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tionIn this arti
le we outline a rapidly developing theory of high dimensional normedspa
es and 
onvex bodies. The 
lassi
al Convex Geometry, sometimes 
alled Brunn-Minkowski theory, studies the geometry of 
onvex bodies and related geometri
inequalities in Eu
lidean spa
e of a �xed dimension (be
ause of this, it is an iso-metri
 theory). The 
lassi
al Fun
tional Analysis is standardly understood as thetheory of in�nite dimensional spa
es. However, it is a relatively re
ent dis
overythat there is a theory \in between", whi
h is 
on
erned with the geometri
 and lin-ear properties of �nite dimensional normed spa
es or 
onvex bodies, the emphasisnow being on the asymptoti
 behaviour of various quantitative parameters as thedimension grows to in�nity. We 
all it Asymptoti
 Geometri
 Analysis, but alsoAsymptoti
 Convex Geometry (a
tually, more names are asso
iated to it: historyhas not yet sele
ted the right one). In the framework of this theory, very unex-pe
ted phenomena, hidden stru
tures and forms of behaviour were dis
overed, newintuition was built and many new tools were developed. It is now 
lear that thetheory provides the right questions to reveal the underlying \order" and stru
tureswhi
h a

ompany high dimensional spa
es.The quantitative study of high dimensional normed spa
es used many of thetools of 
onvex geometry. However, these tools were now used under a di�erentpoint of view. The isometri
 questions whi
h were typi
al in 
lassi
al 
onvexitywere repla
ed by isomorphi
 ones, whi
h were most natural for fun
tional analysisbut alien to 
onvexity. Isoperimetri
 type problems provide a bold example of thistransformation. Isomorphi
 versions of su
h problems, whi
h make sense only fromthe asymptoti
 point of view, led to the dis
overy of the 
on
entration of measurephenomenon, whi
h plays a 
ru
ial role in the proof of Dvoretzky type theorems.Later, the method spread and in
uen
ed the development of other \asymptoti
"theories in Probability, Asymptoti
 Combinatori
s and Complexity, where mu
hmore general high parametri
 systems arise.After this major step on the 
on
eptual level, many unsolved problems of 
las-si
al 
onvexity were put in asymptoti
 form and were studied systemati
ally. Inthis way, the two theories started to intera
t with many deep 
onsequen
es in bothanalysis and geometry. Typi
al examples are the reverse Brunn-Minkowski inequal-ity and the reverse Santal�o inequality, whi
h provides an aÆrmative answer - atleast in the asymptoti
 sense - to a 
lassi
al 
onje
ture of Mahler.The arti
le is organized as follows: Se
tion 2 gives a brief synopsis of the majorresults of asymptoti
 
onvex geometry (the 
on
ept of 
on
entration, Dvoretzky2



type theorems, Pisier's inequality on the Radema
her proje
tion, Milman's lowM�-estimate and the quotient of subspa
e theorem, entropy estimates) and of somemore re
ent important dire
tions (global theory, asymptoti
 formulas and phasetransition behaviour, \
oordinate theory").Se
tion 3 
ontains ba
kground material from 
lassi
al 
onvexity: the Brunn-Minkowski inequality and its fun
tional forms, the Alexandrov-Fen
hel inequalityand related geometri
 inequalities about mixed volumes of 
onvex bodies, volumepreserving transformations (Kn�othe and Brenier maps).Se
tion 4 des
ribes 
lassi
al positions of 
onvex bodies su
h as John's position,the minimal surfa
e area and the minimal mean width positions. They are all 
har-a
terized as isotropi
 ones, an observation whi
h relates them to the Bras
amp-Liebinequality and its reverse form. Some sharp geometri
 inequalities are appli
ationsof this point of view, a fa
t whi
h was �rst observed and su

essfully exploited byBall. We also give a short a

ount on the 
hallenging sli
ing problem.Se
tion 5 gives some 
lassi
al and re
ent examples of the intera
tion betweenthe asymptoti
 
onvex geometry point of view and 
lassi
al 
onvexity. The reverseSantal�o inequality and the reverse Brunn-Minkowski inequality are proved withthe method of isomorphi
 symmetrization. This dis
ussion introdu
esM -ellipsoidsand their basi
 properties. Re
ent results of Klartag and Milman on the number ofMinkowski or Steiner symmetrizations that are needed in order to bring an arbitrary
onvex body 
lose to a ball give another example of use of the asymptoti
 theoryin questions with 
lassi
al 
onvexity 
avor.Se
tion 6, whi
h is 
loser to the spirit of geometri
 fun
tional analysis, is devotedto the geometry of the Bana
h-Mazur 
ompa
tum and some questions on the lo
alstru
ture of high-dimensional normed spa
es. Random spa
es, whi
h were �rstintrodu
ed by Gluskin, play an important role in this dis
ussion.A number of surveys on di�erent aspe
ts of the theory were re
ently published(see [14℄, [86℄, [87℄, [109℄ and [110℄). In parti
ular, [54℄ gives a more geometri
allydire
ted point of view on the theory. However, this arti
le was written before1999 and a new stream of results is now available. We 
annot avoid repeatingthe very basi
 and already 
lassi
al line of development we des
ribed, but we referto [54℄ for many proofs whi
h are outlined there in a very 
ondense form. Generalreferen
es on the Brunn-Minkowski theory and geometri
 inequalities are the booksof S
hneider [134℄ and Burago-Zalgaller [34℄. The reader may 
onsult the books ofMilman-S
he
htman [113℄, Pisier [121℄ and Tom
zak-Jaegermann [147℄ for variousaspe
ts of the asymptoti
 theory of �nite dimensional normed spa
es.2 Asymptoti
 Convex GeometryWe study �nite-dimensional real normed spa
es X = (Rn ; k � k). The unit ball KXof su
h a spa
e is a symmetri
 (with respe
t to the origin) 
onvex body in Rn .Conversely, if K is a symmetri
 
onvex body, then kxkK = minf� � 0 : x 2 �Kg is3



a norm de�ning a spa
e XK with K as its unit ball. If K1 and K2 are symmetri

onvex bodies in Rn , their geometri
 distan
e d(K1;K2) is de�ned byd(K1;K2) = inffab : a; b > 0;K1 � bK2;K2 � aK1g:The natural distan
e between the n-dimensional spa
esXK1 andXK2 is the Bana
h-Mazur distan
e d(XK1 ; XK2) = inffd(K1; T (K2)) : T 2 GL(n)g:Note that d(XK1 ; XK2) is the smallest positive number d for whi
h we 
an �ndT 2 GL(n) su
h that K1 � T (K2) � dK1. In the language of geometri
 fun
tionalanalysis, if X and Y are two n-dimensional normed spa
es, thend(X;Y ) = minfkTk kT�1k : T : X ! Y is an isomorphismg:We assume that Rn is equipped with a Eu
lidean stru
ture h�; �i and denote the
orresponding Eu
lidean norm by j � j. Bn2 is the Eu
lidean unit ball and Sn�1 isthe unit sphere. The rotationally invariant probability measure on Sn�1 will bedenoted by �. The unit ball of `np is denoted by Bnp . By a 
lassi
al theorem of John[73℄ one has d(X; `n2 ) � pn for every n-dimensional normed spa
e X (see also x4.1).If K is a symmetri
 
onvex body in Rn , its polar body is de�ned by kykKÆ =maxx2K jhx; yij. Note that XKÆ = X�K : KÆ is the unit ball of the dual spa
e of X .Let K be a 
onvex body in Rn with 0 2 int(K). The radial fun
tion �K :Rnnf0g ! R+ of K is de�ned by �K(x) = maxf� > 0 : �x 2 Kg. The supportfun
tion hK : Rn ! R of K is de�ned by hK(x) = maxfhx; yi : y 2 Kg. The widthof K in the dire
tion of � 2 Sn�1 is the quantity w(K; �) = hK(�) + hK(��), andthe mean width of K is de�ned byw(K) = 12 ZSn�1 w(K; �)�(d�) = ZSn�1 hK(�)�(d�):Note that if K is symmetri
 then �K(x) = 1=kxkK and hK(x) = kxkKÆ .2.1 Isomorphi
 isoperimetri
 inequalities and 
on
entrationof measureCon
entration of measure was understood and developed as a method for the goalsof geometri
 fun
tional analysis, but it was soon realized that it was very welladapted to the needs of probability theory, asymptoti
 
ombinatori
s and 
omplex-ity. General referen
es on 
on
entration, from various viewpoints, are the followingsurveys and books: [14℄, [68℄, [69℄, [80℄, [81℄, [104℄, [110℄, [132℄.The general framework is a probability spa
e (X;A; d; �), where A is the Borel�-algebra with respe
t to a given metri
 d on X . For every A 2 A, we 
onsider thet-extension At = fx 2 X : d(x;A) � tg of A. One 
an then formulate the abstra
tisoperimetri
 problem for metri
 probability spa
es as follows: Given 0 < � < 14



and t > 0, �nd inff�(At) : A 2 A; �(A) � �g and des
ribe the sets A on whi
h thisin�mum is possibly attained. The 
omplete answer to the isoperimetri
 problem isavailable for a few but very important geometri
 examples.Spheri
al isoperimetri
 inequality: Consider the sphere Sn�1 as a metri
 prob-ability spa
e, with the geodesi
 distan
e � and the O(n)-invariant probability mea-sure �. The spheri
al isoperimetri
 inequality states that spheri
al 
aps of the formB(x; r) are the extremal sets: if A is a Borel subset of Sn�1 and �(A) = �(B(x0; r))for some x0 2 Sn�1 and r > 0, then(2:1:1) �(At) � �(B(x0; r + t))for every t > 0. This is proved by spheri
al symmetrization (see e.g. [44℄). Sin
espheri
al 
aps are easy to work with, one 
an use (2.1.1) to obtain a good lowerbound for the measure of the t-extension of an arbitrary subset of the sphere interms of its measure. The most important 
ase is when �(A) = 1=2 (see [113℄).Theorem 2.1 If A is a Borel subset of Sn+1 and �(A) = 1=2, then(2:1:2) �(At) � 1�p�=8 exp(�t2n=2)for every t > 0. 2Isoperimetri
 inequality in Gauss spa
e: Consider Rn as a metri
 probabil-ity spa
e, with the Eu
lidean distan
e j � j and the standard Gaussian probabilitymeasure 
n. The isoperimetri
 inequality in Gauss spa
e (proved by Borell andSudakov-Tsirelson, see [80℄ or [81℄ for referen
es) states that halfspa
es are the ex-tremal sets: if � 2 (0; 1), � 2 Sn�1 and H = fx 2 Rn : hx; �i � sg is a halfspa
ein Rn with 
n(H) = �, then, for every t > 0 and every Borel subset A of Rn with
n(A) = �, one has(2:1:3) 
n(At) � 
n(Ht):A dire
t 
omputation shows the following.Theorem 2.2 If 
n(A) � 1=2 then for every t > 0(2:1:4) 
n(At) � 1� 12 exp(�t2=2): 2These examples lead to the de�nition of the 
on
entration fun
tion of a metri
probability spa
e. For every t � 0 we set(2:1:5) �(X; t) := 1� inff�(At) : �(A) � 1=2g:P. L�evy [82℄ realized the role of the dimension in the spheri
al isoperimetri
 in-equality (2.1.2): if we �x � = 1=2 and t > 0, as the dimension n in
reases toin�nity the measure of the 
omplement of At de
reases exponentially to zero for5



every subset A of Sn�1 with �(A) = 1=2. Following this basi
 example, we say thata sequen
e (Xn;An; dn; �n) of metri
 probability spa
es is a normal L�evy familywith 
onstants (
1; 
2) if(2:1:6) �(Xn; t) � 
1 exp(�
2t2n):There are many examples of normal L�evy families whi
h have found appli
ationsin the asymptoti
 theory of �nite dimensional normed spa
es. For some importantmetri
 probability spa
es X , the exa
t solution to the isoperimetri
 problem was(and still is) unknown: new and very interesting te
hniques were invented in order toestimate the 
on
entration fun
tion �(X; t). Natural families of obvious geometri
importan
e are the following.1. The family of the orthogonal groups (SO(n); �n; �n) equipped with the Hilbert-S
hmidt metri
 and the Haar probability measure is a L�evy family with 
onstants
1 =p�=8 and 
2 = 1=8.2. The family Xn =Qmni=1 Sn with the natural Riemannian metri
 and the produ
tprobability measure is a L�evy family with 
onstants 
1 =p�=8 and 
2 = 1=2.3. All homogeneous spa
es of SO(n) inherit the property of forming L�evy families.In parti
ular, any family of Stiefel manifolds Wn;kn or any family of Grassmanmanifolds Gn;kn is a L�evy family with the same 
onstants as in 1. These �rst threeexamples appear in [70℄.4. The spa
es En2 = f�1; 1gn with the normalized Hamming distan
e d(�; �0) =#fi � n : �i 6= �0ig=n and the normalized 
ounting measure form a L�evy familywith 
onstants 
1 = 1=2 and 
2 = 2. This follows from an isoperimetri
 inequalityof Harper [72℄ and it was �rst stated in this form and used in [5℄.5. The group �n of permutations of f1; : : : ; ng equipped with the normalizedHamming distan
e d(�; �) = #fi � n : �(i) 6= �(i)g=n and the normalized 
ountingmeasure satis�es �(�n; t) � 2 exp(�t2n=64). This was proved by Maurey [94℄ witha martingale method, whi
h was further developed by S
he
htman [131℄.An equivalent way to express 
on
entration is by means of Lips
hitz fun
tions (see[80℄ or [113℄).Theorem 2.3 Let (X;A; d; �) be a metri
 probability spa
e. If f : X ! R is aLips
hitz fun
tion with 
onstant 1, then(2:1:7) � (fx 2 X : jf(x)�Mf j > tg) � 2�(X; t)where Mf is the L�evy median of f . 2Therefore, if the 
on
entration fun
tion ofX is small, Lips
hitz fun
tions are almost
onstant on almost all spa
e. This observation has very important appli
ations tothe study of the normal L�evy families above.Many problems whi
h arise in the asymptoti
 geometri
 analysis require theproof of the existen
e of some geometri
 stru
ture with pres
ribed behaviour. The6



basi
 idea of the probabilisti
 method is to show that a random element of a suitablemetri
 probability spa
e has the required properties. The method (whi
h was �rstused in 
ombinatorial geometry and graph theory) works be
ause the desirablestru
ture is quite often the typi
al one. The 
on
entration phenomenon provides apowerful tool for the probabilisti
 method, sin
e it enables us to identify the typi
alstru
ture in many situations. The �rst appearan
e of this idea in Analysis was inthe proof of Dvoretzky's theorem in [97℄, whi
h we dis
uss in the next subse
tion.2.2 Dvoretzky type theoremsDvoretzky's theorem [40℄, [41℄ states that every high-dimensional normed spa
e hasa subspa
e of \large dimension" whi
h is well isomorphi
 to the Eu
lidean spa
e. Weuse the terminology \Dvoretzky type theorems" for a wide family of results whi
hexhibit large ni
e substru
tures inside normed spa
es of suÆ
iently high dimension.The 
on
rete estimates regarding the di�erent parameters whi
h enter in this typeof results have be
ome a 
ru
ial and important topi
 in the theory. There are manytheorems whi
h provide su
h estimates and even asymptoti
 formulas dependingon di�erent parameters.The starting point for Dvoretzky's original theorem is a lemma of Dvoretzkyand Rogers [42℄, whi
h shows that for every symmetri
 
onvex body K whosemaximal volume ellipsoid is Bn2 (see x4.1), there exist k ' pn and a k-dimensionalsubspa
e Ek of Rn su
h that Bn2 \Ek � K \Ek � 2Qk, where Qk is the unit 
ubein Ek with respe
t to a suitable 
oordinate system. Grothendie
k asked whetherit is possible to repla
e Qk by Bn2 \ Ek in this statement, so that k will be stillin
reasing to in�nity with n. Dvoretzky's theorem provides an aÆrmative answerto this question. The best known version 
an be stated in the language of geometri
fun
tional analysis as follows.Theorem 2.4 Let X be an n-dimensional normed spa
e and " > 0. There existan integer k � 
"2 logn and a k-dimensional subspa
e Ek of X whi
h satis�esd(Ek ; `k2) � 1 + ". 2The example of `n1 shows that the logarithmi
 dependen
e of k on n is bestpossible for small values of ". The exa
t relation between n, " and k has not beensettled. It seems reasonable that `n1 represents the worst 
ase. This would meanthat, for �xed k and ", every n-dimensional normed spa
e has a k-dimensionalsubspa
e whi
h is (1 + ")-isomorphi
 to `k2 , provided that n � 
(k)"� k�12 . Theproblem is very interesting even for small values of k (a
tually, it is 
ompletelyunderstood only in the 
ase k = 2) and has 
onne
tions with other bran
hes ofmathemati
s (algebrai
 topology, number theory, harmoni
 analysis, see [103℄ for adis
ussion).The proof of Theorem 2.4 given in [97℄ (with a slightly worse dependen
e on") uses the 
on
entration of measure on Sn�1. We start with an n-dimensionalnormed spa
e X , and we may assume that Bn2 is the ellipsoid of maximal volume7



ins
ribed in the unit ball K of X . Then, the fun
tion r : Sn�1 ! R de�ned byr(x) = kxk is Lips
hitz 
ontinuous with 
onstant 1. If Lr is the L�evy median of r,Theorems 2.1 and 2.3 imply that for every t 2 (0; 1),(2:2:1) � �x 2 Sn�1 : jr(x) � Lrj � tLr� � 2
1 exp(�
2t2L2rn):where 
1; 
2 > 0 are absolute 
onstants. Sin
e the fun
tion r(x) = kxk is almost
onstant and equal to Lr on a subset of the sphere whose measure is pra
ti
allyequal to 1, one 
an extra
t a subsphere on whi
h r is almost 
onstant. This isdone by a dis
retization argument via nets of spheres (see [54℄ for an outline of theargument).Theorem 2.5 Let X = (Rn ; k � k) and assume that kxk � jxj for all x 2 Rn . Forevery " 2 (0; 1) we 
an �nd k � 
3"2L2rn and a k-dimensional subspa
e F of Rnsu
h that(2:2:3) (1 + ")�1=2Lrjxj � kxk � Lr(1 + ")1=2jxjfor every x 2 F . 2If Y = (F; k � k), it is 
lear that d(Y; `k2) � 1 + ", and what remains is to give alower bound for Lr. It is easier to work with the expe
tation(2:2:4) M =M(X) = ZSn�1 kxk �(dx);of the norm on the sphere, and a simple 
omputation shows that Lr 'M .We now make full use of the fa
t that Bn2 is the ellipsoid of maximal volumeins
ribed in K. By the Dvoretzky-Rogers lemma (see [42℄), we 
an �nd an or-thonormal basis fv1; : : : ; vng with kvik � 1=2 for all i � n=2. One may 
he
kthat(2:2:5) M = ZSn�1 k nXi=1 aivik�(da) � 12 ZSn�1 max1�i�n=2 jaij�(da) � 
plogn=n;where 
 > 0 is an absolute 
onstant. Going ba
k to Theorem 2.5 we 
on
lude theproof of Theorem 2.4. 2Let X = (Rn ; k � k) be an n-dimensional normed spa
e. We denote by b thesmallest 
onstant for whi
h kxk � bjxj holds for every x 2 Rn . Let k(X) be thelargest positive integer k � n for whi
h Ek 2 Gn;k satis�es(2:2:6) (M=2)jxj � kxk � (2M)jxj; x 2 Ekwith probability greater than 1� e�k. The proof of Theorem 2.4 shows that thereexists k � 
1n(M=b)2 su
h that a random k-dimensional subspa
e Ek of X hasthis property. In other words, k(X) � 
1n(M=b)2. It was observed in [115℄ thatthis inequality is in fa
t an \asymptoti
 formula": for every n-dimensional normedspa
e X one has k(X) � Cn(M=b)2. 8



