6 ‖x‖KhK(Tx) =
hK(i)

(x)‖x‖2
r(K)

6
R(K(i))‖x‖2

r(K)
6
c4nLK‖x‖2

r(K)
.
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Then, (3.7) gives

(3.9) [tr(T )]L2
K 6

c4nLK
r(K)

∫
K(i)

‖x‖2dx 6
c4nLK ·

√
nLK

r(K)
,

and the result follows. 2

3.2 On dtr(K,K(s)) and dtr(K(s),K)

Proposition 3.3. Let K(s) be a convex body which has minimal surface area. As-
sume that K(s) = T (K) for some symmetric and positive definite T ∈ SL(n).
Then,

(3.10)
tr(T )

n
6

∂(K)

∂(K(s))
.

Proof. Since the measure σK(s)
is isotropic, we have that

(3.11) ∂(K(s))
tr(T )

n
=

∫
Sn−1

〈u, Tu〉 dσK(s)
(u) 6

∫
Sn−1

‖Tu‖2dσK(s)
(u).

Since T is symmetric, we have ‖Tu‖2 = hT (Bn
2 )(u). Using the integral representa-

tion

(3.12) V (K, . . . ,K,C) =
1

n

∫
Sn−1

hC(u)dσK(u)

of the mixed volume V (K, . . . ,K,C) for every pair of convex bodies K and C, and
the fact that, for every affine transformation A of Rn and any n-tuple K1, . . . ,Kn

of convex bodies we have

(3.13) V (A(K1), . . . , A(Kn)) = |detA|V (K1, . . . ,Kn)

(see [23, Chapter 5] for both assertions) we get

∂(K(s))
tr(T )

n
6
∫
Sn−1

hT (Bn
2 )(u)dσK(s)

(u) = nV (K(s), . . . ,K(s), T (Bn2 ))(3.14)

= n |detT |V (K, . . . ,K,Bn2 ) = ∂(K).

This proves the proposition. 2

Proposition 3.4. Let K(s) be a convex body which has minimal surface area. As-
sume that K = T (K(s)) for some diagonal operator T = diag(λ1, . . . , λn) in SL(n)
with λi > 0. Then,

(3.15)
tr(T )

n
6
c1∂(K(s))√

n

J(K)

n
,

where c1 > 0 is an absolute constant.
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Proof. We will use the fact (see [9]) that

(3.16)
∂(K(s))

2n
6 |Pu⊥(K(s))| 6

∂(K(s))

2
√
n

for every u ∈ Sn−1. To see this recall that, from Cauchy’s formula (see [23]), the
area of the (n− 1)-dimensional projection Pu⊥(K(s)) of K(s) can be written in the
form

(3.17) |Pu⊥(K(s))| =
1

2

∫
Sn−1

|〈θ, u〉|dσK(s)
(θ),

and hence, the Cauchy-Schwarz inequality shows that

|Pu⊥(K(s))| =
1

2

∫
Sn−1

|〈θ, u〉| dσK(s)
(θ)(3.18)

6
1

2

(∫
Sn−1

|〈θ, u〉|2dσK(s)
(θ)

)1/2√
∂(K(s))

=
∂(K(s))

2
√
n

,

while the inequality |〈θ, u〉| > 〈θ, u〉2 (for θ, u ∈ Sn−1) implies that

(3.19) |Pu⊥(K(s))| >
1

2

∫
Sn−1

〈θ, u〉2dσK(s)
(θ) =

∂(K(s))

n
.

By a change of variables we check that, for every i = 1, . . . , n,

(3.20) λi

∫
K(s)

|〈x, ei〉| dx =

∫
K

|〈x, ei〉| dx.

From (2.9) we have

(3.21)

∫
K(s)

|〈x, θ〉 dx ' 1

|K(s) ∩ θ⊥|

for every θ ∈ Sn−1, so we finally get

(3.22)

(∫
K(s)

|〈x, ei〉 dx

)−1
' |K(s) ∩ e⊥i | 6 |Pe⊥i (K(s))| 6

∂(K(s))

2
√
n

,

using (3.16) as well. Inserting this inequality into (3.20) and adding over all i =
1, . . . , n, we get

(3.23) tr(T ) 6
∂(K(s))

2
√
n

n∑
i=1

∫
K

|〈x, ei〉| dx,

and the result follows. 2

10



3.3 On dtr(K(w),K) and dtr(K,K(w))

Proposition 3.5. Let K(w) be a convex body which has minimal mean width. As-
sume that K = T (K(w)) for some symmetric and positive definite T ∈ SL(n).
Then,

(3.24)
tr(T )

n
6

w(K)

w(K(w))
.

