On the mean value of the area of a
random polygon in a plane convex body

A. GIANNOPOULOS

Abstract

Let K be a convex body in R? with area A(K) = 1. For every n > 3
we consider the expected value m(K, n) of the area of the convex hull of n
points chosen uniformly from K:

m(K,n)z/ / A(co{yr, .. Yn}) dYn ... dy1.
y1€K yn €K

We prove that for every n > 3, m(K,n) is maximized (over all bodies of area
1) if and only if K is a triangle.

1 Introduction

Let K be a convex body in Euclidean space R?,d > 2, with volume V(K) = 1,
and n > d + 1 be a natural number. We select n independent random points
Y1,Y2,.-+,Yn from K (we assume they all have the uniform distribution in K).
Their convex hull co{y1,y2,...,yn} is a random polytope in K with at most n
vertices. Consider the expected value of the volume of this polytope

(1) m(K,n):/EK.../ eKV(CO{yl,-..,yn})dyn...dyl.

It is easy to see that if U : R — R? is a volume preserving affine transformation,
then for every convex body K with V(K) =1, m(K,n) = m(U(K),n).

It is also well known (see John [7]), that there exists a constant C'(d), depending
only on the dimension d of the space, such that if K is a convex body in R?
with V(K) = 1, then there is a volume preserving affine transformation U with
U(K) C B(o,C(d)), the ball with center at the origin o and radius C(d).

From the compactness of the space of compact convex subsets of B(o,C(d))
with the Hausdorff metric and the fact that the functional m : K — m(K,n) is
continuous in this metric (see Groemer [3]), it follows that there exist K, Ko with



V(Ki))=V(Ky)=1 and m(Ki,n) <m(K,n) <m(Ks,n),

for every convex body K in R with V(K) = 1.
The problem is to find those K which minimize or maximize this mean value
m(K,n),if d>2,n>d+1 are given.

Blaschke [1, 2] has proved that if d = 2,n =3,

35 1
JTp) <m(K,n) < (R
and we have equality on the left hand side only when K is an ellipse, while on the
right hand side we have equality only when K is a triangle.

Groemer [3, 4] solved the problem of minimizing m(K,n) by showing that: “if
d>2,n>d+1, then m(K,n) attains its minimum value when, and only when, K

is an ellipsoid”.

In the opposite direction, Dalla and Larman [5] showed that for d = 2, and for
every n > 3, m(K,n) < m(T,n) for every plane convex body with area A(K) =1,
where T is a triangle with A(T) = 1. They also showed that the inequality is strict
if K is a polygon with more than three vertices.

We shall complete this last result, by proving in a different way that the in-
equality is strict whenever K is a plane convex body which is not a triangle. That
is, we prove the following.

Theorem. Let K be a plane convex body with area A(K) = 1. Then, if T is a
triangle with A(T) =1, and n > 3,

m(K,n) <m(T,n),
unless K too is a triangle, in which case equality clearly holds.

Let us say a few words about the proof. If K is any plane convex body and G
is any line in the plane, we write L = P (K) for the orthogonal projection of K
onto G. We may assumee that G is the z-axis of the plane and, taking a line G’
parallel to G if needed, that K is contained in the positive halfplane. So,
(2) K={y=(z,t):a<z<b flz) <t<g(z)},
where f is convex, g is concave, and 0 < f < g on L = [a, b].

Consider the transformation Sg : K — K¢, where

Kg={y=(z,t):a<a<b 0<t<g() - fla)}.

It is clear that K¢ is a plane convex body and easy to see that A(Kqg) = A(K)
(S¢ is known as the Schiittelung operation).

In Section 2 we prove that the mean value m(K,n) increases under the trans-
formation Sg. More precisely we have



Proposition 1. For every line G in the plane, and every plane convex body K, if
n > 3 then

(3) m(K,n) <m(Kg,n).

In Section 3 we answer the question of strict inequality in (3). The key step is
the following.

Proposition 2. If K is not a triangle, then there exists a line G in the plane such
that for every n > 3

(4) m(K,n) <m(Kg,n).

