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6 Additional information in the spirit of geometri funtional anal-ysis 516.1 Banah-Mazur distane estimates . . . . . . . . . . . . . . . . . . . . 516.2 Random spaes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 IntrodutionIn this artile we outline a rapidly developing theory of high dimensional normedspaes and onvex bodies. The lassial Convex Geometry, sometimes alled Brunn-Minkowski theory, studies the geometry of onvex bodies and related geometriinequalities in Eulidean spae of a �xed dimension (beause of this, it is an iso-metri theory). The lassial Funtional Analysis is standardly understood as thetheory of in�nite dimensional spaes. However, it is a relatively reent disoverythat there is a theory \in between", whih is onerned with the geometri and lin-ear properties of �nite dimensional normed spaes or onvex bodies, the emphasisnow being on the asymptoti behaviour of various quantitative parameters as thedimension grows to in�nity. We all it Asymptoti Geometri Analysis, but alsoAsymptoti Convex Geometry (atually, more names are assoiated to it: historyhas not yet seleted the right one). In the framework of this theory, very unex-peted phenomena, hidden strutures and forms of behaviour were disovered, newintuition was built and many new tools were developed. It is now lear that thetheory provides the right questions to reveal the underlying \order" and strutureswhih aompany high dimensional spaes.The quantitative study of high dimensional normed spaes used many of thetools of onvex geometry. However, these tools were now used under a di�erentpoint of view. The isometri questions whih were typial in lassial onvexitywere replaed by isomorphi ones, whih were most natural for funtional analysisbut alien to onvexity. Isoperimetri type problems provide a bold example of thistransformation. Isomorphi versions of suh problems, whih make sense only fromthe asymptoti point of view, led to the disovery of the onentration of measurephenomenon, whih plays a ruial role in the proof of Dvoretzky type theorems.Later, the method spread and inuened the development of other \asymptoti"theories in Probability, Asymptoti Combinatoris and Complexity, where muhmore general high parametri systems arise.After this major step on the oneptual level, many unsolved problems of las-sial onvexity were put in asymptoti form and were studied systematially. Inthis way, the two theories started to interat with many deep onsequenes in bothanalysis and geometry. Typial examples are the reverse Brunn-Minkowski inequal-ity and the reverse Santal�o inequality, whih provides an aÆrmative answer - atleast in the asymptoti sense - to a lassial onjeture of Mahler.The artile is organized as follows: Setion 2 gives a brief synopsis of the majorresults of asymptoti onvex geometry (the onept of onentration, Dvoretzky2



type theorems, Pisier's inequality on the Rademaher projetion, Milman's lowM�-estimate and the quotient of subspae theorem, entropy estimates) and of somemore reent important diretions (global theory, asymptoti formulas and phasetransition behaviour, \oordinate theory").Setion 3 ontains bakground material from lassial onvexity: the Brunn-Minkowski inequality and its funtional forms, the Alexandrov-Fenhel inequalityand related geometri inequalities about mixed volumes of onvex bodies, volumepreserving transformations (Kn�othe and Brenier maps).Setion 4 desribes lassial positions of onvex bodies suh as John's position,the minimal surfae area and the minimal mean width positions. They are all har-aterized as isotropi ones, an observation whih relates them to the Brasamp-Liebinequality and its reverse form. Some sharp geometri inequalities are appliationsof this point of view, a fat whih was �rst observed and suessfully exploited byBall. We also give a short aount on the hallenging sliing problem.Setion 5 gives some lassial and reent examples of the interation betweenthe asymptoti onvex geometry point of view and lassial onvexity. The reverseSantal�o inequality and the reverse Brunn-Minkowski inequality are proved withthe method of isomorphi symmetrization. This disussion introduesM -ellipsoidsand their basi properties. Reent results of Klartag and Milman on the number ofMinkowski or Steiner symmetrizations that are needed in order to bring an arbitraryonvex body lose to a ball give another example of use of the asymptoti theoryin questions with lassial onvexity avor.Setion 6, whih is loser to the spirit of geometri funtional analysis, is devotedto the geometry of the Banah-Mazur ompatum and some questions on the loalstruture of high-dimensional normed spaes. Random spaes, whih were �rstintrodued by Gluskin, play an important role in this disussion.A number of surveys on di�erent aspets of the theory were reently published(see [14℄, [86℄, [87℄, [109℄ and [110℄). In partiular, [54℄ gives a more geometriallydireted point of view on the theory. However, this artile was written before1999 and a new stream of results is now available. We annot avoid repeatingthe very basi and already lassial line of development we desribed, but we referto [54℄ for many proofs whih are outlined there in a very ondense form. Generalreferenes on the Brunn-Minkowski theory and geometri inequalities are the booksof Shneider [134℄ and Burago-Zalgaller [34℄. The reader may onsult the books ofMilman-Shehtman [113℄, Pisier [121℄ and Tomzak-Jaegermann [147℄ for variousaspets of the asymptoti theory of �nite dimensional normed spaes.2 Asymptoti Convex GeometryWe study �nite-dimensional real normed spaes X = (Rn ; k � k). The unit ball KXof suh a spae is a symmetri (with respet to the origin) onvex body in Rn .Conversely, if K is a symmetri onvex body, then kxkK = minf� � 0 : x 2 �Kg is3



a norm de�ning a spae XK with K as its unit ball. If K1 and K2 are symmetrionvex bodies in Rn , their geometri distane d(K1;K2) is de�ned byd(K1;K2) = inffab : a; b > 0;K1 � bK2;K2 � aK1g:The natural distane between the n-dimensional spaesXK1 andXK2 is the Banah-Mazur distane d(XK1 ; XK2) = inffd(K1; T (K2)) : T 2 GL(n)g:Note that d(XK1 ; XK2) is the smallest positive number d for whih we an �ndT 2 GL(n) suh that K1 � T (K2) � dK1. In the language of geometri funtionalanalysis, if X and Y are two n-dimensional normed spaes, thend(X;Y ) = minfkTk kT�1k : T : X ! Y is an isomorphismg:We assume that Rn is equipped with a Eulidean struture h�; �i and denote theorresponding Eulidean norm by j � j. Bn2 is the Eulidean unit ball and Sn�1 isthe unit sphere. The rotationally invariant probability measure on Sn�1 will bedenoted by �. The unit ball of `np is denoted by Bnp . By a lassial theorem of John[73℄ one has d(X; `n2 ) � pn for every n-dimensional normed spae X (see also x4.1).If K is a symmetri onvex body in Rn , its polar body is de�ned by kykKÆ =maxx2K jhx; yij. Note that XKÆ = X�K : KÆ is the unit ball of the dual spae of X .Let K be a onvex body in Rn with 0 2 int(K). The radial funtion �K :Rnnf0g ! R+ of K is de�ned by �K(x) = maxf� > 0 : �x 2 Kg. The supportfuntion hK : Rn ! R of K is de�ned by hK(x) = maxfhx; yi : y 2 Kg. The widthof K in the diretion of � 2 Sn�1 is the quantity w(K; �) = hK(�) + hK(��), andthe mean width of K is de�ned byw(K) = 12 ZSn�1 w(K; �)�(d�) = ZSn�1 hK(�)�(d�):Note that if K is symmetri then �K(x) = 1=kxkK and hK(x) = kxkKÆ .2.1 Isomorphi isoperimetri inequalities and onentrationof measureConentration of measure was understood and developed as a method for the goalsof geometri funtional analysis, but it was soon realized that it was very welladapted to the needs of probability theory, asymptoti ombinatoris and omplex-ity. General referenes on onentration, from various viewpoints, are the followingsurveys and books: [14℄, [68℄, [69℄, [80℄, [81℄, [104℄, [110℄, [132℄.The general framework is a probability spae (X;A; d; �), where A is the Borel�-algebra with respet to a given metri d on X . For every A 2 A, we onsider thet-extension At = fx 2 X : d(x;A) � tg of A. One an then formulate the abstratisoperimetri problem for metri probability spaes as follows: Given 0 < � < 14



and t > 0, �nd inff�(At) : A 2 A; �(A) � �g and desribe the sets A on whih thisin�mum is possibly attained. The omplete answer to the isoperimetri problem isavailable for a few but very important geometri examples.Spherial isoperimetri inequality: Consider the sphere Sn�1 as a metri prob-ability spae, with the geodesi distane � and the O(n)-invariant probability mea-sure �. The spherial isoperimetri inequality states that spherial aps of the formB(x; r) are the extremal sets: if A is a Borel subset of Sn�1 and �(A) = �(B(x0; r))for some x0 2 Sn�1 and r > 0, then(2:1:1) �(At) � �(B(x0; r + t))for every t > 0. This is proved by spherial symmetrization (see e.g. [44℄). Sinespherial aps are easy to work with, one an use (2.1.1) to obtain a good lowerbound for the measure of the t-extension of an arbitrary subset of the sphere interms of its measure. The most important ase is when �(A) = 1=2 (see [113℄).Theorem 2.1 If A is a Borel subset of Sn+1 and �(A) = 1=2, then(2:1:2) �(At) � 1�p�=8 exp(�t2n=2)for every t > 0. 2Isoperimetri inequality in Gauss spae: Consider Rn as a metri probabil-ity spae, with the Eulidean distane j � j and the standard Gaussian probabilitymeasure n. The isoperimetri inequality in Gauss spae (proved by Borell andSudakov-Tsirelson, see [80℄ or [81℄ for referenes) states that halfspaes are the ex-tremal sets: if � 2 (0; 1), � 2 Sn�1 and H = fx 2 Rn : hx; �i � sg is a halfspaein Rn with n(H) = �, then, for every t > 0 and every Borel subset A of Rn withn(A) = �, one has(2:1:3) n(At) � n(Ht):A diret omputation shows the following.Theorem 2.2 If n(A) � 1=2 then for every t > 0(2:1:4) n(At) � 1� 12 exp(�t2=2): 2These examples lead to the de�nition of the onentration funtion of a metriprobability spae. For every t � 0 we set(2:1:5) �(X; t) := 1� inff�(At) : �(A) � 1=2g:P. L�evy [82℄ realized the role of the dimension in the spherial isoperimetri in-equality (2.1.2): if we �x � = 1=2 and t > 0, as the dimension n inreases toin�nity the measure of the omplement of At dereases exponentially to zero for5



every subset A of Sn�1 with �(A) = 1=2. Following this basi example, we say thata sequene (Xn;An; dn; �n) of metri probability spaes is a normal L�evy familywith onstants (1; 2) if(2:1:6) �(Xn; t) � 1 exp(�2t2n):There are many examples of normal L�evy families whih have found appliationsin the asymptoti theory of �nite dimensional normed spaes. For some importantmetri probability spaes X , the exat solution to the isoperimetri problem was(and still is) unknown: new and very interesting tehniques were invented in order toestimate the onentration funtion �(X; t). Natural families of obvious geometriimportane are the following.1. The family of the orthogonal groups (SO(n); �n; �n) equipped with the Hilbert-Shmidt metri and the Haar probability measure is a L�evy family with onstants1 =p�=8 and 2 = 1=8.2. The family Xn =Qmni=1 Sn with the natural Riemannian metri and the produtprobability measure is a L�evy family with onstants 1 =p�=8 and 2 = 1=2.3. All homogeneous spaes of SO(n) inherit the property of forming L�evy families.In partiular, any family of Stiefel manifolds Wn;kn or any family of Grassmanmanifolds Gn;kn is a L�evy family with the same onstants as in 1. These �rst threeexamples appear in [70℄.4. The spaes En2 = f�1; 1gn with the normalized Hamming distane d(�; �0) =#fi � n : �i 6= �0ig=n and the normalized ounting measure form a L�evy familywith onstants 1 = 1=2 and 2 = 2. This follows from an isoperimetri inequalityof Harper [72℄ and it was �rst stated in this form and used in [5℄.5. The group �n of permutations of f1; : : : ; ng equipped with the normalizedHamming distane d(�; �) = #fi � n : �(i) 6= �(i)g=n and the normalized ountingmeasure satis�es �(�n; t) � 2 exp(�t2n=64). This was proved by Maurey [94℄ witha martingale method, whih was further developed by Shehtman [131℄.An equivalent way to express onentration is by means of Lipshitz funtions (see[80℄ or [113℄).Theorem 2.3 Let (X;A; d; �) be a metri probability spae. If f : X ! R is aLipshitz funtion with onstant 1, then(2:1:7) � (fx 2 X : jf(x)�Mf j > tg) � 2�(X; t)where Mf is the L�evy median of f . 2Therefore, if the onentration funtion ofX is small, Lipshitz funtions are almostonstant on almost all spae. This observation has very important appliations tothe study of the normal L�evy families above.Many problems whih arise in the asymptoti geometri analysis require theproof of the existene of some geometri struture with presribed behaviour. The6



basi idea of the probabilisti method is to show that a random element of a suitablemetri probability spae has the required properties. The method (whih was �rstused in ombinatorial geometry and graph theory) works beause the desirablestruture is quite often the typial one. The onentration phenomenon provides apowerful tool for the probabilisti method, sine it enables us to identify the typialstruture in many situations. The �rst appearane of this idea in Analysis was inthe proof of Dvoretzky's theorem in [97℄, whih we disuss in the next subsetion.2.2 Dvoretzky type theoremsDvoretzky's theorem [40℄, [41℄ states that every high-dimensional normed spae hasa subspae of \large dimension" whih is well isomorphi to the Eulidean spae. Weuse the terminology \Dvoretzky type theorems" for a wide family of results whihexhibit large nie substrutures inside normed spaes of suÆiently high dimension.The onrete estimates regarding the di�erent parameters whih enter in this typeof results have beome a ruial and important topi in the theory. There are manytheorems whih provide suh estimates and even asymptoti formulas dependingon di�erent parameters.The starting point for Dvoretzky's original theorem is a lemma of Dvoretzkyand Rogers [42℄, whih shows that for every symmetri onvex body K whosemaximal volume ellipsoid is Bn2 (see x4.1), there exist k ' pn and a k-dimensionalsubspae Ek of Rn suh that Bn2 \Ek � K \Ek � 2Qk, where Qk is the unit ubein Ek with respet to a suitable oordinate system. Grothendiek asked whetherit is possible to replae Qk by Bn2 \ Ek in this statement, so that k will be stillinreasing to in�nity with n. Dvoretzky's theorem provides an aÆrmative answerto this question. The best known version an be stated in the language of geometrifuntional analysis as follows.Theorem 2.4 Let X be an n-dimensional normed spae and " > 0. There existan integer k � "2 logn and a k-dimensional subspae Ek of X whih satis�esd(Ek ; `k2) � 1 + ". 2The example of `n1 shows that the logarithmi dependene of k on n is bestpossible for small values of ". The exat relation between n, " and k has not beensettled. It seems reasonable that `n1 represents the worst ase. This would meanthat, for �xed k and ", every n-dimensional normed spae has a k-dimensionalsubspae whih is (1 + ")-isomorphi to `k2 , provided that n � (k)"� k�12 . Theproblem is very interesting even for small values of k (atually, it is ompletelyunderstood only in the ase k = 2) and has onnetions with other branhes ofmathematis (algebrai topology, number theory, harmoni analysis, see [103℄ for adisussion).The proof of Theorem 2.4 given in [97℄ (with a slightly worse dependene on") uses the onentration of measure on Sn�1. We start with an n-dimensionalnormed spae X , and we may assume that Bn2 is the ellipsoid of maximal volume7



insribed in the unit ball K of X . Then, the funtion r : Sn�1 ! R de�ned byr(x) = kxk is Lipshitz ontinuous with onstant 1. If Lr is the L�evy median of r,Theorems 2.1 and 2.3 imply that for every t 2 (0; 1),(2:2:1) � �x 2 Sn�1 : jr(x) � Lrj � tLr� � 21 exp(�2t2L2rn):where 1; 2 > 0 are absolute onstants. Sine the funtion r(x) = kxk is almostonstant and equal to Lr on a subset of the sphere whose measure is pratiallyequal to 1, one an extrat a subsphere on whih r is almost onstant. This isdone by a disretization argument via nets of spheres (see [54℄ for an outline of theargument).Theorem 2.5 Let X = (Rn ; k � k) and assume that kxk � jxj for all x 2 Rn . Forevery " 2 (0; 1) we an �nd k � 3"2L2rn and a k-dimensional subspae F of Rnsuh that(2:2:3) (1 + ")�1=2Lrjxj � kxk � Lr(1 + ")1=2jxjfor every x 2 F . 2If Y = (F; k � k), it is lear that d(Y; `k2) � 1 + ", and what remains is to give alower bound for Lr. It is easier to work with the expetation(2:2:4) M =M(X) = ZSn�1 kxk �(dx);of the norm on the sphere, and a simple omputation shows that Lr 'M .We now make full use of the fat that Bn2 is the ellipsoid of maximal volumeinsribed in K. By the Dvoretzky-Rogers lemma (see [42℄), we an �nd an or-thonormal basis fv1; : : : ; vng with kvik � 1=2 for all i � n=2. One may hekthat(2:2:5) M = ZSn�1 k nXi=1 aivik�(da) � 12 ZSn�1 max1�i�n=2 jaij�(da) � plogn=n;where  > 0 is an absolute onstant. Going bak to Theorem 2.5 we onlude theproof of Theorem 2.4. 2Let X = (Rn ; k � k) be an n-dimensional normed spae. We denote by b thesmallest onstant for whih kxk � bjxj holds for every x 2 Rn . Let k(X) be thelargest positive integer k � n for whih Ek 2 Gn;k satis�es(2:2:6) (M=2)jxj � kxk � (2M)jxj; x 2 Ekwith probability greater than 1� e�k. The proof of Theorem 2.4 shows that thereexists k � 1n(M=b)2 suh that a random k-dimensional subspae Ek of X hasthis property. In other words, k(X) � 1n(M=b)2. It was observed in [115℄ thatthis inequality is in fat an \asymptoti formula": for every n-dimensional normedspae X one has k(X) � Cn(M=b)2. 8