Theorem 2.6 Let X be an n-dimensional normed spa
e. Then, k(X) ' n(M=b)2.2 The estimate k(X) � 
n(M=b)2 allows one to 
he
k that in several situationsthe dimension of \spheri
al se
tions" of high-dimensional 
onvex bodies may bemu
h larger than logarithmi
 in the dimension. For example, one has k(`np ) ' n if1 < p < 2 and k(`nq ) ' pqn2=q if q > 2 (see [44℄ or [113℄).It is interesting to 
he
k the strength of Theorem 2.5 in the parti
ular exampleof `n1 . For every " 2 (0; 1) there exists 
(") > 0 su
h that `n1 has a subspa
e Ek ofdimension k � 
(")n with d(Ek ; `k2) � 1+". Be
ause of the nature of the argument,we have subspa
es of `n1 of some dimension proportional to n whi
h are \almostisometri
" to Eu
lidean, but no information on d(Ek ; `k2) if k ex
eeds some �xedproportion of n. An isomorphi
 Dvoretzky type theorem for `n1 was proved byKashin [74℄: there exist 
(�)-Eu
lidean subspa
es of `n1 of dimension [�n℄, for every� 2 (0; 1). Szarek realized that this property of `n1 is a 
onsequen
e of the fa
t thatits unit ball has bounded \volume ratio". This notion was formally introdu
ed in[143℄: The volume ratio of a symmetri
 
onvex body K in Rn is the parameter(2:2:7) vr(K) = inf �� jKjjEj�1=n : E � K�;where the inf is taken over all ellipsoids E 
ontained in K. A simple 
omputationshows that vr(Bn1 ) � C for some absolute 
onstant C > 0. Then, Kashin's theoremadmits the following generalization [136℄, [143℄.Theorem 2.7 Let K be a symmetri
 
onvex body in Rn with vr(K) = A. Forevery k � n there exists a k-dimensional subspa
e Ek of XK su
h that(2:2:8) d(Ek ; `k2) � (
A) nn�k ;where 
 > 0 is an absolute 
onstant. 2Isomorphi
 versions of Dvoretzky's theorem for arbitrary n-dimensional normedspa
es were studied by Milman and S
he
htman [114℄. There exists an absolute
onstant C > 0 su
h that if dimX = n and C logn � k < n, then X has ak-dimensional subspa
e Ek with d(Ek; `k2) � Cpk= log(n=k).We 
lose this subse
tion with a re
ent result of Rudelson and Vershynin [129℄,whi
h is di�erent in nature but very 
lose in spirit to the Dvoretzky type theoremswe dis
ussed. Let (T; �; d) be a metri
 probability spa
e whose 
on
entration fun
-tion satis�es the \normal L�evy estimate" �(T; t) � 
1 exp(�
2t2n) for some n andall t > 0. In order to avoid degenerate 
ases we also assume that there exist "; Æ > 0su
h that the "-neighborhood of any point in T has measure smaller than 1� Æ (Tis ("; Æ)-regular). We say that (T; d) is K-Lips
hitz embedded into a normed spa
eX if there exists F : T ! X su
h that d(x; y) � kF (x) � F (y)k � K � d(x; y) forall x; y 2 T . Assume that X is n-dimensional. If an ("; Æ)-regular metri
 proba-bility spa
e as above is K-Lips
hitz embedded into X , then k(X) � 
 � "ÆK �4 n. In9



other words, X must have Eu
lidean subspa
es of proportional dimension. Thisfa
t underlines the importan
e of the 
on
entration of measure phenomenon on thesphere: if some metri
 probability spa
e with a normal 
on
entration fun
tion wellembeds into a normed spa
e, this must be also true for the Eu
lidean spa
e.2.3 The `-position and Pisier's inequalityOne of the fundamental fa
ts in the lo
al theory of normed spa
es is Pisier's estimateon the K-
onvexity 
onstant. Combined with important results of Lewis, Figiel andTom
zak-Jaegermann, it leads to the following geometri
 statement: every 
onvexbody K in Rn has an aÆne image TK of volume 1 whose mean width satis�es the\reverse Urysohn inequality"(2:3:1) w(TK) � 
pn logn;where 
 > 0 is an absolute 
onstant. In this subse
tion we give a very 
on
isedes
ription of this 
ir
le of ideas.Let X be an n-dimensional normed spa
e, and let � be a norm on L(`n2 ; X).The tra
e dual norm �� of � is de�ned on L(X; `n2 ) by(2:3:2) ��(v) = supftr(vu) : �(u) � 1g:The lemma of Lewis [83℄ applies to any pair of tra
e dual norms.Theorem 2.8 For any norm � on L(`n2 ; X), there exists u : `n2 ! X su
h that�(u) = 1 and ��(u�1) = n. 2The `-norm on L(`n2 ; X) was de�ned by Figiel and Tom
zak-Jaegermann in [45℄:Let fg1; : : : ; gng be a sequen
e of independent standard Gaussian random variableson some probability spa
e, and let fe1; : : : ; eng be the standard orthonormal basisof Rn . If u : `n2 ! X , the `-norm of u is de�ned by(2:3:3) `(u) =  Ek nXi=1 giu(ei)k2!1=2 :A standard 
omputation gives(2:3:4) `(u) ' pnw((u�1)�(KÆ));where K is the unit ball of X . This formula 
onne
ts the `-norm to the meanwidth. It is more instru
tive to repla
e the Gaussians by the Radema
her fun
tionsri : En2 ! f�1; 1g de�ned by ri(") = "i, where En2 = f�1; 1gn is viewed as aprobability spa
e with the uniform measure. An inequality of Maurey and Pisier(see [113℄ or [147℄) shows that(2:3:5) `(u) '  ZEn2 k nXi=1 ri(�)u(ei)k2d�!1=210



up to a plogn-term.Consider the Walsh fun
tions wA(") =Qi2A ri("), where A � f1; : : : ; ng. It isnot hard to see that every fun
tion f : En2 ! X is uniquely represented in the form(2:3:6) f(�) =XA wA(�)xA;for some xA 2 X . The spa
e of all fun
tions f : En2 ! X be
omes a Bana
h spa
ewith the norm(2:3:7) kfkL2(X) =  ZEn2 kf(�)k2d�!1=2The Radema
her proje
tion Rn : L2(X) ! L2(X) is the operator sending f =PwAxA to the fun
tion Rnf := Pni=1 rixfig. Denote by Rad(X) the norm ofthis proje
tion. Pisier [119℄ gave a sharp estimate in terms of the Bana
h-Mazurdistan
e d(X; `n2 ).Theorem 2.9 Let X be an n-dimensional normed spa
e. Then,(2:3:8) Rad(X) � 
 log[d(X; `n2 ) + 1℄;where 
 > 0 is an absolute 
onstant. 2Figiel and Tom
zak-Jaegermann [45℄ had previously shown the relevan
e of thisestimate to the study of the `-norm.Theorem 2.10 Let X be an n-dimensional normed spa
e. There exists u : `n2 ! Xsu
h that(2:3:9) `(u)`((u�1)�) � nRad(X):Let us brie
y sket
h the proof. From Theorem 2.8, we 
an �nd an isomorphismu : `n2 ! X su
h that `(u)`�(u�1) = n. On the other hand,(2:3:10) ` �(u�1)�� =  ZEn2 k nXi=1 ri(�)(u�1)�(ei)k2�d�!1=2 :There exists a fun
tion � : En2 ! X , whi
h 
an be represented in the form � =PA wAxA and has norm k�kL2(X) = 1, su
h that(2:3:11) `((u�1)�) = 
 nXi=1 ri(u�1)�(ei); �� = nXi=1h(u�1)�(ei); xfigi:If we de�ne v : `n2 ! X by v(ei) = xfig, we easily 
he
k that(2:3:12) `((u�1)�) = tr(u�1v) � `�(u�1)`(v):11



On observing that(2:3:13) `(v) = kRn(�)kL2(X) � Rad(X)k�kL2(X) = Rad(X);we get(2:3:14) `(u)`((u�1)�) � `(u)`�(u�1)Rad(X) = nRad(X):This 
on
ludes the proof. 2Combining the above with John's estimate d(X; `n2 ) � pn [73℄, we 
an give anupper bound for the \minimal mean width" of a symmetri
 
onvex body (see x4.1for a dis
ussion on di�erent \positions" of 
onvex bodies).Theorem 2.11 If K is a symmetri
 
onvex body in Rn , there exists a linear image~K of K with volume j ~Kj = 1 and mean width(2:3:15) w( ~K) � 
pn logn;where 
 > 0 is an absolute 
onstant.For the proof, 
onsider the operator u : `n2 ! XK in Theorem 2.10 and set~K = (u�1)�(K). In view of (2.3.4), John's theorem and Theorem 2.9, we have(2:3:16) w( ~K)w( ~KÆ) � 
1 logn:Computing the volume of ~K in polar 
oordinates and using H�older's inequality, we
he
k that w( ~KÆ)�1 � 
2pnj ~Kj1=n. It follows that(2:3:17) w( ~K) � 
3pn lognj ~Kj1=n:Normalizing the volume we obtain the assertion of the theorem. A simple argumentbased on the Rogers-Shephard inequality [125℄ shows that the symmetry of K isnot ne
essary.2.4 Low M�-estimate and the quotient of subspa
e theoremThe Low M�-estimate is the �rst step towards a general theory of se
tions andproje
tions of symmetri
 
onvex bodies in Rn with dimension proportional to n.In geometri
 terms, it says that for �xed � 2 (0; 1), the diameter of a random[�n℄-dimensional se
tion of the body K is 
ontrolled by its mean width(2:4:1) M� :=M(X�) = ZSn�1 kxk��(dx)up to a fun
tion depending only on �. 12



Theorem 2.12 (Milman, [98℄, [99℄) There exists a fun
tion f : (0; 1) ! R+ withthe following property: for every � 2 (0; 1) and every n-dimensional normed spa
eX, a random subspa
e H 2 Gn;[�n℄ satis�es(2:4:2) f(�)M� jxj � kxkfor every x 2 H.The pre
ise dependen
e on � was established in a series of papers. Theorem 2.12was originally proved in [98℄ and a se
ond proof using the isoperimetri
 inequalityon Sn�1 was given in [99℄, with a bound of the form f(�) � 
(1 � �). Pajor andTom
zak-Jaegermann [123℄ later showed that one 
an take f(�) � 
p1� � (seealso [106℄ for a di�erent proof with this dependen
e on �). Finally, Gordon [64℄proved that the theorem holds true with(2:4:3) f(�) � p1� ��1 +O� 1(1� �)n�� :If we dualize the statement of the theorem, we get that a random [�n℄-dimensionalproje
tion of KX 
ontains a ball whose radius is of the order of 1=M . For a randomH 2 Gn;[�n℄ we have(2:4:4) PH (KX) � f(�)M Bn2 \H:The next step is the quotient of subspa
e theorem (Milman, [100℄). In geometri
terms, it says that for every symmetri
 
onvex body K in Rn and any � 2 [1=2; 1),we 
an �nd subspa
es G � H with dimG � �n and an ellipsoid E in G su
h that(2:4:5) E � PG(K \H) � 
(1� �)�1j log(1� �)jE :Theorem 2.13 [100℄ Let X be an n-dimensional normed spa
e and let � 2 [1=2; 1).Then, there exist subspa
es H � G of X su
h that k = dim(H=G) � �n and(2:4:6) d(H=G; `k2) � 
(1� �)�1j log(1� �)j:The proof of the theorem is based on the LowM�-estimate and an iteration pro-
edure in whi
h Pisier's inequality plays a 
ru
ial role. We show the idea by des
rib-ing the �rst step. We may assume that KX satis�es the assertion of Theorem 2.10:be
ause of (2.3.4) this 
an be written in the formM(X)M�(X) � 
 log[d(X; `n2 )+1℄.Let � 2 (0; 1). Theorem 2.12 shows that on a random [�n℄-dimensional subspa
eH of X we have(2:4:7) 
1p1� �M�(X) jxj � kxk � bjxj:It is easy to 
he
k that for most H 2 Gn;[�n℄ we have(2:4:8) M(H) � 
2M(X):13



If H satis�es both 
onditions, repeating the same argument for H�, we may �nd asubspa
e G of H� with dimG = k � �2n and(2:4:9) 
3p1� �M(X) jxj � 
1p1� �M�(H�) jxj � kxkH� � M�(X)
1p1� � jxjfor every x 2 G. In other words, F := H=G satis�es(2:4:10) d(F; `k2) � 
4(1� �)�1M(X)M�(X) � 
(1� �)�1 log[d(X; `n2 ) + 1℄:To set up the iteration, we write QS(X) for the 
lass of all quotient spa
es of asubspa
e of X , and de�ne a fun
tion f : (0; 1)! R+ by(2:4:11) f(�) = inffd(F; `k2) : F 2 QS(X); dimF � �ng:The argument we have just des
ribed proves that(2:4:12) f(�2�) � 
(1� �)�1 log f(�):This is enough to estimate the fun
tion f as in Theorem 2.13. 2It is natural to ask whether the estimate on the diameter of proportional di-mensional se
tions given by Theorem 2.12 is pre
ise in some sense. From the
omputational geometry point of view it would be desirable to have a simple wayto determine the diameter of a random se
tion of �xed proportion. One 
an easilyrephrase the Low M�-estimate as follows [108℄: If r1 is the solution of the equation(2:4:13) M�(K \ sBn2 ) = f(�)s;then for a random [�n℄-dimensional se
tion K \H of K we have(2:4:14) diam(K \H) � 2r1:In view of Gordon's proof of Theorem 2.12, we 
an 
hoose f(�) = (1 � ")p1� �for any " 2 (0; 1), and then (2:4:14) is satis�ed for all H in a subset of Gn;[�n℄ ofmeasure greater than 1 � 
1 exp(�
2"2(1 � �)n). It turns out that the fun
tions 7! M�(K \ sBn2 ) 
an be used for a dual estimate [52℄. There exists a se
ondfun
tion g : (0; 1) ! R with the following property: if � 2 (1=2; 1) and if r2 is thesolution of the equation M�(K \ sBn2 ) = g(�)s, then a random [�n℄-dimensionalse
tion K \H of K satis�es diam(K \H) � 2r2, This gives a \
on�den
e interval"[r2; r1℄ for diam(K \H), whi
h may be viewed as an asymptoti
 formula. What isessential is of 
ourse that the fun
tions f and g 
an be des
ribed analyti
ally andthey do not depend on the dimension n or on the body K.Another 
onsequen
e of the Low M�-estimate is that very a

urate linear rela-tions hold true in full generality for the diameter of se
tions of a body and its polar.This fa
t 
an be made pre
ise in the following way [107℄. Let t(r) = t(XK ; r) be thegreatest integer k for whi
h a random subspa
e H 2 Gn;k satis�es diam(K \H) �2r. If t�(r) = t(X�K ; r), then for any � > 0 and any r > 0 we have(2:4:15) t(r) + t�� 1�r� � (1� �)n� C;where C > 0 is an absolute 
onstant. 14



2.5 Coordinate theoryWe �x an orthonormal basis fe1; : : : ; eng of Rn and for every non empty � �f1; : : : ; ng we 
onsider the 
oordinate subspa
e R� = spanfej : j 2 �g. The follow-ing 
oordinate version of the Low M�-estimate was established by Giannopoulosand Milman in [51℄: If K is an ellipsoid in Rn , then for every � 2 (0; 1) we 
an �nd� � f1; : : : ; ng of 
ardinality j�j � (1� �)n su
h that(2:5:1) PR�(K) � [�= log(1=�)℄1=2M(K) Bn2 \ R� :This observation (whi
h has its origin in [48℄, [49℄) has 
onsequen
es for the ques-tion of the maximal Bana
h-Mazur distan
e to the 
ube (see also the proportionalDvoretzky-Rogers fa
torization theorem in x6.1). The proof has its roots in an iso-morphi
 version of the Sauer-Shelah lemma from Combinatori
s, whi
h was provedby Szarek and Talagrand [141℄ (see also [3℄, [142℄), and is 
lose in spirit to thetheory of restri
ted invertibility of operators whi
h was developed by Bourgain andTzafriri [30℄.As the example of the 
ube shows, one 
annot have a 
oordinate low M�-estimate for an arbitrary 
onvex body. Under assumptions whi
h guarantee theexisten
e of \large ellipsoids" of any proportional dimension inside the body, one
an use the above ellipsoidal result and obtain analogues of (2.5.1). This is donein [51℄ for bodies whose volume ratio or 
otype-2 
onstant is well-bounded. Theseresults 
an be applied to give estimates on the number of points with \many"integer 
oordinates inside a given 
onvex body.Very re
ently, Rudelson and Vershynin [130℄ obtained a new family of 
oordinateresults. Assume that K is a symmetri
 
onvex body in Rn su
h that the norm k � kindu
ed by K satis�es the 
onditions kxk � jxj for all x and M = M(K) � Æ forsome positive 
onstant Æ > 0. Then, there exist two positive numbers s and t with
Æ � t � 1 and st � Æ= log3=2(2=Æ) and a subset � of f1; : : : ; ng with 
ardinalityj�j � s2n, su
h that(2:5:2) 

Xi2� aiei

 � 
tpnXi2� jaijfor all 
hoi
es of reals ai, i 2 �. From this statement one 
an re
over Elton'stheorem about spa
es whi
h 
ontain large dimensional 
opies of `1's [43℄ in anoptimal form.Note that the spa
e X = (Rn ; k � k) satis�es k(X) ' n(M=b)2 � Æn. In otherwords, the result 
on
erns spa
es whi
h have Eu
lidean subspa
es of some dimensionproportional to n (depending on Æ). The estimate in (2.5.2) shows that(2:5:3) K \ R� � 
(Æ)pnB�1 :This may be viewed as a 
oordinate version of the low M�-estimate for this 
lassof bodies. The formulation is dual to the one in (2.5.1): one now 
onsiders se
tions15



instead of proje
tions. The 
ondition k(X) ' n is in some sense dual to theassumptions on the volume ratio or the 
otype-2 
onstant in [51℄.To feel the analogy even more, we state the following \
ondition-free" versionof the result in [130℄: Let K be a symmetri
 
onvex body in Rn with Bn2 � K.There exists a subset � of f1; : : : ; ng with 
ardinality j�j � 
f(M)n, su
h that(2:5:4) M � (K \ R� ) �pj�jB�1 ;where f(x) = x log�3=2(2=x). Compare with the lowM�-estimate: one has se
tionsof the body inside an appropriate `1-ball on 
oordinate subspa
es (this is weaker,but the example of `n1 shows that it is natural). Also, the parameter 1=M� is re-pla
ed byM (whi
h is stronger). However, the estimates hold for some proportionaldimensions and not for any proportion.All these are still preliminary but interesting results whi
h show that a 
oor-dinate theory may be further developed in the future. This would have several
onsequen
es for the theory.2.6 Covering resultsLet K1 and K2 be two 
onvex bodies in Rn . The 
overing number N(K1;K2) isthe minimal 
ardinality of a �nite subset A of Rn with the property(2:6:1) K1 � A+K2 = [x2A(x+K2):Note the multipli
ative inequality N(K1; stK3) � N(K1; sK2)N(K2; tK3) for allt; s > 0.If we require A � K1 we get the variant ~N(K1;K2). If K2 is symmetri
, it iseasy to see that ~N(K1; 2sK2) � N(K1; sK2) � ~N(K1; sK2) for every s > 0. Thestandard way to estimate ~N(K1;K2) is to 
onsider a maximal subset fx1; : : : ; xNgofK1 any two points of whi
h are at distan
e greater than or equal to 1 with respe
tto k � kK2 . Then, K1 � [(xi +K2) and this shows that ~N(K1;K2) � N .The most 
lassi
al estimate on 
overing numbers is Sudakov's inequality whi
hgives a bound on N(K; tBn2 ) in terms of the mean width of K.Theorem 2.14 Let K be a 
onvex body in Rn . For every t > 0,(2:6:2) logN(K; tBn2 ) � 
n (w(K)=t)2 ;where 
 > 0 is an absolute 
onstant.This fa
t is an immediate translation of an inequality of Sudakov [135℄ onthe expe
tation of the supremum of a Gaussian pro
ess (this in turn follows fromSlepian's lemma). Let Y = (Yx)x2A be a Gaussian pro
ess and let � denote the16