Proposition 2 and our remarks on the existence of a “maximizing” K imply our
Theorem.

2 The mean value m (K, n) increases under the trans-
formation Sg

In what follows, we assume that K is in the form (2). If z € [a, b] we denote by H,
the line which is perpendicular to G and passes through z. Then, (1) becomes

m(K,n):/ / A(co{(z1,t1), .-, (@n,tn)dyp .. .dy:
y1=(z1,61)EK Yn=(Tn tn)EK

b b
:/ / [/ / A(co{(z;,t;),i < n})dty,...dty | dey, ... dxy.
a a t1€H, NK tn€H,,NK

Ifry <z <...<xzy,, we define

M(:El,...,.’l,'n) :/ / A(CO{(JEl,tl),,(mn,tn)})dtndtl
t1€H, NK tn€H,,NK

Since the set of {(x1,t1), ..., (zn,tn)} for which z; = x; for some i # j is of measure
zero in K™, in order to prove Proposition 1 it suffices to prove that

(5) M(z1,...,z,) < Mg(z1,...,25),

where,

Mo (1, zn) :/ / A(co{(z1,11), -+, (@ns b))l - . - .
ti€H, NKa tn€H,, NKg
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Let I; = p} = (g(z;) — f(x;))/2 (half of the length of H,, N K or H,, N K¢g) and
pbi = (g(xl) + f(xl)) 2,i=12,...,n Then:

M(z1,...,xq / ) / A(co{(z1,t1), -, (Tn,tn)})dly ... dt
[t1—p1|<ly [tn —pn|<L

/ / A(cof(z1,p1 + 21, -, (s o+ 20) ez - . dn
|Z1|<l1 |Zn|<l

/ / A(co{(z1,p1 — 21),- -, (@n, Pn — 2n) })dzp .. . d21
|Z1|<l1 Zn|<l

1
-1 /|le<l1 "'/|zn|<zn [A(co{ (i, pi + 20)}) + A(co{ (i, pi — z)V]dzn . .. dzr.

In exactly the same way, we get

1
MaGorosz) =5 [ [ (Aofinpl + 2D + Aleof(ai,rh — )]
2 Jjz<n |20 ] <ln
So, (5) will be true if for every zi,...,z, with |z;| < l;, the following inequality
holds:
(6) A(co{(zs, pi + 2:)}) + Alco{(zi, pi — 2i)})

< A(co{(mi, P} + 2:)}) + A(co{ (s, p} — z:)})-

After these preliminary remarks, we pass to the
Proof of Proposition 1. Let |z;| < l;,i = 1,...,n. Then, we can find A\; €
[0,1],=1,...,n and p; =1 — A; such that
pi + 2 = Aif (zi) + pig ().
It is easy to see that
pi — zi = pif (i) + Aig(@i),
Pi + 2 = pig(@i) — paf (),
Pi — 2 = Xig(@:) — \if (24)-
For the proof of Proposition 1 it suffices to show that
(7) A(R)+ AQ) < AR') + AQ'),
where
R = cof{(wi, Ai f (z:) + pig (i)},
Q = co{(wi, pi f (i) + Aig(wi))},
R' = cof{(wi, pig(x:) — pi f(:))},



Q" = co{(zi, Nig(zi) — Nif (x4))}.

In general, if X = co{(z;,t;),¢ =1,...,n} we shall say that:
(i) (x;,t;) is an upper vertex of X, if

. . Tk — Tj Ty — Ij
j<i<k = t;> i ltj+ ! jtk;
T — I T — T

(ii) (x;,t;) is a lower vertex of X, if

o Tk — T; Ti — T
j<i<k = t< b ztj-f- ! th.
T — Ty T — Ty

With this definition, (z1,¢;) and (x,,t,) are both upper and lower vertices of X.
If1C{1,2,...,n}isof theform I = {ip = 1< i3 < ... <ip_1 < i =n}, we
define

Ex(I) =3 (@i, —zi, ) (ti, , +1ti,),

the area between the z-axis and the broken line with vertices (z;,¢;),7 € I. In this
notation, if I is the index set of the upper vertices of X and J is the index set of
the lower vertices of X, we note that

A(X) = Ex(I) — Ex(J).