Theorem 2.6 Let X be an n-dimensional normed spae. Then, k(X) ' n(M=b)2.2 The estimate k(X) � n(M=b)2 allows one to hek that in several situationsthe dimension of \spherial setions" of high-dimensional onvex bodies may bemuh larger than logarithmi in the dimension. For example, one has k(`np ) ' n if1 < p < 2 and k(`nq ) ' pqn2=q if q > 2 (see [44℄ or [113℄).It is interesting to hek the strength of Theorem 2.5 in the partiular exampleof `n1 . For every " 2 (0; 1) there exists (") > 0 suh that `n1 has a subspae Ek ofdimension k � (")n with d(Ek ; `k2) � 1+". Beause of the nature of the argument,we have subspaes of `n1 of some dimension proportional to n whih are \almostisometri" to Eulidean, but no information on d(Ek ; `k2) if k exeeds some �xedproportion of n. An isomorphi Dvoretzky type theorem for `n1 was proved byKashin [74℄: there exist (�)-Eulidean subspaes of `n1 of dimension [�n℄, for every� 2 (0; 1). Szarek realized that this property of `n1 is a onsequene of the fat thatits unit ball has bounded \volume ratio". This notion was formally introdued in[143℄: The volume ratio of a symmetri onvex body K in Rn is the parameter(2:2:7) vr(K) = inf �� jKjjEj�1=n : E � K�;where the inf is taken over all ellipsoids E ontained in K. A simple omputationshows that vr(Bn1 ) � C for some absolute onstant C > 0. Then, Kashin's theoremadmits the following generalization [136℄, [143℄.Theorem 2.7 Let K be a symmetri onvex body in Rn with vr(K) = A. Forevery k � n there exists a k-dimensional subspae Ek of XK suh that(2:2:8) d(Ek ; `k2) � (A) nn�k ;where  > 0 is an absolute onstant. 2Isomorphi versions of Dvoretzky's theorem for arbitrary n-dimensional normedspaes were studied by Milman and Shehtman [114℄. There exists an absoluteonstant C > 0 suh that if dimX = n and C logn � k < n, then X has ak-dimensional subspae Ek with d(Ek; `k2) � Cpk= log(n=k).We lose this subsetion with a reent result of Rudelson and Vershynin [129℄,whih is di�erent in nature but very lose in spirit to the Dvoretzky type theoremswe disussed. Let (T; �; d) be a metri probability spae whose onentration fun-tion satis�es the \normal L�evy estimate" �(T; t) � 1 exp(�2t2n) for some n andall t > 0. In order to avoid degenerate ases we also assume that there exist "; Æ > 0suh that the "-neighborhood of any point in T has measure smaller than 1� Æ (Tis ("; Æ)-regular). We say that (T; d) is K-Lipshitz embedded into a normed spaeX if there exists F : T ! X suh that d(x; y) � kF (x) � F (y)k � K � d(x; y) forall x; y 2 T . Assume that X is n-dimensional. If an ("; Æ)-regular metri proba-bility spae as above is K-Lipshitz embedded into X , then k(X) �  � "ÆK �4 n. In9



other words, X must have Eulidean subspaes of proportional dimension. Thisfat underlines the importane of the onentration of measure phenomenon on thesphere: if some metri probability spae with a normal onentration funtion wellembeds into a normed spae, this must be also true for the Eulidean spae.2.3 The `-position and Pisier's inequalityOne of the fundamental fats in the loal theory of normed spaes is Pisier's estimateon the K-onvexity onstant. Combined with important results of Lewis, Figiel andTomzak-Jaegermann, it leads to the following geometri statement: every onvexbody K in Rn has an aÆne image TK of volume 1 whose mean width satis�es the\reverse Urysohn inequality"(2:3:1) w(TK) � pn logn;where  > 0 is an absolute onstant. In this subsetion we give a very onisedesription of this irle of ideas.Let X be an n-dimensional normed spae, and let � be a norm on L(`n2 ; X).The trae dual norm �� of � is de�ned on L(X; `n2 ) by(2:3:2) ��(v) = supftr(vu) : �(u) � 1g:The lemma of Lewis [83℄ applies to any pair of trae dual norms.Theorem 2.8 For any norm � on L(`n2 ; X), there exists u : `n2 ! X suh that�(u) = 1 and ��(u�1) = n. 2The `-norm on L(`n2 ; X) was de�ned by Figiel and Tomzak-Jaegermann in [45℄:Let fg1; : : : ; gng be a sequene of independent standard Gaussian random variableson some probability spae, and let fe1; : : : ; eng be the standard orthonormal basisof Rn . If u : `n2 ! X , the `-norm of u is de�ned by(2:3:3) `(u) =  Ek nXi=1 giu(ei)k2!1=2 :A standard omputation gives(2:3:4) `(u) ' pnw((u�1)�(KÆ));where K is the unit ball of X . This formula onnets the `-norm to the meanwidth. It is more instrutive to replae the Gaussians by the Rademaher funtionsri : En2 ! f�1; 1g de�ned by ri(") = "i, where En2 = f�1; 1gn is viewed as aprobability spae with the uniform measure. An inequality of Maurey and Pisier(see [113℄ or [147℄) shows that(2:3:5) `(u) '  ZEn2 k nXi=1 ri(�)u(ei)k2d�!1=210



up to a plogn-term.Consider the Walsh funtions wA(") =Qi2A ri("), where A � f1; : : : ; ng. It isnot hard to see that every funtion f : En2 ! X is uniquely represented in the form(2:3:6) f(�) =XA wA(�)xA;for some xA 2 X . The spae of all funtions f : En2 ! X beomes a Banah spaewith the norm(2:3:7) kfkL2(X) =  ZEn2 kf(�)k2d�!1=2The Rademaher projetion Rn : L2(X) ! L2(X) is the operator sending f =PwAxA to the funtion Rnf := Pni=1 rixfig. Denote by Rad(X) the norm ofthis projetion. Pisier [119℄ gave a sharp estimate in terms of the Banah-Mazurdistane d(X; `n2 ).Theorem 2.9 Let X be an n-dimensional normed spae. Then,(2:3:8) Rad(X) �  log[d(X; `n2 ) + 1℄;where  > 0 is an absolute onstant. 2Figiel and Tomzak-Jaegermann [45℄ had previously shown the relevane of thisestimate to the study of the `-norm.Theorem 2.10 Let X be an n-dimensional normed spae. There exists u : `n2 ! Xsuh that(2:3:9) `(u)`((u�1)�) � nRad(X):Let us briey sketh the proof. From Theorem 2.8, we an �nd an isomorphismu : `n2 ! X suh that `(u)`�(u�1) = n. On the other hand,(2:3:10) ` �(u�1)�� =  ZEn2 k nXi=1 ri(�)(u�1)�(ei)k2�d�!1=2 :There exists a funtion � : En2 ! X , whih an be represented in the form � =PA wAxA and has norm k�kL2(X) = 1, suh that(2:3:11) `((u�1)�) = 
 nXi=1 ri(u�1)�(ei); �� = nXi=1h(u�1)�(ei); xfigi:If we de�ne v : `n2 ! X by v(ei) = xfig, we easily hek that(2:3:12) `((u�1)�) = tr(u�1v) � `�(u�1)`(v):11



On observing that(2:3:13) `(v) = kRn(�)kL2(X) � Rad(X)k�kL2(X) = Rad(X);we get(2:3:14) `(u)`((u�1)�) � `(u)`�(u�1)Rad(X) = nRad(X):This onludes the proof. 2Combining the above with John's estimate d(X; `n2 ) � pn [73℄, we an give anupper bound for the \minimal mean width" of a symmetri onvex body (see x4.1for a disussion on di�erent \positions" of onvex bodies).Theorem 2.11 If K is a symmetri onvex body in Rn , there exists a linear image~K of K with volume j ~Kj = 1 and mean width(2:3:15) w( ~K) � pn logn;where  > 0 is an absolute onstant.For the proof, onsider the operator u : `n2 ! XK in Theorem 2.10 and set~K = (u�1)�(K). In view of (2.3.4), John's theorem and Theorem 2.9, we have(2:3:16) w( ~K)w( ~KÆ) � 1 logn:Computing the volume of ~K in polar oordinates and using H�older's inequality, wehek that w( ~KÆ)�1 � 2pnj ~Kj1=n. It follows that(2:3:17) w( ~K) � 3pn lognj ~Kj1=n:Normalizing the volume we obtain the assertion of the theorem. A simple argumentbased on the Rogers-Shephard inequality [125℄ shows that the symmetry of K isnot neessary.2.4 Low M�-estimate and the quotient of subspae theoremThe Low M�-estimate is the �rst step towards a general theory of setions andprojetions of symmetri onvex bodies in Rn with dimension proportional to n.In geometri terms, it says that for �xed � 2 (0; 1), the diameter of a random[�n℄-dimensional setion of the body K is ontrolled by its mean width(2:4:1) M� :=M(X�) = ZSn�1 kxk��(dx)up to a funtion depending only on �. 12



Theorem 2.12 (Milman, [98℄, [99℄) There exists a funtion f : (0; 1) ! R+ withthe following property: for every � 2 (0; 1) and every n-dimensional normed spaeX, a random subspae H 2 Gn;[�n℄ satis�es(2:4:2) f(�)M� jxj � kxkfor every x 2 H.The preise dependene on � was established in a series of papers. Theorem 2.12was originally proved in [98℄ and a seond proof using the isoperimetri inequalityon Sn�1 was given in [99℄, with a bound of the form f(�) � (1 � �). Pajor andTomzak-Jaegermann [123℄ later showed that one an take f(�) � p1� � (seealso [106℄ for a di�erent proof with this dependene on �). Finally, Gordon [64℄proved that the theorem holds true with(2:4:3) f(�) � p1� ��1 +O� 1(1� �)n�� :If we dualize the statement of the theorem, we get that a random [�n℄-dimensionalprojetion of KX ontains a ball whose radius is of the order of 1=M . For a randomH 2 Gn;[�n℄ we have(2:4:4) PH (KX) � f(�)M Bn2 \H:The next step is the quotient of subspae theorem (Milman, [100℄). In geometriterms, it says that for every symmetri onvex body K in Rn and any � 2 [1=2; 1),we an �nd subspaes G � H with dimG � �n and an ellipsoid E in G suh that(2:4:5) E � PG(K \H) � (1� �)�1j log(1� �)jE :Theorem 2.13 [100℄ Let X be an n-dimensional normed spae and let � 2 [1=2; 1).Then, there exist subspaes H � G of X suh that k = dim(H=G) � �n and(2:4:6) d(H=G; `k2) � (1� �)�1j log(1� �)j:The proof of the theorem is based on the LowM�-estimate and an iteration pro-edure in whih Pisier's inequality plays a ruial role. We show the idea by desrib-ing the �rst step. We may assume that KX satis�es the assertion of Theorem 2.10:beause of (2.3.4) this an be written in the formM(X)M�(X) �  log[d(X; `n2 )+1℄.Let � 2 (0; 1). Theorem 2.12 shows that on a random [�n℄-dimensional subspaeH of X we have(2:4:7) 1p1� �M�(X) jxj � kxk � bjxj:It is easy to hek that for most H 2 Gn;[�n℄ we have(2:4:8) M(H) � 2M(X):13



If H satis�es both onditions, repeating the same argument for H�, we may �nd asubspae G of H� with dimG = k � �2n and(2:4:9) 3p1� �M(X) jxj � 1p1� �M�(H�) jxj � kxkH� � M�(X)1p1� � jxjfor every x 2 G. In other words, F := H=G satis�es(2:4:10) d(F; `k2) � 4(1� �)�1M(X)M�(X) � (1� �)�1 log[d(X; `n2 ) + 1℄:To set up the iteration, we write QS(X) for the lass of all quotient spaes of asubspae of X , and de�ne a funtion f : (0; 1)! R+ by(2:4:11) f(�) = inffd(F; `k2) : F 2 QS(X); dimF � �ng:The argument we have just desribed proves that(2:4:12) f(�2�) � (1� �)�1 log f(�):This is enough to estimate the funtion f as in Theorem 2.13. 2It is natural to ask whether the estimate on the diameter of proportional di-mensional setions given by Theorem 2.12 is preise in some sense. From theomputational geometry point of view it would be desirable to have a simple wayto determine the diameter of a random setion of �xed proportion. One an easilyrephrase the Low M�-estimate as follows [108℄: If r1 is the solution of the equation(2:4:13) M�(K \ sBn2 ) = f(�)s;then for a random [�n℄-dimensional setion K \H of K we have(2:4:14) diam(K \H) � 2r1:In view of Gordon's proof of Theorem 2.12, we an hoose f(�) = (1 � ")p1� �for any " 2 (0; 1), and then (2:4:14) is satis�ed for all H in a subset of Gn;[�n℄ ofmeasure greater than 1 � 1 exp(�2"2(1 � �)n). It turns out that the funtions 7! M�(K \ sBn2 ) an be used for a dual estimate [52℄. There exists a seondfuntion g : (0; 1) ! R with the following property: if � 2 (1=2; 1) and if r2 is thesolution of the equation M�(K \ sBn2 ) = g(�)s, then a random [�n℄-dimensionalsetion K \H of K satis�es diam(K \H) � 2r2, This gives a \on�dene interval"[r2; r1℄ for diam(K \H), whih may be viewed as an asymptoti formula. What isessential is of ourse that the funtions f and g an be desribed analytially andthey do not depend on the dimension n or on the body K.Another onsequene of the Low M�-estimate is that very aurate linear rela-tions hold true in full generality for the diameter of setions of a body and its polar.This fat an be made preise in the following way [107℄. Let t(r) = t(XK ; r) be thegreatest integer k for whih a random subspae H 2 Gn;k satis�es diam(K \H) �2r. If t�(r) = t(X�K ; r), then for any � > 0 and any r > 0 we have(2:4:15) t(r) + t�� 1�r� � (1� �)n� C;where C > 0 is an absolute onstant. 14