indu
ed semimetri
 on T . If M(A; t) is the largest possible number of elements ofA whi
h are t-separated, then(2:6:3) E supx2A Yx � 2�1=2�(M(A; t)) log1=2(M(A; t))t;where �(n) = 0:648 for 1 � n � 23 and �(n) = 21=2 � logn�1=2 for 24 � n(see [85℄, Se
tion 14). A
tually, the inequality is true for the sequen
e �(n) =21=2 � log logn=(23=2 logn) +O(1= logn) as n!1 (see [47℄).Let g1; : : : ; gn be independent standard Gaussian random variables on someprobability spa
e and let fe1; : : : ; eng be an orthonormal basis in Rn . If we 
onsiderthe Gaussian pro
ess Yx = hP giei; xi, x 2 K, then the indu
ed metri
 on K is theEu
lidean one and the estimates above show that, asymptoti
ally,(2:6:4) log1=2(N(K; tBn2 ))t � EkX gieik�;whi
h gives (2.6.2) with a 
onstant 
 = 
n ! 1 as n!1.A dual inequality was proved by Pajor and Tom
zak-Jaegermann [123℄.Theorem 2.15 Let K be a symmetri
 
onvex body in Rn . For every t > 0,(2:6:5) logN(Bn2 ; tK) � 
n (w(KÆ)=t)2 ;where 
 > 0 is an absolute 
onstant.A simple proof of this fa
t was given by Talagrand (see [81℄ or [54℄). FromTheorem 2.15 one 
an dedu
e Sudakov's inequality with a duality argument ofTom
zak-Jaegermann [146℄.We 
lose this subse
tion with some information on the duality 
onje
ture forthe entropy numbers of operators. The 
onje
ture, whi
h was stated by Piets
h[118℄, asserts that if X;Y are Bana
h spa
es, if T : X ! Y is a 
ompa
t operatorand if N(T; ") denotes the 
overing number N(T (BX); "BY ), then(2:6:6) b�1 logN(T; a�1") � logN(T �; ") � b logN(T; a")for every " > 0, where a; b > 0 are absolute 
onstants, and T � is the adjointoperator of T . Until re
ently, this 
onje
ture had been veri�ed only under strongassumptions for both spa
es X and Y (see [65℄ and [123℄). In the 
ase where oneof the two spa
es is a Hilbert spa
e, the 
onje
ture is equivalent to the followingstatement about 
overing numbers of 
onvex bodies: There exist two 
onstantsa; b > 0 su
h that(2:6:7) 1b logN(Bn2 ; a�1KÆ) � logN(K;Bn2 ) � b logN(Bn2 ; aKÆ)for every symmetri
 
onvex body K in Rn .17



A weaker but general duality inequality was proved by K�onig and Milman [79℄.Using the reverse Santal�o and Brunn-Minkowski inequalities (see x5.2) they showedthat(2:6:8) 
�1N(KÆ2 ;KÆ1 )1=n � N(K1;K2)1=n � 
N(KÆ2 ;KÆ1 )1=nfor every pair of symmetri
 
onvex bodies K1 and K2 in Rn . Note that this inequal-ity proves the duality 
onje
ture in the 
ase where the logarithm of the 
overingnumbers is large enough with respe
t to the dimension n.Very re
ently, Artstein, Milman and Szarek [7℄, [8℄ proved (2.6.7) in full gener-ality. This settles the duality 
onje
ture in the 
ase either X or Y = H (a Hilbertspa
e). The proof 
onsists of three steps: Given a symmetri
 
onvex body K in Rn ,in the �rst step one shows that there exists a parameter 
 depending on K su
hthat N(K;Bn2 ) � N(Bn2 ; 
�1KÆ)3 and N(Bn2 ; 
KÆ) � N(K;Bn2 )2, whi
h is \the
onje
ture up to 
". The idea is to proje
t onto a random k-dimensional subspa
e:one knows that 
-separated sets of points are mapped onto 
pk=n-separated setsunder su
h random proje
tions, so the information on 
overing numbers is keptduring this pro
ess (with the 
ost of 
). The dimension k is 
hosen so that theresult of [79℄ will be enough to give duality for the proje
ted bodies.This step 
an be iterated, ea
h time applied to an interse
tion of some multipleof K with a ball of suitable radius (here, a variant of Tom
zak's duality argument isused). As a result, N(K;Bn2 ) and N(Bn2 ;KÆ) are bounded by produ
ts of 
overingnumbers of polar bodies. In the last step, ea
h produ
t 
an be \teles
oped" to aprodu
t of only two or three terms, whi
h establishes duality.2.7 Global theory and asymptoti
 formulasLet K be a (symmetri
) 
onvex body in Rn . For a �xed dimension 1 � l � n
onsider the expe
ted value(2:7:1) Dl(K) = ZGn;l diam(PE(K))�n;l(dE)of the diameter of the orthogonal proje
tion PE(K) onto E 2 Gn;l. Theorem 2.5shows that there is a 
riti
al value k� = n�w(K)=diam(K)�2 su
h that: if 1 � l � k�then(2:7:2) 
w(K) � Dl(K) � Cw(K);while if k� � l � n, then(2:7:3) 
pl=n diam(K) � Dl(K) � Cpl=n diam(K):Observe the phase transition at k�: the random diameter of l-dimensional proje
-tions is stabilized sin
e below the 
riti
al dimension k� maximal symmetry has beena
hieved: most proje
tions of the body have be
ome isomorphi
 Eu
lidean balls ofradius w(K)=2. 18



The same situation appears if one 
onsiders a dual \global problem". We wantto approximate a Eu
lidean ball by Minkowski averages of rotations(2:7:4) Kt = 1t �u1(K) + � � �+ ut(K)�of the body K. One way is to �x an integer t � 2 and ask for the in�mum ofdiam(Kt) or the expe
ted value Ediam(Kt) over all 
hoi
es of u1; : : : ; ut 2 O(n).It turns out (see [115℄) that both quantities are of the same order, and(2:7:5) E diam(Kt) ' diam(K)ptif 1 � t � t� = �(diam(K)=w(K))2�, while(2:7:6) E diam(Kt) ' w(K)if t� � t � n. Again, observe the phase transition at t�. Stabilization o

urs att ' t� be
ause above this integer Kt ' w(K)Bn2 with very high probability: thenorm of a random Kt has already be
ome roughly Eu
lidean. Note also that, inthis global pro
ess of forming averages of rotations, the \best possibility" (in�mumof the diameter) 
oin
ides with the random one (expe
tation of the diameter).The fa
t that the \asymptoti
 formula" k�t� ' n holds true for every 
onvexbody K is only one instan
e of a remarkable duality. Lo
al statements 
an betranslated to global ones, and a very useful intuition 
an be developed through their
omparison. However, the proofs of dual statements are not \dire
t translations"of ea
h other, and they should often be invented from the start.We pro
eed to another example of phase transition in whi
h the stabilizedbehaviour is of a di�erent nature. Let k � k be a norm on Rn , and let a; b be thesmallest positive 
onstants for whi
h (1=a)jxj � kxk � bjxj is satis�ed for everyx 2 Rn . For every q � 1 
onsider the parameter(2:7:7) Mq = �ZSn�1 kxkq�(dx)�1=q :Then, if k(X) = n(M1=b)2 one has the following behaviour of Mq (see [89℄):(a) Mq 'M1 if 1 � q � k(X).(b) Mq ' bpq=n if k(X) � q � n.(
) Mq ' b if q > n.The global q-approximation results are as follows: write(2:7:8) kxkq;t =  1t tXi=1 kuixkq!1=q ;where u1; : : : ; ut 2 O(n), and let tq be the smallest integer for whi
h there existu1; : : : ; ut 2 O(n) su
h that(2:7:9) (Mq=2)jxj � kxkq;t � (2Mq)jxj:19



Then, for the optimal value of tq a random 
hoi
e of u1; : : : ; ut satis�es (2.7.9) upto some universal 
onstants, and tq ' t1 for 1 � q � 2, while t2=qq ' t1(M1=Mq)2 forq � 2. If we insert the formulas for Mq in the above relations, we 
he
k that thereare two phase transitions whi
h o

ur on the interval (1; n) at the values q = k(X)and q = 2.In this more 
ompli
ated example of pro
ess, the initial \
onstant behaviour"of Mq may be viewed as a 
on
entration phenomenon: the norm is almost 
onstanton the sphere and this 
reates \inertia" in the behaviour of Mq for small values ofq. Our next example is a problem of approximation: write I = [�x; x℄ for aninterval, where x 2 Sn�1. We would like to approximate the Eu
lidean ball Bn2by zonotopes KN = 1N PNi=1 Ii. If we �x the 
ardinality N of summands and askfor the best approximation A(N;n) := inffd(KN ; Bn2 ) : x1; : : : ; xN 2 Sn�1g, thenwe have A(N;n) = 1 if N < n, A(N;n) = pn if N = n, and A(N;n) = C(�) ifN = [�n℄ for some � > 1 (see Kashin, [74℄). The behavior of C(�) (say, for � < 2)was determined by Gluskin [62℄:C(�) ' min�pn;q� log(1=(�� 1))�=(�� 1)�:Observe that we have a sharp threshold at the value N = n.The same problem 
an be generalized as follows: let k � k be the norm de-�ned by a symmetri
 
onvex body K on Rn . Consider bodies of the form KN =1N PNi=1 ui(K), where ui 2 O(n). The question is what is the minimal value ofN for whi
h there exist u1; : : : ; uN 2 O(n) su
h that e.g. d(KN ; Bn2 ) � 4. Theanswer is N0 ' t� = (diam(K)=w(K))2, and typi
ally we have a sharp threshold forinf d(KN ; Bn2 ) at this point. So, 
hanging our parameter of study from \minimaldiameter of KN" to \geometri
 distan
e from the Eu
lidean ball", we often observea phase transition behaviour being repla
ed by a threshold type one. Again, opti-mal and random behaviours are equivalent: if N � 
t�="2 then a random 
hoi
e ofu1; : : : ; uN 2 O(n) satis�es d(KN ; Bn2 ) � 1 + ".3 Classi
al 
onvexity 
onne
ted to the asymptoti
theory3.1 Brunn-Minkowski inequality: 
lassi
al proofs and fun
-tional formsThe fundamental Brunn-Minkowski inequality states that if K and T are two non-empty 
ompa
t subsets of Rn , then(3:1:1) jK + T j1=n � jKj1=n + jT j1=n:20



If we make the additional hypothesis that K and T are 
onvex bodies, then we 
anhave equality only if K and T are homotheti
al.The inequality expresses in a sense the fa
t that volume is an \n-
on
ave"fun
tion with respe
t to Minkowski addition. For this reason, it is often written inthe following form: If K;T are non-empty 
ompa
t subsets of Rn and � 2 (0; 1),then(3:1:2) j�K + (1� �)T j1=n � �jKj1=n + (1� �)jT j1=n:Using (3.1.2) and the arithmeti
-geometri
 means inequality we 
an also write(3:1:3) j�K + (1� �)T j � jKj�jT j1��:This weaker, but a
tually equivalent, form of the Brunn-Minkowski inequality hasthe advantage (or disadvantage) of being dimension free.There are many interesting proofs of the Brunn-Minkowski inequality, all ofthem related to important ideas. Histori
ally, the �rst proof of the Brunn-Minkowskiinequality was based on Brunn's 
on
avity prin
iple:Theorem 3.1 Let K be a 
onvex body in Rn and let F be a k-dimensional subspa
eof Rn , 1 � k � n. Then, the fun
tion f : F? ! R de�ned by f(x) = jK\(F+x)j1=kis 
on
ave on its support.The proof goes by symmetrization. The Steiner symmetrization of K in the dire
-tion of � 2 Sn�1 is the set S�(K) 
onsisting of all points of the form x+��, where xis in the proje
tion P�?(K) of K onto �? and j�j � 12 � length(x+R�)\K. Steinersymmetrization preserves 
onvexity and volume: if K is a 
onvex body then S�(K)is also a 
onvex body, and jS�(K)j = jKj. A well known fa
t whi
h goes ba
k toSteiner and S
hwarz is that for every 
onvex body K one 
an �nd a sequen
e ofsu

essive Steiner symmetrizations in dire
tions � 2 F so that the limiting 
onvexbody ~K has the following property:For every x 2 F?, ~K \ (F + x) is a ball with 
enter at x and radiusr(x) su
h that j ~K \ (F + x)j = jK \ (F + x)j.Now, the proof of the theorem is immediate. Convexity of ~K implies that r is
on
ave on its support, and this shows that f is also 
on
ave.Brunn's 
on
avity prin
iple implies the Brunn-Minkowski inequality as follows.If K and T are 
onvex bodies in Rn , we de�ne K1 = K �f0g and T1 = T �f1g inRn+1 and 
onsider their 
onvex hull L. If we set L(t) = fx 2 Rn : (x; t) 2 Lg forall t 2 [0; 1℄, we easily 
he
k that L(0) = K, L(1) = T and L(1=2) = K+T2 . Then,Brunn's 
on
avity prin
iple for F = Rn shows that(3:1:4) ���K + T2 ���1=n � 12 jKj1=n + 12 jT j1=n:A fun
tional form of the Brunn-Minkowski inequality is an integral inequalitywhi
h redu
es to (3.1.1) by appropriate 
hoi
e of the fun
tions involved. The ad-vantage of su
h fun
tional inequalities is that they 
an be applied in many other21




ontexts: an example is given by the Pr�ekopa-Leindler inequality (see [121℄ or [14℄)whi
h is stated below: it 
an be applied to yield the logarithmi
 Sobolev inequalityand several important 
on
entration results in Gauss spa
e.Theorem 3.2 Let f; g; h : Rn ! R+ be measurable fun
tions, and let � 2 (0; 1).We assume that f and g are integrable, and for every x; y 2 Rn(3:1:5) h(�x+ (1� �)y) � f(x)�g(y)1��:Then,(3:1:6) ZRn h � �ZRn f�� �ZRn g�1�� :We shall only sket
h the 
ase n = 1. We may assume that f and g are 
ontinuousand stri
tly positive and then de�ne x; y : (0; 1)! R by the equations(3:1:7) Z x(t)�1 f = t Z f and Z y(t)�1 g = t Z g:Then, x and y are di�erentiable, and for every t 2 (0; 1) we have(3:1:8) x0(t)f(x(t)) = Z f and y0(t)g(y(t)) = Z g:We now de�ne z : (0; 1) ! R by z(t) = �x(t) + (1 � �)y(t). Sin
e x and y arestri
tly in
reasing, z is also stri
tly in
reasing, and the arithmeti
-geometri
 meansinequality shows that(3:1:9) z0(t) = �x0(t) + (1� �)y0(t) � (x0(t))�(y0(t))1��:Hen
e, we 
an estimate the integral of h making the 
hange of variables s = z(t):Z h = Z 10 h(z(t))z0(t)dt� Z 10 h(�x(t) + (1� �)y(t))(x0(t))�(y0(t))1��dt� Z 10 f�(x(t))g1��(y(t))� R ff(x(t))��� R gg(y(t))�1�� dt= �Z f���Z g�1�� :Indu
tion on the dimension 
ompletes the proof.The Brunn-Minkowski inequality is a simple 
onsequen
e of Theorem 3.2. LetK and T be non-empty 
ompa
t subsets of Rn , and let � 2 (0; 1). We de�ne22



f = �K , g = �T , and h = ��K+(1��)T . It is easily 
he
ked that the assumptionsof Theorem 3.2 are satis�ed, therefore(3:1:10) j�K + (1� �)T j = Z h � �Z f���Z g�1�� = jKj�jT j1��:There are many variants of the Pr�ekopa-Leindler inequality. All of them 
an beproved by a \transportation of measure" argument similar to the one used above.We shall state one of them and use it to give a fun
tional version of a proof ofBrunn's prin
iple whi
h was given by Gromov and Milman [71℄.We �rst introdu
e some notation: If p > 0 and � 2 (0; 1), for all x; y > 0 we setM�p (x; y) = (�xp + (1� �)yp)1=p:If x; y � 0 and xy = 0, we set M�p (x; y) = 0. Observe that limp!0+ M�p (x; y) =x�y1��.Statement: Suppose that f; g; h : Rn ! R+ are measurable fun
tions, and letp > 0, � 2 (0; 1). We assume that f and g are integrable, and for every x; y 2 Rn(3:1:11) h(�x+ (1� �)y) �M�p (f(x); g(y)):Then,(3:1:12) ZRn h �M�p=(pn+1)�ZRn f; ZRn g� :The proof of the statement is quite similar to the proof of the Pr�ekopa-Leindlerinequality given above.We need a few more de�nitions: Let K be a 
onvex set in Rn and let f : K !R+ . We say that f is �-
on
ave for some � > 0, if f1=� is 
on
ave on K. It is easyto see that if f; g : K ! R+ and if f is �-
on
ave and g is �-
on
ave, then fg is(�+ �)-
on
ave.Let now K be a 
onvex body in Rn and let � 2 Sn�1. For every y 2 P�?(K)we write Iy for the interval ft 2 R : y + t� 2 Kg. For every 
ontinuous fun
tionf : K ! R+ we de�ne the proje
tion P�f of f with respe
t to � by(3:1:13) (P�f)(y) := ZIy f(y + t�)dt; y 2 P�?(K):If we de�ne Fy(t) = �K(y + t�)f(y + t�) for y 2 P�?(K), then by the �-
on
avityof f and the 
onvexity of K we easily 
he
k that(3:1:14) F�y+(1��)w(�t+ (1� �)s) �M�1=�(Fy(t); Fw(s))for all y; w 2 P�?(K). Applying the statement, we immediately get:Claim: If f is �-
on
ave, then P�f is (1 + �)-
on
ave.23