Finally, for any function h : [a,b] - Rand I = {ip =1 < i1 < ... <ip_1 < i =n},
we write

k
> (@i, = wi,_ ) (h(wi,_,) + h(@s,))-

s=1

Eh(I):%

Lemma 1. Let I,J and K, L be the index sets of the upper and lower vertices of
R and Q respectively, and I', J' and K', L' be the index sets of the upper and lower
vertices of R and Q' respectively. Then,

() IULCTI, KUJCK',
(B) INLDOL , KNJDJ'.
Proof: If i € I and p < i <o, p,o € {1,2,...,n}, we have

Nif () + pig () > 5O @) + pg(a) + T E o (@0) + o (a0)
and LTy — I T T
~fla) 2 ST f )+ T ()



So,

LTy — T Ty — Tp

(/lpg(xp) - llpf(xp)) + (o9(xs) = po f(2o))-

pigle:) = paf (@) > =— z) P—
Thus ¢ € I' and hence I C I'. Tt is equally easy to see that

(8) ICI'y KCK', LDOL, JDJ.
Next, we define the sets

R" = co{(zi, \if(z:) + pig(wi) — g(xi))} = co{ (@i, i f (i) — Nig(zi))} = —Q

and

Q" = co{(s, i f (i) + Xig(w:) — g(2:))} = co{ (@, pi f (ws) — pag(w:))} = —R'.

If I",J" and K",L" are the index sets of the upper and lower vertices of R"” and
Q" respectively, it is clear that

(9) I” — L’, J” — K’, K” — J,, LII — I’.
But, just as in the proof of (8), one can see that
(10) JCJ', LCL", KOK", I>1I".

For example, if j € J and p < j < 0, p,o € {1,2,...,n} we have

Lo — Zj Tj—T
N F(3) + 1i9(25) < ZZTL 0 f ) + i (2,) + L (A, £ (20) + 19(27)
o p o p
and
Ty — T T —
~0(eg) < T (ale) + T (gla)
So,
Ty — T xj—,

Aif(xj) = Ajglej) <

(Ao f(@p) = Apg(z)p)) +

c—Tp To — Tp

(/\Uf(xa) - )‘a'g(xa))'
That is, j € J"” and J C J". Inclusions (8), (9) and (10) imply our Lemma 1. O

We continue with the proof of (7), namely
A(R) + AQ) < A(R') + A(Q"),
or, equivalently,

Eg(I) — Eg(J) + Eq(K) — Eqg(L) < Ep (I') — Er/(J') + Eq (K') — Eg (L").



It suffices to show that

(11) Er(I) — Eq(L) < Ep/(I') — Eq/ (L"),

(12) Eq(K) - Er(J) < Eq(K') — Er (J'),

and this is accomplished in the following

Lemma 2. If I, J K,L and I',J',K', L' are as in Lemma 1, then inequalities (11)
and (12) hold.

Proof: Both inequalities are proved in the same way, so we restrict ourselves to the
proof of
Eg(I) + Eq/(L') < Ep/(I') + Eq(L).

Since I U L is a subset of I' and the points (2, i g(zi) — pir f(xi)),7" € I' are in
a concave position (they are the upper vertices of R'), we have

Er (I,) > Ep (I U L)
So it is enough to prove

(13) Er(I) + Eg (L’) < Er(IUL)+ Eg(L).

The four regions in (13) are bounded by the segment [z}, z,] on the z-axis, the
lines = x1, © = x,, and the four broken lines ¢; : [z1,2,] = R4 = 1,2,3,4, with

¢1 having vertices at the points (z;, \; f(z;) + uzg(azz)),i el,

¢ having vertices at the points (z;, \ig(x;) — A\; f(2;)),i € L',
c3 having vertices at the points (x;, uig(z;) — ,u, flx)),i € TUL,
¢4 having vertices at the points (z;, \ig(x;) + ui f(x;)),i € L.