Proof. We may assume that K is smooth enough. Since hK(w)
dσ is isotropic, from

[6, Theorem 3.1] we have that

w(K(w))
tr(T )

n
=

∫
Sn−1

〈∇hK(w)
(u), Tu〉 dσ(u)(3.25)

6
∫
Sn−1

hK(w)
(Tu)dσ(u),

using the fact that, in general, ∇hC(u) ∈ C (in fact, it is the unique point on the
boundary of C at which u is the outer normal to C). Since hK(w)

(Tu) = hK(u),
this gives

(3.26)
tr(T )

n
6

1

w(K(w))

∫
Sn−1

hK(u)dσ(u),

and (3.24) follows. 2

Proposition 3.6. Let K(w) be a convex body which has minimal mean width. As-
sume that K(w) = T (K) for some symmetric and positive definite T ∈ SL(n).
Then,

(3.27)
tr(T )

n
6
c1w(K(w))

r(K)
,

where c1 > 0 is an absolute constant.

Proof. Since hK(w)
(u)dσ(u) is isotropic, we have

(3.28) w(K(w))
tr(T )

n
=

∫
Sn−1

〈u, Tu〉hK(w)
(u)σ(du).

We use the fact that

(3.29) 〈u, Tu〉 6 hK(w)
(u)‖Tu‖K(w)

.

We have K ⊇ r(K)Bn2 , and hence

(3.30) ‖Tu‖K(w)
= ‖u‖T−1(K(w)) = ‖u‖K 6

1

r(K)
.

11



Combining the above, and using the fact that ‖hK(w)
‖2L2(Sn−1) 6 c2‖hK(w)

‖2L1(Sn−1)

for some absolute constant c2 > 0 (recall that hK(w)
is a norm and that the L1(Sn−1)

and L2(Sn−1) of any norm on Rn are equivalent up to an absolute constant; see
[17]), we get

w(K(w))
tr(T )

n
6

1

r(K)

∫
Sn−1

h2K(w)
(u)dσ(u)(3.31)

6
c2
r(K)

(∫
Sn−1

hK(w)
(u)dσ(u)

)2

=
c2w

2(K(w))

r(K)
,

which gives (3.27). 2

3.4 On dtr(K(j),K) and dtr(K,K(j))

Proposition 3.7. Let K(j) be a convex body which is in John’s position. Assume
that K(j) = T (K) for some symmetric and positive definite T ∈ SL(n). Then,

(3.32)
tr(T )

n
6
r(K(j))

r(K)
.

Proof. From John’s theorem we know that there exist ci > 0 and ui ∈ Sn−1 such
that ‖r(K(j))ui‖K(j)

= 1, hK(j)
(ui) = r(K(j)) and I =

∑m
i=1 ciui ⊗ ui. From the

representation of the identity it follows that

(3.33) tr(T ) =

m∑
i=1

ci〈ui, Tui〉.

For every 1 6 i 6 m we write

(3.34) 〈ui, Tui〉 6 ‖ui‖KhK(Tui) 6
hK(j)

(ui)

r(K)
=
r(K(j))

r(K)
.

Finally, we use the fact that
∑m
i=1 ci = n; this follows from (3.33) if we choose

T = I. 2

Proposition 3.8. Let K(j) be a convex body which is in John’s position. Assume
that K = T (K(j)) for some symmetric and positive definite T ∈ SL(n). Then,

(3.35)
tr(T )

n
6

R(K)

r(K(j))
6
R(K)

r(K)
.

Proof. As before, there exist ci > 0 and ui ∈ Sn−1 such that ‖r(K(j))ui‖K(j)
= 1

and I =
∑m
i=1 ciui ⊗ ui. We have

(3.36) tr(T ) =

m∑
i=1

ci〈ui, Tui〉

12



and, for every 1 6 i 6 m, we write

(3.37) 〈ui, Tui〉 6 ‖ui‖K(j)
hK(j)

(Tui) =
hK(ui)

r(K(j))
6

R(K)

r(K(j))
.