2.5 Coordinate theoryWe �x an orthonormal basis fe1; : : : ; eng of Rn and for every non empty � �f1; : : : ; ng we onsider the oordinate subspae R� = spanfej : j 2 �g. The follow-ing oordinate version of the Low M�-estimate was established by Giannopoulosand Milman in [51℄: If K is an ellipsoid in Rn , then for every � 2 (0; 1) we an �nd� � f1; : : : ; ng of ardinality j�j � (1� �)n suh that(2:5:1) PR�(K) � [�= log(1=�)℄1=2M(K) Bn2 \ R� :This observation (whih has its origin in [48℄, [49℄) has onsequenes for the ques-tion of the maximal Banah-Mazur distane to the ube (see also the proportionalDvoretzky-Rogers fatorization theorem in x6.1). The proof has its roots in an iso-morphi version of the Sauer-Shelah lemma from Combinatoris, whih was provedby Szarek and Talagrand [141℄ (see also [3℄, [142℄), and is lose in spirit to thetheory of restrited invertibility of operators whih was developed by Bourgain andTzafriri [30℄.As the example of the ube shows, one annot have a oordinate low M�-estimate for an arbitrary onvex body. Under assumptions whih guarantee theexistene of \large ellipsoids" of any proportional dimension inside the body, onean use the above ellipsoidal result and obtain analogues of (2.5.1). This is donein [51℄ for bodies whose volume ratio or otype-2 onstant is well-bounded. Theseresults an be applied to give estimates on the number of points with \many"integer oordinates inside a given onvex body.Very reently, Rudelson and Vershynin [130℄ obtained a new family of oordinateresults. Assume that K is a symmetri onvex body in Rn suh that the norm k � kindued by K satis�es the onditions kxk � jxj for all x and M = M(K) � Æ forsome positive onstant Æ > 0. Then, there exist two positive numbers s and t withÆ � t � 1 and st � Æ= log3=2(2=Æ) and a subset � of f1; : : : ; ng with ardinalityj�j � s2n, suh that(2:5:2) Xi2� aiei � tpnXi2� jaijfor all hoies of reals ai, i 2 �. From this statement one an reover Elton'stheorem about spaes whih ontain large dimensional opies of `1's [43℄ in anoptimal form.Note that the spae X = (Rn ; k � k) satis�es k(X) ' n(M=b)2 � Æn. In otherwords, the result onerns spaes whih have Eulidean subspaes of some dimensionproportional to n (depending on Æ). The estimate in (2.5.2) shows that(2:5:3) K \ R� � (Æ)pnB�1 :This may be viewed as a oordinate version of the low M�-estimate for this lassof bodies. The formulation is dual to the one in (2.5.1): one now onsiders setions15



instead of projetions. The ondition k(X) ' n is in some sense dual to theassumptions on the volume ratio or the otype-2 onstant in [51℄.To feel the analogy even more, we state the following \ondition-free" versionof the result in [130℄: Let K be a symmetri onvex body in Rn with Bn2 � K.There exists a subset � of f1; : : : ; ng with ardinality j�j � f(M)n, suh that(2:5:4) M � (K \ R� ) �pj�jB�1 ;where f(x) = x log�3=2(2=x). Compare with the lowM�-estimate: one has setionsof the body inside an appropriate `1-ball on oordinate subspaes (this is weaker,but the example of `n1 shows that it is natural). Also, the parameter 1=M� is re-plaed byM (whih is stronger). However, the estimates hold for some proportionaldimensions and not for any proportion.All these are still preliminary but interesting results whih show that a oor-dinate theory may be further developed in the future. This would have severalonsequenes for the theory.2.6 Covering resultsLet K1 and K2 be two onvex bodies in Rn . The overing number N(K1;K2) isthe minimal ardinality of a �nite subset A of Rn with the property(2:6:1) K1 � A+K2 = [x2A(x+K2):Note the multipliative inequality N(K1; stK3) � N(K1; sK2)N(K2; tK3) for allt; s > 0.If we require A � K1 we get the variant ~N(K1;K2). If K2 is symmetri, it iseasy to see that ~N(K1; 2sK2) � N(K1; sK2) � ~N(K1; sK2) for every s > 0. Thestandard way to estimate ~N(K1;K2) is to onsider a maximal subset fx1; : : : ; xNgofK1 any two points of whih are at distane greater than or equal to 1 with respetto k � kK2 . Then, K1 � [(xi +K2) and this shows that ~N(K1;K2) � N .The most lassial estimate on overing numbers is Sudakov's inequality whihgives a bound on N(K; tBn2 ) in terms of the mean width of K.Theorem 2.14 Let K be a onvex body in Rn . For every t > 0,(2:6:2) logN(K; tBn2 ) � n (w(K)=t)2 ;where  > 0 is an absolute onstant.This fat is an immediate translation of an inequality of Sudakov [135℄ onthe expetation of the supremum of a Gaussian proess (this in turn follows fromSlepian's lemma). Let Y = (Yx)x2A be a Gaussian proess and let � denote the16



indued semimetri on T . If M(A; t) is the largest possible number of elements ofA whih are t-separated, then(2:6:3) E supx2A Yx � 2�1=2�(M(A; t)) log1=2(M(A; t))t;where �(n) = 0:648 for 1 � n � 23 and �(n) = 21=2 � logn�1=2 for 24 � n(see [85℄, Setion 14). Atually, the inequality is true for the sequene �(n) =21=2 � log logn=(23=2 logn) +O(1= logn) as n!1 (see [47℄).Let g1; : : : ; gn be independent standard Gaussian random variables on someprobability spae and let fe1; : : : ; eng be an orthonormal basis in Rn . If we onsiderthe Gaussian proess Yx = hP giei; xi, x 2 K, then the indued metri on K is theEulidean one and the estimates above show that, asymptotially,(2:6:4) log1=2(N(K; tBn2 ))t � EkX gieik�;whih gives (2.6.2) with a onstant  = n ! 1 as n!1.A dual inequality was proved by Pajor and Tomzak-Jaegermann [123℄.Theorem 2.15 Let K be a symmetri onvex body in Rn . For every t > 0,(2:6:5) logN(Bn2 ; tK) � n (w(KÆ)=t)2 ;where  > 0 is an absolute onstant.A simple proof of this fat was given by Talagrand (see [81℄ or [54℄). FromTheorem 2.15 one an dedue Sudakov's inequality with a duality argument ofTomzak-Jaegermann [146℄.We lose this subsetion with some information on the duality onjeture forthe entropy numbers of operators. The onjeture, whih was stated by Pietsh[118℄, asserts that if X;Y are Banah spaes, if T : X ! Y is a ompat operatorand if N(T; ") denotes the overing number N(T (BX); "BY ), then(2:6:6) b�1 logN(T; a�1") � logN(T �; ") � b logN(T; a")for every " > 0, where a; b > 0 are absolute onstants, and T � is the adjointoperator of T . Until reently, this onjeture had been veri�ed only under strongassumptions for both spaes X and Y (see [65℄ and [123℄). In the ase where oneof the two spaes is a Hilbert spae, the onjeture is equivalent to the followingstatement about overing numbers of onvex bodies: There exist two onstantsa; b > 0 suh that(2:6:7) 1b logN(Bn2 ; a�1KÆ) � logN(K;Bn2 ) � b logN(Bn2 ; aKÆ)for every symmetri onvex body K in Rn .17



A weaker but general duality inequality was proved by K�onig and Milman [79℄.Using the reverse Santal�o and Brunn-Minkowski inequalities (see x5.2) they showedthat(2:6:8) �1N(KÆ2 ;KÆ1 )1=n � N(K1;K2)1=n � N(KÆ2 ;KÆ1 )1=nfor every pair of symmetri onvex bodies K1 and K2 in Rn . Note that this inequal-ity proves the duality onjeture in the ase where the logarithm of the overingnumbers is large enough with respet to the dimension n.Very reently, Artstein, Milman and Szarek [7℄, [8℄ proved (2.6.7) in full gener-ality. This settles the duality onjeture in the ase either X or Y = H (a Hilbertspae). The proof onsists of three steps: Given a symmetri onvex body K in Rn ,in the �rst step one shows that there exists a parameter  depending on K suhthat N(K;Bn2 ) � N(Bn2 ; �1KÆ)3 and N(Bn2 ; KÆ) � N(K;Bn2 )2, whih is \theonjeture up to ". The idea is to projet onto a random k-dimensional subspae:one knows that -separated sets of points are mapped onto pk=n-separated setsunder suh random projetions, so the information on overing numbers is keptduring this proess (with the ost of ). The dimension k is hosen so that theresult of [79℄ will be enough to give duality for the projeted bodies.This step an be iterated, eah time applied to an intersetion of some multipleof K with a ball of suitable radius (here, a variant of Tomzak's duality argument isused). As a result, N(K;Bn2 ) and N(Bn2 ;KÆ) are bounded by produts of overingnumbers of polar bodies. In the last step, eah produt an be \telesoped" to aprodut of only two or three terms, whih establishes duality.2.7 Global theory and asymptoti formulasLet K be a (symmetri) onvex body in Rn . For a �xed dimension 1 � l � nonsider the expeted value(2:7:1) Dl(K) = ZGn;l diam(PE(K))�n;l(dE)of the diameter of the orthogonal projetion PE(K) onto E 2 Gn;l. Theorem 2.5shows that there is a ritial value k� = n�w(K)=diam(K)�2 suh that: if 1 � l � k�then(2:7:2) w(K) � Dl(K) � Cw(K);while if k� � l � n, then(2:7:3) pl=n diam(K) � Dl(K) � Cpl=n diam(K):Observe the phase transition at k�: the random diameter of l-dimensional proje-tions is stabilized sine below the ritial dimension k� maximal symmetry has beenahieved: most projetions of the body have beome isomorphi Eulidean balls ofradius w(K)=2. 18



The same situation appears if one onsiders a dual \global problem". We wantto approximate a Eulidean ball by Minkowski averages of rotations(2:7:4) Kt = 1t �u1(K) + � � �+ ut(K)�of the body K. One way is to �x an integer t � 2 and ask for the in�mum ofdiam(Kt) or the expeted value Ediam(Kt) over all hoies of u1; : : : ; ut 2 O(n).It turns out (see [115℄) that both quantities are of the same order, and(2:7:5) E diam(Kt) ' diam(K)ptif 1 � t � t� = �(diam(K)=w(K))2�, while(2:7:6) E diam(Kt) ' w(K)if t� � t � n. Again, observe the phase transition at t�. Stabilization ours att ' t� beause above this integer Kt ' w(K)Bn2 with very high probability: thenorm of a random Kt has already beome roughly Eulidean. Note also that, inthis global proess of forming averages of rotations, the \best possibility" (in�mumof the diameter) oinides with the random one (expetation of the diameter).The fat that the \asymptoti formula" k�t� ' n holds true for every onvexbody K is only one instane of a remarkable duality. Loal statements an betranslated to global ones, and a very useful intuition an be developed through theiromparison. However, the proofs of dual statements are not \diret translations"of eah other, and they should often be invented from the start.We proeed to another example of phase transition in whih the stabilizedbehaviour is of a di�erent nature. Let k � k be a norm on Rn , and let a; b be thesmallest positive onstants for whih (1=a)jxj � kxk � bjxj is satis�ed for everyx 2 Rn . For every q � 1 onsider the parameter(2:7:7) Mq = �ZSn�1 kxkq�(dx)�1=q :Then, if k(X) = n(M1=b)2 one has the following behaviour of Mq (see [89℄):(a) Mq 'M1 if 1 � q � k(X).(b) Mq ' bpq=n if k(X) � q � n.() Mq ' b if q > n.The global q-approximation results are as follows: write(2:7:8) kxkq;t =  1t tXi=1 kuixkq!1=q ;where u1; : : : ; ut 2 O(n), and let tq be the smallest integer for whih there existu1; : : : ; ut 2 O(n) suh that(2:7:9) (Mq=2)jxj � kxkq;t � (2Mq)jxj:19



Then, for the optimal value of tq a random hoie of u1; : : : ; ut satis�es (2.7.9) upto some universal onstants, and tq ' t1 for 1 � q � 2, while t2=qq ' t1(M1=Mq)2 forq � 2. If we insert the formulas for Mq in the above relations, we hek that thereare two phase transitions whih our on the interval (1; n) at the values q = k(X)and q = 2.In this more ompliated example of proess, the initial \onstant behaviour"of Mq may be viewed as a onentration phenomenon: the norm is almost onstanton the sphere and this reates \inertia" in the behaviour of Mq for small values ofq. Our next example is a problem of approximation: write I = [�x; x℄ for aninterval, where x 2 Sn�1. We would like to approximate the Eulidean ball Bn2by zonotopes KN = 1N PNi=1 Ii. If we �x the ardinality N of summands and askfor the best approximation A(N;n) := inffd(KN ; Bn2 ) : x1; : : : ; xN 2 Sn�1g, thenwe have A(N;n) = 1 if N < n, A(N;n) = pn if N = n, and A(N;n) = C(�) ifN = [�n℄ for some � > 1 (see Kashin, [74℄). The behavior of C(�) (say, for � < 2)was determined by Gluskin [62℄:C(�) ' min�pn;q� log(1=(�� 1))�=(�� 1)�:Observe that we have a sharp threshold at the value N = n.The same problem an be generalized as follows: let k � k be the norm de-�ned by a symmetri onvex body K on Rn . Consider bodies of the form KN =1N PNi=1 ui(K), where ui 2 O(n). The question is what is the minimal value ofN for whih there exist u1; : : : ; uN 2 O(n) suh that e.g. d(KN ; Bn2 ) � 4. Theanswer is N0 ' t� = (diam(K)=w(K))2, and typially we have a sharp threshold forinf d(KN ; Bn2 ) at this point. So, hanging our parameter of study from \minimaldiameter of KN" to \geometri distane from the Eulidean ball", we often observea phase transition behaviour being replaed by a threshold type one. Again, opti-mal and random behaviours are equivalent: if N � t�="2 then a random hoie ofu1; : : : ; uN 2 O(n) satis�es d(KN ; Bn2 ) � 1 + ".3 Classial onvexity onneted to the asymptotitheory3.1 Brunn-Minkowski inequality: lassial proofs and fun-tional formsThe fundamental Brunn-Minkowski inequality states that if K and T are two non-empty ompat subsets of Rn , then(3:1:1) jK + T j1=n � jKj1=n + jT j1=n:20



If we make the additional hypothesis that K and T are onvex bodies, then we anhave equality only if K and T are homothetial.The inequality expresses in a sense the fat that volume is an \n-onave"funtion with respet to Minkowski addition. For this reason, it is often written inthe following form: If K;T are non-empty ompat subsets of Rn and � 2 (0; 1),then(3:1:2) j�K + (1� �)T j1=n � �jKj1=n + (1� �)jT j1=n:Using (3.1.2) and the arithmeti-geometri means inequality we an also write(3:1:3) j�K + (1� �)T j � jKj�jT j1��:This weaker, but atually equivalent, form of the Brunn-Minkowski inequality hasthe advantage (or disadvantage) of being dimension free.There are many interesting proofs of the Brunn-Minkowski inequality, all ofthem related to important ideas. Historially, the �rst proof of the Brunn-Minkowskiinequality was based on Brunn's onavity priniple:Theorem 3.1 Let K be a onvex body in Rn and let F be a k-dimensional subspaeof Rn , 1 � k � n. Then, the funtion f : F? ! R de�ned by f(x) = jK\(F+x)j1=kis onave on its support.The proof goes by symmetrization. The Steiner symmetrization of K in the dire-tion of � 2 Sn�1 is the set S�(K) onsisting of all points of the form x+��, where xis in the projetion P�?(K) of K onto �? and j�j � 12 � length(x+R�)\K. Steinersymmetrization preserves onvexity and volume: if K is a onvex body then S�(K)is also a onvex body, and jS�(K)j = jKj. A well known fat whih goes bak toSteiner and Shwarz is that for every onvex body K one an �nd a sequene ofsuessive Steiner symmetrizations in diretions � 2 F so that the limiting onvexbody ~K has the following property:For every x 2 F?, ~K \ (F + x) is a ball with enter at x and radiusr(x) suh that j ~K \ (F + x)j = jK \ (F + x)j.Now, the proof of the theorem is immediate. Convexity of ~K implies that r isonave on its support, and this shows that f is also onave.Brunn's onavity priniple implies the Brunn-Minkowski inequality as follows.If K and T are onvex bodies in Rn , we de�ne K1 = K �f0g and T1 = T �f1g inRn+1 and onsider their onvex hull L. If we set L(t) = fx 2 Rn : (x; t) 2 Lg forall t 2 [0; 1℄, we easily hek that L(0) = K, L(1) = T and L(1=2) = K+T2 . Then,Brunn's onavity priniple for F = Rn shows that(3:1:4) ���K + T2 ���1=n � 12 jKj1=n + 12 jT j1=n:A funtional form of the Brunn-Minkowski inequality is an integral inequalitywhih redues to (3.1.1) by appropriate hoie of the funtions involved. The ad-vantage of suh funtional inequalities is that they an be applied in many other21



ontexts: an example is given by the Pr�ekopa-Leindler inequality (see [121℄ or [14℄)whih is stated below: it an be applied to yield the logarithmi Sobolev inequalityand several important onentration results in Gauss spae.Theorem 3.2 Let f; g; h : Rn ! R+ be measurable funtions, and let � 2 (0; 1).We assume that f and g are integrable, and for every x; y 2 Rn(3:1:5) h(�x+ (1� �)y) � f(x)�g(y)1��:Then,(3:1:6) ZRn h � �ZRn f�� �ZRn g�1�� :We shall only sketh the ase n = 1. We may assume that f and g are ontinuousand stritly positive and then de�ne x; y : (0; 1)! R by the equations(3:1:7) Z x(t)�1 f = t Z f and Z y(t)�1 g = t Z g:Then, x and y are di�erentiable, and for every t 2 (0; 1) we have(3:1:8) x0(t)f(x(t)) = Z f and y0(t)g(y(t)) = Z g:We now de�ne z : (0; 1) ! R by z(t) = �x(t) + (1 � �)y(t). Sine x and y arestritly inreasing, z is also stritly inreasing, and the arithmeti-geometri meansinequality shows that(3:1:9) z0(t) = �x0(t) + (1� �)y0(t) � (x0(t))�(y0(t))1��:Hene, we an estimate the integral of h making the hange of variables s = z(t):Z h = Z 10 h(z(t))z0(t)dt� Z 10 h(�x(t) + (1� �)y(t))(x0(t))�(y0(t))1��dt� Z 10 f�(x(t))g1��(y(t))� R ff(x(t))��� R gg(y(t))�1�� dt= �Z f���Z g�1�� :Indution on the dimension ompletes the proof.The Brunn-Minkowski inequality is a simple onsequene of Theorem 3.2. LetK and T be non-empty ompat subsets of Rn , and let � 2 (0; 1). We de�ne22