We now �nish the proof of Brunn's prin
iple as follows. Let F be a k-dimensionalsubspa
e of Rn . The indi
ator fun
tion of K is 
onstant on K, and hen
e it is �-
on
ave for every � > 0. We 
hoose an orthonormal basis f�1; : : : ; �kg of F andperform su

essive proje
tions in the dire
tions of �i. The 
laim shows that thefun
tion x 7! jK \ (F + x)j is (� + k)-
on
ave on PF?(K), for every � > 0. Itfollows that f(x) = jK \ (F + x)j1=k is 
on
ave.The Pr�ekopa{Leindler inequality and the statement above, have re
ently beenextended to Riemannian manifolds [37℄. There, the 
urvature plays an essential role(through the Ri

i 
urvature, in parti
ular) and a distortion 
oeÆ
ient has to beadded to the 
ondition (3.1.5). We will state the spheri
al extension of the Pr�ekopa{Leindler inequality obtained in [36℄. Let � denote the (geodesi
) distan
e on thesphere Sn and � the usual rotationally invariant measure on Sn. For x; y 2 Snwith x 6= �y, introdu
e the geodesi
 analogue of the point tx + (1 � t)y, namelythe point z = 
t(x; y) 2 Sn verifying(3:1:15) �(x; z) = (1� t)�(x; y) and �(z; y) = t�(x; y):If x = 
os(�)y+ sin(�)v with � 2 [0; �) and v 2 Sn orthogonal to y, then 
t(x; y) =
os(t�)y + sin(t�)v. For t 2 (0; 1) and d 2 [0; �℄, set S(d) := d�1 sin d and(3:1:16) Lt(d) := �S(d)=S(td)�t �S(d)=S((1� t)d)�1�t:Theorem 3.3 Let f; g; h : Sn ! R+ be Borel fun
tions and t 2 (0; 1). We assumethat for every x 6= �y 2 Sn,(3:1:17) h(
t(x; y)) � Lt(�(x; y))n�1f(x)tg(y)1�t:Then(3:1:18) Z h d� � �Z f d��t�Z g d��1�t :Sin
e Lt(�) = 0, the 
ondition (3.1.17) is always satis�ed when x = �y. FromLt(d) � 1, we dedu
e in parti
ular that the Brunn-Minkowski inequality holds onthe sphere for the geodesi
 midsum of two sets, say. It is known that Lt(d) �e�t(1�t)d2=2 and thus the 
oeÆ
ient Lt(�(x; y))n�1 in (3.1.17) 
an be repla
ed bythe 
oeÆ
ient e�(n�1)t(1�t)�2(x;y)=2:With this form, one 
an re
over, as in [95℄, the 
lassi
al 
on
entration results forthe sphere.3.2 Geometri
 inequalities of hyperboli
 typeWe write Kn for the 
lass of non-empty, 
ompa
t 
onvex subsets of Rn . Minkowski'sfundamental theorem states that if K1; : : : ;Km 2 Kn, m 2 N, there exist 
oeÆ-
ients V (Ki1 ; : : : ;Kin), 1 � i1; : : : ; in � m whi
h are invariant under permutations24



of their arguments, su
h that(3:2:1) jt1K1 + � � �+ tmKmj = X1�i1;::: ;in�mV (Ki1 ; : : : ;Kin)ti1 : : : tinfor every 
hoi
e of non-negative real numbers ti (see [134℄ or [34℄). The 
oeÆ
ientV (A1; : : : ; An) is 
alled the mixed volume of the 
ompa
t 
onvex sets A1; : : : ; An.A spe
ial 
ase of Minkowski's theorem is Steiner's formula. If K 2 Kn, then(3:2:2) jK + tBn2 j = nXi=0 �ni�Vn�i(K)tifor all t > 0, where Vn�i(K) = V (K;n� i; Bn2 ; i) is the i-th quermassintegral of K.A very deep and strong generalization of the Brunn-Minkowski inequality is theAlexandrov-Fen
hel inequality [1℄, [2℄ (see [134℄): If K;T;A3; : : : ; An 2 Kn, then(3:2:3) V (K;T;A3; : : : ; An)2 � V (K;K;A3; : : : ; An)V (T; T;A3; : : : ; An):Among many 
onsequen
es of (3.2.3), one should mention the inequalities(3:2:4) Vi(K + T )1=i � Vi(K)1=i + Vi(T )1=iwhi
h hold true for all 
onvex bodies K;T in Rn and all i 2 f1; : : : ; ng, and theAlexandrov inequalities(3:2:5) �Vi(K)jBn2 j �1=i � �Vj(K)jBn2 j �1=j ;where 1 � i < j � n. Note that the Brunn-Minkowski inequality and the isoperi-metri
 inequality are spe
ial 
ases of (3.2.4) and (3.2.5) respe
tively.Going ba
k in time, we lo
ate numeri
al inequalities whi
h are surprisinglysimilar to the ones above (see [18℄). Let x = (x1; : : : ; xn) be an n-tuple of positivereal numbers, and 
onsider the normalized elementary symmetri
 fun
tions E0(x) �1 and(3:2:6) Ei(x1; : : : ; xn) = 1�ni� X1�j1<:::<ji�nxj1xj2 : : : xjifor i = 1; : : : ; n. With this de�nition, E1(x) and E1=nn (x) 
orrespond to the arith-meti
 and geometri
 means of x1; : : : ; xn. Newton proved that(3:2:7) E2k(x) � Ek�1(x)Ek+1(x)for all k = 1; : : : ; n�1, with equality if and only if all the xi's are equal. Ma
laurinobserved that(3:2:8) E1(x) � E1=22 (x) � � � � � E1=nn (x):25



These inequalities follow immediately from Newton's inequality (3.2.7) and theygeneralize the arithmeti
-geometri
 means inequality.One 
an feel the analogy with the Alexandrov-Fen
hel inequalities even more,by 
onsidering the more re
ent Mar
us-Lopes inequality(3:2:9) Ek(x + y)Ek�1(x+ y) � Ek(x)Ek�1(x) + Ek(y)Ek�1(y) ;whi
h holds true for all k = 1; : : : ; n. As a formal 
onsequen
e one gets(3:2:10) [Ek(x + y)℄1=k � [Ek(x)℄1=k + [Ek(y)℄1=k :We now pass to the multidimensional 
ase: let S+n be the spa
e of real positivesymmetri
 n� n matri
es. If t1; : : : ; tm > 0 and A1; : : : ; Am 2 S+n , then(3:2:11) det(t1A1 + � � �+ tmAm) = X1�i1�:::�in�mn!D(Ai1 ; : : : ; Ain)ti1 : : : tin ;where the 
oeÆ
ient D(B1; : : : ; Bn) is invariant under permutations of its argu-ments and is 
alled the mixed dis
riminant of B1; : : : ; Bn. Based on the fa
t thatP (t) = det(A + tI) has only real roots for any A 2 S+n one 
an prove some veryinteresting inequalities about mixed dis
riminants, whi
h are 
ompletely analogousto Newton's inequalities, and were dis
overed by Alexandrov. Examples are theinequalities(3:2:12) D(A;B;C3; : : : ; Cn)2 � D(A;A;C3; : : : ; Cn)D(B;B;C3; : : : ; Cn)for all A;B;C3; : : : ; Cn 2 S+n and(3:2:13) D(A1; A2; : : : ; An) � nYi=1[detAi℄1=n:There are many other inequalities on positive symmetri
 matri
es, and one istempted to look for their analogues in the setting of 
onvex geometry. An in-equality of Bergstrom (see [18℄), whi
h is the matrix analogue of (3.2.9), statesthat if A and B are symmetri
 positive de�nite matri
es and if Ai; Bi denote thesubmatri
es obtained by deleting the i-th row and 
olumn, then(3:2:14) det(A+B)det(Ai +Bi) � det(A)det(Ai) + det(B)det(Bi) :This is generalized by Ky Fan in the form(3:2:15) � det(A+B)det(Ak +Bk)�1=k � � det(A)det(Ak)�1=k +� det(B)det(Bk)�1=k ;where Ak is the submatrix of A we obtain if we delete k rows and the 
orresponding
olumns of A. When k = n, this redu
es to Minkowski's inequality [det(A+B)℄1=n �[detA℄1=n + [detB℄1=n. For related inequalities about mixed volumes see [50℄, [46℄.26



One last 
omment is that behind all these numeri
al or 
onvex geometri
inequalities there is a uni�ed prin
iple: \the minimum of 
ertain fun
tionals isa
hieved on equal obje
ts". Statements like the Brunn-Minkowski or the Alexandrov-Fen
hel inequality may be equivalently expressed in the form(3:2:16) f(A;B) � minff(A;A); f(B;B)g:The Brunn-Minkowski inequality 
an be rederived from its simple 
onsequen
ejaK + bT j � minfj(a + b)Kj; j(a + b)T jg. Likewise, the Alexandrov-Fen
hel in-equality is equivalent to the inequality(3:2:17)V (K;T;A3; : : : ; An)2 � minfV (K;K;A3; : : : ; An); V (T; T;A3; : : : ; An)g:The same prin
iple applies to all the hyperboli
 type inequalities we dis
ussed inthis subse
tion. In 
ontrast, \ellipti
 type" inequalities like the triangle inequalityand the Cau
hy-S
hwarz inequality obey a \maximum prin
iple": for example, thelatter unequality is equivalent to the statement(3:2:18) Z jf � gjd� � max�Z jf j2d�; Z jgj2d��:The maximum of the fun
tional (f; g) 7! R jf � gjd� is \a
hieved on equal obje
ts".H�older's inequality is also a 
onsequen
e of su
h an \ellipti
" prin
iple, whi
h shouldhowever be 
orre
tly applied so that the fun
tions f and g involved stay in \
orre
t"spa
es. If p and q are 
onjugate exponents, then the inequality(3:2:19) Z jf � gjd� � max��Z jf jpd��1=(p�1) ;�Z jgjqd��1=(q�1) �for all f 2 Lp and g 2 Lq, is equivalent to the 
lassi
al H�older's inequality.3.3 Volume preserving transformationsLetK and T be two open 
onvex bodies in Rn . A volume preserving transformationfrom K onto T is a map � : K ! T whi
h is one to one, onto and has a Ja
obianwith 
ostant determinant equal to jKj=jT j. In this se
tion we des
ribe two su
hmaps, the Kn�othe map and the Brenier map. Applying ea
h one of them we mayobtain alternative proofs of the Brunn-Minkowski inequality.The Kn�othe map: We �x a 
oordinate system in Rn . The properties of theKn�othe map [78℄ from K to T with respe
t to the given 
oordinate system aredes
ribed in the following theorem.Theorem 3.4 Let K and T be open 
onvex bodies in Rn . There exists a map� : K ! T with the following properties (for a proof see [113℄):27



(a) � is triangular: the i-th 
oordinate fun
tion of � depends only on x1; : : : ; xi.That is,(3:3:1) �(x1; : : : ; xn) = (�1(x1); �2(x1; x2); : : : ; �n(x1; : : : ; xn)):(b) The partial derivatives ��i�xi exist and they are positive on K, and the determinantof the Ja
obian of � is 
onstant. More pre
isely, for every x 2 K(3:3:2) j det J�(x)j = nYi=1 ��i�xi (x) = jT jjKj :The Brenier map: For any two open 
onvex bodies K and T there exists avolume preserving transformation from K onto T , 
alled the Brenier map [33℄,whi
h is the gradient of a C2 
onvex fun
tion. The existen
e of this remarkablemap is a 
onsequen
e of a more general transportation of measure result whi
h webrie
y des
ribe.Consider the spa
e P(Rn ) of Borel probability measures on Rn as a subsetof the unit ball of C1(Rn )� (the dual of the spa
e of 
ontinuous fun
tions whi
hvanish uniformly at in�nity). Let �, � 2 P(Rn ). If T : Rn ! Rn is a measurablefun
tion whi
h is de�ned �-almost everywhere and satis�es �(B) = �(T�1(B)) forevery Borel subset B of Rn , we say that T pushes forward � to � and write T� = �.It is easy to see that T� = � if and only if for every bounded Borel measurableg : Rn ! R we have(3:3:3) ZRn g(y)d�(y) = ZRn g(T (x))d�(x):Generalizing work of Brenier, M
Cann [96℄ proved the following.Theorem 3.5 Let �, � 2 P(Rn ) and assume that � is absolutely 
ontinuous withrespe
t to Lebesgue measure. Then, there exists a 
onvex fun
tion f : Rn ! R su
hthat rf : Rn ! Rn is de�ned �-almost everywhere, and (rf)� = �.The proof of Theorem 3.5 is based on the notion of 
y
li
al monotoni
ity from
onvex analysis: A subset G of Rn � Rn is 
alled 
y
li
ally monotone if for everym � 2 and (xi; yi) 2 G, i � m, we have(3:3:4) hy1; x2 � x1i+ hy2; x3 � x2i+ � � �+ hym; x1 � xmi � 0:Fa
t 1: Let � and � be Borel probability measures on Rn . There exists a joint prob-ability measure 
 on Rn �Rn whi
h has 
y
li
ally monotone support and marginals�, � i.e. for all bounded Borel measurable f; g : Rn ! R we have(3:3:5) ZRn f(x)d�(x) = ZRn�Rn f(x)d
(x; y)28



and(3:3:6) ZRn g(y)d�(y) = ZRn�Rn g(y)d
(x; y):The se
ond ingredient is the 
onne
tion of 
y
li
ally monotone sets with 
onvexfun
tions (see [124℄). For every proper 
onvex fun
tion f : Rn ! R we 
onsider thesubdi�erential of f(3:3:7) �(f) = f(x; y) 2 Rn � Rn : f(z) � f(x) + hy; z � xi; z 2 Rng:The subdi�erential parametrizes the supporting hyperplanes of f : the set �(f)(x) =fy : (x; y) 2 �(f)g is a 
losed and bounded 
onvex set, and di�erentiability of f atx is equivalent to the existen
e of a unique y 2 �f(x), in whi
h 
ase rf(x) = y.Fa
t 2: Let G � Rn � Rn . Then, G is 
ontained in the subdi�erential of a proper
onvex fun
tion f : Rn ! R if and only if G is 
y
li
ally monotone.We 
an now sket
h the proof of Theorem 3.5. From Fa
t 1 there exists a proba-bility measure 
 on Rn �Rn whi
h has 
y
li
ally monotone support and marginals�, �. Fa
t 2 shows that the support of 
 is 
ontained in the subdi�erential of aproper 
onvex fun
tion f : Rn ! R. Sin
e f is 
onvex and � is absolutely 
on-tinuous with respe
t to Lebesgue measure, f is di�erentiable �-almost everywhere.Sin
e supp(
) � �(f), by the de�nition of the subdi�erential we have y = rf(x) foralmost all pairs (x; y) with respe
t to 
. Then, for every bounded Borel measurableg : Rn ! R we see that(3:3:8)Z g(y)d�(y) = Z g(y)d
(x; y) = Z g(rf(x))d
(x; y) = Z g(rf(x))d�(x);whi
h shows that (rf)� = �.Assume that � and � are the normalized Lebesgue measures on some 
onvexbodies K and T . Regularity results of Ca�arelli show that in this 
ase f may beassumed twi
e 
ontinuously di�erentiable. This proves the following.Theorem 3.6 Let K and T be open 
onvex bodies in Rn . There is a 
onvex fun
-tion f 2 C2(K) su
h that � = rf : K ! T is one to one, onto and volumepreserving.We 
an now show the Brunn-Minkowski inequality using either the Kn�othe orthe Brenier map. In ea
h 
ase we have (I + �)(K) � K + T . If � denotes theKn�othe map, JI+�(x) is triangular and this implies(3:3:9)j det JI+�(x)j1=n = nYi=1�1 + ��i(x)�xi �1=n � 1 + j det J�(x))1=n = 1 +� jT jjKj�1=n :29



If � is the Brenier map, it is 
lear that the Ja
obian J� = Hessf is a symmetri
positive de�nite matrix for every x 2 K. Therefore,(3:3:10) j det JI+�(x)j = j det (I +Hessf) (x)j = nYi=1(1 + �i(x))where �i(x) are the non negative eigenvalues of Hessf . Moreover, by the volumepreserving property of �, we haveQni=1 �i(x) = jT j=jKj for every x 2 K. Therefore,the arithmeti
-geometri
 means inequality gives(3:3:11) j det JI+�(x)j1=n � 1 +� jT jjKj�1=n :In both 
ases,(3:3:12) jK + T j � Z(I+�)K dx = ZK j det JI+�(x)jdx � jKj�1 + (jT j=jKj)1=n�n ;whi
h is the Brunn-Minkowski inequality.For an arbitrary pair of open 
onvex bodies K1 and K2 it would be desir-able to a
hieve a volume preserving transformation  : K1 ! K2 for whi
h(I +  )(K1) = K1 + K2. This was re
ently done in [4℄. There are two ingredi-ents in the 
onstru
tion: the �rst one is a regularity result of Ca�arelli [35℄ (seealso [4℄):Fa
t 3: If T is an open 
onvex body in Rn , f is a probability density on Rn , and gis a probability density on T su
h that f is lo
ally bounded and bounded away fromzero on 
ompa
t sets, and there exist 
1; 
2 > 0 su
h that 
1 � g(y) � 
2 for everyy 2 T , then the Brenier map rf : (Rn ; fdx)! (Rn ; gdx) is 
ontinuous and belongslo
ally to the H�older 
lass C� for some � > 0.The se
ond is a theorem of Gromov [67℄ (see also [4℄):Fa
t 4: Let f : Rn ! R be a C2-smooth 
onvex fun
tion with stri
tly positiveHessian. Then, the image of the gradient map Im(rf) is an open 
onvex set. Also,if f1; f2 are two su
h fun
tions, then(3:3:13) Im(rf1 +rf2) = Im(rf1) + Im(rf2):Having these tools in hand and given two open 
onvex bodies K1 and K2 ofvolume 1 in Rn , we 
hoose a smooth stri
tly positive density � on Rn and 
onsiderthe Brenier maps(3:3:14)  i = rfi : (Rn ; �dx)! (Ki; dx) ; i = 1; 2:Fa
t 3 shows that  1 and  2 are C1-smooth. Applying Fa
t 4, we see that, forevery � > 0,(3:3:15) K1 + �K2 = frf1(x) + �rf2(x) : x 2 Rng:30



Then, the map  =  2Æ( 1)�1 : K1 ! K2 is a volume preservingC1-di�eomorphismand satis�es K1 + �K2 = (I + � )(K1) for all � > 0.This 
onstru
tion reveals the 
lose relation between mixed volumes and mixeddis
riminants. Let K1; : : : ;Kn be open 
onvex bodies Ki with normalized volumejKij = 1, and 
onsider the Brenier maps(3:3:16) �i : (Rn ; 
n)! Ki;where 
n is the standard Gaussian probability density on Rn . We have �i = rfi,where fi are 
onvex fun
tions on Rn . By Ca�arelli's regularity result, all the �i'sare smooth maps. Then, the image of (Rn ; 
n) by P ti�i is the interior of P tiKi.Sin
e ea
h �i is a measure preserving map, we have(3:3:17) det� �2fi�xk�xl� (x) = 
n(x) ; i = 1; : : : ; n:It follows that(3:3:18) ��� nXi=1 tiKi��� = ZRn det nXi=1 ti( �2fi�xk�xl )! dx= nXi1;::: ;in=1 ti1 : : : tin ZRnD��2fi1(x)�xk�xl ; : : : ; �2fin(x)�xk�xl � dx:In this way, we re
over Minkowski's theorem on jP tiKij, and see the 
onne
tionbetween the mixed dis
riminants D(Hessfi1 ; : : : ;Hessfin) and the mixed volumes(3:3:19) V (Ki1 ; : : : ;Kin) = ZRnD(Hessfi1(x); : : : ;Hessfin(x))dx:The Alexandrov-Fen
hel inequalities do not follow from the 
orresponding mixeddis
riminant inequalities, but the deep 
onne
tion between the two theories is ob-vious. Also, some parti
ular 
ases are indeed simple 
onsequen
es. For example(see [4℄), as a 
onsequen
e of a similar inequality for mixed dis
riminants one 
anprove that(3:3:20) V (K1; : : : ;Kn) � nYi=1 jKij1=n:4 Extremal problems and isotropi
 positions4.1 Classi
al positions of 
onvex bodiesThe family of positions of a 
onvex body K in Rn is the 
lass fT (K) j T 2 GL(n)g.The right 
hoi
e of a position is often quite important for the study of geometri
31



quantities. For example, let K be a symmetri
 
onvex body in Rn and 
onsider thevolume produ
t s(K) = �jKj � jKÆj�1=n. The Blas
hke-Santal�o inequality assertsthat s(K) is maximized if and only if K is an ellipsoid (note that s(K) is invariantunder GL(n)). On the other hand, a simple appli
ation of H�older's inequality showsthat(4:1:1) jAjjBn2 j = ZSn�1 k�k�nA �(d�) � w(AÆ)�nfor every symmetri
 
onvex body A in Rn . This implies that(4:1:2) s(Bn2 )s(K) � minT2GL(n)w(TK)w((TK)Æ):Therefore, in order to obtain a reverse Blas
hke-Santal�o inequality it is useful tostudy the quantity(4:1:3) maxK minT2GL(n)w(TK)w((TK)Æ):One way to estimate this minimum is using the `-position of K, and Pisier's in-equality shows that the above quantity is bounded by C logn. Thus, the `-positionprovides a �rst quite non-trivial reverse inequality for the volume produ
t s(K).All 
lassi
al positions of 
onvex bodies arise as solutions of su
h extremal prob-lems. We often normalize the volume of K to be 1 and ask for the maximum orminimum of f(TK) over all T 2 SL(n), where f is some fun
tional on 
onvex bod-ies (in the example above, f is the produ
t of the mean widths of a body and itspolar). Another useful normalization is jKj = jBn2 j: we then say that the volumeradius of K is equal to 1. Below we des
ribe some 
lassi
al positions of a given
onvex body K whi
h solve natural extremal problems. An interesting feature ofthis pro
edure is that a simple variational method leads to a geometri
 des
riptionof the extremal position, and that in many 
ases this position satis�es an isotropi

ondition for an appropriate measure on Sn�1. We say that a Borel measure � onSn�1 is isotropi
 if(4:1:4) ZSn�1hx; �i2�(d�) = k�kn jxj2for all x 2 Rn .John's position: A symmetri
 
onvex body K is in John's position if the maximalvolume ellipsoid of K is the Eu
lidean unit ball. John's theorem [73℄ asserts that,in this 
ase, there exist 
onta
t points u1; : : : ; um of K and Bn2 (
ommon points oftheir boundaries) and positive real numbers 
1; : : : ; 
m su
h that(4:1:5) I = mXj=1 
juj 
 uj :32