Also, from Lemma 1, L' CINL (C IUL). If ks, ksy1 are consecutive indices
from I'U L, all four ¢; are linear on [xy,, xk,,,]. It follows that (13) will be true if
forevery k€ TUL,

(14) c1(z) + co(z) < cs(xk) + cazy).

Let L' ={pp =1< p1 < ... < p, =n}. If p; < psy1 are two consecutive indices
from L', we shall verify (14) for every k € I U L with ps < k < psy1.

We distinguish four cases:
(o) k=psork=psr1. Then ke I,ke L',k e IUL and k € L; so,
cr(ze) + e2(wr) = Ao f(n) + pg(zr) + Aeg(@n) — A f(2r) = g(2)

= urg(wr) — prf(r) + Ag(@r) + pe f (1)

= c3(xr) + calap)-



(B) ke INL\L'. Then k€ I,k € L,k € I UL; so,

eol) = =22 T (3 g(@,,) = Ap f(0.))

Lo — Lp,

Lk — Lp,

+ (>‘05+1 g(xps+1) - >‘Ps+1 f(xps+1))

Lo — Lp,
and (14) becomes

Mo f(@r) + preg(r) + c2(wr) < prg(er) — prf(Tr) + Aeg(zr) + pr f(wr)

or, equivalently,
c2(wr) < Aeglar) — Aef (@)
The last inequality holds because the points (x,,, A, 9(z,,) —A,, f(z,,)) and

(:’Bps+1 ) )‘Ps+1
9(Zp,sr) = Aposr f(Tp, 1)) are consecutive lower vertices of Q', ps < k < pst1, and
the point (g, Akg(zr) — A f(zr)) lies in Q' but it is not a lower vertex of it.

(v) k € I\L. Then k € I,k € TUL. Let [, < l;4+1 be two consecutive indices
from L such that p, <1, <k <lj1 <psp1. U A=2,,, —2,, B=x, —2x,,,

=2z -2, A=z, —m, then
A-B-T B+T
02($k) = T()‘psg(wps)_/\psf(xps))_'_T()‘Ps+1g(wps+1)_/\ps+1f($ps+1))7

and

calon) = g Onngo1,) g £ ) + g 1) e, ),
and (14) becomes
Mef (@) + pg(en) + ea(wn) < prg(an) = puf () + (@),
e,
(19 er(en) < ealen) = Flen).

Since f is a convex function,

flzy) <

A r
T Af(ﬁflf) + H—Af(l"lfﬂ)

so, in order to verify (15), we only need to check that
(16)

A
ca(zr) <

r+A

(Alfg(xl-r) - Al-,—f(xl-,—)) + ]-—\_'_LA(AZT+19($ZT+1) - >‘l-,—+1 f(xl-r+1))'



But as in case (§),

A-B
(17) Ag(wr) — N, fla,) > T(Apsg(xps) = Ao f(2p,))
B
+Z(/\ps+1g(wps+1) - /\ps+1 f(wps+1))7
and
A-B-T-A
(18) >‘lr+1g($lr+1) - >‘l-,—+1 f(xl-r+1) Z #(Aps g(xps) - >‘Ps f(xps))
B+T+A
+T(/\ps+1g(wps+1) - /\ps+1 f(wps+1))7

with equality in (17), (18) if I, = ps or [, 41 = ps41 respectively and strict inequality
otherwise. From (17), (18) we conclude that (16) holds.

(0) k € L\I. Then k € L, k € I UL. We find i, < i,4+1 two consecutive indices
from I so that ps < i, < k < ir41 < pst1. Then we compute ¢ (), c2(xr) and
proceed as in case (7). m|

By Lemma 2, inequality (7) is true. So, we have proved Proposition 1.