f = �K , g = �T , and h = ��K+(1��)T . It is easily heked that the assumptionsof Theorem 3.2 are satis�ed, therefore(3:1:10) j�K + (1� �)T j = Z h � �Z f���Z g�1�� = jKj�jT j1��:There are many variants of the Pr�ekopa-Leindler inequality. All of them an beproved by a \transportation of measure" argument similar to the one used above.We shall state one of them and use it to give a funtional version of a proof ofBrunn's priniple whih was given by Gromov and Milman [71℄.We �rst introdue some notation: If p > 0 and � 2 (0; 1), for all x; y > 0 we setM�p (x; y) = (�xp + (1� �)yp)1=p:If x; y � 0 and xy = 0, we set M�p (x; y) = 0. Observe that limp!0+ M�p (x; y) =x�y1��.Statement: Suppose that f; g; h : Rn ! R+ are measurable funtions, and letp > 0, � 2 (0; 1). We assume that f and g are integrable, and for every x; y 2 Rn(3:1:11) h(�x+ (1� �)y) �M�p (f(x); g(y)):Then,(3:1:12) ZRn h �M�p=(pn+1)�ZRn f; ZRn g� :The proof of the statement is quite similar to the proof of the Pr�ekopa-Leindlerinequality given above.We need a few more de�nitions: Let K be a onvex set in Rn and let f : K !R+ . We say that f is �-onave for some � > 0, if f1=� is onave on K. It is easyto see that if f; g : K ! R+ and if f is �-onave and g is �-onave, then fg is(�+ �)-onave.Let now K be a onvex body in Rn and let � 2 Sn�1. For every y 2 P�?(K)we write Iy for the interval ft 2 R : y + t� 2 Kg. For every ontinuous funtionf : K ! R+ we de�ne the projetion P�f of f with respet to � by(3:1:13) (P�f)(y) := ZIy f(y + t�)dt; y 2 P�?(K):If we de�ne Fy(t) = �K(y + t�)f(y + t�) for y 2 P�?(K), then by the �-onavityof f and the onvexity of K we easily hek that(3:1:14) F�y+(1��)w(�t+ (1� �)s) �M�1=�(Fy(t); Fw(s))for all y; w 2 P�?(K). Applying the statement, we immediately get:Claim: If f is �-onave, then P�f is (1 + �)-onave.23



We now �nish the proof of Brunn's priniple as follows. Let F be a k-dimensionalsubspae of Rn . The indiator funtion of K is onstant on K, and hene it is �-onave for every � > 0. We hoose an orthonormal basis f�1; : : : ; �kg of F andperform suessive projetions in the diretions of �i. The laim shows that thefuntion x 7! jK \ (F + x)j is (� + k)-onave on PF?(K), for every � > 0. Itfollows that f(x) = jK \ (F + x)j1=k is onave.The Pr�ekopa{Leindler inequality and the statement above, have reently beenextended to Riemannian manifolds [37℄. There, the urvature plays an essential role(through the Rii urvature, in partiular) and a distortion oeÆient has to beadded to the ondition (3.1.5). We will state the spherial extension of the Pr�ekopa{Leindler inequality obtained in [36℄. Let � denote the (geodesi) distane on thesphere Sn and � the usual rotationally invariant measure on Sn. For x; y 2 Snwith x 6= �y, introdue the geodesi analogue of the point tx + (1 � t)y, namelythe point z = t(x; y) 2 Sn verifying(3:1:15) �(x; z) = (1� t)�(x; y) and �(z; y) = t�(x; y):If x = os(�)y+ sin(�)v with � 2 [0; �) and v 2 Sn orthogonal to y, then t(x; y) =os(t�)y + sin(t�)v. For t 2 (0; 1) and d 2 [0; �℄, set S(d) := d�1 sin d and(3:1:16) Lt(d) := �S(d)=S(td)�t �S(d)=S((1� t)d)�1�t:Theorem 3.3 Let f; g; h : Sn ! R+ be Borel funtions and t 2 (0; 1). We assumethat for every x 6= �y 2 Sn,(3:1:17) h(t(x; y)) � Lt(�(x; y))n�1f(x)tg(y)1�t:Then(3:1:18) Z h d� � �Z f d��t�Z g d��1�t :Sine Lt(�) = 0, the ondition (3.1.17) is always satis�ed when x = �y. FromLt(d) � 1, we dedue in partiular that the Brunn-Minkowski inequality holds onthe sphere for the geodesi midsum of two sets, say. It is known that Lt(d) �e�t(1�t)d2=2 and thus the oeÆient Lt(�(x; y))n�1 in (3.1.17) an be replaed bythe oeÆient e�(n�1)t(1�t)�2(x;y)=2:With this form, one an reover, as in [95℄, the lassial onentration results forthe sphere.3.2 Geometri inequalities of hyperboli typeWe write Kn for the lass of non-empty, ompat onvex subsets of Rn . Minkowski'sfundamental theorem states that if K1; : : : ;Km 2 Kn, m 2 N, there exist oeÆ-ients V (Ki1 ; : : : ;Kin), 1 � i1; : : : ; in � m whih are invariant under permutations24



of their arguments, suh that(3:2:1) jt1K1 + � � �+ tmKmj = X1�i1;::: ;in�mV (Ki1 ; : : : ;Kin)ti1 : : : tinfor every hoie of non-negative real numbers ti (see [134℄ or [34℄). The oeÆientV (A1; : : : ; An) is alled the mixed volume of the ompat onvex sets A1; : : : ; An.A speial ase of Minkowski's theorem is Steiner's formula. If K 2 Kn, then(3:2:2) jK + tBn2 j = nXi=0 �ni�Vn�i(K)tifor all t > 0, where Vn�i(K) = V (K;n� i; Bn2 ; i) is the i-th quermassintegral of K.A very deep and strong generalization of the Brunn-Minkowski inequality is theAlexandrov-Fenhel inequality [1℄, [2℄ (see [134℄): If K;T;A3; : : : ; An 2 Kn, then(3:2:3) V (K;T;A3; : : : ; An)2 � V (K;K;A3; : : : ; An)V (T; T;A3; : : : ; An):Among many onsequenes of (3.2.3), one should mention the inequalities(3:2:4) Vi(K + T )1=i � Vi(K)1=i + Vi(T )1=iwhih hold true for all onvex bodies K;T in Rn and all i 2 f1; : : : ; ng, and theAlexandrov inequalities(3:2:5) �Vi(K)jBn2 j �1=i � �Vj(K)jBn2 j �1=j ;where 1 � i < j � n. Note that the Brunn-Minkowski inequality and the isoperi-metri inequality are speial ases of (3.2.4) and (3.2.5) respetively.Going bak in time, we loate numerial inequalities whih are surprisinglysimilar to the ones above (see [18℄). Let x = (x1; : : : ; xn) be an n-tuple of positivereal numbers, and onsider the normalized elementary symmetri funtions E0(x) �1 and(3:2:6) Ei(x1; : : : ; xn) = 1�ni� X1�j1<:::<ji�nxj1xj2 : : : xjifor i = 1; : : : ; n. With this de�nition, E1(x) and E1=nn (x) orrespond to the arith-meti and geometri means of x1; : : : ; xn. Newton proved that(3:2:7) E2k(x) � Ek�1(x)Ek+1(x)for all k = 1; : : : ; n�1, with equality if and only if all the xi's are equal. Malaurinobserved that(3:2:8) E1(x) � E1=22 (x) � � � � � E1=nn (x):25



These inequalities follow immediately from Newton's inequality (3.2.7) and theygeneralize the arithmeti-geometri means inequality.One an feel the analogy with the Alexandrov-Fenhel inequalities even more,by onsidering the more reent Marus-Lopes inequality(3:2:9) Ek(x + y)Ek�1(x+ y) � Ek(x)Ek�1(x) + Ek(y)Ek�1(y) ;whih holds true for all k = 1; : : : ; n. As a formal onsequene one gets(3:2:10) [Ek(x + y)℄1=k � [Ek(x)℄1=k + [Ek(y)℄1=k :We now pass to the multidimensional ase: let S+n be the spae of real positivesymmetri n� n matries. If t1; : : : ; tm > 0 and A1; : : : ; Am 2 S+n , then(3:2:11) det(t1A1 + � � �+ tmAm) = X1�i1�:::�in�mn!D(Ai1 ; : : : ; Ain)ti1 : : : tin ;where the oeÆient D(B1; : : : ; Bn) is invariant under permutations of its argu-ments and is alled the mixed disriminant of B1; : : : ; Bn. Based on the fat thatP (t) = det(A + tI) has only real roots for any A 2 S+n one an prove some veryinteresting inequalities about mixed disriminants, whih are ompletely analogousto Newton's inequalities, and were disovered by Alexandrov. Examples are theinequalities(3:2:12) D(A;B;C3; : : : ; Cn)2 � D(A;A;C3; : : : ; Cn)D(B;B;C3; : : : ; Cn)for all A;B;C3; : : : ; Cn 2 S+n and(3:2:13) D(A1; A2; : : : ; An) � nYi=1[detAi℄1=n:There are many other inequalities on positive symmetri matries, and one istempted to look for their analogues in the setting of onvex geometry. An in-equality of Bergstrom (see [18℄), whih is the matrix analogue of (3.2.9), statesthat if A and B are symmetri positive de�nite matries and if Ai; Bi denote thesubmatries obtained by deleting the i-th row and olumn, then(3:2:14) det(A+B)det(Ai +Bi) � det(A)det(Ai) + det(B)det(Bi) :This is generalized by Ky Fan in the form(3:2:15) � det(A+B)det(Ak +Bk)�1=k � � det(A)det(Ak)�1=k +� det(B)det(Bk)�1=k ;where Ak is the submatrix of A we obtain if we delete k rows and the orrespondingolumns of A. When k = n, this redues to Minkowski's inequality [det(A+B)℄1=n �[detA℄1=n + [detB℄1=n. For related inequalities about mixed volumes see [50℄, [46℄.26



One last omment is that behind all these numerial or onvex geometriinequalities there is a uni�ed priniple: \the minimum of ertain funtionals isahieved on equal objets". Statements like the Brunn-Minkowski or the Alexandrov-Fenhel inequality may be equivalently expressed in the form(3:2:16) f(A;B) � minff(A;A); f(B;B)g:The Brunn-Minkowski inequality an be rederived from its simple onsequenejaK + bT j � minfj(a + b)Kj; j(a + b)T jg. Likewise, the Alexandrov-Fenhel in-equality is equivalent to the inequality(3:2:17)V (K;T;A3; : : : ; An)2 � minfV (K;K;A3; : : : ; An); V (T; T;A3; : : : ; An)g:The same priniple applies to all the hyperboli type inequalities we disussed inthis subsetion. In ontrast, \ellipti type" inequalities like the triangle inequalityand the Cauhy-Shwarz inequality obey a \maximum priniple": for example, thelatter unequality is equivalent to the statement(3:2:18) Z jf � gjd� � max�Z jf j2d�; Z jgj2d��:The maximum of the funtional (f; g) 7! R jf � gjd� is \ahieved on equal objets".H�older's inequality is also a onsequene of suh an \ellipti" priniple, whih shouldhowever be orretly applied so that the funtions f and g involved stay in \orret"spaes. If p and q are onjugate exponents, then the inequality(3:2:19) Z jf � gjd� � max��Z jf jpd��1=(p�1) ;�Z jgjqd��1=(q�1) �for all f 2 Lp and g 2 Lq, is equivalent to the lassial H�older's inequality.3.3 Volume preserving transformationsLetK and T be two open onvex bodies in Rn . A volume preserving transformationfrom K onto T is a map � : K ! T whih is one to one, onto and has a Jaobianwith ostant determinant equal to jKj=jT j. In this setion we desribe two suhmaps, the Kn�othe map and the Brenier map. Applying eah one of them we mayobtain alternative proofs of the Brunn-Minkowski inequality.The Kn�othe map: We �x a oordinate system in Rn . The properties of theKn�othe map [78℄ from K to T with respet to the given oordinate system aredesribed in the following theorem.Theorem 3.4 Let K and T be open onvex bodies in Rn . There exists a map� : K ! T with the following properties (for a proof see [113℄):27



(a) � is triangular: the i-th oordinate funtion of � depends only on x1; : : : ; xi.That is,(3:3:1) �(x1; : : : ; xn) = (�1(x1); �2(x1; x2); : : : ; �n(x1; : : : ; xn)):(b) The partial derivatives ��i�xi exist and they are positive on K, and the determinantof the Jaobian of � is onstant. More preisely, for every x 2 K(3:3:2) j det J�(x)j = nYi=1 ��i�xi (x) = jT jjKj :The Brenier map: For any two open onvex bodies K and T there exists avolume preserving transformation from K onto T , alled the Brenier map [33℄,whih is the gradient of a C2 onvex funtion. The existene of this remarkablemap is a onsequene of a more general transportation of measure result whih webriey desribe.Consider the spae P(Rn ) of Borel probability measures on Rn as a subsetof the unit ball of C1(Rn )� (the dual of the spae of ontinuous funtions whihvanish uniformly at in�nity). Let �, � 2 P(Rn ). If T : Rn ! Rn is a measurablefuntion whih is de�ned �-almost everywhere and satis�es �(B) = �(T�1(B)) forevery Borel subset B of Rn , we say that T pushes forward � to � and write T� = �.It is easy to see that T� = � if and only if for every bounded Borel measurableg : Rn ! R we have(3:3:3) ZRn g(y)d�(y) = ZRn g(T (x))d�(x):Generalizing work of Brenier, MCann [96℄ proved the following.Theorem 3.5 Let �, � 2 P(Rn ) and assume that � is absolutely ontinuous withrespet to Lebesgue measure. Then, there exists a onvex funtion f : Rn ! R suhthat rf : Rn ! Rn is de�ned �-almost everywhere, and (rf)� = �.The proof of Theorem 3.5 is based on the notion of ylial monotoniity fromonvex analysis: A subset G of Rn � Rn is alled ylially monotone if for everym � 2 and (xi; yi) 2 G, i � m, we have(3:3:4) hy1; x2 � x1i+ hy2; x3 � x2i+ � � �+ hym; x1 � xmi � 0:Fat 1: Let � and � be Borel probability measures on Rn . There exists a joint prob-ability measure  on Rn �Rn whih has ylially monotone support and marginals�, � i.e. for all bounded Borel measurable f; g : Rn ! R we have(3:3:5) ZRn f(x)d�(x) = ZRn�Rn f(x)d(x; y)28



and(3:3:6) ZRn g(y)d�(y) = ZRn�Rn g(y)d(x; y):The seond ingredient is the onnetion of ylially monotone sets with onvexfuntions (see [124℄). For every proper onvex funtion f : Rn ! R we onsider thesubdi�erential of f(3:3:7) �(f) = f(x; y) 2 Rn � Rn : f(z) � f(x) + hy; z � xi; z 2 Rng:The subdi�erential parametrizes the supporting hyperplanes of f : the set �(f)(x) =fy : (x; y) 2 �(f)g is a losed and bounded onvex set, and di�erentiability of f atx is equivalent to the existene of a unique y 2 �f(x), in whih ase rf(x) = y.Fat 2: Let G � Rn � Rn . Then, G is ontained in the subdi�erential of a properonvex funtion f : Rn ! R if and only if G is ylially monotone.We an now sketh the proof of Theorem 3.5. From Fat 1 there exists a proba-bility measure  on Rn �Rn whih has ylially monotone support and marginals�, �. Fat 2 shows that the support of  is ontained in the subdi�erential of aproper onvex funtion f : Rn ! R. Sine f is onvex and � is absolutely on-tinuous with respet to Lebesgue measure, f is di�erentiable �-almost everywhere.Sine supp() � �(f), by the de�nition of the subdi�erential we have y = rf(x) foralmost all pairs (x; y) with respet to . Then, for every bounded Borel measurableg : Rn ! R we see that(3:3:8)Z g(y)d�(y) = Z g(y)d(x; y) = Z g(rf(x))d(x; y) = Z g(rf(x))d�(x);whih shows that (rf)� = �.Assume that � and � are the normalized Lebesgue measures on some onvexbodies K and T . Regularity results of Ca�arelli show that in this ase f may beassumed twie ontinuously di�erentiable. This proves the following.Theorem 3.6 Let K and T be open onvex bodies in Rn . There is a onvex fun-tion f 2 C2(K) suh that � = rf : K ! T is one to one, onto and volumepreserving.We an now show the Brunn-Minkowski inequality using either the Kn�othe orthe Brenier map. In eah ase we have (I + �)(K) � K + T . If � denotes theKn�othe map, JI+�(x) is triangular and this implies(3:3:9)j det JI+�(x)j1=n = nYi=1�1 + ��i(x)�xi �1=n � 1 + j det J�(x))1=n = 1 +� jT jjKj�1=n :29