Now, we use the fact that John’s position maximizes the inradius, and hence
r(K(j)) > r(K). This means that

(3.38) 〈ui, Tui〉 6
R(K)

r(K)
,

and the result follows from
∑m
i=1 ci = n. 2

3.5 On dtr(K(`),K) and dtr(K,K(`))

Proposition 3.9. Let K(`) be a convex body which is in Löwner’s position. Assume
that K = T (K(`)) for some symmetric T ∈ SL(n). Then,

(3.39)
tr(T )

n
6

R(K)

R(K(`))
.

Proof. We use the fact that C is in John’s position if and only if C◦ is in Löwner’s
position. Taking polars and using the affine invariance of the volume product
|C| · |C◦| we have K◦(j) = T (K◦). Then, applying Proposition 3.7 for K◦, we see
that

(3.40)
tr(T )

n
6
r(K◦(j))

r(K◦)
=

R(K)

R(K`)
.

2

Proposition 3.10. Let K(`) be a convex body which is in Löwner’s position. As-
sume that K(`) = T (K) for some symmetric and positive definite T ∈ SL(n). Then,

(3.41)
tr(T )

n
6
R(K(`))

r(K)
6
R(K)

r(K)
.

Proof. Taking polars, we have K◦ = T (K◦(j)). Then, applying Proposition 3.8 for

K◦, we see that

(3.42)
tr(T )

n
6
R(K◦)

r(K◦(j))
=
R(K(`))

r(K)
.

Since Löwner’s position minimizes the circumradius, the proof is complete. 2
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4 Upper bounds for dtr(K(x),K(y))

Using the results of the previous Section, one can give the following upper
bounds for dtr(K(x),K(y)), where x, y ∈ {i, j, `, s, w}:
• K(i) and K(s): We have dtr(K(i),K(s)) 6 ∂(K(i))/∂(K(s)) from Proposition 3.3.
We can give an upper bound for ∂(K(i)), using the monotonicity of mixed volumes:
for every convex body C in Rn with 0 ∈ int(C), we have

(4.1) ∂(C) = nV (C, . . . , C,Bn2 ) 6 nV
(
C, . . . , C, 1

r(C)C
)

=
n|C|
r(C)

.

Since K(i) is isotropic, from Lemma 2.1 (i) we have r(K(i)) > LK , and hence
∂(K(i)) 6 n/LK . Combining this inequality with the lower bound ∂(K(s)) > c1

√
n,

we get

(4.2) dtr(K(i),K(s)) 6
∂(K(i))

∂(K(s))
6

n

LK∂(K(s))
6
c2
√
n

LK
.

On the other hand, from Proposition 3.4 we have

(4.3) dtr(K(s),K(i)) 6
∂(K(s))√

n

J(K(i))

n
6
LK∂(K(s))√

n
6 2LK

√
n,

because

(4.4) J(K(i)) =

∫
K(i)

‖x‖1dx =

n∑
j=1

∫
K(i)

|〈x, ej〉| dx 6 nLK

and ∂(K(s)) 6 2n by Ball’s reverse isoperimetric inequality (see the concluding
remark in §2.1).

• K(i) and K(w): From Proposition 3.6 and the fact that r(K(i)) > LK , we get

(4.5) dtr(K(i),K(w)) 6
c1w(K(w))

r(K(i))
6
c2
√
n log n

LK
.

On the other hand, from Proposition 3.5 we have

(4.6) dtr(K(w),K(i)) 6
w(K(i))

w(K(w))
6 c3

4
√
nLK ,

if we employ the known upper bound w(K) 6 c4n
3/4LK for the mean width of an

isotropic convex body in Rn (see [8] and the references therein) and the fact that
w(K(w)) > c5

√
n by Urysohn’s inequality.

• K(i) and K(j): From Proposition 3.1 and the fact that

(4.7) J(K(j)) 6
√
nI2(K(j)) 6

√
nR(K(j)) 6 c1n

√
n,
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we get

(4.8) dtr(K(i),K(j)) 6
c2J(K(j))

nLK
6
c3
√
n

LK
.