3 If K is not a triangle, there is a line G such that
m(K,n) strictly increases under the transforma-
tion Sg

Let K, K¢ be as in section 1. We define

f(zi) + g(z:)
2

RO = QO = CO{(xiapi)} = CO{(xia )}7

with Iy the index set of its upper vertices and Jy the index set of its lower vertices,

and
Ry = Qo = co{(zi,p;)} = cof (i, M)},

with I the index set of its upper vertices and Jj the index set of its lower vertices.
In the next lemma we find necessary conditions for A(Ry) = A(Ry,) to be true.

Lemma 3. If A(Ry) = A(RY), then we have () and () below.
(a) The following conditions are all satisfied.
(i) (zj,9(x;)),j € Jo are collinear.

(i) (x4, f(x;)),i € Iy are collinear.



(iii) If j € Jo\lo and iy < j < i1 where iy,ir11 are two consecutive indices
fmm 107 then (xikag(xik))a (in,g(.’L'j)) and (xik+17g($ik+1)) are collinear.

(iv) If i € Ip\Jo and ji < i < jr+1 where j,jrr1 are two consecutive indices
from Jo, then (xj,, f(xj,)), (i, f(x:)) and (xj,,,, f(xj,,,)) are collinear.

(8) I, = Io U Jo.

Proof: (o) From Lemma 1, Ip U Jo C 1)) (set \; = p; =1/2, i =1,...,n). We also
have J) = {1,n} because the points (z;,p}), ¢ = 1,...,n of R{ are in a concave
position. Since A(Rp) = A(R}), we must have

ERy(Io) — Er,(Jo) = Ery(1y) — Er,(Jp)
or, equivalently,
Ey(Io) + Ey(Io) — Ef(Jo) — Ey(Jo) = Ey(Ip) — Ef(Iy) + Ep (J5) — Ey(Jo),
ie,
[Eq(15) — Eqg(Lo)] + [Eg(Jo) — Eg(Jo)] + [Ef(Jg) — Ef(lo)]
HE(Jo) - Ef(Ip)] = 0.

Since f is convex, g is concave and I D IoUJy, IoNJy D Jj, the four summands
in the above equality are non-negative. It follows that

D) Ey(Jo) = Ey(Jo),

(i)' Ef(J) = Er(lo),

(i) By (Ig) = Eqy(Io),

(iv)" Ef(Jo) = E ().
From condition (i)', since J; = {1,n} and g is concave, (z;,9(z;)),j € Jo are
collinear. From condition (ii)’, since Jj = {1,n} and f is convex, (z;, f(2:)),i € I
are collinear. Condition (iii)', since I}, D Iy and g is concave, implies that for any
j € JO\IO the pOiIltS (xik,g(l'ik)); (ZL'j,g(ZUj)) and (xik+17g($ik+1))7 where ikaik-i-l
consecutive indices from Iy with i < j < ¢x4+1, are collinear.

Condition (iv)’, since I} D Jo and f is convex, implies that for any i € Ip\Jp the

points (zj,, f(zj,)), (zi, f(z:)) and (2}, f(z,,,)) where ji, jri1 are consecutive
indices from Jy with ji < i < jg41, are collinear.

(B) From Lemma 1, I} D Iy U Jy. If Iy U Jy = W, and W # I}, then
A(Rg) < A(Rp),

where Ry = co{(x;,p}),i € W}. Also, from inequality (7) (taking W instead of

{1,...,n}),
A(Ro) < A(Ryp).

This contradicts our hypothesis A(Ry) = A(RY)), and proves

I(I):I()UJ(). O
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Proof of Proposition 2. Let K be a plane convex body with more than three extreme
points and let A, B,C and D be four of them. Then A, B,C and D form a convex
quadrilateral ABCD in the plane. We choose G to be the perpendicular to the
diagonal AC of ABCD.