If � is the Brenier map, it is lear that the Jaobian J� = Hessf is a symmetripositive de�nite matrix for every x 2 K. Therefore,(3:3:10) j det JI+�(x)j = j det (I +Hessf) (x)j = nYi=1(1 + �i(x))where �i(x) are the non negative eigenvalues of Hessf . Moreover, by the volumepreserving property of �, we haveQni=1 �i(x) = jT j=jKj for every x 2 K. Therefore,the arithmeti-geometri means inequality gives(3:3:11) j det JI+�(x)j1=n � 1 +� jT jjKj�1=n :In both ases,(3:3:12) jK + T j � Z(I+�)K dx = ZK j det JI+�(x)jdx � jKj�1 + (jT j=jKj)1=n�n ;whih is the Brunn-Minkowski inequality.For an arbitrary pair of open onvex bodies K1 and K2 it would be desir-able to ahieve a volume preserving transformation  : K1 ! K2 for whih(I +  )(K1) = K1 + K2. This was reently done in [4℄. There are two ingredi-ents in the onstrution: the �rst one is a regularity result of Ca�arelli [35℄ (seealso [4℄):Fat 3: If T is an open onvex body in Rn , f is a probability density on Rn , and gis a probability density on T suh that f is loally bounded and bounded away fromzero on ompat sets, and there exist 1; 2 > 0 suh that 1 � g(y) � 2 for everyy 2 T , then the Brenier map rf : (Rn ; fdx)! (Rn ; gdx) is ontinuous and belongsloally to the H�older lass C� for some � > 0.The seond is a theorem of Gromov [67℄ (see also [4℄):Fat 4: Let f : Rn ! R be a C2-smooth onvex funtion with stritly positiveHessian. Then, the image of the gradient map Im(rf) is an open onvex set. Also,if f1; f2 are two suh funtions, then(3:3:13) Im(rf1 +rf2) = Im(rf1) + Im(rf2):Having these tools in hand and given two open onvex bodies K1 and K2 ofvolume 1 in Rn , we hoose a smooth stritly positive density � on Rn and onsiderthe Brenier maps(3:3:14)  i = rfi : (Rn ; �dx)! (Ki; dx) ; i = 1; 2:Fat 3 shows that  1 and  2 are C1-smooth. Applying Fat 4, we see that, forevery � > 0,(3:3:15) K1 + �K2 = frf1(x) + �rf2(x) : x 2 Rng:30



Then, the map  =  2Æ( 1)�1 : K1 ! K2 is a volume preservingC1-di�eomorphismand satis�es K1 + �K2 = (I + � )(K1) for all � > 0.This onstrution reveals the lose relation between mixed volumes and mixeddisriminants. Let K1; : : : ;Kn be open onvex bodies Ki with normalized volumejKij = 1, and onsider the Brenier maps(3:3:16) �i : (Rn ; n)! Ki;where n is the standard Gaussian probability density on Rn . We have �i = rfi,where fi are onvex funtions on Rn . By Ca�arelli's regularity result, all the �i'sare smooth maps. Then, the image of (Rn ; n) by P ti�i is the interior of P tiKi.Sine eah �i is a measure preserving map, we have(3:3:17) det� �2fi�xk�xl� (x) = n(x) ; i = 1; : : : ; n:It follows that(3:3:18) ��� nXi=1 tiKi��� = ZRn det nXi=1 ti( �2fi�xk�xl )! dx= nXi1;::: ;in=1 ti1 : : : tin ZRnD��2fi1(x)�xk�xl ; : : : ; �2fin(x)�xk�xl � dx:In this way, we reover Minkowski's theorem on jP tiKij, and see the onnetionbetween the mixed disriminants D(Hessfi1 ; : : : ;Hessfin) and the mixed volumes(3:3:19) V (Ki1 ; : : : ;Kin) = ZRnD(Hessfi1(x); : : : ;Hessfin(x))dx:The Alexandrov-Fenhel inequalities do not follow from the orresponding mixeddisriminant inequalities, but the deep onnetion between the two theories is ob-vious. Also, some partiular ases are indeed simple onsequenes. For example(see [4℄), as a onsequene of a similar inequality for mixed disriminants one anprove that(3:3:20) V (K1; : : : ;Kn) � nYi=1 jKij1=n:4 Extremal problems and isotropi positions4.1 Classial positions of onvex bodiesThe family of positions of a onvex body K in Rn is the lass fT (K) j T 2 GL(n)g.The right hoie of a position is often quite important for the study of geometri31



quantities. For example, let K be a symmetri onvex body in Rn and onsider thevolume produt s(K) = �jKj � jKÆj�1=n. The Blashke-Santal�o inequality assertsthat s(K) is maximized if and only if K is an ellipsoid (note that s(K) is invariantunder GL(n)). On the other hand, a simple appliation of H�older's inequality showsthat(4:1:1) jAjjBn2 j = ZSn�1 k�k�nA �(d�) � w(AÆ)�nfor every symmetri onvex body A in Rn . This implies that(4:1:2) s(Bn2 )s(K) � minT2GL(n)w(TK)w((TK)Æ):Therefore, in order to obtain a reverse Blashke-Santal�o inequality it is useful tostudy the quantity(4:1:3) maxK minT2GL(n)w(TK)w((TK)Æ):One way to estimate this minimum is using the `-position of K, and Pisier's in-equality shows that the above quantity is bounded by C logn. Thus, the `-positionprovides a �rst quite non-trivial reverse inequality for the volume produt s(K).All lassial positions of onvex bodies arise as solutions of suh extremal prob-lems. We often normalize the volume of K to be 1 and ask for the maximum orminimum of f(TK) over all T 2 SL(n), where f is some funtional on onvex bod-ies (in the example above, f is the produt of the mean widths of a body and itspolar). Another useful normalization is jKj = jBn2 j: we then say that the volumeradius of K is equal to 1. Below we desribe some lassial positions of a givenonvex body K whih solve natural extremal problems. An interesting feature ofthis proedure is that a simple variational method leads to a geometri desriptionof the extremal position, and that in many ases this position satis�es an isotropiondition for an appropriate measure on Sn�1. We say that a Borel measure � onSn�1 is isotropi if(4:1:4) ZSn�1hx; �i2�(d�) = k�kn jxj2for all x 2 Rn .John's position: A symmetri onvex body K is in John's position if the maximalvolume ellipsoid of K is the Eulidean unit ball. John's theorem [73℄ asserts that,in this ase, there exist ontat points u1; : : : ; um of K and Bn2 (ommon points oftheir boundaries) and positive real numbers 1; : : : ; m suh that(4:1:5) I = mXj=1 juj 
 uj :32



In partiular, this deomposition of the identity implies that(4:1:6) jxj2 = mXj=1 jhx; uji2for every x 2 Rn . A diret onsequene of (4.1.6) is the fat that K � pnBn2(in other words, d(XK ; `n2 ) � pn). The ondition in (4.1.6) may be viewed as anisotropi one: the measure � supported by fu1; : : : ; umg whih gives mass j touj is isotropi. Moreover, Ball observed that this ondition is also suÆient in thefollowing sense.Theorem 4.1 Let K be a symmetri onvex body in Rn suh that Bn2 � K. Then,K is in John's position if and only if there exists an isotropi measure � on Sn�1whih is supported by the set of ontat points of K and Bn2 .There exists an analogue of this fat for the not neessarily symmetri ase(see e.g. [54℄). From John's deomposition of the identity one an reover all theavailable information about John's position: for example, the Dvoretzky-Rogerslemma is a simple onsequene of (4.1.5).John's deomposition of the identity holds in a muh more general ontext: IfK and L are (not neessarily symmetri) onvex bodies in Rn , we say that L is ofmaximal volume in K if L � K and, for every w 2 Rn and T 2 SLn, the aÆneimage w+T (L) of L is not ontained in the interior ofK. If L is of maximal volumein K then for every z 2 int(L), one an �nd ontat points v1; : : : ; vm of K � zand L� z, ontat points u1; : : : ; um of (K � z)Æ and (L� z)Æ, and positive reals1; : : : ; m, suh that P juj = 0, huj ; vji = 1, andI = mXj=1 juj 
 vj :Moreover, there exists an optimal hoie of the \enter" z so that, setting z = 0, wesimultaneously haveP juj =P jvj = 0. This fat was proved in [57℄ under someonditions on K and L (in the symmetri ase it had been observed by Milman, see[147℄). A seond proof was reently given in [66℄, where the deomposition is alsoused to establish that for any symmetri onvex body K in Rn the Banah-Mazurdistane (see x6.1) d(K;T ) is less than or equal to n for every onvex body T inRn and the distane d(K;Sn) to the simplex Sn is equal to n.Minimal mean width position: Reall that the mean width of a onvex body Kin Rn is the quantity w(K) = RSn�1 hK(�)�(d�), where hK is the support funtionof K (the mean width is learly invariant under translation). We �x the volume ofK to be equal to 1 and say that K has minimal mean width if w(K) � w(TK) forall T 2 SL(n).Let �K be the Borel measure on Sn�1 with density hK with respet to �. Anisotropi haraterization of the minimal mean width position is proved in [53℄.33



Theorem 4.2 Let K be a onvex body in Rn . Then, K has minimal mean widthif and only if the measure �K is isotropi. That is, if(4:1:7) w(K) = n ZSn�1 hK(�)h�; xi2�(d�)for all x 2 Sn�1. Moreover, this position is uniquely determined up to O(n).An interesting question is to determine the order of growth of the quantity(4:1:8) w(n) = maxK minT2SL(n)w(TK)as n tends to in�nity, where the maximum is over all onvex bodies of volume 1in Rn . If jKj = 1, Urysohn's inequality implies that w(K) � pn where  > 0 isan absolute onstant. Pisier's inequality shows that w(n) � 1pn logn, and theexample of the `n1 ball shows that w(n) � 2pn logn.Minimal surfae area position: Reall that the area measure of a onvex bodyK is the Borel measure �K on Sn�1 with�K(A) = �(fx 2 bd(K) : the outer normal to K at x is in Ag)where � is the (n� 1)-dimensional surfae measure on K. The surfae area of K is�(K) = k�Kk. Again, we �x the volume of K to be equal to 1 and say that K hasminimal surfae area if �(K) � �(TK) for all T 2 SL(n).An isotropi haraterization of the minimal surfae area position was provedby Petty [117℄ (see also [56℄).Theorem 4.3 Let K be a onvex body in Rn . Then, K has minimal surfae areaif and only if the measure �K is isotropi. That is, if(4:1:9) �(K) = n ZSn�1h�; xi2�K(d�)for all x 2 Sn�1. Moreover, this position is uniquely determined up to O(n).As in the ase of the mean width, it is natural to study the quantity(4:1:10) �(n) = maxK minT2SL(n)�(TK)and its behaviour as n tends to in�nity, where the maximum is over all onvexbodies of volume 1 in Rn . If jKj = 1, the isoperimetri inequality implies that�(K) � pn where  > 0 is an absolute onstant. A sharp upper bound for�(n) was given by Ball ([12℄, see x4.4). The extremal bodies are: the ube in thesymmetri ase and the simplex in the general ase.34



4.2 Isotropi position and the sliing problemThe sliing problem asks if there exists an absolute onstant  > 0 with the followingproperty: for every onvex body K of volume 1 in Rn , with entre of mass at theorigin, there exists � 2 Sn�1 suh that jK \ �?j � . This is an important questionin modern onvex geometry, whih is deeply onneted with the asymptoti versionsof several lassial geometri problems.The question is in a sense equivalent to the study of linear funtionals on onvexbodies. Indeed, by Brunn's priniple, for any � 2 Sn�1 the funtion fK;�(t) =jK \ (�? + t�)j is log-onave, and this implies that(4:2:1) 1jK \ �?j2 � ZKhx; �i2dx � 2jK \ �?j2 ;where 1; 2 > 0 are absolute onstants. In this way, the volume of setions ismeasured by the moments of inertia of the body.This brings into play the Binet ellipsoid EB(K) of K, a notion oming fromlassial mehanis. The norm of the Binet ellipsoid is de�ned by(4:2:2) kyk2EB(K) = 1jKj ZKhx; yi2dxand a suitable homothet of its polar (the Legendre ellipsoid EL(K) of K) satis�esthe equation(4:2:3) ZEL(K)hx; yi2dx = ZKhx; yi2dxfor every y 2 Rn (it has the same moments of inertia as K).We say that a onvex body K of volume 1 with entre of mass at the origin isisotropi if the Legendre ellipsoid EL(K) is a multiple of Bn2 . Equivalently, if thereexists a onstant LK > 0 suh that(4:2:4) ZKhy; �i2dy = L2Kfor every � 2 Sn�1. Every onvex body (in fat, every ompat set) has an isotropiposition, whih is unique up to orthogonal transformations. This position may againbe desribed as the solution of an extremal problem of the type we disussed in theprevious subsetion (see [111℄ for an extensive survey of all these fats).Theorem 4.4 Let K be a onvex body of volume 1 in Rn , with entre of mass atthe origin. Then,(4:2:5) ZK jxj2dx � ZTK jxj2dxfor every T 2 SL(n) if and only if there exists a onstant LK > 0 suh that(4:2:6) ZKhy; �i2dy = L2Kfor every � 2 Sn�1. 35



Uniqueness of the isotropi position up to O(n) shows that this isotropi on-stant LK is invariant for the lass of K. It is easily proved that LK � LBn2 �  > 0for every onvex bodyK in Rn , where  > 0 is an absolute onstant. For an isotropionvex body K, (4.2.1) shows that all (n�1)-dimensional setions through the ori-gin are approximately equal to 1=LK . Therefore, the sliing problem beomes aquestion about the uniform boundedness of LK . In fat, it is not hard to see thatan aÆrmative answer to the sliing problem is in full generality equivalent to thefollowing statement:There exists an absolute onstant C > 0 suh that LK � C for everyonvex body K of volume 1 with entre of mass at the origin.One an easily obtain the estimate LK = O(pn) for every onvex body K. In thesymmetri ase, this is an immediate onsequene of John's theorem, while in thegeneral ase it an be dedued from Blashke's identity whih onnets the matrixof inertia of K with the expeted value of the volume of a random simplex insideK. Uniform boundedness of LK is known for some lasses of bodies: unit ballsof spaes with a 1-unonditional basis, zonoids and their polars, et. For partialanswers to the question, see [111℄, [9℄. The best known general upper estimate isdue to Bourgain [23℄: LK �  4pn logn for every onvex body K in Rn . For a skethof the proof, see [54℄ (the argument follows the presentation of [38℄, see also [116℄for the not-neessarily symmetri ase).There is a renewed interest in the problem. We mention here a very reentresult of Bourgain, Klartag and Milman [24℄ whih redues the question to onvexbodies with bounded volume ratio. There exists a onstant A > 1 with the followingproperty: if for all n and all onvex bodiesK in Rn with vr(K) � A we have LK � �for some onstant �, then for all n and all onvex bodiesK in Rn we have LK � (�)for some onstant (�) depending only on �. Atually, the dependene of (�) on� is almost linear. The proof of this fat uses two tools: Steiner symmetrizationand the existene and properties of M -ellipsoids (see x5.2).4.3 Brasamp-Lieb inequality and its reverse formThe Brasamp-Lieb inequality onerns the multilinear operator I : Lp1(R) � � � � �Lpm(R) ! R de�ned by(4:3:1) I(f1; : : : ; fm) = ZRn mYj=1 fj(huj ; xi) dx;where m � n, p1; : : : ; pm � 1 with 1p1 + � � �+ 1pm = n, and u1; : : : ; um 2 Rn .Brasamp and Lieb [31℄ proved that the norm of I is the supremum D of(4:3:2) I(g1; : : : ; gm)Qmj=1 kgjkpj36



over all entered Gaussian funtions g1; : : : ; gm, i.e. over all funtions of theform gj(t) = e��jt2 , �j > 0. This fat is a generalization of Young's onvolu-tion inequality kf � gkr � Cp;qkfkpkgkq for all f 2 Lp(R) and g 2 Lq(R), wherep; q; r � 1 and 1=p + 1=q = 1 + 1=r. The best onstants Cp;q = ApAqAr0 (whereAs = (s1=s=(s0)1=s0)1=2 and s0 is the onjugate exponent of s) had been also obtainedby Bekner [19℄ who showed that Gaussian funtions play the role of maximizers.The original proof of the Brasamp-Lieb inequality was based on a generalrearrangement inequality of Brasamp, Lieb and Luttinger [32℄, who showed thatif f� is the symmetri dereasing rearrangement of a Borel measurable funtion fvanishing at in�nity, then(4:3:3) I(f1; : : : ; fm) � I(f�1 ; : : : ; f�m):A generalization of this fat to funtions of several variables (based on Steinersymmetrization) and the fat that radial funtions in high dimensions behave likeGaussian funtions were the key ingredients of the original proof. Setting j = 1=pjand replaing fj by fjj one an reformulate the Brasamp-Lieb inequality as follows.Theorem 4.5 If m � n, u1; : : : ; um 2 Rn and 1; : : : ; m > 0 with 1+ � � �+ m =n, then(4:3:4) ZRn mYj=1 fjj (hx; uji)dx � D � mYj=1�ZR fj�jfor all integrable funtions fj : R ! R+ .Testing on the Gaussians, one an see that D = 1=pF where(4:3:5) F = inf �det �Pmj=1 j�juj 
 uj�Qmj=1 �jj j �j > 0�:Barthe [16℄ proved the following reverse form of Theorem 4.5 whih was onjeturedby Ball.Theorem 4.6 Let m � n, 1; : : : ; m > 0 with 1+ � � �+m = n, and u1; : : : ; um 2Rn . If h1; : : : ; hm : R ! R+ are measurable funtions, we set(4:3:6) K(h1; : : : ; hm) = Z �Rn sup� mYj=1 hjj (�j) j �j 2 R ; x = mXj=1 �jjuj�dx;where R � denotes the outer integral. Then,(4:3:7) inf �K(h1; : : : ; hm) j ZRhj = 1 ; j = 1; : : : ;m� = pF :37