On the other hand, from Proposition 3.2 we have

(4.9) dtr(K(j),K(i)) 6
c4
√
n

r(K(j)))
6 c5
√
n,

because r(K(j)) > c6 from Lemma 2.1 (ii).

• K(i) and K(`): From Proposition 3.1 and the fact that

(4.10) J(K(`)) 6
√
nI2(K(`)) 6

√
nR(K(`)) 6 c1n

√
n,

we get

(4.11) dtr(K(i),K(`)) 6
c2J(K(`))

nLK
6
c3
√
n

LK
.

On the other hand, from Proposition 3.2 we have

(4.12) dtr(K(`),K(i)) 6
c4
√
n

r(K(`)))
6 c5
√
n,

because r(K(`)) > c6 from Lemma 2.1 (iii).

• K(w) and K(j): From Proposition 3.6 and the fact that r(K(j)) > c1, we get

(4.13) dtr(K(j),K(w)) 6
c2w(K(w))

r(K(j))
6 c3
√
n log n.

On the other hand, from Proposition 3.5 we have

(4.14) dtr(K(w),K(`)) 6
w(K(j))

w(K(w))
6
R(K(j))

w(K(w))
6 c4
√
n,

if we use the fact that R(K(j)) 6 c5n and w(K(w)) > c6
√
n.

• K(w) and K(`): From Proposition 3.6 and the fact that r(K(`)) > c1, we get

(4.15) dtr(K(`),K(w)) 6
c2w(K(w))

r(K(`))
6 c3
√
n log n.

On the other hand, from Proposition 3.5 we have

(4.16) dtr(K(w),K(`)) 6
w(K(`))

w(K(w))
6
R(K(`))

w(K(w))
6 c4
√
n,

if we use the fact that R(K(`)) 6 c5n and w(K(w)) > c6
√
n.
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• K(j) and K(`): From Proposition 3.8 and the fact that R(K(`)) 6 R(K(j)), we
get

(4.17) dtr(K(j),K(`)) 6
R(K(`))

r(K(j))
6
R(K(j))

r(K(j))
6
√
n

using John’s theorem in the end. On the other hand, from Proposition 3.9 we have

(4.18) dtr(K(`),K(j)) 6
R(K(j))

R(K(`))
6 c1
√
n,

because R(K(j)) 6 c2n and R(K(`)) > c3
√
n from Lemma 2.1.

• K(s) and K(w): It is proved in [15, Theorem 7.1] that w(K(s)) 6 c1n. Since
w(K(w)) > c2

√
n, from Proposition 3.5 we get

(4.19) dtr(K(w),K(s)) 6
w(K(s))

w(K(w))
6 c3
√
n.

From Proposition 3.4 we get the bound dtr(K(s),K(w)) 6 c4I2(K(w)) and from

Proposition 3.6 we see that dtr(K(s),K(w)) 6 c5
√
n logn

r(K(s))
. However, we do not have

an upper bound for I2(K(w)) which is close to
√
n, and we do not have a lower

bound for r(K(s)) which is of the order of 1.

• K(s) and K(j): We use the fact that

(4.20) ∂(K(j)) 6
n

r(K(j))
6 c1n,

because r(K(j)) > c2. Then, from Proposition 3.3 we get

(4.21) dtr(K(j),K(s)) 6
∂(K(j))

∂(K(s))
6 c3
√
n.

From Proposition 3.7 we see that dtr(K(s),K(j)) 6
r(K(j))

r(K(s))
6 c4

√
n

r(K(s))
. However, we

do not have a lower bound for r(K(s)) which is of the order of 1.

• K(s) and K(`): As in the previous case, we use the fact that

(4.22) ∂(K(`)) 6
n

r(K(`))
6 c1n,

because r(K(`)) > c2. Then, from Proposition 3.3 we get

(4.23) dtr(K(`),K(s)) 6
∂(K(`))

∂(K(s))
6 c3
√
n.