In parti
ular, this de
omposition of the identity implies that(4:1:6) jxj2 = mXj=1 
jhx; uji2for every x 2 Rn . A dire
t 
onsequen
e of (4.1.6) is the fa
t that K � pnBn2(in other words, d(XK ; `n2 ) � pn). The 
ondition in (4.1.6) may be viewed as anisotropi
 one: the measure � supported by fu1; : : : ; umg whi
h gives mass 
j touj is isotropi
. Moreover, Ball observed that this 
ondition is also suÆ
ient in thefollowing sense.Theorem 4.1 Let K be a symmetri
 
onvex body in Rn su
h that Bn2 � K. Then,K is in John's position if and only if there exists an isotropi
 measure � on Sn�1whi
h is supported by the set of 
onta
t points of K and Bn2 .There exists an analogue of this fa
t for the not ne
essarily symmetri
 
ase(see e.g. [54℄). From John's de
omposition of the identity one 
an re
over all theavailable information about John's position: for example, the Dvoretzky-Rogerslemma is a simple 
onsequen
e of (4.1.5).John's de
omposition of the identity holds in a mu
h more general 
ontext: IfK and L are (not ne
essarily symmetri
) 
onvex bodies in Rn , we say that L is ofmaximal volume in K if L � K and, for every w 2 Rn and T 2 SLn, the aÆneimage w+T (L) of L is not 
ontained in the interior ofK. If L is of maximal volumein K then for every z 2 int(L), one 
an �nd 
onta
t points v1; : : : ; vm of K � zand L� z, 
onta
t points u1; : : : ; um of (K � z)Æ and (L� z)Æ, and positive reals
1; : : : ; 
m, su
h that P 
juj = 0, huj ; vji = 1, andI = mXj=1 
juj 
 vj :Moreover, there exists an optimal 
hoi
e of the \
enter" z so that, setting z = 0, wesimultaneously haveP 
juj =P 
jvj = 0. This fa
t was proved in [57℄ under some
onditions on K and L (in the symmetri
 
ase it had been observed by Milman, see[147℄). A se
ond proof was re
ently given in [66℄, where the de
omposition is alsoused to establish that for any symmetri
 
onvex body K in Rn the Bana
h-Mazurdistan
e (see x6.1) d(K;T ) is less than or equal to n for every 
onvex body T inRn and the distan
e d(K;Sn) to the simplex Sn is equal to n.Minimal mean width position: Re
all that the mean width of a 
onvex body Kin Rn is the quantity w(K) = RSn�1 hK(�)�(d�), where hK is the support fun
tionof K (the mean width is 
learly invariant under translation). We �x the volume ofK to be equal to 1 and say that K has minimal mean width if w(K) � w(TK) forall T 2 SL(n).Let �K be the Borel measure on Sn�1 with density hK with respe
t to �. Anisotropi
 
hara
terization of the minimal mean width position is proved in [53℄.33



Theorem 4.2 Let K be a 
onvex body in Rn . Then, K has minimal mean widthif and only if the measure �K is isotropi
. That is, if(4:1:7) w(K) = n ZSn�1 hK(�)h�; xi2�(d�)for all x 2 Sn�1. Moreover, this position is uniquely determined up to O(n).An interesting question is to determine the order of growth of the quantity(4:1:8) w(n) = maxK minT2SL(n)w(TK)as n tends to in�nity, where the maximum is over all 
onvex bodies of volume 1in Rn . If jKj = 1, Urysohn's inequality implies that w(K) � 
pn where 
 > 0 isan absolute 
onstant. Pisier's inequality shows that w(n) � 
1pn logn, and theexample of the `n1 ball shows that w(n) � 
2pn logn.Minimal surfa
e area position: Re
all that the area measure of a 
onvex bodyK is the Borel measure �K on Sn�1 with�K(A) = �(fx 2 bd(K) : the outer normal to K at x is in Ag)where � is the (n� 1)-dimensional surfa
e measure on K. The surfa
e area of K is�(K) = k�Kk. Again, we �x the volume of K to be equal to 1 and say that K hasminimal surfa
e area if �(K) � �(TK) for all T 2 SL(n).An isotropi
 
hara
terization of the minimal surfa
e area position was provedby Petty [117℄ (see also [56℄).Theorem 4.3 Let K be a 
onvex body in Rn . Then, K has minimal surfa
e areaif and only if the measure �K is isotropi
. That is, if(4:1:9) �(K) = n ZSn�1h�; xi2�K(d�)for all x 2 Sn�1. Moreover, this position is uniquely determined up to O(n).As in the 
ase of the mean width, it is natural to study the quantity(4:1:10) �(n) = maxK minT2SL(n)�(TK)and its behaviour as n tends to in�nity, where the maximum is over all 
onvexbodies of volume 1 in Rn . If jKj = 1, the isoperimetri
 inequality implies that�(K) � 
pn where 
 > 0 is an absolute 
onstant. A sharp upper bound for�(n) was given by Ball ([12℄, see x4.4). The extremal bodies are: the 
ube in thesymmetri
 
ase and the simplex in the general 
ase.34



4.2 Isotropi
 position and the sli
ing problemThe sli
ing problem asks if there exists an absolute 
onstant 
 > 0 with the followingproperty: for every 
onvex body K of volume 1 in Rn , with 
entre of mass at theorigin, there exists � 2 Sn�1 su
h that jK \ �?j � 
. This is an important questionin modern 
onvex geometry, whi
h is deeply 
onne
ted with the asymptoti
 versionsof several 
lassi
al geometri
 problems.The question is in a sense equivalent to the study of linear fun
tionals on 
onvexbodies. Indeed, by Brunn's prin
iple, for any � 2 Sn�1 the fun
tion fK;�(t) =jK \ (�? + t�)j is log-
on
ave, and this implies that(4:2:1) 
1jK \ �?j2 � ZKhx; �i2dx � 
2jK \ �?j2 ;where 
1; 
2 > 0 are absolute 
onstants. In this way, the volume of se
tions ismeasured by the moments of inertia of the body.This brings into play the Binet ellipsoid EB(K) of K, a notion 
oming from
lassi
al me
hani
s. The norm of the Binet ellipsoid is de�ned by(4:2:2) kyk2EB(K) = 1jKj ZKhx; yi2dxand a suitable homothet of its polar (the Legendre ellipsoid EL(K) of K) satis�esthe equation(4:2:3) ZEL(K)hx; yi2dx = ZKhx; yi2dxfor every y 2 Rn (it has the same moments of inertia as K).We say that a 
onvex body K of volume 1 with 
entre of mass at the origin isisotropi
 if the Legendre ellipsoid EL(K) is a multiple of Bn2 . Equivalently, if thereexists a 
onstant LK > 0 su
h that(4:2:4) ZKhy; �i2dy = L2Kfor every � 2 Sn�1. Every 
onvex body (in fa
t, every 
ompa
t set) has an isotropi
position, whi
h is unique up to orthogonal transformations. This position may againbe des
ribed as the solution of an extremal problem of the type we dis
ussed in theprevious subse
tion (see [111℄ for an extensive survey of all these fa
ts).Theorem 4.4 Let K be a 
onvex body of volume 1 in Rn , with 
entre of mass atthe origin. Then,(4:2:5) ZK jxj2dx � ZTK jxj2dxfor every T 2 SL(n) if and only if there exists a 
onstant LK > 0 su
h that(4:2:6) ZKhy; �i2dy = L2Kfor every � 2 Sn�1. 35



Uniqueness of the isotropi
 position up to O(n) shows that this isotropi
 
on-stant LK is invariant for the 
lass of K. It is easily proved that LK � LBn2 � 
 > 0for every 
onvex bodyK in Rn , where 
 > 0 is an absolute 
onstant. For an isotropi

onvex body K, (4.2.1) shows that all (n�1)-dimensional se
tions through the ori-gin are approximately equal to 1=LK . Therefore, the sli
ing problem be
omes aquestion about the uniform boundedness of LK . In fa
t, it is not hard to see thatan aÆrmative answer to the sli
ing problem is in full generality equivalent to thefollowing statement:There exists an absolute 
onstant C > 0 su
h that LK � C for every
onvex body K of volume 1 with 
entre of mass at the origin.One 
an easily obtain the estimate LK = O(pn) for every 
onvex body K. In thesymmetri
 
ase, this is an immediate 
onsequen
e of John's theorem, while in thegeneral 
ase it 
an be dedu
ed from Blas
hke's identity whi
h 
onne
ts the matrixof inertia of K with the expe
ted value of the volume of a random simplex insideK. Uniform boundedness of LK is known for some 
lasses of bodies: unit ballsof spa
es with a 1-un
onditional basis, zonoids and their polars, et
. For partialanswers to the question, see [111℄, [9℄. The best known general upper estimate isdue to Bourgain [23℄: LK � 
 4pn logn for every 
onvex body K in Rn . For a sket
hof the proof, see [54℄ (the argument follows the presentation of [38℄, see also [116℄for the not-ne
essarily symmetri
 
ase).There is a renewed interest in the problem. We mention here a very re
entresult of Bourgain, Klartag and Milman [24℄ whi
h redu
es the question to 
onvexbodies with bounded volume ratio. There exists a 
onstant A > 1 with the followingproperty: if for all n and all 
onvex bodiesK in Rn with vr(K) � A we have LK � �for some 
onstant �, then for all n and all 
onvex bodiesK in Rn we have LK � 
(�)for some 
onstant 
(�) depending only on �. A
tually, the dependen
e of 
(�) on� is almost linear. The proof of this fa
t uses two tools: Steiner symmetrizationand the existen
e and properties of M -ellipsoids (see x5.2).4.3 Bras
amp-Lieb inequality and its reverse formThe Bras
amp-Lieb inequality 
on
erns the multilinear operator I : Lp1(R) � � � � �Lpm(R) ! R de�ned by(4:3:1) I(f1; : : : ; fm) = ZRn mYj=1 fj(huj ; xi) dx;where m � n, p1; : : : ; pm � 1 with 1p1 + � � �+ 1pm = n, and u1; : : : ; um 2 Rn .Bras
amp and Lieb [31℄ proved that the norm of I is the supremum D of(4:3:2) I(g1; : : : ; gm)Qmj=1 kgjkpj36



over all 
entered Gaussian fun
tions g1; : : : ; gm, i.e. over all fun
tions of theform gj(t) = e��jt2 , �j > 0. This fa
t is a generalization of Young's 
onvolu-tion inequality kf � gkr � Cp;qkfkpkgkq for all f 2 Lp(R) and g 2 Lq(R), wherep; q; r � 1 and 1=p + 1=q = 1 + 1=r. The best 
onstants Cp;q = ApAqAr0 (whereAs = (s1=s=(s0)1=s0)1=2 and s0 is the 
onjugate exponent of s) had been also obtainedby Be
kner [19℄ who showed that Gaussian fun
tions play the role of maximizers.The original proof of the Bras
amp-Lieb inequality was based on a generalrearrangement inequality of Bras
amp, Lieb and Luttinger [32℄, who showed thatif f� is the symmetri
 de
reasing rearrangement of a Borel measurable fun
tion fvanishing at in�nity, then(4:3:3) I(f1; : : : ; fm) � I(f�1 ; : : : ; f�m):A generalization of this fa
t to fun
tions of several variables (based on Steinersymmetrization) and the fa
t that radial fun
tions in high dimensions behave likeGaussian fun
tions were the key ingredients of the original proof. Setting 
j = 1=pjand repla
ing fj by f
jj one 
an reformulate the Bras
amp-Lieb inequality as follows.Theorem 4.5 If m � n, u1; : : : ; um 2 Rn and 
1; : : : ; 
m > 0 with 
1+ � � �+ 
m =n, then(4:3:4) ZRn mYj=1 f
jj (hx; uji)dx � D � mYj=1�ZR fj�
jfor all integrable fun
tions fj : R ! R+ .Testing on the Gaussians, one 
an see that D = 1=pF where(4:3:5) F = inf �det �Pmj=1 
j�juj 
 uj�Qmj=1 �
jj j �j > 0�:Barthe [16℄ proved the following reverse form of Theorem 4.5 whi
h was 
onje
turedby Ball.Theorem 4.6 Let m � n, 
1; : : : ; 
m > 0 with 
1+ � � �+
m = n, and u1; : : : ; um 2Rn . If h1; : : : ; hm : R ! R+ are measurable fun
tions, we set(4:3:6) K(h1; : : : ; hm) = Z �Rn sup� mYj=1 h
jj (�j) j �j 2 R ; x = mXj=1 �j
juj�dx;where R � denotes the outer integral. Then,(4:3:7) inf �K(h1; : : : ; hm) j ZRhj = 1 ; j = 1; : : : ;m� = pF :37



The proof is remarkably elegant and, at the same time, it gives a new dire
tproof of the Bras
amp-Lieb inequality. We will brie
y dis
uss the argument. Again,�rst testing on 
entered Gaussian fun
tions, one observes that(4:3:8) inf �K(h1; : : : ; hm) j ZRhj = 1 ; j = 1; : : : ;m� � pF :The main step in Barthe's argument is the following proposition.Proposition 4.1 Let f1; : : : ; fm : R ! R+ and h1; : : : ; hm : R ! R+ be integrablefun
tions with ZR fj(t)dt = ZRhj(t)dt = 1; j = 1; : : : ;m:Then,(4:3:9) F � I(f1; : : : ; fm) � K(h1; : : : ; hm):Proof: We may assume that fj ; hj are 
ontinuous and stri
tly positive. We mayalso assume that 0 < F < +1 (F is not degenerated). We use the transportationof measure idea that was used for the proof of the Pr�ekopa-Leindler inequality: Forevery j = 1; : : : ;m we de�ne Tj : R ! R by the equation(4:3:10) Z Tj(t)�1 hj(s)ds = Z t�1 fj(s)ds:Then, ea
h Tj is stri
tly in
reasing, 1-1 and onto, and(4:3:11) T 0j(t)hj(Tj(t)) = fj(t); t 2 R:We now de�ne W : Rn ! Rn by(4:3:12) W (y) = mXj=1 
jTj(hy; uji)uj :A simple 
omputation shows that J(W )(y) = Pmj=1 
jT 0j(hy; uji)uj 
 uj . Thisimpliess that h[J(W )(y)℄(v); vi > 0 if v 6= 0 and hen
e, W is inje
tive. Considerthe fun
tion m(x) = sup� mYj=1 h
jj (�j) j x = mXj=1 �j
juj�:Then, (4.3.12) shows that(4:3:13) m(W (y)) � mYj=1 h
jj (Tj(hy; uji))38



for every y 2 Rn . It follows thatZRnm(x)dx � ZW (Rn)m(x)dx= ZRnm(W (y)) � jJ(W )(y)j dy� ZRn mYj=1h
jj (Tj(hy; uji)) det0� mXj=1 
jT 0j(hy; uji)uj 
 uj1A dy:By the de�nition of F we have(4:3:14) det0� mXj=1 
jT 0j(hy; uji)uj 
 uj1A � F � mYj=1 �T 0j(hy; uji)�
j :Therefore, taking (4.3.11) into a

ount we haveZRnm(x)dx � F � ZRn mYj=1 h
jj (Tj(hy; uji)) � mYj=1 �T 0j(hy; uji)�
j dy= F � ZRn mYj=1 f
jj (hy; uji)dy= F � I(f1; : : : ; fm):In other words, F � I(f1; : : : ; fm) � K(h1; : : : ; hm). 2One 
an now prove simultaneously Theorems 4.5 and 4.6. The 
omputationleading to (4.3.5) shows that(4:3:15) sup�I(f1; : : : ; fm) j ZR fj = 1 ; j = 1; : : : ;m� � 1pF :From Proposition 4.1, (4.3.8) and (4.3.15) we get1pF � sup�I(f1; : : : ; fm) j ZR fj = 1�� 1F � inf �K(h1; : : : ; hm) j ZRhj = 1� � 1pF :We must have equality everywhere, and this ends the proof(s).There is a multidimensional generalization of both inequalities. Let S+(Rk )be the set of k � k symmetri
, positive de�nite matri
es. If A 2 S+(Rk ), wewrite GA for the 
entered Gaussian fun
tion GA : Rk ! R de�ned by GA(x) =exp(�hAx; xi), and L+1 (Rk ) for the 
lass of integrable non-negative fun
tions f :Rk ! R. Let m � n, and assume we are given real numbers 
1; : : : ; 
m > 0 and39



integers n1; : : : ; nm less than or equal to n, su
h that Pmj=1 
jnj = n. We are alsogiven linear maps Bj : Rn ! Rnj whi
h are onto and satisfy Tmj=1Ker(Bj) = f0g.Consider the operators I;K : L+1 (Rn1 )� � � � � L+1 (Rnm )! R de�ned by(4:3:16) I(f1; : : : ; fm) = ZRn mYj=1 f
jj (Bjx)dxand(4:3:17) K(h1; : : : ; hm) = Z �Rmm(x)dx;where(4:3:18) m(x) = sup� mYj=1 h
jj (yj) j yj 2 Rnj and mXj=1 
jB�j yj = x�:Let E be the largest 
onstant for whi
h(4:3:19) K(h1; : : : ; hm) � E � mYj=1�ZRnj hj�
jholds true for all hj 2 L+1 (Rnj ), and let F be the smallest 
onstant for whi
h(4:3:20) I(f1; : : : ; fm) � F � mYj=1�ZRnj fj�
jholds true for all fj 2 L+1 (Rnj ). Then, the following holds true.Theorem 4.7 The 
onstants E and F 
an be 
omputed using 
entered Gaussianfun
tions. Moreover, if D is the largest real number for whi
h(4:3:21) det0� mXj=1 
jB�jAjBj1A � D � mYj=1(detAj)
j ;for all Aj 2 S+(Rnj ), we have(4:3:22) E = pD and F = 1=pD:The multidimensional version of the Bras
amp-Lieb inequality was �rst establishedby Lieb in [84℄. The simultaneous proof of both this inequality and its reverse formis due to Barthe [16℄ and follows the idea of the proof of the one-dimensional 
ase.However, instead of the dire
t transportation of measure argument there, one nowhas to make essential use of the Brenier map.40