The proof is remarkably elegant and, at the same time, it gives a new diretproof of the Brasamp-Lieb inequality. We will briey disuss the argument. Again,�rst testing on entered Gaussian funtions, one observes that(4:3:8) inf �K(h1; : : : ; hm) j ZRhj = 1 ; j = 1; : : : ;m� � pF :The main step in Barthe's argument is the following proposition.Proposition 4.1 Let f1; : : : ; fm : R ! R+ and h1; : : : ; hm : R ! R+ be integrablefuntions with ZR fj(t)dt = ZRhj(t)dt = 1; j = 1; : : : ;m:Then,(4:3:9) F � I(f1; : : : ; fm) � K(h1; : : : ; hm):Proof: We may assume that fj ; hj are ontinuous and stritly positive. We mayalso assume that 0 < F < +1 (F is not degenerated). We use the transportationof measure idea that was used for the proof of the Pr�ekopa-Leindler inequality: Forevery j = 1; : : : ;m we de�ne Tj : R ! R by the equation(4:3:10) Z Tj(t)�1 hj(s)ds = Z t�1 fj(s)ds:Then, eah Tj is stritly inreasing, 1-1 and onto, and(4:3:11) T 0j(t)hj(Tj(t)) = fj(t); t 2 R:We now de�ne W : Rn ! Rn by(4:3:12) W (y) = mXj=1 jTj(hy; uji)uj :A simple omputation shows that J(W )(y) = Pmj=1 jT 0j(hy; uji)uj 
 uj . Thisimpliess that h[J(W )(y)℄(v); vi > 0 if v 6= 0 and hene, W is injetive. Considerthe funtion m(x) = sup� mYj=1 hjj (�j) j x = mXj=1 �jjuj�:Then, (4.3.12) shows that(4:3:13) m(W (y)) � mYj=1 hjj (Tj(hy; uji))38



for every y 2 Rn . It follows thatZRnm(x)dx � ZW (Rn)m(x)dx= ZRnm(W (y)) � jJ(W )(y)j dy� ZRn mYj=1hjj (Tj(hy; uji)) det0� mXj=1 jT 0j(hy; uji)uj 
 uj1A dy:By the de�nition of F we have(4:3:14) det0� mXj=1 jT 0j(hy; uji)uj 
 uj1A � F � mYj=1 �T 0j(hy; uji)�j :Therefore, taking (4.3.11) into aount we haveZRnm(x)dx � F � ZRn mYj=1 hjj (Tj(hy; uji)) � mYj=1 �T 0j(hy; uji)�j dy= F � ZRn mYj=1 fjj (hy; uji)dy= F � I(f1; : : : ; fm):In other words, F � I(f1; : : : ; fm) � K(h1; : : : ; hm). 2One an now prove simultaneously Theorems 4.5 and 4.6. The omputationleading to (4.3.5) shows that(4:3:15) sup�I(f1; : : : ; fm) j ZR fj = 1 ; j = 1; : : : ;m� � 1pF :From Proposition 4.1, (4.3.8) and (4.3.15) we get1pF � sup�I(f1; : : : ; fm) j ZR fj = 1�� 1F � inf �K(h1; : : : ; hm) j ZRhj = 1� � 1pF :We must have equality everywhere, and this ends the proof(s).There is a multidimensional generalization of both inequalities. Let S+(Rk )be the set of k � k symmetri, positive de�nite matries. If A 2 S+(Rk ), wewrite GA for the entered Gaussian funtion GA : Rk ! R de�ned by GA(x) =exp(�hAx; xi), and L+1 (Rk ) for the lass of integrable non-negative funtions f :Rk ! R. Let m � n, and assume we are given real numbers 1; : : : ; m > 0 and39



integers n1; : : : ; nm less than or equal to n, suh that Pmj=1 jnj = n. We are alsogiven linear maps Bj : Rn ! Rnj whih are onto and satisfy Tmj=1Ker(Bj) = f0g.Consider the operators I;K : L+1 (Rn1 )� � � � � L+1 (Rnm )! R de�ned by(4:3:16) I(f1; : : : ; fm) = ZRn mYj=1 fjj (Bjx)dxand(4:3:17) K(h1; : : : ; hm) = Z �Rmm(x)dx;where(4:3:18) m(x) = sup� mYj=1 hjj (yj) j yj 2 Rnj and mXj=1 jB�j yj = x�:Let E be the largest onstant for whih(4:3:19) K(h1; : : : ; hm) � E � mYj=1�ZRnj hj�jholds true for all hj 2 L+1 (Rnj ), and let F be the smallest onstant for whih(4:3:20) I(f1; : : : ; fm) � F � mYj=1�ZRnj fj�jholds true for all fj 2 L+1 (Rnj ). Then, the following holds true.Theorem 4.7 The onstants E and F an be omputed using entered Gaussianfuntions. Moreover, if D is the largest real number for whih(4:3:21) det0� mXj=1 jB�jAjBj1A � D � mYj=1(detAj)j ;for all Aj 2 S+(Rnj ), we have(4:3:22) E = pD and F = 1=pD:The multidimensional version of the Brasamp-Lieb inequality was �rst establishedby Lieb in [84℄. The simultaneous proof of both this inequality and its reverse formis due to Barthe [16℄ and follows the idea of the proof of the one-dimensional ase.However, instead of the diret transportation of measure argument there, one nowhas to make essential use of the Brenier map.40



4.4 Sharp geometri inequalitiesAs x4.1 shows, isotropi positions of onvex bodies and the orresponding deom-positions of the identity are typial in the asymptoti theory: isotropiity may beviewed as the ultimate form of non-degeneray. Ball made the very important ob-servation that the onstants in the Brasamp-Lieb inequality and its reverse formtake a surprisingly simple form in the presene of suh a deomposition of theidentity.Theorem 4.8 Assume that the vetors u1; : : : ; um 2 Sn�1 and the positive weights1; : : : ; m satisfy the isotropi ondition(4:4:1) I = mXj=1 juj 
 uj :Then, the onstant F = F (fujg; fjg) in Theorems 4.5 and 4.6 is equal to 1.Ball applied the Brasamp-Lieb inequality in this ontext to solve purely geo-metri problems. A well-known example is his reverse isoperimetri inequality [12℄,whih gives the exat value of the onstant �(n) in (4.1.4). We ask for the bestonstant �(n) for whih every symmetri onvex body K in Rn has a position ~Ksatisfying(4:4:2) �( ~K) � �(n)j ~Kj(n�1)=n:The natural position of K is the minimal surfae area position. However, Ball'ssolution of the problem employs John's position. Assume that Bn2 is the maximalvolume ellipsoid of K. Then,(4:4:3) �(K) = limt!0+ jK + tBn2 j � jKjt � limt!0+ jK + tKj � jKjt = njKj:We laim that among all bodies in John's position the ube has maximal volume.Theorem 4.9 Let Qn = [�1; 1℄n be the unit ube in Rn . If K is a symmetrionvex body in John's position in Rn , then jKj � 2n = jQnj.For the proof we use John's representation of the identity (4.4.1), where theuj 's are ontat points of K and Bn2 . Observe that(4:4:4) K �M := fx : jhx; ujij � 1; j = 1; : : : ;mg:Therefore, jKj � jM j = ZRn mYj=1�j[�1;1℄(hx; uji)dx� mYj=1�ZR�[�1;1℄(t)dt�j = 2Pmj=1 j = 2n;41



where we used the Brasamp-Lieb inequality together with the observation of The-orem 4.8, and the fat that Pmj=1 j = n, whih is a simple onsequene of (4.4.1).2 Now, (4.4.3) shows that �(K) � njKj � 2njKj(n�1)=n, and sine K was arbi-trary, �(n) � 2n. There is equality in the ase of the ube, and this shows that�(n) = 2n.Theorem 4.9 shows that the ube has maximal volume ratio among all symmet-ri onvex bodies. In the general ase, one an show that the simplex �n is the ex-tremal onvex body. The reverse Brasamp-Lieb inequality an be used for the dualstatements: onsider the external volume ratio evr(K) = inf �jEj=jKj�1=n, wherethe in�mum is taken over all ellipsoids ontaining K. Then, evr(K) � evr(�n)for every onvex body K in Rn . In the symmetri ase the extremal body is theross-polytope (the unit ball of `n1 ).The Brasam-Lieb inequality and its reverse form were also used for sharpestimates on the volume of setions and projetions of the unit ball Bnp of `np [10℄.If p > 0 and H is a k-dimensional subspae of Rn , then jBnp \H j � jBkp j if p � 2,and(4:4:5) jBnp \H j � �nk �k(1=2�1=p) jBkp jif p � 2. This last estimate is sharp if k divides n. On the other hand, jPH (Bnp )j �jBkp j if p � 2, and(4:4:6) jPH(Bnp )j � �kn�k(1=p�1=2) jBkp jif p � 2. This last estimate is sharp if p > 1 and k divides n. The proof of allthese inequalities is based on the observation that if fe1; : : : ; eng is the standardorthonormal basis in Rn , then the obvious representation I =Pnj=1 ej 
 ej of theidentity implies that(4:4:7) PH = nXj=1 a2juj 
 uj ;where aj = jPH(ej)j and uj = PH(ej)=aj .The multidimensional version of the reverse Brasamp-Lieb inequality is usedin the proof of the following Brunn-Minkowski type inequality of Barthe [16℄. Letm;n be integers. Let Ei, i � m be linear subspaes of Rn . Assume that there existpositive i's suh that I = Pi�m iPi where Pi is the orthogonal projetion ontoEi. Then, the inequality(4:4:8) ��X iKi�� �Y jKijiholds for any ompat subsets Ki of Ei, where jKij is the volume of Ki in Ei. Inthe ase where eah Ki is a line segment, this redues to an inequality of Ball [11℄whih was proved by indution on the dimension.42



Another extremal property of the simplex was proved by Barthe [17℄. Assumethat K is a onvex body whose minimal volume ellipsoid is Bn2 . Then, M(K) �M(�n), where �n is the regular simplex insribed in Bn2 . In the symmetri aseone has M(K) � M(Bn1 ) (this is muh simpler and was observed by Shehtmanand Shmukenshl�ager [133℄). The proof of both inequalities makes use of thereverse Brasamp-Lieb inequality. In John's position, the simplex and the ube arethe extremal bodies for M(K).For a di�erent appliation, onsider a polytope K with faets Fj and normalsuj , j = 1; : : : ;m. If K is in minimal surfae area position, Petty's theorem 4.3 isequivalent to the statement(4:4:9) I = mXj=1 njFj j�(K)uj 
 uj :The projetion body �K of K is de�ned by(4:4:10) h�K(x) = 12 ZSn�1 jhx; zij�K(dz):In our ase, �K = �(K)2n Pmj=1 j [�uj ; uj ℄, and using (4.4.9) one an give a lowerbound of its volume [56℄. Namely,(4:4:11) j�Kj � 2n��(K)2n �n :The example of the ube shows that this inequality is sharp for bodies with minimalsurfae area.Combined with Theorem 4.2 this volume estimate leads to a sharp reverseUrysohn inequality for zonoids [55℄. If Z be a zonoid in Rn with volume 1 andminimal mean width, then(4:4:12) w(Z) � w(Qn) = 2!n�1!n :For the proof, reall that Z is the projetion body �K of some onvex body K.Using (4.4.10) and the haraterizations of Theorems 4.2 and 4.3 we hek that Khas minimal surfae area. We have(4:4:13)w(Z) = 2 ZSn�1 hZ(x)�(dx) = ZSn�1 ZSn�1 jhx; zij�K(dz)�(dx) = 2!n�1n!n �(K);and (4.4.11) shows that w(Z) � 2!n�1=!n. We have equality when K is a ube,and this orresponds to the ase Z = (1=2)Qn.4.5 Study of geometri probabilitiesIn this short subsetion we desribe some reent results from [63℄ on randomproperties of the uniform distribution over a onvex body K in Rn . To �x ter-minology, for any (measurable) set A � Rn , the geometri probability of A isP (A) := jA \Kj=jKj. 43



Theorem 4.10 Let Ti be measurable sets in Rn , i = 1; : : : ;m, and K be a star-shaped body with 0 2 int(K). Assume that jKj = jT1j = � � � = jTmj. Consider thepositively homogeneous funtion(4:5:1) jjj~�jjj = 1Qmi=1 jTij ZT1 � � � ZTm  mXi=1 �ixiKdxm : : : dx1on Rm . Then,(4:5:2) jjj~�jjj � qX�2ifor every ~� 2 Rm , where  > 0 is an absolute onstant ( � n=p2, where n ! 1as n!1).The proof of Theorem 4.10 is a diret onsequene of the following fat: If Kand Ti are as above and if jKj = jTij = jBn2 j for every i, then, for any salars �i,i = 1; : : : ;m and for any t > 0, we have(4:5:3)P ((xi 2 Ti)mi=1 :  mX1 �ixiK < t) � P ((xi 2 Bn2 )mi=1 :  mX1 �ixiBn2 < t) :One then knows that the extremal ase is K = T1 = � � � = Tm = Bn2 and a simpleargument based on Kahane's inequality leads to the lower bound.The proof of (4.5.3) uses the rearrangement inequality of Brasamp, Lieb andLuttinger [32℄ whih was the starting point for the �rst proof of the Brasamp-Liebinequality.An interesting question is to give exat estimates for the probability in (4.5.3)in terms of f�ig and t. This is done in [63℄ with a method whih uses the sharpmultivariable version of Young's inequality, proved by Brasamp and Lieb [31℄.[This approah was �rst used by Arias-de-Reyna, Ball and Villa in [6℄ to establishthe asem = 2, �1 = ��2 = 1=p2, Ti = K (whereK is a symmetri onvex body)℄:Fat. Assume that jKj = jT1j = � � � jTmj = 1. Then, for any salars �i 2 R andany 0 < t � 1,(4:5:4) P 8<:(xi 2 Ti)mi=1 :  mX1 �ixiK < tvuut mX1 �2i9=; � tn exp �(1� t2)2 n� :A onsequene of (4.5.4) is the fat that every n-dimensional normed spae Xhas random otype 2 with onstant bounded by an absolute onstant C > 0 (see[63℄). We say that X has random otype 2 with onstant A > 0 if with probabilitygreater than 1� e�an (a > 0 is a �xed universal number), n independent randomvetors fxign1 uniformly distributed over the unit ball K of X satisfy for every�i 2 R(4:5:5) Ave"i=�1 nX1 "i�ixi � 1Avuut nX1 j�ij2:44