From Proposition 3.10 we see that dtr(K(s),K(`)) 6
R(K(`))

r(K(s))
6

R(K(s))

r(K(s))
. However,

it is not clear if one can have an upper bound which is close to
√
n for this last

quantity.
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5 Examples and Questions

Most of the upper bounds that we have obtained for dtr(K(x),K(y)) are in terms of
the quantities f(K(x)), where f is one of the functionals I2, ∂, w, R or r, and K(x)

is one of the classical positions of K. One is naturally led in two types of questions:
the first one is to check if these upper bounds are sharp, while to second one is to
estimate

(5.1) f (x)(n) = max{f(K(x)) : K ∈ SK[n]}

for each f and all these positions (note that the maximum should be replaced by a
minimum in the case of the inradius functional r). We are mostly interested in the
isotropic position; for this reason, below we give a sample of examples regarding

I
(x)
2 (n) and Dtr(K(x),K(i)). Most of them are products of standard unconditional

convex bodies (as in [22] and [15]) We conclude this paper with a discussion of some
related open questions.

5.1 Bounds for I2(K(x))

Let K be a symmetric convex body of volume 1 in Rn. Then,

(5.2) I2(K) > I2(K(i)) =
√
nLK

with equality if and only if K = K(i) is in the isotropic position. In this Subsection

we give bounds for the quantity I
(x)
2 (n) := max{I2(K(x)) : K ∈ SK[n]}, where K(x)

denotes one of the other classical positions K(s),K(w),K(j) or K(`). We start with
the minimal surface area position.

Proposition 5.1. There exists an unconditional convex body K(s) of volume 1 in
Rn which has minimal surface area and satisfies

(5.3) I2(K(s)) >
cn√
log n

,

where c > 0 is an absolute constant.

Proof. Let k,m ∈ N with k + m = n and a, b > 0 with akbm = 1, and define

K(s) := aB
k

1 × bCm. It is proved in [15] that K(s) has minimal surface area if

(5.4) a =
(
∂
B

k
1
/(2k)

) m
k+m

and b =
(

2k/∂
B

k
1

) k
k+m

.

We choose m ' k
log k . Note that k 6 n 6 2k. Then, since ∂

B
k
1
'
√
k, we get that

(5.5) a ' 1, b '
√
k '
√
n.
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Using the fact that akbm = 1, we compute

I22 (K(s)) = |aBk1 |
∫
bCm

‖x‖22dx+ |bCm|
∫
aB

k
1

‖y‖22dy(5.6)

= akbm+2I22 (Cm) + bmak+2I22 (B
k

1)

' b2m+ a2k ' km ' n2

log n
.

This proves the Proposition. 2

Question 5.2. To give a sharp upper bound for I
(s)
2 (n). Is it true that I2(K(s)) 6

Cn for every K ∈ SK[n]?

We know that if K(j) is in John’s position then R(K(j)) 6 Cn, and hence

I2(K(j)) 6 Cn for every K ∈ SK[n]. Our next result shows that I
(j)
2 (n) > cn√

logn
.

Proposition 5.3. There exists an unconditional convex body K(j) of volume 1 in
Rn which is in John’s position and satisfies

(5.7) I2(K(j)) >
cn√
log n

,

where c > 0 is an absolute constant.

Proof. We use the following fact: if V is a symmetric convex body in Rm which is in
John’s position and if Qk = [−1, 1]k, then V ×Qk is also in John’s position in Rm+k.
To see this, we use induction on k. It is enough to show that V1 := V × [−1, 1] is in
John’s position. To this end, first note that Bm+1

2 ⊆ Bm2 × [−1, 1] ⊆ V1. Moreover,
for every x = (y, t) ∈ Rm+1 we have that

(5.8) x = y + tem+1 =

m∑
j=1

cj〈x, uj〉uj + 〈x, em+1〉em+1,

using the decomposition of identity (2.10) for V . Since em+1 is also a contact point
for V1, the proof is complete by John’s theorem.

Using the previous claim we see that if m + k = n then Bm2 ×Qk is in John’s
position in Rn. We consider the body K(j) = Bm2 ×Qk = a−1(Bm2 ×Qk), where

(5.9) a = |Bm2 ×Qk|1/n = |Bm2 |1/n|Qk|1/n ' m−
m
2n .