4.4 Sharp geometri
 inequalitiesAs x4.1 shows, isotropi
 positions of 
onvex bodies and the 
orresponding de
om-positions of the identity are typi
al in the asymptoti
 theory: isotropi
ity may beviewed as the ultimate form of non-degenera
y. Ball made the very important ob-servation that the 
onstants in the Bras
amp-Lieb inequality and its reverse formtake a surprisingly simple form in the presen
e of su
h a de
omposition of theidentity.Theorem 4.8 Assume that the ve
tors u1; : : : ; um 2 Sn�1 and the positive weights
1; : : : ; 
m satisfy the isotropi
 
ondition(4:4:1) I = mXj=1 
juj 
 uj :Then, the 
onstant F = F (fujg; f
jg) in Theorems 4.5 and 4.6 is equal to 1.Ball applied the Bras
amp-Lieb inequality in this 
ontext to solve purely geo-metri
 problems. A well-known example is his reverse isoperimetri
 inequality [12℄,whi
h gives the exa
t value of the 
onstant �(n) in (4.1.4). We ask for the best
onstant �(n) for whi
h every symmetri
 
onvex body K in Rn has a position ~Ksatisfying(4:4:2) �( ~K) � �(n)j ~Kj(n�1)=n:The natural position of K is the minimal surfa
e area position. However, Ball'ssolution of the problem employs John's position. Assume that Bn2 is the maximalvolume ellipsoid of K. Then,(4:4:3) �(K) = limt!0+ jK + tBn2 j � jKjt � limt!0+ jK + tKj � jKjt = njKj:We 
laim that among all bodies in John's position the 
ube has maximal volume.Theorem 4.9 Let Qn = [�1; 1℄n be the unit 
ube in Rn . If K is a symmetri

onvex body in John's position in Rn , then jKj � 2n = jQnj.For the proof we use John's representation of the identity (4.4.1), where theuj 's are 
onta
t points of K and Bn2 . Observe that(4:4:4) K �M := fx : jhx; ujij � 1; j = 1; : : : ;mg:Therefore, jKj � jM j = ZRn mYj=1�
j[�1;1℄(hx; uji)dx� mYj=1�ZR�[�1;1℄(t)dt�
j = 2Pmj=1 
j = 2n;41



where we used the Bras
amp-Lieb inequality together with the observation of The-orem 4.8, and the fa
t that Pmj=1 
j = n, whi
h is a simple 
onsequen
e of (4.4.1).2 Now, (4.4.3) shows that �(K) � njKj � 2njKj(n�1)=n, and sin
e K was arbi-trary, �(n) � 2n. There is equality in the 
ase of the 
ube, and this shows that�(n) = 2n.Theorem 4.9 shows that the 
ube has maximal volume ratio among all symmet-ri
 
onvex bodies. In the general 
ase, one 
an show that the simplex �n is the ex-tremal 
onvex body. The reverse Bras
amp-Lieb inequality 
an be used for the dualstatements: 
onsider the external volume ratio evr(K) = inf �jEj=jKj�1=n, wherethe in�mum is taken over all ellipsoids 
ontaining K. Then, evr(K) � evr(�n)for every 
onvex body K in Rn . In the symmetri
 
ase the extremal body is the
ross-polytope (the unit ball of `n1 ).The Bras
am-Lieb inequality and its reverse form were also used for sharpestimates on the volume of se
tions and proje
tions of the unit ball Bnp of `np [10℄.If p > 0 and H is a k-dimensional subspa
e of Rn , then jBnp \H j � jBkp j if p � 2,and(4:4:5) jBnp \H j � �nk �k(1=2�1=p) jBkp jif p � 2. This last estimate is sharp if k divides n. On the other hand, jPH (Bnp )j �jBkp j if p � 2, and(4:4:6) jPH(Bnp )j � �kn�k(1=p�1=2) jBkp jif p � 2. This last estimate is sharp if p > 1 and k divides n. The proof of allthese inequalities is based on the observation that if fe1; : : : ; eng is the standardorthonormal basis in Rn , then the obvious representation I =Pnj=1 ej 
 ej of theidentity implies that(4:4:7) PH = nXj=1 a2juj 
 uj ;where aj = jPH(ej)j and uj = PH(ej)=aj .The multidimensional version of the reverse Bras
amp-Lieb inequality is usedin the proof of the following Brunn-Minkowski type inequality of Barthe [16℄. Letm;n be integers. Let Ei, i � m be linear subspa
es of Rn . Assume that there existpositive 
i's su
h that I = Pi�m 
iPi where Pi is the orthogonal proje
tion ontoEi. Then, the inequality(4:4:8) ��X 
iKi�� �Y jKij
iholds for any 
ompa
t subsets Ki of Ei, where jKij is the volume of Ki in Ei. Inthe 
ase where ea
h Ki is a line segment, this redu
es to an inequality of Ball [11℄whi
h was proved by indu
tion on the dimension.42



Another extremal property of the simplex was proved by Barthe [17℄. Assumethat K is a 
onvex body whose minimal volume ellipsoid is Bn2 . Then, M(K) �M(�n), where �n is the regular simplex ins
ribed in Bn2 . In the symmetri
 
aseone has M(K) � M(Bn1 ) (this is mu
h simpler and was observed by S
he
htmanand S
hmu
kens
hl�ager [133℄). The proof of both inequalities makes use of thereverse Bras
amp-Lieb inequality. In John's position, the simplex and the 
ube arethe extremal bodies for M(K).For a di�erent appli
ation, 
onsider a polytope K with fa
ets Fj and normalsuj , j = 1; : : : ;m. If K is in minimal surfa
e area position, Petty's theorem 4.3 isequivalent to the statement(4:4:9) I = mXj=1 njFj j�(K)uj 
 uj :The proje
tion body �K of K is de�ned by(4:4:10) h�K(x) = 12 ZSn�1 jhx; zij�K(dz):In our 
ase, �K = �(K)2n Pmj=1 
j [�uj ; uj ℄, and using (4.4.9) one 
an give a lowerbound of its volume [56℄. Namely,(4:4:11) j�Kj � 2n��(K)2n �n :The example of the 
ube shows that this inequality is sharp for bodies with minimalsurfa
e area.Combined with Theorem 4.2 this volume estimate leads to a sharp reverseUrysohn inequality for zonoids [55℄. If Z be a zonoid in Rn with volume 1 andminimal mean width, then(4:4:12) w(Z) � w(Qn) = 2!n�1!n :For the proof, re
all that Z is the proje
tion body �K of some 
onvex body K.Using (4.4.10) and the 
hara
terizations of Theorems 4.2 and 4.3 we 
he
k that Khas minimal surfa
e area. We have(4:4:13)w(Z) = 2 ZSn�1 hZ(x)�(dx) = ZSn�1 ZSn�1 jhx; zij�K(dz)�(dx) = 2!n�1n!n �(K);and (4.4.11) shows that w(Z) � 2!n�1=!n. We have equality when K is a 
ube,and this 
orresponds to the 
ase Z = (1=2)Qn.4.5 Study of geometri
 probabilitiesIn this short subse
tion we des
ribe some re
ent results from [63℄ on randomproperties of the uniform distribution over a 
onvex body K in Rn . To �x ter-minology, for any (measurable) set A � Rn , the geometri
 probability of A isP (A) := jA \Kj=jKj. 43



Theorem 4.10 Let Ti be measurable sets in Rn , i = 1; : : : ;m, and K be a star-shaped body with 0 2 int(K). Assume that jKj = jT1j = � � � = jTmj. Consider thepositively homogeneous fun
tion(4:5:1) jjj~�jjj = 1Qmi=1 jTij ZT1 � � � ZTm 

 mXi=1 �ixi

Kdxm : : : dx1on Rm . Then,(4:5:2) jjj~�jjj � 
qX�2ifor every ~� 2 Rm , where 
 > 0 is an absolute 
onstant (
 � 
n=p2, where 
n ! 1as n!1).The proof of Theorem 4.10 is a dire
t 
onsequen
e of the following fa
t: If Kand Ti are as above and if jKj = jTij = jBn2 j for every i, then, for any s
alars �i,i = 1; : : : ;m and for any t > 0, we have(4:5:3)P ((xi 2 Ti)mi=1 : 

 mX1 �ixi

K < t) � P ((xi 2 Bn2 )mi=1 : 

 mX1 �ixi

Bn2 < t) :One then knows that the extremal 
ase is K = T1 = � � � = Tm = Bn2 and a simpleargument based on Kahane's inequality leads to the lower bound.The proof of (4.5.3) uses the rearrangement inequality of Bras
amp, Lieb andLuttinger [32℄ whi
h was the starting point for the �rst proof of the Bras
amp-Liebinequality.An interesting question is to give exa
t estimates for the probability in (4.5.3)in terms of f�ig and t. This is done in [63℄ with a method whi
h uses the sharpmultivariable version of Young's inequality, proved by Bras
amp and Lieb [31℄.[This approa
h was �rst used by Arias-de-Reyna, Ball and Villa in [6℄ to establishthe 
asem = 2, �1 = ��2 = 1=p2, Ti = K (whereK is a symmetri
 
onvex body)℄:Fa
t. Assume that jKj = jT1j = � � � jTmj = 1. Then, for any s
alars �i 2 R andany 0 < t � 1,(4:5:4) P 8<:(xi 2 Ti)mi=1 : 

 mX1 �ixi

K < tvuut mX1 �2i9=; � tn exp �(1� t2)2 n� :A 
onsequen
e of (4.5.4) is the fa
t that every n-dimensional normed spa
e Xhas random 
otype 2 with 
onstant bounded by an absolute 
onstant C > 0 (see[63℄). We say that X has random 
otype 2 with 
onstant A > 0 if with probabilitygreater than 1� e�an (a > 0 is a �xed universal number), n independent randomve
tors fxign1 uniformly distributed over the unit ball K of X satisfy for every�i 2 R(4:5:5) Ave"i=�1

 nX1 "i�ixi

 � 1Avuut nX1 j�ij2:44



Note that the norms kxik do not enter in the de�nition, sin
e with probabilityexponentially 
lose to 1 we have 1=2 � kxik � 1 and hen
e the norms are absorbedin A.5 Asymptoti
 results with a 
lassi
al 
onvexity 
a-vor5.1 Classi
al symetrizationsSymmetrization pro
edures play an important role in 
lassi
al 
onvexity. Untilre
ently, the bounds on the number of su

essive symmetrizations of a 
ertain typewhi
h are needed in order to obtain from a given body K a body ~K whi
h is 
loseto a ball were at least exponential in the dimension. The methods of asymptoti

onvex geometry show that a linear in the dimension number of steps is enough.Minkowski symmetrization. Consider a 
onvex body K in Rn and a dire
tionu 2 Sn�1. The Minkowski symmetrization ofK with respe
t to u is the 
onvex body12 (K + �uK), where �u denotes the re
e
tion with respe
t to u?. This operationis linear and preserves mean width. A random Minkowski symmetrization of K isa body �uK, where u is 
hosen randomly on Sn�1 with respe
t to the probabilitymeasure �. Bourgain, Lindenstrauss and Milman [25℄ proved that for every " > 0there exists n0(") su
h that for every n � n0 and every 
onvex body K, if weperform N = Cn logn+ 
(")n independent random Minkowski symmetrizations onK we re
eive a 
onvex body ~K su
h that(5:1:1) (1� ")w(K)Bn2 � ~K � (1 + ")w(K)Bn2with probability greater than 1 � exp(�
1(")n). The method of proof is 
loselyrelated to the 
on
entration phenomenon for SO(n).Re
ently, Klartag [75℄ showed that if we perform a spe
i�
 non-random 
hoi
eof 5n Minkowski symmetrizations we may transform any 
onvex body into an ap-proximate Eu
lidean ball. We brie
y des
ribe the pro
ess. We may 
learly startwith the normalization w(K) = 1. We �x an orthonormal basis fe1; : : : ; eng and�rst symmetrizeK with respe
t to the ej 's. In this way we obtain a 1-un
onditional
onvex body K1 with the property K1 � 
pnBn1 .Let Q = pnBn1 and 
onsider a \Walsh basis" of Rn . This is an orthonormalbasis fu1; : : : ; ung satisfying jhui; ejij � 2=pn for every i; j � n. If we symmetrizeQ with respe
t to u1; : : : ; un�1, we obtain a new body ~Q with diam( ~Q) � 
plogn.Applying the same sequen
e of symmetrizations to K1 we arrive at a 
onvex bodyK2 with w(K2) = 1 and(5:1:2) K2 � 
pnBn1 \ tBn2with respe
t to a new orthonormal basis, where t = diam(K2) � 
plogn.45



The next step shows that one 
an a
hieve a logarithmi
 de
ay of the diame-ter under 2n additional symmetrizations with respe
t to two independent randomorthonormal bases.Claim: Let Qt = pnBn1 \ tBn2 . If fvjg, fwjg are independent random orthonormalbases of Rn , then symmetrization of Qt with respe
t to v1; : : : ; vn�1 and w1; : : : ; wn�1produ
es with high probability a 
onvex body ~Qt with ~Qt � (C log t)Bn2 .It follows that the same sequen
e of symmetrizations applied to K2 produ
es a
onvex body K3 with diam(K3) � 
 log logn. One may then iterate this step andarrive at a body for whi
h diam(Ks) is bounded by a universal 
onstant. Then,the proof of [25℄ shows that O(n) symmetrizations of Ks bring it 
lose to a ball.Instead of this, one 
an show by 
on
entration te
hniques that a se
ond appli
ationof the 
laim's symmetrization pro
ess to the body K3 is enough.Even more re
ently, using spheri
al harmoni
s, Klartag [76℄ showed that forevery 
onvex body K and any 0 < " < 1=2 there exist 
n log(1=") su

essiveMinkowski symmetrizations whi
h transform K to a 
onvex body ~K satisfying(1� ")w(K)Bn2 � ~K � (1 + ")w(K)Bn2 .Steiner symmetrization. It is well-known that for any 
onvex body K in Rnthere exists a sequen
e of dire
tions �j 2 Sn�1 su
h that (S�n Æ � � � Æ S�1)(K)
onverges to a ball in the Hausdor� metri
 (S� is the Steiner symmetrization in thedire
tion of �). In fa
t, Mani [90℄ has proved that if we 
hoose an in�nite randomsequen
e of dire
tions �j 2 Sn�1 and apply su

essive Steiner symmetrizations S�jof K in these dire
tions, then we almost surely get a sequen
e of 
onvex bodies
onverging to a ball.Bourgain, Lindenstrauss and Milman [26℄ proved an isomorphi
 version of thisfa
t. There exist absolute 
onstants 
; 
1; 
2 > 0 with the following property: if Kis a 
onvex body in Rn , there exist k � 
n logn unit ve
tors �j su
h that su

essiveSteiner symmetrizations in the dire
tions of �j transform K into a 
onvex body K1with(5:1:3) 
1�Bn2 � K1 � 
2�Bn2 ;where Bn2 is the Eu
lidean unit ball and jKj = j�Bn2 j. This was a dramati
 improve-ment with respe
t to the previously known estimate (
n)n=2 of Hadwiger (1955).An essentially best possible result was re
ently obtained by Klartag and Milman[77℄.Theorem 5.1 For every " > 0 there exist 
onstants 
1("); 
2(") > 0 su
h that: forevery 
onvex body K in Rn with jKj = jBn2 j, there exist k � (2 + ")n unit ve
tors�j su
h that su

essive Steiner symmetrizations in the dire
tions of �j transform Kinto a 
onvex body K 0 with(5:1:4) 
1(")Bn2 � K 0 � 
2(")Bn2 :The main steps of the argument are the following. Starting with a 
onvex bodyof volume 1, we need 2n Steiner symmetrizations in order to obtain a 
onvex body46



K2 whi
h is 1-un
onditional (symmetri
 with respe
t to the 
oordinate subspa
es)and \almost isotropi
" in the following sense: for every � 2 Sn�1,(5:1:5) ZK2hx; �i2dx � 2:The �rst n symmetrizations lead to a 1-un
onditional body K1. If the polar of theBinet ellipsoid of K1 is transformed into a ball by n additional symmetrizations, itis proved that the same sequen
e of symmetrizations, applied to K1, produ
es K2.By re
ent results of Bobkov and Nazarov [21℄, it follows that(5:1:6) Pn � K2 � 
nBn1 ;where Pn is a box with respe
t to the same 
oordinate system, having volumejPnj1=n ' 1 (equivalently, one may use a 
lassi
al result of Losanovskii and a mod-i�
ation of this argument). This implies that it is enough to symmetrize Pn andthe 
ross-polytope Bn1 . The same sequen
e of symmetrizations will transform K2into an isomorphi
 ball.The analysis for these two parti
ular bodies already proves that (4+")n Steinersymmetrizations are enough. Employing this fa
t and using the quotient of subspa
etheorem (Theorem 2.13), one 
an build an iteration s
heme whi
h redu
es thenumber of symmetrizations to (2 + ")n.Floating bodies - 
entroid bodies. We 
lose this subse
tion with some inter-esting observations on the 
onne
tions of the Legendre ellipsoid with the 
entroidand 
oating bodies (for the proofs of these fa
ts, see [111℄). Let K be a sym-metri
 
onvex body in Rn with jKj = 1. The 
entroid body of K is de�ned byZ(K) = RK [0; x℄dx, where [0; x℄ is the line segment from 0 to x. Equivalently, itsdual norm is given by(5:1:7) kykZ(K)Æ = 12 ZK jhx; yijdx:A 
onsequen
e of the Brunn-Minkowski inequality is that Z(K) is uniformly (i.e. upto an absolute 
onstant) equivalent to the Legendre ellipsoid of K in the Hausdor�sense.For every 0 < Æ < 1=2, the 
oating body KÆ of K is de�ned to be the envelopeof all hyperplanes that 
ut o� a set of volume Æ from K. It 
an be proved that KÆis 
onvex (this was observed by Meyer and Reisner, and independently by Ball).Moreover, KÆ is C(Æ) equivalent to the Legendre ellipsoid of K, where C(Æ) is a
onstant depending only on Æ.The pro
ess of forming the 
oating body may be viewed as a \one step sym-metrization". One arrives at an \isomorphi
 ellipsoid" although one would expe
tthat KÆ will stay 
lose to K for small values of Æ > 0.
47



5.2 Isomorphi
 symmetrizationIn this subse
tion we des
ribe isomorphi
 geometri
 inequalities whi
h are provedby the method of isomorphi
 symmetrization. This is our se
ond main example ofa body of results whi
h answer deep questions of the Brunn-Minkowski theory, atleast in their asymptoti
 version. Here, the main ideas and methods we des
ribedin x2 �nd appli
ations to 
lassi
al 
onvexity.Our �rst example is the inverse Blas
hke-Santal�o inequality of Bourgain andMilman [28℄, whi
h gives an \aÆrmative answer" to Mahler's 
onje
ture (see x4.1).Theorem 5.2 There exists an absolute 
onstant 
 > 0 su
h that(5:2:1) 0 < 
 � s(K)s(Bn2 ) � 1for every symmetri
 
onvex body in Rn .The inequality on the right is the Blas
hke-Santal�o inequality. The left hand-side inequality answers the question of Mahler in the asymptoti
 sense: For everysymmetri
 
onvex body K, the quantity s(K) is of the order of 1=n.The original proof of Theorem 5.1 used a dimension des
ending pro
edure whi
hwas based on the quotient of subspa
e theorem. We will des
ribe a proof using themethod of isomorphi
 symmetrization [105℄. This is 
loser to 
lassi
al 
onvexityand mu
h more geometri
 in nature sin
e it preserves dimension: however, it isa symmetrization s
heme whi
h is in many ways di�erent from the 
lassi
al sym-metrizations. In ea
h step, none of the natural parameters of the body is beingpreserved, but the ones whi
h are of interest remain under 
ontrol. After a �nitenumber of steps, the body has 
ome 
lose to an ellipsoid, but there is no naturalnotion of 
onvergen
e to an ellipsoid.Sin
e s(K) is an aÆne invariant, we may start from a position of K whi
hsatis�es the inequality M(K)M�(K) � 
 log[d(XK ; `n2 ) + 1℄ (this is allowed byTheorems 2.9 and 2.10). We may also normalize so that M(K) = 1. We de�ne(5:2:2) �1 =M�(K)a1 ; �01 =M(K)a1;for some a1 > 1, and 
onsider the new body(5:2:3) K1 = 
o�(K \ �1Bn2 ) [ 1�01Bn2� :Sudakov's inequality (Theorem 2.14) and elementary properties of the 
overingnumbers show that(5:2:4) jK1j � jK \ �1Bn2 j � jKj=N(K;�1Bn2 ) � jKj exp(�
n=a21):In an analogous way, using the dual Sudakov inequality (Theorem 2.15) one 
anshow that(5:2:5) jK1j � j
o(K [ (1=�01)Bn2 )j � exp(
n=a21):48