Note that the norms kxik do not enter in the de�nition, sine with probabilityexponentially lose to 1 we have 1=2 � kxik � 1 and hene the norms are absorbedin A.5 Asymptoti results with a lassial onvexity a-vor5.1 Classial symetrizationsSymmetrization proedures play an important role in lassial onvexity. Untilreently, the bounds on the number of suessive symmetrizations of a ertain typewhih are needed in order to obtain from a given body K a body ~K whih is loseto a ball were at least exponential in the dimension. The methods of asymptotionvex geometry show that a linear in the dimension number of steps is enough.Minkowski symmetrization. Consider a onvex body K in Rn and a diretionu 2 Sn�1. The Minkowski symmetrization ofK with respet to u is the onvex body12 (K + �uK), where �u denotes the reetion with respet to u?. This operationis linear and preserves mean width. A random Minkowski symmetrization of K isa body �uK, where u is hosen randomly on Sn�1 with respet to the probabilitymeasure �. Bourgain, Lindenstrauss and Milman [25℄ proved that for every " > 0there exists n0(") suh that for every n � n0 and every onvex body K, if weperform N = Cn logn+ (")n independent random Minkowski symmetrizations onK we reeive a onvex body ~K suh that(5:1:1) (1� ")w(K)Bn2 � ~K � (1 + ")w(K)Bn2with probability greater than 1 � exp(�1(")n). The method of proof is loselyrelated to the onentration phenomenon for SO(n).Reently, Klartag [75℄ showed that if we perform a spei� non-random hoieof 5n Minkowski symmetrizations we may transform any onvex body into an ap-proximate Eulidean ball. We briey desribe the proess. We may learly startwith the normalization w(K) = 1. We �x an orthonormal basis fe1; : : : ; eng and�rst symmetrizeK with respet to the ej 's. In this way we obtain a 1-unonditionalonvex body K1 with the property K1 � pnBn1 .Let Q = pnBn1 and onsider a \Walsh basis" of Rn . This is an orthonormalbasis fu1; : : : ; ung satisfying jhui; ejij � 2=pn for every i; j � n. If we symmetrizeQ with respet to u1; : : : ; un�1, we obtain a new body ~Q with diam( ~Q) � plogn.Applying the same sequene of symmetrizations to K1 we arrive at a onvex bodyK2 with w(K2) = 1 and(5:1:2) K2 � pnBn1 \ tBn2with respet to a new orthonormal basis, where t = diam(K2) � plogn.45



The next step shows that one an ahieve a logarithmi deay of the diame-ter under 2n additional symmetrizations with respet to two independent randomorthonormal bases.Claim: Let Qt = pnBn1 \ tBn2 . If fvjg, fwjg are independent random orthonormalbases of Rn , then symmetrization of Qt with respet to v1; : : : ; vn�1 and w1; : : : ; wn�1produes with high probability a onvex body ~Qt with ~Qt � (C log t)Bn2 .It follows that the same sequene of symmetrizations applied to K2 produes aonvex body K3 with diam(K3) �  log logn. One may then iterate this step andarrive at a body for whih diam(Ks) is bounded by a universal onstant. Then,the proof of [25℄ shows that O(n) symmetrizations of Ks bring it lose to a ball.Instead of this, one an show by onentration tehniques that a seond appliationof the laim's symmetrization proess to the body K3 is enough.Even more reently, using spherial harmonis, Klartag [76℄ showed that forevery onvex body K and any 0 < " < 1=2 there exist n log(1=") suessiveMinkowski symmetrizations whih transform K to a onvex body ~K satisfying(1� ")w(K)Bn2 � ~K � (1 + ")w(K)Bn2 .Steiner symmetrization. It is well-known that for any onvex body K in Rnthere exists a sequene of diretions �j 2 Sn�1 suh that (S�n Æ � � � Æ S�1)(K)onverges to a ball in the Hausdor� metri (S� is the Steiner symmetrization in thediretion of �). In fat, Mani [90℄ has proved that if we hoose an in�nite randomsequene of diretions �j 2 Sn�1 and apply suessive Steiner symmetrizations S�jof K in these diretions, then we almost surely get a sequene of onvex bodiesonverging to a ball.Bourgain, Lindenstrauss and Milman [26℄ proved an isomorphi version of thisfat. There exist absolute onstants ; 1; 2 > 0 with the following property: if Kis a onvex body in Rn , there exist k � n logn unit vetors �j suh that suessiveSteiner symmetrizations in the diretions of �j transform K into a onvex body K1with(5:1:3) 1�Bn2 � K1 � 2�Bn2 ;where Bn2 is the Eulidean unit ball and jKj = j�Bn2 j. This was a dramati improve-ment with respet to the previously known estimate (n)n=2 of Hadwiger (1955).An essentially best possible result was reently obtained by Klartag and Milman[77℄.Theorem 5.1 For every " > 0 there exist onstants 1("); 2(") > 0 suh that: forevery onvex body K in Rn with jKj = jBn2 j, there exist k � (2 + ")n unit vetors�j suh that suessive Steiner symmetrizations in the diretions of �j transform Kinto a onvex body K 0 with(5:1:4) 1(")Bn2 � K 0 � 2(")Bn2 :The main steps of the argument are the following. Starting with a onvex bodyof volume 1, we need 2n Steiner symmetrizations in order to obtain a onvex body46



K2 whih is 1-unonditional (symmetri with respet to the oordinate subspaes)and \almost isotropi" in the following sense: for every � 2 Sn�1,(5:1:5) ZK2hx; �i2dx � 2:The �rst n symmetrizations lead to a 1-unonditional body K1. If the polar of theBinet ellipsoid of K1 is transformed into a ball by n additional symmetrizations, itis proved that the same sequene of symmetrizations, applied to K1, produes K2.By reent results of Bobkov and Nazarov [21℄, it follows that(5:1:6) Pn � K2 � nBn1 ;where Pn is a box with respet to the same oordinate system, having volumejPnj1=n ' 1 (equivalently, one may use a lassial result of Losanovskii and a mod-i�ation of this argument). This implies that it is enough to symmetrize Pn andthe ross-polytope Bn1 . The same sequene of symmetrizations will transform K2into an isomorphi ball.The analysis for these two partiular bodies already proves that (4+")n Steinersymmetrizations are enough. Employing this fat and using the quotient of subspaetheorem (Theorem 2.13), one an build an iteration sheme whih redues thenumber of symmetrizations to (2 + ")n.Floating bodies - entroid bodies. We lose this subsetion with some inter-esting observations on the onnetions of the Legendre ellipsoid with the entroidand oating bodies (for the proofs of these fats, see [111℄). Let K be a sym-metri onvex body in Rn with jKj = 1. The entroid body of K is de�ned byZ(K) = RK [0; x℄dx, where [0; x℄ is the line segment from 0 to x. Equivalently, itsdual norm is given by(5:1:7) kykZ(K)Æ = 12 ZK jhx; yijdx:A onsequene of the Brunn-Minkowski inequality is that Z(K) is uniformly (i.e. upto an absolute onstant) equivalent to the Legendre ellipsoid of K in the Hausdor�sense.For every 0 < Æ < 1=2, the oating body KÆ of K is de�ned to be the envelopeof all hyperplanes that ut o� a set of volume Æ from K. It an be proved that KÆis onvex (this was observed by Meyer and Reisner, and independently by Ball).Moreover, KÆ is C(Æ) equivalent to the Legendre ellipsoid of K, where C(Æ) is aonstant depending only on Æ.The proess of forming the oating body may be viewed as a \one step sym-metrization". One arrives at an \isomorphi ellipsoid" although one would expetthat KÆ will stay lose to K for small values of Æ > 0.
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5.2 Isomorphi symmetrizationIn this subsetion we desribe isomorphi geometri inequalities whih are provedby the method of isomorphi symmetrization. This is our seond main example ofa body of results whih answer deep questions of the Brunn-Minkowski theory, atleast in their asymptoti version. Here, the main ideas and methods we desribedin x2 �nd appliations to lassial onvexity.Our �rst example is the inverse Blashke-Santal�o inequality of Bourgain andMilman [28℄, whih gives an \aÆrmative answer" to Mahler's onjeture (see x4.1).Theorem 5.2 There exists an absolute onstant  > 0 suh that(5:2:1) 0 <  � s(K)s(Bn2 ) � 1for every symmetri onvex body in Rn .The inequality on the right is the Blashke-Santal�o inequality. The left hand-side inequality answers the question of Mahler in the asymptoti sense: For everysymmetri onvex body K, the quantity s(K) is of the order of 1=n.The original proof of Theorem 5.1 used a dimension desending proedure whihwas based on the quotient of subspae theorem. We will desribe a proof using themethod of isomorphi symmetrization [105℄. This is loser to lassial onvexityand muh more geometri in nature sine it preserves dimension: however, it isa symmetrization sheme whih is in many ways di�erent from the lassial sym-metrizations. In eah step, none of the natural parameters of the body is beingpreserved, but the ones whih are of interest remain under ontrol. After a �nitenumber of steps, the body has ome lose to an ellipsoid, but there is no naturalnotion of onvergene to an ellipsoid.Sine s(K) is an aÆne invariant, we may start from a position of K whihsatis�es the inequality M(K)M�(K) �  log[d(XK ; `n2 ) + 1℄ (this is allowed byTheorems 2.9 and 2.10). We may also normalize so that M(K) = 1. We de�ne(5:2:2) �1 =M�(K)a1 ; �01 =M(K)a1;for some a1 > 1, and onsider the new body(5:2:3) K1 = o�(K \ �1Bn2 ) [ 1�01Bn2� :Sudakov's inequality (Theorem 2.14) and elementary properties of the overingnumbers show that(5:2:4) jK1j � jK \ �1Bn2 j � jKj=N(K;�1Bn2 ) � jKj exp(�n=a21):In an analogous way, using the dual Sudakov inequality (Theorem 2.15) one anshow that(5:2:5) jK1j � jo(K [ (1=�01)Bn2 )j � exp(n=a21):48



By the de�nition of K1 one an apply the same reasoning to KÆ1 , and this showsthat(5:2:6) exp(�=a21) � s(K1)s(K) � exp(=a21):By onstrution, for the new body K1 we have d(XK1 ; `n2 ) � M(K)M�(K)a21and, sine s(K1) is an aÆne invariant, we may assume that M(K1)M�(K1) � log[d(XK1 ; `n2 ) + 1℄ and M(K1) = 1. If we set �2 = M�(K1)a2, �02 = M(K1)a2and de�ne K2 = o�(K1 \ �2Bn2 ) [ 1�02Bn2 �, we obtain(5:2:7) exp(�=a22) � s(K2)s(K1) � exp(=a22):We now iterate this proedure, hoosing a1 = logn, a2 = log logn; : : : ; at = log(t) n{ the t-iterated logarithm of n, and stop the proedure at the �rst t for whihat < 2. It is easy to hek that d(XKt ; `n2 ) � C, therefore(5:2:8) 1C � s(Kt)s(Bn2 ) � C:On the other hand,(5:2:9) 1 � exp��� 1a21 + � � �+ 1a2t �� � s(Kt)s(K) � exp�� 1a21 + � � �+ 1a2t �� ;whih proves the theorem (observe that the series 1a21 + � � � + 1a2t + � � � remainsbounded by an absolute onstant). 2As a seond important appliation of the method we prove the existene of \M -ellipsoids" assoiated to any onvex body.Theorem 5.3 There exists an absolute onstant  > 0 with the following property:For every symmetri onvex body K in Rn there exists an ellipsoid MK suh thatjKj = jMK j and for every body T in Rn(5:2:10) 1 ��MK + T ��1=n � ��K + T ��1=n � ��MK + T ��1=nand(5:2:11) 1 jMÆK + T j1=n � jKÆ + T j1=n � jMÆK + T j1=n:For the proof of Theorem 5.3 we de�ne the same sequene of bodies as inTheorem 5.1. For every s, we hek that(5:2:12) exp(�n=a2s) � jKs + T jjKs�1 + T j � exp(n=a2s);49



for every onvex body T , and the same holds true for KÆs . After t steps, we arriveat a body Kt whih is -isomorphi to an ellipsoid M . Our volume estimates showthat jKtj1=n ' jKj1=n up to an absolute onstant. If we de�ne MK = �M where� > 0 is suh that jMK j = jKj, then � ' 1 and the result follows. 2A onsequene of Theorem 5.3 is that for every body K in Rn there exists aposition ~K = uK(K) of volume j ~Kj = jKj suh that for every pair of onvex bodiesK1 and K2 in Rn ,(5:2:13) jt1 ~K1 + t2 ~K2j1=n � �t1j ~K1j1=n + t2j ~K2j1=n� ;for all t1; t2 > 0, where  > 0 is an absolute onstant. This statement is the \reverseBrunn-Minkowski inequality" (Milman, [101℄).The ellipsoidMK in Theorem 5.3 is alled anM -ellipsoid forK. The symmetryof K is not really needed (see e.g. [112℄). It an be proved that the existene of anM -ellipsoid for K is equivalent to the following statement: There exists a onstant > 0 suh that for every body K we an �nd an ellipsoid MK with jMK j = jKjand N(K;MK) � exp(n).Interhanging the roles of K and MK , we say that a onvex body K is inM -position (with onstant ) if jKj = jBn2 j and N(K;Bn2 ) � exp(n). With thisterminology, Theorem 5.3 is equivalent to the existene of a onstant  > 0 suhthat in the aÆne lass of any onvex body there exists a representative whih is inM -position with onstant . This ondition on N(K;Bn2 ) implies thatmaxfN(Bn2 ;K); N(KÆ; Bn2 ); N(Bn2 ;KÆ)g � exp(1n)for some onstant 1 whih depends only on . If K1 and K2 are in M -positionwith onstant , using these estimates one an easily hek that(5:2:14)jK1+K2j1=n � C �jK1j1=n + jK2j1=n� and jKÆ1+KÆ2 j1=n � C �jKÆ1 j1=n + jKÆ2 j1=n�where C is a onstant depending only on  (one just uses the volume estimatejA+Bj � N(A;B) � j2Bj). If K is in M -position with onstant , setting K1 = K,K2 = Bn2 and using the reverse Santal�o inequality (Theorem 5.2), we get(5:2:15) njKj � jKÆj � jK \ Bn2 j � jo(KÆ [ Bn2 )j � jK \ Bn2 j � jKÆ +Bn2 j;whih, ombined with (5.2.14), gives(5:2:16) jK \ Bn2 j � njKj:The next fat about the M -position whih is used in many appliations is thefollowing statement: If K is in M -position with onstant , then for any � 2 (0; 1)a random orthogonal projetion PE(K) onto a [�n℄-dimensional subspae E hasvolume ratio bounded by a onstant C(; �). To see this, note that jo(KÆ [Bn2 )j1=n � CjBn2 j1=n where C depends on  (this is a onsequene of (5.2.14)).50



In other words, W = o(KÆ [ Bn2 ) has bounded volume ratio, and Theorem 2.7shows that for a random E 2 Gn;[�n℄,(5:2:17) KÆ \ E �W \ E � C(; �)BE :By duality, this means that PE(K) ontains a ball rBE of radius r � 1=C(; �).Sine(5:2:18) jPE(K)j � N(PE(K); BE)jBE j � N(K;Bn2 )jBE j � exp(n)jBE j;this implies a bound on �jPE(K)j=jrBE j�1=n.Pisier (see [121℄, Chapter 7) o�ers a di�erent approah to these results, whihprovides a onstrution of speial M -ellipsoids with regularity estimates on theovering numbers. The preise statement is as follows: for every � > 1=2 and everybody K there exists an aÆne image ~K of K whih satis�es j ~Kj = jBn2 j and(5:2:19)maxfN(K; tBn2 ); N(Bn2 ; tK); N(KÆ; tBn2 ); N(Bn2 ; tKÆ)g � exp((�)nt�1=�)for every t � 1, where (�) is a onstant depending only on �, with (�) = O((��12 )�1=2) as � ! 12 . We then say that K is in M -position of order � or �-regularM -position.6 Additional information in the spirit of geometrifuntional analysis6.1 Banah-Mazur distane estimatesReall the de�nition of the Banah-Mazur distane: ifX and Y are two n-dimensionalnormed spaes, then(6:1:1) d(X;Y ) = minfkTk kT�1k j T : X ! Y is an isomorphismg:Let Bn be the olletion of all equivalene lasses of n-dimensional normed spaes,where X1 � X2 if X1 and X2 are isometrially isomorphi. The Banah-Mazurompatum (of order n) is the ompat metri spae (Bn; log d).The quantitative study of the geometry of the Banah-Mazur ompatum essen-tially starts with John's theorem [73℄. For every X 2 Bn one has d(X; `n2 ) � pn,and the multipliative triangle inequality for d shows that diam(Bn) � n. Theright order of growth of diam(Bn) as n ! 1 was established by Gluskin [58℄ whoshowed that the Banah-Mazur distane of a typial pair of n-dimensional proje-tions of the unit ball of `2n1 is asymptotially equivalent to n. Gluskin's theoremwas the starting point for a deep study of \random spaes" and of random setionsand projetions of general onvex bodies, whih is briey desribed in the nextsubsetion. 51