Then, we get:

I22 (K(j)) = |a−1Bm2 |
∫
a−1Qk

‖x‖22 dx+ |a−1Qk|
∫
a−1Bm

2

‖x‖22 dx(5.10)

=

(
|Qk|1/k

a

)2 ∫
Ck

‖y‖22 dy +

(
|Bm2 |1/m

a

)2 ∫
Bm

2

‖y‖22 dy

' |Qk|2/ka−2k + |Bm2 |2/ma−2m
' a−2k ' mm

n k.
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Choosing k ' n
logn we obtain I2(K(j)) ' n√

logn
. 2

Similarly, we know that if K(`) is in Löwner’s position then R(K(`)) 6 Cn, and

hence I2(K(`)) 6 Cn. The next example shows that I
(`)
2 (n) is approximately equal

to n.

Proposition 5.4. For every ε > 0 there exists n0(ε) ∈ N with the following prop-
erty: For any n > n0(ε) there exists an unconditional convex body K(`) of volume
1 in Rn which is in Löwner’s position and satisfies the following:

(5.11) I2(K(`)) > cn1−ε,

where c > 0 is an absolute constant.

Proof. Let k+m = n. There exist δ, b > 0 such that δmbk = 1 and K = δBm2 ×bBk1
is in Löwner’s position. Since R(Bm2 × Bk1 ) =

√
2, we have δ2 + b2 = R2(K) 6 2.

This shows that max{δ, b} 6
√

2 and, taking into account the condition δmbk = 1,

we also have δ
2m
k > 1/2 and b

2k
m > 1/2.

We consider the body K(`) = δBm2 × bBk1 = a−1(δBm2 × bBk1 ), where

(5.12) a = |δBm2 × bBk1 |1/n ' δ
m
n b

k
n |Bm2 |1/n|Bk1 |1/n ' δ

m
n b

k
nm−

m
2n k−

k
n .

Then, we get:

I22 (K(`)) = |a−1δBm2 |
∫
a−1bBk

1

‖x‖22 dx+ |a−1bBk1 |
∫
a−1δBm

2

‖x‖22 dx(5.13)

=

(
b|Bk1 |1/k

a

)2 ∫
Bk

1

‖y‖22 dy +

(
δ|Bm2 |1/m

a

)2 ∫
Bm

2

‖y‖22 dy

' |Bk1 |2/kb2a−2k + |Bm2 |2/mδ2a−2m

' b2a−2

k
+ δ2a−2 > δ2a−2

' δ2(1−
m
n )b−

2k
n m

m
n k

2k
n

>
cm

m
n k

2k
n

2k/m
.

Now, let ε > 0. We choose m = ηk for some η ' 1
log logn . If n > n0(ε), then this

choice gives the lower bound

(5.14) I22 (K(`)) > cn2−ε,

and the result follows. 2

Remark. We know that if K(w) has minimal mean width then R(K(w)) 6 Cn log n,
and hence I2(K(w)) 6 Cn log n. The estimate dtr(K(w),K(i)) 6 C 4

√
nLK indicates

that the quantity I
(w)
2 (n) might be close to

√
nLK . However, we have an example
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which shows that I
(w)
2 (n) > c

√
n log n. The body Q = aBk1 × bCm is in minimal

mean width position if a ' (log k)−
k

2(k+m) and b ' (log k)
m

2(k+m) (see [15, Section 5]
for similar computations). Choosing k ' m

logm we have m 6 n 6 2m. Then, a2 ' 1

and b2 ' logm ' log n. It follows that

(5.15) I22 (Q) ' b2m+ a2k ' n log n.

Question 5.5. To determine the exact order of I
(w)
2 (n).

5.2 Lower bounds for Dtr(K(x),K(i))

The next examples show that the trace distance between K(i) and K(s), K(j) or
K(`) can be of the order of

√
n.

(i) From Theorem 1.3 we know that dtr(K(i),K(s)) 6 c
√
n/LK and dtr(K(s),K(i)) 6

c
√
nLK . Therefore,

(5.16) Dtr(K(i),K(s)) 6 C
√
nLK .

Let K(s) = aBk1 × bCm with m ' k
log k . Then, a ' 1 and b '

√
n. On the other

hand, K(i) ' Bk1 × Cm. Therefore, if K(s) = T (K(i)), we easily check that

(5.17)
tr(T )

n
=
ka+mb

n
'
√
n

log n
.

It follows that max{Dtr(K(i),K(s)) : K ∈ SK[n]} > c
√
n/ log n.

(ii) From Theorem 1.3 we know that dtr(K(i),K(j)) 6 c
√
n/LK and dtr(K(j),K(i)) 6

c
√
n. Therefore,

(5.18) Dtr(K(i),K(s)) 6 C
√
n.