By the de�nition of K1 one 
an apply the same reasoning to KÆ1 , and this showsthat(5:2:6) exp(�
=a21) � s(K1)s(K) � exp(
=a21):By 
onstru
tion, for the new body K1 we have d(XK1 ; `n2 ) � M(K)M�(K)a21and, sin
e s(K1) is an aÆne invariant, we may assume that M(K1)M�(K1) �
 log[d(XK1 ; `n2 ) + 1℄ and M(K1) = 1. If we set �2 = M�(K1)a2, �02 = M(K1)a2and de�ne K2 = 
o�(K1 \ �2Bn2 ) [ 1�02Bn2 �, we obtain(5:2:7) exp(�
=a22) � s(K2)s(K1) � exp(
=a22):We now iterate this pro
edure, 
hoosing a1 = logn, a2 = log logn; : : : ; at = log(t) n{ the t-iterated logarithm of n, and stop the pro
edure at the �rst t for whi
hat < 2. It is easy to 
he
k that d(XKt ; `n2 ) � C, therefore(5:2:8) 1C � s(Kt)s(Bn2 ) � C:On the other hand,(5:2:9) 
1 � exp��
� 1a21 + � � �+ 1a2t �� � s(Kt)s(K) � exp�
� 1a21 + � � �+ 1a2t �� ;whi
h proves the theorem (observe that the series 1a21 + � � � + 1a2t + � � � remainsbounded by an absolute 
onstant). 2As a se
ond important appli
ation of the method we prove the existen
e of \M -ellipsoids" asso
iated to any 
onvex body.Theorem 5.3 There exists an absolute 
onstant 
 > 0 with the following property:For every symmetri
 
onvex body K in Rn there exists an ellipsoid MK su
h thatjKj = jMK j and for every body T in Rn(5:2:10) 1
 ��MK + T ��1=n � ��K + T ��1=n � 
��MK + T ��1=nand(5:2:11) 1
 jMÆK + T j1=n � jKÆ + T j1=n � 
jMÆK + T j1=n:For the proof of Theorem 5.3 we de�ne the same sequen
e of bodies as inTheorem 5.1. For every s, we 
he
k that(5:2:12) exp(�
n=a2s) � jKs + T jjKs�1 + T j � exp(
n=a2s);49



for every 
onvex body T , and the same holds true for KÆs . After t steps, we arriveat a body Kt whi
h is 
-isomorphi
 to an ellipsoid M . Our volume estimates showthat jKtj1=n ' jKj1=n up to an absolute 
onstant. If we de�ne MK = �M where� > 0 is su
h that jMK j = jKj, then � ' 1 and the result follows. 2A 
onsequen
e of Theorem 5.3 is that for every body K in Rn there exists aposition ~K = uK(K) of volume j ~Kj = jKj su
h that for every pair of 
onvex bodiesK1 and K2 in Rn ,(5:2:13) jt1 ~K1 + t2 ~K2j1=n � 
�t1j ~K1j1=n + t2j ~K2j1=n� ;for all t1; t2 > 0, where 
 > 0 is an absolute 
onstant. This statement is the \reverseBrunn-Minkowski inequality" (Milman, [101℄).The ellipsoidMK in Theorem 5.3 is 
alled anM -ellipsoid forK. The symmetryof K is not really needed (see e.g. [112℄). It 
an be proved that the existen
e of anM -ellipsoid for K is equivalent to the following statement: There exists a 
onstant
 > 0 su
h that for every body K we 
an �nd an ellipsoid MK with jMK j = jKjand N(K;MK) � exp(
n).Inter
hanging the roles of K and MK , we say that a 
onvex body K is inM -position (with 
onstant 
) if jKj = jBn2 j and N(K;Bn2 ) � exp(
n). With thisterminology, Theorem 5.3 is equivalent to the existen
e of a 
onstant 
 > 0 su
hthat in the aÆne 
lass of any 
onvex body there exists a representative whi
h is inM -position with 
onstant 
. This 
ondition on N(K;Bn2 ) implies thatmaxfN(Bn2 ;K); N(KÆ; Bn2 ); N(Bn2 ;KÆ)g � exp(
1n)for some 
onstant 
1 whi
h depends only on 
. If K1 and K2 are in M -positionwith 
onstant 
, using these estimates one 
an easily 
he
k that(5:2:14)jK1+K2j1=n � C �jK1j1=n + jK2j1=n� and jKÆ1+KÆ2 j1=n � C �jKÆ1 j1=n + jKÆ2 j1=n�where C is a 
onstant depending only on 
 (one just uses the volume estimatejA+Bj � N(A;B) � j2Bj). If K is in M -position with 
onstant 
, setting K1 = K,K2 = Bn2 and using the reverse Santal�o inequality (Theorem 5.2), we get(5:2:15) 
njKj � jKÆj � jK \ Bn2 j � j
o(KÆ [ Bn2 )j � jK \ Bn2 j � jKÆ +Bn2 j;whi
h, 
ombined with (5.2.14), gives(5:2:16) jK \ Bn2 j � 
njKj:The next fa
t about the M -position whi
h is used in many appli
ations is thefollowing statement: If K is in M -position with 
onstant 
, then for any � 2 (0; 1)a random orthogonal proje
tion PE(K) onto a [�n℄-dimensional subspa
e E hasvolume ratio bounded by a 
onstant C(
; �). To see this, note that j
o(KÆ [Bn2 )j1=n � CjBn2 j1=n where C depends on 
 (this is a 
onsequen
e of (5.2.14)).50



In other words, W = 
o(KÆ [ Bn2 ) has bounded volume ratio, and Theorem 2.7shows that for a random E 2 Gn;[�n℄,(5:2:17) KÆ \ E �W \ E � C(
; �)BE :By duality, this means that PE(K) 
ontains a ball rBE of radius r � 1=C(
; �).Sin
e(5:2:18) jPE(K)j � N(PE(K); BE)jBE j � N(K;Bn2 )jBE j � exp(
n)jBE j;this implies a bound on �jPE(K)j=jrBE j�1=n.Pisier (see [121℄, Chapter 7) o�ers a di�erent approa
h to these results, whi
hprovides a 
onstru
tion of spe
ial M -ellipsoids with regularity estimates on the
overing numbers. The pre
ise statement is as follows: for every � > 1=2 and everybody K there exists an aÆne image ~K of K whi
h satis�es j ~Kj = jBn2 j and(5:2:19)maxfN(K; tBn2 ); N(Bn2 ; tK); N(KÆ; tBn2 ); N(Bn2 ; tKÆ)g � exp(
(�)nt�1=�)for every t � 1, where 
(�) is a 
onstant depending only on �, with 
(�) = O((��12 )�1=2) as � ! 12 . We then say that K is in M -position of order � or �-regularM -position.6 Additional information in the spirit of geometri
fun
tional analysis6.1 Bana
h-Mazur distan
e estimatesRe
all the de�nition of the Bana
h-Mazur distan
e: ifX and Y are two n-dimensionalnormed spa
es, then(6:1:1) d(X;Y ) = minfkTk kT�1k j T : X ! Y is an isomorphismg:Let Bn be the 
olle
tion of all equivalen
e 
lasses of n-dimensional normed spa
es,where X1 � X2 if X1 and X2 are isometri
ally isomorphi
. The Bana
h-Mazur
ompa
tum (of order n) is the 
ompa
t metri
 spa
e (Bn; log d).The quantitative study of the geometry of the Bana
h-Mazur 
ompa
tum essen-tially starts with John's theorem [73℄. For every X 2 Bn one has d(X; `n2 ) � pn,and the multipli
ative triangle inequality for d shows that diam(Bn) � n. Theright order of growth of diam(Bn) as n ! 1 was established by Gluskin [58℄ whoshowed that the Bana
h-Mazur distan
e of a typi
al pair of n-dimensional proje
-tions of the unit ball of `2n1 is asymptoti
ally equivalent to n. Gluskin's theoremwas the starting point for a deep study of \random spa
es" and of random se
tionsand proje
tions of general 
onvex bodies, whi
h is brie
y des
ribed in the nextsubse
tion. 51



In many interesting 
ases, the Bana
h-Mazur distan
e d(X;Y ) is signi�
antlysmaller than n. A �rst example is given by the 
lassi
al estimates of Gurarii,Kade
 and Ma
aev: d(`np ; `nq ) = n1=p�1=q if 1 � p � q � 2 or 2 � p � q � 1,and 
1n� � d(`np ; `nq ) � 
2n�, where 
1; 
2 > 0 are absolute 
onstants and � =maxf1=p� 1=2; 1=2� 1=qg, if 1 � p < 2 < q � 1. This suggests that the diameterdiam(An) of some important familiesAn � Bn may be of lower order. This has beenproved to be true in two important 
ases: Let Sn be the family of all 1-symmetri
spa
es. Tom
zak-Jaegermann [145℄ showed that diam(Sn) ' pn (Gluskin [60℄and Tom
zak-Jaegermann had previously obtained the upper bound 
pn logb n).The same question remains open for the family Un of 1-un
onditional spa
es. Itis 
onje
tured that the right order of diam(Un) is 
lose to pn. Lindenstrauss andSzankowski [88℄ have shown that this quantity is bounded by 
n� for some � � 2=3.In many 
ases, the diameter of a sub
lass of Bn is estimated by probabilisti
methods. The general idea is to estimate the distan
e d(X;Y ) by a suitable averageof norm-produ
ts. The method of random orthogonal fa
torizations (whi
h hasits origin in work of Tom
zak-Jaegermann, and was later developed and used byBenyamini and Gordon [20℄) uses the integral(6:1:2) ZO(n) kTkX!Y kT�1kY!Xd�(T )with respe
t to the probability Haar measure � on O(n) as an upper bound ford(X;Y ). An inequality of Mar
us and Pisier allows one to pass from O(n) tomatri
es whose entries are independent standard Gaussian variables and then useChevet's inequality from the theory of Gaussian pro
esses in order to 
ontroll thisaverage (see [147℄). Using this method one 
an prove a general inequality in termsof the type-2 
onstants of the spa
es [39℄:(6:1:3) d(X;Y ) � 
pn[T2(X) + T2(Y �)℄for every X;Y 2 Bn. This was further improved by Bourgain and Milman [27℄ to(6:1:4) d(X;Y ) � 
�d(Y; `n2 )T2(X) + d(X; `n2 )T2(Y �)�:A similar te
hnique is used in [27℄ where it is shown that d(X;X�) � 
(logn)
n5=6for every X 2 Bn. All these results indi
ate that the distan
e between spa
es whoseunit balls are \quite di�erent" is not of the order of n.The Bana
h-Mazur distan
e d(K;L) between two not ne
essarily symmetri

onvex bodies K and L is the smallest d > 0 for whi
h there exist z1; z2 2 Rnand T 2 GL(n) su
h that K � z1 � T (L� z2) � d(K � z1). The question of themaximal distan
e between non-symmetri
 bodies is open. John's theorem impliesthat d(K;L) � n2. Better estimates were obtained with the method of randomorthogonal fa
torizations and re
ent progress on the non-symmetri
 analogue ofTheorem 2.11. In [15℄ it was proved that every 
onvex body K has an aÆne imageK1 su
h that w(K1)w(KÆ1 ) � 
pn, a bound whi
h was improved to 
n1=3 log9 n52



in [127℄. Using this fa
t, Rudelson showed that d(K;L) � 
n4=3 log9 n for anyK;L 2 Kn.In another dire
tion, for every X 2 Bn let us 
onsider the \radius" Rn(X) ofthe Bana
h-Mazur 
ompa
tum Bn with respe
t to X , de�ned by(6:1:5) Rn(X) = maxfd(X;Y ) : Y 2 Bng:In this terminology, John's theorem states that Rn(`n2 ) = n1=2. A natural questionasked by Pel
zynski is to determine the order of the radius Rn(`np ) for other valuesof p. In the 
ase of the 
ube, one has the estimates n1=2 � Rn(`n1) � n as a
onsequen
e of John's theorem. Bourgain and Szarek [29℄ proved that Rn(`n1) =o(n) and gave a proportional version of the Dvoretzky-Rogers lemma on the 
onta
tpoints of a body and its minimal volume ellipsoid: Assume that Bn2 is the ellipsoidof minimal volume 
ontaining K. For every Æ 2 (0; 1) there exist m � (1� Æ)n and
onta
t points x1; : : : ; xm of K and Bn2 , su
h that(6:1:6) f(Æ) mXi=1 t2i!1=2 � j mXi=1 tixij � k mXi=1 tixikK � mXi=1 jtij:for every 
hoi
e of s
alars t1; : : : ; tm. This fa
t 
an be stated as a proportionalfa
torization theorem [29℄.Theorem 6.1 Let X be an n-dimensional spa
e. For every Æ 2 (0; 1) one 
an �ndm � (1 � Æ)n and two operators � : `m2 ! X, � : X ! `m1, su
h that the identityid2;1 : `m2 ! `m1 is written as id2;1 = � Æ � and k�k k�k � 1=f(Æ), where f(Æ) isa fun
tion depending only on the proportion Æ 2 (0; 1). 2Using this result Bourgain and Szarek gave a �nal answer to the problem of theuniqueness up to 
onstant of the 
enter of the Bana
h{Mazur 
ompa
tum. This
an be made a pre
ise question as follows: Does there exist a fun
tion f(�), � � 1,su
h that for every X 2 Bn with Rn(X) � �pn we must have d(X; `n2 ) � f(�)?In other words, are all the \asymptoti
 
enters" of the Bana
h{Mazur 
ompa
tum
lose to the Eu
lidean spa
e? The answer is negative and the main tool in theproof is Theorem 6.1: Let X = `s2 � `n�s1 where s = [n=2℄. Then Rn(X) � 
pn forsome absolute 
onstant but d(X; `n2 ) � (n=2)1=2. Therefore, there exist asymptoti

enters of the Bana
h-Mazur 
ompa
tum with distan
e to `n2 of the order of Rn(`n2 ).The same inequality allowed Bourgain and Szarek to show that Rn(`n1) = o(n).It is now known (see [141℄, [49℄) that (3) holds true with f(Æ) = 
Æ, and this gives abetter upper bound for Rn(`n1), whi
h however does not seem to give the right orderof the quantity: There exists an absolute 
onstant 
 > 0 su
h that Rn(`n1) � 
n5=6(see [48℄). On the other hand, Szarek [138℄ using random spa
es (see the nextsubse
tion) proved that Rn(`n1) � 
pn logn.53



6.2 Random spa
esThe theory of random spa
es started with Gluskin's theorem [58℄ on the diam-eter of the Bana
h-Mazur 
ompa
tum. He 
onsidered a 
lass Xn;m of randomn-dimensional normed spa
es and showed that with high probability the Bana
h-Mazur distan
e of two spa
esX1; X2 2 Xn;2n ex
eeds 
n, where 
 > 0 is an absolute
onstant.The 
lass Xn;m is de�ned as follows: we 
onsider a sequen
e g1; : : : ; gm of inde-pendent standard Gaussian random variables on some probability spa
e (
;A; P ),and for ea
h ! 2 
 we de�ne the spa
e X(!) whose unit ball is the symmetri

onvex body(6:2:1) Bm(!) = abs
onvfe1; : : : ; en; g1(!); : : : ; gm(!)g:Alternatively, one 
an 
onsider the 
lass Yn;m of spa
es Y (!) with unit ball(6:2:2) ~Bm(!) = abs
onvfg1(!); : : : ; gm(!)g:If m � n, then ~Bm(!) has non-empty interior almost surely and de�nes a norm onRn . The random spa
e X(!) or Y (!) 
an be identi�ed with a quotient of `n+m1 or`m1 respe
tively.Fix m = 2n. The basi
 geometri
 properties of Bm(!) are the following:1. Bm(!) � (1=pn)Bn2 .2. jBm(!)j1=n � 
1j(1=pn)Bn2 j1=n, where 
1 > 0 is an absolute 
onstant.Consider the 
lass of pairs (X(!1); X(!2)) 2 Xn;m � Xn;m. If we �x !2 andT 2 SL(n), using the above properties of Bm(!2) we see that(6:2:3) Prob �!1 : kT : X(!2)! X(!1)k � 
2�pn� < �2n2for every 0 < � < 1, where 
2 > 0 is an absolute 
onstant. Our aim is to show thatthe probability P1 := Prob(!1 : X(!1) 2 L(!2)) is small, where(6:2:4) L(!2) := fX(!1) : 9T 2 SL(n) : kT : X(!1)! X(!2)k � �pngfor some 
onstant 0 < � < 1 to be determined. To this end, we de�ne(6:2:5) M(!2) = fT 2 SL(n) : kTejkX(!2) � pn; j = 1; : : : ; ng;and 
onsider a "-net N (!2) ofM(!2) in the norm k� : `n2 ! `n2k. If X(!1) 2 L(!2),then there exists T 2 M(!2) su
h that kT : X(!1) ! X(!2)k � �pn. It followsthat kS : X(!1) ! X(!2)k � (� + ")pn for some S 2 N (!2). If we set � = " =
�=2, 
ombining with (6.2.3) we see that(6:2:6) P1 < jN (!2)j � �2n2 :The 
ardinality of the net is smaller than (
3=")n2 = (
4=�)n2 , and this shows thatP1 < (1=2)n2 if � is 
hosen small enough.54



It is now 
lear that with probability greater than 1� 2(1=2)n2 in Xn;m �Xn;mwe have(6:2:7) kT : X(!1)! X(!2)k � kT�1 : X(!2)! X(!1)k � �2nfor all T 2 SL(n), whi
h implies d(X(!1); X(!2)) � �2n. This proves Gluskin'stheorem:Theorem 6.2 There exists a 
onstant 
 > 0 su
h that diam(Bn) � 
n for everyn 2 N. 2Let us mention the following re
ent result of Rudelson [128℄ whi
h 
omplementsGluskin's theorem. If K1;K2 are symmetri
 
onvex bodies in Rn and if k < n,write dk(K1;K2) for the smallest Bana
h-Mazur distan
e between k-dimensionalsubspa
es of K1 and K2 respe
tively. If D(n; k) is the supremum of dk(K1;K2)over all pairs of symmetri
 
onvex bodies in Rn , then D(n; k) ' pk if k � n2=3and D(n; k) ' k2=n if k � n2=3 (in this statement, ' means \up to a �xed powerof logn").Theorem 6.2 was the starting point for a systemati
 study of random spa
es.Random quotients of `m1 provided examples of the worst possible order for severalparameters of the lo
al theory. It turns out that a random spa
e X 2 Xn;m has arather \poor" family of bounded operators. It was observed by Gluskin [59℄, thata random spa
e Xn;n2 has the following property: any proje
tion P in X of rankk � n=2 satis�es(6:2:8) kT : X ! Xk � 
k=pn logn :As a 
onsequen
e su
h a spa
e has basis 
onstant b
(X) � 
0pn= logn. [Re
all thatthe basis 
onstant b
(X) of an n-dimensional normed spa
e X is the in�mum of thebasis 
onstants b
fx1; : : : ; xng over all bases of X .℄ This follows immediately fromthe fa
t that, by the de�nition of the basis 
onstant, in any n-dimensional normedspa
e X there exists a proje
tion P of rank k = [n=2℄ with kP : X ! Xk � b
(X).Szarek [137℄ modi�ed the random stru
ture on Xn;m and was able to 
onstru
tan n-dimensional normed spa
e X with b
(X) � 
pn. Be
ause of John's theo-rem this order is optimal. Mankiewi
z [91℄ applied the random spa
es method to
onstru
t �nite dimensional spa
es with the worst (in order) possible symmetri

onstant. In this work Mankiewi
z used the \spa
e mixing" property of the irre-du
ible group of operators. Szarek [139℄ expli
itly introdu
ed the notion of the 
lassM(k; �) of mixing operators whi
h is the set of all linear operators T , satisfying(6:2:9) dist(Tx;E) = jPE?Txj � �jxjfor some k-dimensional subspa
e E and every x 2 E. It is not diÆ
ult to show thatany proje
tion P of rank k � n=2 is (k; 1=2) mixing. Then, Szarek showed that themixing property is suÆ
ient for proving the results of [91℄, but also [59℄ and [137℄.In parti
ular, he proved that for a random spa
e X 2 Xn;n2 one has(6:2:10) kT : X ! Xk � �
k=pn logn55



for any T 2Mix(k; �) and that for some modi�ed probability in Xn;m the followingresult holds.Theorem 6.3 For every 0 < � � 1=2 and Æ > 0, a random spa
e X(!) 2 Xn;mwhere m = [Æn℄, satis�es kT : X(!) ! X(!)k � 
(�; Æ)pn for every T 2Mix(�n; 1). 2It should be mentioned that the random spa
e method allows us to 
onstru
t asequen
e of �nite dimensional normed spa
es, whi
h serve as blo
ks for the 
onstru
-tion of examples of in�nite dimensional spa
es with some unexpe
ted properties:real isomorphi
 
omplex Bana
h spa
es whi
h are not 
omplex isomorphi
 (Bour-gain [22℄), a Bana
h spa
e without a basis whi
h has the bounded approximationproperty (Szarek [140℄) et
.The 
lass Yn;m, m ' n1+Æ provides examples of random spa
es with largeBana
h-Mazur distan
e to `n1 . The distribution of Y (!) is the same with the dis-tribution of `m1 =H where H is a random (m� n)-dimensional subspa
e of `m1 , andthus Yn;m re
e
ts 
ompletely the geometry of quotients of `m1 . The following theo-rem of Szarek [138℄ gives the only known example of a pair of spa
es with distan
esigni�
antly larger than pn, in whi
h one of the two spa
es is 
on
rete.Theorem 6.4 For every Æ > 0, a random spa
e Y (!) 2 Yn;m where m = [n1+Æ ℄,satis�es d(Y (!); `n1 ) � 
(Æ)pn logn.The proof involves a pre
ise distributional inequality on the singular numberssi of random Gaussian matri
es, whi
h is a quantitative �nite version of Wigner'ssemi
ir
le law: if G(!) is an n � n matrix with independent N(0; 1=n) Gaussianentries, then(6:2:11) Prob(! : 
1k=n � sn�k(G(!)) � 
2k=n) > 1� 
3 exp(�
4k2);for all k � n=2, where the 
i's are absolute positive 
onstants.In the last years it was understood that the ideas and arguments used in thestudy of random quotients of `n+m1 
ould be transferred to a mu
h more generalsetting. The idea of studying random proje
tions of arbitrary high-dimensional
onvex bodies 
omes from Bourgain, and it was developed in a whole theory byMankiewi
z and Tom
zak-Jaegermann (see the survey arti
le [93℄). The startingobservation is that the main geometri
 properties of a random spa
e in Xn;m 
anbe satis�ed by proje
tions of an arbitrary 
onvex body if they are put in a suitableposition. More pre
isely, for �xed 0 < � < 1 and for every n-dimensional 
onvexbody K, there exist a [�n℄-dimensional proje
tion T = PE(K) and a Eu
lideannorm on E satisfying the following properties:1. vr(T ) � C1(�).2. d(XK ; `n2 )�1BE � T � 2BE.3. There is an orthonormal basis fxjg in XT with maxj kxjkT � C2(�).56