In many interesting ases, the Banah-Mazur distane d(X;Y ) is signi�antlysmaller than n. A �rst example is given by the lassial estimates of Gurarii,Kade and Maaev: d(`np ; `nq ) = n1=p�1=q if 1 � p � q � 2 or 2 � p � q � 1,and 1n� � d(`np ; `nq ) � 2n�, where 1; 2 > 0 are absolute onstants and � =maxf1=p� 1=2; 1=2� 1=qg, if 1 � p < 2 < q � 1. This suggests that the diameterdiam(An) of some important familiesAn � Bn may be of lower order. This has beenproved to be true in two important ases: Let Sn be the family of all 1-symmetrispaes. Tomzak-Jaegermann [145℄ showed that diam(Sn) ' pn (Gluskin [60℄and Tomzak-Jaegermann had previously obtained the upper bound pn logb n).The same question remains open for the family Un of 1-unonditional spaes. Itis onjetured that the right order of diam(Un) is lose to pn. Lindenstrauss andSzankowski [88℄ have shown that this quantity is bounded by n� for some � � 2=3.In many ases, the diameter of a sublass of Bn is estimated by probabilistimethods. The general idea is to estimate the distane d(X;Y ) by a suitable averageof norm-produts. The method of random orthogonal fatorizations (whih hasits origin in work of Tomzak-Jaegermann, and was later developed and used byBenyamini and Gordon [20℄) uses the integral(6:1:2) ZO(n) kTkX!Y kT�1kY!Xd�(T )with respet to the probability Haar measure � on O(n) as an upper bound ford(X;Y ). An inequality of Marus and Pisier allows one to pass from O(n) tomatries whose entries are independent standard Gaussian variables and then useChevet's inequality from the theory of Gaussian proesses in order to ontroll thisaverage (see [147℄). Using this method one an prove a general inequality in termsof the type-2 onstants of the spaes [39℄:(6:1:3) d(X;Y ) � pn[T2(X) + T2(Y �)℄for every X;Y 2 Bn. This was further improved by Bourgain and Milman [27℄ to(6:1:4) d(X;Y ) � �d(Y; `n2 )T2(X) + d(X; `n2 )T2(Y �)�:A similar tehnique is used in [27℄ where it is shown that d(X;X�) � (logn)n5=6for every X 2 Bn. All these results indiate that the distane between spaes whoseunit balls are \quite di�erent" is not of the order of n.The Banah-Mazur distane d(K;L) between two not neessarily symmetrionvex bodies K and L is the smallest d > 0 for whih there exist z1; z2 2 Rnand T 2 GL(n) suh that K � z1 � T (L� z2) � d(K � z1). The question of themaximal distane between non-symmetri bodies is open. John's theorem impliesthat d(K;L) � n2. Better estimates were obtained with the method of randomorthogonal fatorizations and reent progress on the non-symmetri analogue ofTheorem 2.11. In [15℄ it was proved that every onvex body K has an aÆne imageK1 suh that w(K1)w(KÆ1 ) � pn, a bound whih was improved to n1=3 log9 n52



in [127℄. Using this fat, Rudelson showed that d(K;L) � n4=3 log9 n for anyK;L 2 Kn.In another diretion, for every X 2 Bn let us onsider the \radius" Rn(X) ofthe Banah-Mazur ompatum Bn with respet to X , de�ned by(6:1:5) Rn(X) = maxfd(X;Y ) : Y 2 Bng:In this terminology, John's theorem states that Rn(`n2 ) = n1=2. A natural questionasked by Pelzynski is to determine the order of the radius Rn(`np ) for other valuesof p. In the ase of the ube, one has the estimates n1=2 � Rn(`n1) � n as aonsequene of John's theorem. Bourgain and Szarek [29℄ proved that Rn(`n1) =o(n) and gave a proportional version of the Dvoretzky-Rogers lemma on the ontatpoints of a body and its minimal volume ellipsoid: Assume that Bn2 is the ellipsoidof minimal volume ontaining K. For every Æ 2 (0; 1) there exist m � (1� Æ)n andontat points x1; : : : ; xm of K and Bn2 , suh that(6:1:6) f(Æ) mXi=1 t2i!1=2 � j mXi=1 tixij � k mXi=1 tixikK � mXi=1 jtij:for every hoie of salars t1; : : : ; tm. This fat an be stated as a proportionalfatorization theorem [29℄.Theorem 6.1 Let X be an n-dimensional spae. For every Æ 2 (0; 1) one an �ndm � (1 � Æ)n and two operators � : `m2 ! X, � : X ! `m1, suh that the identityid2;1 : `m2 ! `m1 is written as id2;1 = � Æ � and k�k k�k � 1=f(Æ), where f(Æ) isa funtion depending only on the proportion Æ 2 (0; 1). 2Using this result Bourgain and Szarek gave a �nal answer to the problem of theuniqueness up to onstant of the enter of the Banah{Mazur ompatum. Thisan be made a preise question as follows: Does there exist a funtion f(�), � � 1,suh that for every X 2 Bn with Rn(X) � �pn we must have d(X; `n2 ) � f(�)?In other words, are all the \asymptoti enters" of the Banah{Mazur ompatumlose to the Eulidean spae? The answer is negative and the main tool in theproof is Theorem 6.1: Let X = `s2 � `n�s1 where s = [n=2℄. Then Rn(X) � pn forsome absolute onstant but d(X; `n2 ) � (n=2)1=2. Therefore, there exist asymptotienters of the Banah-Mazur ompatum with distane to `n2 of the order of Rn(`n2 ).The same inequality allowed Bourgain and Szarek to show that Rn(`n1) = o(n).It is now known (see [141℄, [49℄) that (3) holds true with f(Æ) = Æ, and this gives abetter upper bound for Rn(`n1), whih however does not seem to give the right orderof the quantity: There exists an absolute onstant  > 0 suh that Rn(`n1) � n5=6(see [48℄). On the other hand, Szarek [138℄ using random spaes (see the nextsubsetion) proved that Rn(`n1) � pn logn.53



6.2 Random spaesThe theory of random spaes started with Gluskin's theorem [58℄ on the diam-eter of the Banah-Mazur ompatum. He onsidered a lass Xn;m of randomn-dimensional normed spaes and showed that with high probability the Banah-Mazur distane of two spaesX1; X2 2 Xn;2n exeeds n, where  > 0 is an absoluteonstant.The lass Xn;m is de�ned as follows: we onsider a sequene g1; : : : ; gm of inde-pendent standard Gaussian random variables on some probability spae (
;A; P ),and for eah ! 2 
 we de�ne the spae X(!) whose unit ball is the symmetrionvex body(6:2:1) Bm(!) = absonvfe1; : : : ; en; g1(!); : : : ; gm(!)g:Alternatively, one an onsider the lass Yn;m of spaes Y (!) with unit ball(6:2:2) ~Bm(!) = absonvfg1(!); : : : ; gm(!)g:If m � n, then ~Bm(!) has non-empty interior almost surely and de�nes a norm onRn . The random spae X(!) or Y (!) an be identi�ed with a quotient of `n+m1 or`m1 respetively.Fix m = 2n. The basi geometri properties of Bm(!) are the following:1. Bm(!) � (1=pn)Bn2 .2. jBm(!)j1=n � 1j(1=pn)Bn2 j1=n, where 1 > 0 is an absolute onstant.Consider the lass of pairs (X(!1); X(!2)) 2 Xn;m � Xn;m. If we �x !2 andT 2 SL(n), using the above properties of Bm(!2) we see that(6:2:3) Prob �!1 : kT : X(!2)! X(!1)k � 2�pn� < �2n2for every 0 < � < 1, where 2 > 0 is an absolute onstant. Our aim is to show thatthe probability P1 := Prob(!1 : X(!1) 2 L(!2)) is small, where(6:2:4) L(!2) := fX(!1) : 9T 2 SL(n) : kT : X(!1)! X(!2)k � �pngfor some onstant 0 < � < 1 to be determined. To this end, we de�ne(6:2:5) M(!2) = fT 2 SL(n) : kTejkX(!2) � pn; j = 1; : : : ; ng;and onsider a "-net N (!2) ofM(!2) in the norm k� : `n2 ! `n2k. If X(!1) 2 L(!2),then there exists T 2 M(!2) suh that kT : X(!1) ! X(!2)k � �pn. It followsthat kS : X(!1) ! X(!2)k � (� + ")pn for some S 2 N (!2). If we set � = " =�=2, ombining with (6.2.3) we see that(6:2:6) P1 < jN (!2)j � �2n2 :The ardinality of the net is smaller than (3=")n2 = (4=�)n2 , and this shows thatP1 < (1=2)n2 if � is hosen small enough.54



It is now lear that with probability greater than 1� 2(1=2)n2 in Xn;m �Xn;mwe have(6:2:7) kT : X(!1)! X(!2)k � kT�1 : X(!2)! X(!1)k � �2nfor all T 2 SL(n), whih implies d(X(!1); X(!2)) � �2n. This proves Gluskin'stheorem:Theorem 6.2 There exists a onstant  > 0 suh that diam(Bn) � n for everyn 2 N. 2Let us mention the following reent result of Rudelson [128℄ whih omplementsGluskin's theorem. If K1;K2 are symmetri onvex bodies in Rn and if k < n,write dk(K1;K2) for the smallest Banah-Mazur distane between k-dimensionalsubspaes of K1 and K2 respetively. If D(n; k) is the supremum of dk(K1;K2)over all pairs of symmetri onvex bodies in Rn , then D(n; k) ' pk if k � n2=3and D(n; k) ' k2=n if k � n2=3 (in this statement, ' means \up to a �xed powerof logn").Theorem 6.2 was the starting point for a systemati study of random spaes.Random quotients of `m1 provided examples of the worst possible order for severalparameters of the loal theory. It turns out that a random spae X 2 Xn;m has arather \poor" family of bounded operators. It was observed by Gluskin [59℄, thata random spae Xn;n2 has the following property: any projetion P in X of rankk � n=2 satis�es(6:2:8) kT : X ! Xk � k=pn logn :As a onsequene suh a spae has basis onstant b(X) � 0pn= logn. [Reall thatthe basis onstant b(X) of an n-dimensional normed spae X is the in�mum of thebasis onstants bfx1; : : : ; xng over all bases of X .℄ This follows immediately fromthe fat that, by the de�nition of the basis onstant, in any n-dimensional normedspae X there exists a projetion P of rank k = [n=2℄ with kP : X ! Xk � b(X).Szarek [137℄ modi�ed the random struture on Xn;m and was able to onstrutan n-dimensional normed spae X with b(X) � pn. Beause of John's theo-rem this order is optimal. Mankiewiz [91℄ applied the random spaes method toonstrut �nite dimensional spaes with the worst (in order) possible symmetrionstant. In this work Mankiewiz used the \spae mixing" property of the irre-duible group of operators. Szarek [139℄ expliitly introdued the notion of the lassM(k; �) of mixing operators whih is the set of all linear operators T , satisfying(6:2:9) dist(Tx;E) = jPE?Txj � �jxjfor some k-dimensional subspae E and every x 2 E. It is not diÆult to show thatany projetion P of rank k � n=2 is (k; 1=2) mixing. Then, Szarek showed that themixing property is suÆient for proving the results of [91℄, but also [59℄ and [137℄.In partiular, he proved that for a random spae X 2 Xn;n2 one has(6:2:10) kT : X ! Xk � �k=pn logn55



for any T 2Mix(k; �) and that for some modi�ed probability in Xn;m the followingresult holds.Theorem 6.3 For every 0 < � � 1=2 and Æ > 0, a random spae X(!) 2 Xn;mwhere m = [Æn℄, satis�es kT : X(!) ! X(!)k � (�; Æ)pn for every T 2Mix(�n; 1). 2It should be mentioned that the random spae method allows us to onstrut asequene of �nite dimensional normed spaes, whih serve as bloks for the onstru-tion of examples of in�nite dimensional spaes with some unexpeted properties:real isomorphi omplex Banah spaes whih are not omplex isomorphi (Bour-gain [22℄), a Banah spae without a basis whih has the bounded approximationproperty (Szarek [140℄) et.The lass Yn;m, m ' n1+Æ provides examples of random spaes with largeBanah-Mazur distane to `n1 . The distribution of Y (!) is the same with the dis-tribution of `m1 =H where H is a random (m� n)-dimensional subspae of `m1 , andthus Yn;m reets ompletely the geometry of quotients of `m1 . The following theo-rem of Szarek [138℄ gives the only known example of a pair of spaes with distanesigni�antly larger than pn, in whih one of the two spaes is onrete.Theorem 6.4 For every Æ > 0, a random spae Y (!) 2 Yn;m where m = [n1+Æ ℄,satis�es d(Y (!); `n1 ) � (Æ)pn logn.The proof involves a preise distributional inequality on the singular numberssi of random Gaussian matries, whih is a quantitative �nite version of Wigner'ssemiirle law: if G(!) is an n � n matrix with independent N(0; 1=n) Gaussianentries, then(6:2:11) Prob(! : 1k=n � sn�k(G(!)) � 2k=n) > 1� 3 exp(�4k2);for all k � n=2, where the i's are absolute positive onstants.In the last years it was understood that the ideas and arguments used in thestudy of random quotients of `n+m1 ould be transferred to a muh more generalsetting. The idea of studying random projetions of arbitrary high-dimensionalonvex bodies omes from Bourgain, and it was developed in a whole theory byMankiewiz and Tomzak-Jaegermann (see the survey artile [93℄). The startingobservation is that the main geometri properties of a random spae in Xn;m anbe satis�ed by projetions of an arbitrary onvex body if they are put in a suitableposition. More preisely, for �xed 0 < � < 1 and for every n-dimensional onvexbody K, there exist a [�n℄-dimensional projetion T = PE(K) and a Eulideannorm on E satisfying the following properties:1. vr(T ) � C1(�).2. d(XK ; `n2 )�1BE � T � 2BE.3. There is an orthonormal basis fxjg in XT with maxj kxjkT � C2(�).56



The proof of this fat makes use of the M -ellipsoids. Properties 1 and 2 or-respond to the two geometri properties of X(!) 2 Xn;m. The third one, whihwas also lear by onstrution in our previous disussion, is allowed in the generalsetting beause of the proportional Dvoretzky-Rogers fatorization (Theorem 6.1).An example of this line of thought is the following reent result from [92℄: If K1and K2 are two symmetri onvex bodies in Rn whose minimal volume ellipsoid isthe Eulidean unit ball, then for every proportional dimension k = �n the averagedistane between k-dimensional projetions PH1 (K1) and PH2(K2) of K1 and K2is bounded from below by the produt of the average distanesZGn;s d(PLi(Ki); `s2)d�n;s(Li)where s an be taken equal to s = (1=2� ")k for any small " > 0.Random spaes were used very reently by Szarek and Tomzak-Jaegermann[144℄ to provide a strong negative answer to a series of questions raised in themid-eighties (see [102℄), whih roughly speaking asked if the otype properties ofevery n-dimensional normed spae improve by passing to quotients of proportionaldimension. A typial example is the following: Is it true that there is an absoluteonstant C > 0 suh that every n-dimensional spae X has a quotient X1 of di-mension dim(X1) � n=2 suh that the otype-2 onstant of X1 is bounded by C?Reall that this is true if we replae bounded otype-2 onstant by bounded volumeratio (and, by a result of Bourgain and Milman [28℄, the �rst property implies theseond). A positive answer would be of obvious importane, sine all the theory oftype and otype would enter deisively in the study of general onvex bodies.For any given �nite dimensional spae W , Szarek and Tomzak-Jaegermannonstrut a spae X of an appropriately larger dimension, whih is well satu-rated with W . The preise statement is the following: Let n and m0 be posi-tive integers with pn logn � m0 � n. If W is a normed spae with dim(W ) �minfm0=pn;m20=(n logn)g, there exists an n-dimensional normed spae X suhthat: if m0 � m � n, every m-dimensional quotient X1 of X ontains a 1-omplemented subspae isometri to W .Let us give a diret appliation of this fat: If we hoose W = `k1 with k ' pnand onsider an n-dimensional spae X as above, taking m0 proportional to n wesee that the otype-2 onstant of every m0-dimensional quotient X1 of X is at leastof the order of 4pn (and the otype-q onstant of every suh X1 is at least of theorder of n1=(2q)).Referenes[1℄ A.D. Alexandrov, On the theory of mixed volumes of onvex bodies II: New inequal-ities between mixed volumes and their appliations (in Russian), Mat. Sb. N.S. 2(1937), 1205-1238. 57
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