We consider the body K(j) = Bm2 ×Qk = a−1(Bm2 ×Qk), where

(5.19) a = |Bm2 ×Qk|1/n = |Bm2 |1/n|Qk|1/n ' m−
m
2n .

Choosing k ' n
logn , we have a−1 '

√
n. Since K(i) ' Bm2 × Qk, we easily check

that if T (K(i)) = K(j) then

(5.20)
tr(T )

n
' m+ ka−1

n
'
√
n

log n
.

It follows that max{Dtr(K(i),K(j)) : K ∈ SK[n]} > c
√
n/ log n.
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5.3 Remarks on r(K(x)) and R(K(x))

Minimal mean width position. We start with some remarks on the inradius and
the circumradius of a body K(w) in minimal mean width position. From results
of Figiel-Tomczak [3], Lewis [14] and Pisier [19] it follows that if K = K(w) then
w(K)w(K◦) 6 c log[d(XK , `

n
2 ) + 1], which implies the general upper bound

(5.21) w(K)w(K◦) 6 c1 log n

where c1 > 0 is an absolute constant. Urysohn’s inequality shows that w(K) >
c2
√
n, and hence w(K◦) 6 c3 log n/

√
n. It follows that

(5.22) R(K◦) 6 c4
√
nw(K◦) 6 c5 log n.

Then,

(5.23) r(K) =
1

R(K◦)
>

c6
log n

.

Note that, by (4.1), this implies that

(5.24) ∂(K(w)) 6 Cn log n.

In the same way, we see that R(K) 6 c4
√
nw(K) 6 c5n log n. It follows that

(5.25)
R(K)

r(K)
= R(K)R(K◦) 6 c7nw(K)w(K◦) 6 c8n log n.

The next example shows that all these estimates are sharp up to the logarithmic
terms.

Lemma 5.6. There exists an unconditional convex body K(w) of volume 1 in Rn
which is in minimal mean width position and satisfies

(5.26)
R(K(w))

r(K(w))
>

cn√
log n

,

where c > 0 is an absolute constant.

Proof. We consider the body Q = aBk1 × bCm with k ∼ m ∼ n/2, a ' (log n)−1/4

and b ' (log n)1/4, which is in minimal mean width position. Then, R(K(w)) '
n

4
√
logn

and r(K(w)) ' 4
√

log n and the result follows. 2

Isotropic position. The well-known bounds for the inradius and the circumradius of
an isotropic convex body K(i) in Rn are stated in Lemma 2.1: one has r(K(i)) > LK
and R(K(i)) 6 cnLK . The next example shows that there exist isotropic bodies for
which both estimates are sharp.

Lemma 5.7. There exists an unconditional isotropic convex body K in Rn such
that R(K) > cnr(K).
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Proof. We consider the body K = aB
k

1 × bCm with k +m = n, k ∼ m ∼ n/2 and
a ' b ' 1. 2

Minimal surface area position. The situation is not clear in this case. We have some
simple bounds which rely on the following observations: if K = K(s) has minimal
surface area then, for every θ ∈ Sn−1 we have

(5.27)
∂(K)

2n
6 |Pθ⊥(K)| 6 ∂(K)

2
√
n
.

On the other hand, a classical inequality of Rogers and Shephard (see [21]) states
that

(5.28) 1 6 2hK(θ)|K ∩ θ⊥| 6 2hK(θ)|Pθ⊥(K)|

for every θ ∈ Sn−1. We also know that

(5.29) hK(θ) 6 c1
√
nw(K) 6

c2n
2

∂(K)

by [15, Theorem 7.1]. Combining the above, we get

(5.30)

√
n

∂(K)
6 hK(θ) 6

c2n
2

∂(K)

Since c3
√
n 6 ∂(K) 6 2n, it follows that

(5.31) R(K(s)) 6 c4n
3/2r(K(s)), r(K(s)) >

c5√
n

and R(K(s)) 6 Cn3/2.

All these bounds are probably non-optimal:

Question 5.8. Determine the exact order of r(s)(n) = min{r(K(s)) : K ∈ SK[n]}
and R(s)(n) = max{R(K(s)) : K ∈ SK[n]}.
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