We may assume that G is the z-axis and

K={y=(z,t):a<z<b, f(z) <t<gla)}

where:
() Po(K) = [a,b];
(ii) 0< f <g, fis convex, g is concave on [a, b];
(iii) Pg(A) = Pg(C) =z and a < x < b; and

(iv) 4= (z,9(z)), C = (z, f(x))-
Now, let Sg : K — K¢, where

Ko={y=(z,t):a<x<b, 0<t<g(x)- f(x)},

and choose a < 2] < 23 =z < zi < ... < z} < b (we can do this because
a<z<b).
Set pi = (f(z}) + g(«}))/2 and p; = (g9(z}) — f(x}))/2. We shall prove that

(19) A(R5) = A(co{(w},p})}) < Alco{(w},p})}) = A(RS).

Suppose that equality holds. From Lemma 3(5), we must have I = Io U Jp. It
is easy to see that 2 € I]. Let k be the next index from I}, that is, 1,2 and k are
the three first indices of I}). Since 1 € Iy N Jy, we have to examine four cases:

(i) {1,2,k} C Jy. Then, by (i) of Lemma 3(«), the three points (z7, g(x7)),
(x,9(z)) = A and (z}, g(x})) are collinear, which is false because A is an extreme
point of K.

(i) {1,2,k} C Iy. Then, by (ii) of Lemma 3(«), the three points (z7, f(x7)),
(z, f(xz)) = C and (xj, f(x})) are collinear, which is false because C' is an extreme
point of K.

(iii) {1,2} C Jp and {1,k} C Iy. Then, by (iii) of Lemma 3(«), the three points
(x7,9(x7)), (x,9(x)) = A and (x},g(z})) are collinear, which is false because A is
an extreme point of K.

(iv) {1,2} C Iy and {1,k} C Jo. Then, by (iv) of Lemma 3(«), the three points
(xf, f(x7)), (z, f(x)) = C and (z}, f(x})) are collinear, which is false because C is
an extreme point of K.

So, (19) is true. But the integrands defining M (z7,...,x}) are continuous

* n

functions of z1, ..., z, and satisfy for every |z;| < I; the inequality (see (6) above)
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Alcof(a}p; +20)}) + Alco{(a},p} — 20)})
< A(co{(a},p} +2)}) + Alco{ (b —2)}).
We proved that this inequality is strict for z; = ... =z, =0, i.e,
A(co{(aF,p7)}) < Alco{(aF, )},
and this implies that

M(x3,...,x5) < Mg(z7,...,2)).

»r¥n r'n

But, for every a < z; < ... <z, < b we have

M(z1,...,xn) < Mg(x1,...,20)-

Since M(z1,...,z,) and Mg(z1,...,z,) are continuous functions of zq,...

(20) implies that

b b
m(K,n):/ / M(x1,...,xn) day .. .dxy

b b
</ / Ma(zy,...,z,) dzy, ... dzy = m(Kg,n),

and the proof of Proposition 2 is complete.

4 Remarks

(i) The case n = 3 is much simpler. If we define
e:(17]—71)7 X= ($17$27w3)7 Z:(Z17Z27Z3)7
p=(p1,p2,p3), P = (P}, ph,ph),

and D(z1,22,23) = D(z) = %det(e,x,z), then

1
M($1,$2,$3):§/ < .
z1|<h

1
= 5/21% .../23Slg[lD(z)+D(p)|+|D(z) — D(p)|ldzs . ..d=

= / / max|[|D(z)|,|D(p)|]dzs - . .dz1
lz1/<l |z3]<ls

12

. / ID(z +p)| + |D(z — p)[Jdzs ... d=
|zs|<ls

7',]37’7/7



and

MG($1,$2,$3) = /

[21|<l

. / - max|[|D(z)],|D(p’)|]dzs3 - . . dz1.

So, inequality (5) becomes
|D(p)| < |D(p")-
We continue as in the proof of Proposition 2.

(ii) The crucial property of the triangle, related to our method of proof, seems to
be the following: “if T is a triangle and G is any line in the plane, write 7" in the
form (2):

T={y=(0,t):a<z<b f(z) <t<gl)}

Then, either f or g must be linear on Pg(T') = [a,b]”.
(iii) Buchta [8] has obtained the exact value of m(T,n):

2
n+1

[]=
T =

m(T,n)=1-
k

I
-
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