The proof of this fa
t makes use of the M -ellipsoids. Properties 1 and 2 
or-respond to the two geometri
 properties of X(!) 2 Xn;m. The third one, whi
hwas also 
lear by 
onstru
tion in our previous dis
ussion, is allowed in the generalsetting be
ause of the proportional Dvoretzky-Rogers fa
torization (Theorem 6.1).An example of this line of thought is the following re
ent result from [92℄: If K1and K2 are two symmetri
 
onvex bodies in Rn whose minimal volume ellipsoid isthe Eu
lidean unit ball, then for every proportional dimension k = �n the averagedistan
e between k-dimensional proje
tions PH1 (K1) and PH2(K2) of K1 and K2is bounded from below by the produ
t of the average distan
esZGn;s d(PLi(Ki); `s2)d�n;s(Li)where s 
an be taken equal to s = (1=2� ")k for any small " > 0.Random spa
es were used very re
ently by Szarek and Tom
zak-Jaegermann[144℄ to provide a strong negative answer to a series of questions raised in themid-eighties (see [102℄), whi
h roughly speaking asked if the 
otype properties ofevery n-dimensional normed spa
e improve by passing to quotients of proportionaldimension. A typi
al example is the following: Is it true that there is an absolute
onstant C > 0 su
h that every n-dimensional spa
e X has a quotient X1 of di-mension dim(X1) � n=2 su
h that the 
otype-2 
onstant of X1 is bounded by C?Re
all that this is true if we repla
e bounded 
otype-2 
onstant by bounded volumeratio (and, by a result of Bourgain and Milman [28℄, the �rst property implies these
ond). A positive answer would be of obvious importan
e, sin
e all the theory oftype and 
otype would enter de
isively in the study of general 
onvex bodies.For any given �nite dimensional spa
e W , Szarek and Tom
zak-Jaegermann
onstru
t a spa
e X of an appropriately larger dimension, whi
h is well satu-rated with W . The pre
ise statement is the following: Let n and m0 be posi-tive integers with pn logn � m0 � n. If W is a normed spa
e with dim(W ) �
minfm0=pn;m20=(n logn)g, there exists an n-dimensional normed spa
e X su
hthat: if m0 � m � n, every m-dimensional quotient X1 of X 
ontains a 1-
omplemented subspa
e isometri
 to W .Let us give a dire
t appli
ation of this fa
t: If we 
hoose W = `k1 with k ' pnand 
onsider an n-dimensional spa
e X as above, taking m0 proportional to n wesee that the 
otype-2 
onstant of every m0-dimensional quotient X1 of X is at leastof the order of 4pn (and the 
otype-q 
onstant of every su
h X1 is at least of theorder of n1=(2q)).Referen
es[1℄ A.D. Alexandrov, On the theory of mixed volumes of 
onvex bodies II: New inequal-ities between mixed volumes and their appli
ations (in Russian), Mat. Sb. N.S. 2(1937), 1205-1238. 57



[2℄ A.D. Alexandrov, On the theory of mixed volumes of 
onvex bodies IV: Mixeddis
riminants and mixed volumes (in Russian), Mat. Sb. N.S. 3 (1938), 227-251.[3℄ S. Alesker, Remark on Szarek-Talagrand theorem, Combin. Probab. Comput. 6(1997), 139-144.[4℄ S. Alesker, S. Dar and V.D. Milman, A remarkable measure preserving di�eomor-phism between two 
onvex bodies in Rn , Geom. Dedi
ata 74 (1999), 201-212.[5℄ D. Amir and V.D. Milman, Un
onditional and symmetri
 sets in n-dimensionalnormed spa
es, Israel J. Math. 37 (1980), 3-20.[6℄ J. Arias-de-Reyna, K. Ball and R. Villa, Con
entration of the distan
e in �nitedimensional normed spa
es, Mathematika 45 (1998), 245-252.[7℄ S. Artstein, V.D. Milman and S.J. Szarek, Duality of metri
 entropy in the Eu-
lidean spa
e, C. R. Math. A
ad. S
i. Paris 337 (2003), no. 11, 711-714.[8℄ S. Artstein, V.D. Milman and S.J. Szarek, Duality of metri
 entropy, Annals ofMath. (to appear).[9℄ K.M. Ball, Normed spa
es with a weak Gordon-Lewis property, Le
ture Notes inMathemati
s 1470, Springer, Berlin (1991), 36-47.[10℄ K.M. Ball, Volumes of se
tions of 
ubes and related problems, Le
ture Notes inMathemati
s 1376, Springer, Berlin (1989), 251-260.[11℄ K.M. Ball, Shadows of 
onvex bodies, Trans. Amer. Math. So
. 327 (1991), 891-901.[12℄ K.M. Ball, Volume ratios and a reverse isoperimetri
 inequality, J. London Math.So
. (2) 44 (1991), 351-359.[13℄ K.M. Ball, Convex geometry and Fun
tional analysis, Handbook of the Geometryof Bana
h spa
es (Lindenstrauss-Johnson eds), Elsevier (2001), 161-194.[14℄ K.M. Ball, An elementary introdu
tion to modern 
onvex geometry, Flavors ofGeometry, Math. S
i. Res. Inst. Publ. 31, Cambridge Univ. Press (1997), 1-58.[15℄ W. Banasz
zyk, A. Litvak, A. Pajor and S.J. Szarek, The 
atness theorem fornonsymmetri
 
onvex bodies via the lo
al theory of Bana
h spa
es, Math. Oper.Res. 24 (1999), 728-750.[16℄ F. Barthe, On a reverse form of the Bras
amp-Lieb inequality, Invent. Math. 134(1998), 335-361.[17℄ F. Barthe, An extremal property of the mean width of the simplex, Math. Ann.310 (1998), 685-693.[18℄ E.F. Be
kenba
h and R. Bellman, Inequalities, Springer-Verlag (1971).[19℄ W. Be
kner, Inequalities in Fourier analysis, Annals of Math. 102 (1975), 159-182.[20℄ Y. Benyamini and Y. Gordon, Random fa
torization of operators between Bana
hspa
es, J. d'Analyse Math. 39 (1981), 45-74.[21℄ S.G. Bobkov and F.L. Nazarov, On 
onvex bodies and log-
on
ave probabilitymeasures with un
onditional basis, Geom. Aspe
ts of Fun
t. Analysis (Milman-S
he
htman eds.), Le
ture Notes in Math. 1807 (2003), 53-69.58



[22℄ J. Bourgain, Real isomorphi
 
omplex spa
es need not to be 
omplex isomorphi
,Pro
. Amer. Math. So
. 96 (1986), 221-226.[23℄ J. Bourgain, On the distribution of polynomials on high dimensional 
onvex sets,Le
ture Notes in Mathemati
s 1469, Springer, Berlin (1991), 127-137.[24℄ J. Bourgain, B. Klartag and V.D. Milman, A redu
tion of the sli
ing problem to�nite volume ratio bodies, C. R. A
ad. S
i. Paris, Ser. I 336 (2003), 331-334.[25℄ J. Bourgain, J. Lindenstrauss and V.D. Milman, Minkowski sums and symmetriza-tions, Le
ture Notes in Mathemati
s 1317 (1988), 44-66.[26℄ J. Bourgain, J. Lindenstrauss and V.D. Milman, Estimates related to Steiner sym-metrizations, Le
ture Notes in Mathemati
s 1376 (1989), 264-273.[27℄ J. Bourgain and V.D. Milman, Distan
es between normed spa
es, their subspa
esand quotient spa
es, Integral Eq. Operator Th. 9 (1986), 31-46.[28℄ J. Bourgain and V.D. Milman, New volume ratio properties for 
onvex symmetri
bodies in Rn , Invent. Math. 88 (1987), 319-340.[29℄ J. Bourgain and S.J. Szarek, The Bana
h-Mazur distan
e to the 
ube and theDvoretzky-Rogers fa
torization, Israel J. Math. 62 (1988), 169-180.[30℄ J. Bourgain and L. Tzafriri, Invertibility of \large" submatri
es with appli
ations tothe geometry of Bana
h spa
es and harmoni
 analysis, Israel J. of Math. 57 (1987),137-224.[31℄ H.J. Bras
amp and E.H. Lieb, Best 
onstants in Young's inequality, its 
onverse andits generalization to more than three fun
tions, Adv. in Math. 20 (1976), 151-173.[32℄ H.J. Bras
amp, E.H. Lieb and J.M. Luttinger, A general rearrangement inequalityfor multiple integrals, J. Fun
t. Anal. 17 (1974), 227-237.[33℄ Y. Brenier, Polar fa
torization and monotone rearrangement of ve
tor-valued fun
-tions, Comm. Pure Appl. Math. 44 (1991), 375-417.[34℄ Y.D. Burago and V.A. Zalgaller, Geometri
 Inequalities, Springer Series in SovietMathemati
s, Springer-Verlag, Berlin-New York (1988).[35℄ L.A. Ca�arelli, A-priori estimates and the geometry of the Monge-Amp�ere equation,Park City/IAS Mathemati
s Series 2 (1992).[36℄ D. Cordero-Erausquin, In�egalit�e de Pr�ekopa-Leindler sur la sph�ere, C. R. A
ad. S
i.Paris S�er. I Math. 329 (1999), no. 9, 789{792.[37℄ D. Cordero-Erausquin, R.J. M
Cann, M. S
hmu
kens
hl�ager, A Riemannian inter-polation inequality �a la Borell, Bras
amp and Lieb, Invent. Math. 146 (2001), no. 2,219{257.[38℄ S. Dar, Remarks on Bourgain's problem on sli
ing of 
onvex bodies, in Geometri
Aspe
ts of Fun
tional Analysis, Operator Theory: Advan
es and Appli
ations 77(1995), 61-66.[39℄ W.J. Davis, V.D. Milman and N. Tom
zak-Jaegermann, The distan
e between 
er-tain n-dimensional spa
es, Israel J. Math. 39 (1981), 1-15.59



[40℄ A. Dvoretzky, A theorem on 
onvex bodies and appli
ations to Bana
h spa
es, Pro
.Nat. A
ad. S
i. U.S.A 45 (1959), 223-226.[41℄ A. Dvoretzky, Some results on 
onvex bodies and Bana
h spa
es, in Pro
. Sympos.Linear Spa
es, Jerusalem (1961), 123-161.[42℄ A. Dvoretzky and C.A. Rogers, Absolute and un
onditional 
onvergen
e in normedlinear spa
es, Pro
. Nat. A
ad. S
i., U.S.A 36 (1950), 192-197.[43℄ J. Elton, Sign-embeddings of `n1 , Trans. Amer. Math. So
. 279 (1983), 113-124.[44℄ T. Figiel, J. Lindenstrauss and V.D. Milman, The dimension of almost spheri
alse
tions of 
onvex bodies, A
ta Math. 139 (1977), 53-94.[45℄ T. Figiel and N. Tom
zak-Jaegermann, Proje
tions onto Hilbertian subspa
es ofBana
h spa
es, Israel J. Math. 33 (1979), 155-171.[46℄ M. Fradelizi, A. Giannopoulos and M. Meyer, Some inequalities about mixed vol-umes, Israel J. Math. 135 (2003), 157-180.[47℄ J. Galambos, The Asymptoti
 Theory of Extreme Order Statisti
s, Wiley: NewYork, 1978.[48℄ A.A. Giannopoulos, A note on the Bana
h-Mazur distan
e to the 
ube, in Geometri
Aspe
ts of Fun
tional Analysis, Operator Theory: Advan
es and Appli
ations 77(1995), 67-73.[49℄ A.A. Giannopoulos, A proportional Dvoretzky-Rogers fa
torization result, Pro
.Amer. Math. So
. 124 (1996), 233-241.[50℄ A.A. Giannopoulos, M. Hartzoulaki and G. Paouris, On a lo
al version of theAleksandrov-Fen
hel inequalities for the quermassintegrals of a 
onvex body, Pro
.Amer. Math. So
. 130 (2002), 2403-2412.[51℄ A.A. Giannopoulos and V.D. Milman, Low M�-estimates on 
oordinate subspa
es,Journal of Fun
t. Analysis 147 (1997), 457-484.[52℄ A.A. Giannopoulos and V.D. Milman, On the diameter of proportional se
tions ofa symmetri
 
onvex body, International Mathemati
s Resear
h Noti
es (1997) 1,5-19.[53℄ A.A. Giannopoulos and V.D. Milman, Extremal problems and isotropi
 positionsof 
onvex bodies, Israel J. Math. 117 (2000), 29-60.[54℄ A.A. Giannopoulos and V.D. Milman, Eu
lidean stru
ture in �nite dimensionalnormed spa
es, Handbook of the Geometry of Bana
h spa
es (Lindenstrauss-Johnson eds), Elsevier (2001), 707-779.[55℄ A. Giannopoulos, V.D. Milman and M. Rudelson, Convex bodies with minimalmean width, Geometri
 Aspe
ts of Fun
tional Analysis (Milman-S
he
htman eds.),Le
ture Notes in Mathemati
s 1745 (2000), 81-93.[56℄ A.A. Giannopoulos and M. Papadimitrakis, Isotropi
 surfa
e area measures, Math-ematika 46 (1999), 1-13.[57℄ A.A. Giannopoulos, I. Perissinaki and A. Tsolomitis, John's theorem for an arbi-trary pair of 
onvex bodies, Geom. Dedi
ata 84 (2001), 63-79.60



[58℄ E.D. Gluskin, The diameter of the Minkowski 
ompa
tum is approximately equalto n, Fun
t. Anal. Appl. 15 (1981), 72-73.[59℄ E.D. Gluskin, Finite dimensional analogues of spa
es without basis, Dokl. Akad.Nauk USSR 216 (1981), 1046-1050.[60℄ E.D. Gluskin, On distan
es between some symmetri
 spa
es, J. Soviet Math. 22(1983), 1841-1846.[61℄ E.D. Gluskin, Probability in the geometry of Bana
h spa
es, Pro
. Int. Congr.Berkeley, Vol. 2 (1986), 924-938.[62℄ E.D. Gluskin, On the sum of intervals, Geometri
 Aspe
ts of Fun
tional Analysis(Milman-S
he
htman eds.), Le
ture Notes in Mathemati
s 1807 (2003), 122-130.[63℄ E.D. Gluskin and V.D. Milman, Randomizing properties of 
onvex high-dimensionalbodies and some geometri
 inequalities, C. R. A
ad. S
i. Paris, Ser. I 334 (2002),no. 10, 875-879.[64℄ Y. Gordon, On Milman's inequality and random subspa
es whi
h es
ape through amesh in Rn , Le
ture Notes in Mathemati
s 1317 (1988), 84-106.[65℄ Y. Gordon, H. K�onig and C. S
h�utt, Geometri
 and probabilisti
 estimates forentropy and approximation numbers of operators, J. Approx. Theory 49 (1987),219-239.[66℄ Y. Gordon, A. Litvak, M. Meyer and A. Pajor, John's de
omposition in the general
ase and appli
ations, Preprint.[67℄ M. Gromov, Convex sets and K�ahler manifolds, in \Advan
es in Di�erential Geom-etry and Topology", World S
ienti�
 Publishing, Teane
k NJ (1990), 1-38.[68℄ M. Gromov, Metri
 Stru
tures for Riemannian and Non-Riemannian Spa
es, basedon \Stru
tures m�etriques des vari�et�es Riemanniennes" (L. LaFontaine, P. Pansu.eds.), English translation by Sean M. Bates, Birkh�auser, Boston-Basel-Berlin, 1999(with Appendi
es by M. Katz, P. Pansu and S. Semmes).[69℄ M. Gromov, Spa
es and question, Pro
eedings of Visions in Mathemati
s Confer-en
e, Israel 1999, GAFA, Spe
ial Volume issue 1, GAFA 2000.[70℄ M. Gromov and V.D. Milman, A topologi
al appli
ation of the isoperimetri
 in-equality, Amer. J. Math. 105 (1983), 843-854.[71℄ M. Gromov and V.D. Milman, Generalization of the spheri
al isoperimetri
 inequal-ity to uniformly 
onvex Bana
h spa
es, Compositio Math. 62 (1987), 263-282.[72℄ L.H. Harper, Optimal numberings and isoperimetri
 problems on graphs, J. Com-bin. Theory 1 (1966), 385-393.[73℄ F. John, Extremum problems with inequalities as subsidiary 
onditions, CourantAnniversary Volume, Inters
ien
e, New York (1948), 187-204.[74℄ B.S. Kashin, Se
tions of some �nite-dimensional sets and 
lasses of smooth fun
-tions, Izv. Akad. Nauk. SSSR Ser. Mat. 41 (1977), 334-351.[75℄ B. Klartag, 5n Minkowski symmetrizations suÆ
e to arrive at an approximate Eu-
lidean ball, Annals of Math. 156 (2002), 947-960.61



[76℄ B. Klartag, Rate of 
onvergen
e of Minkowski symmetrizations, Geom. Fun
t. Anal.14 (2004), no. 5 (to appear).[77℄ B. Klartag and V.D. Milman, Isomorphi
 Steiner symmetrization, Invent. Math.153 (2003), no. 3, 463-485.[78℄ H. Kn�othe, Contributions to the theory of 
onvex bodies, Mi
higan Math. J. 4(1957), 39-52.[79℄ H. K�onig and V.D. Milman, On the 
overing numbers of 
onvex bodies, Geomet-ri
 Aspe
ts of Fun
tional Analysis (Lindenstrauss-Milman eds.), Le
ture Notes inMath. 1267, Springer (1987), 82-95.[80℄ M. Ledoux, The 
on
entration of measure phenomenon, Math. Surveys and Mono-graphs 89, Amer. Math. So
. (2001).[81℄ M. Ledoux and M. Talagrand, Probability in Bana
h spa
es, Ergeb. Math. Gren-zgeb., 3. Folge, Vol. 23 Springer, Berlin (1991).[82℄ P. L�evy, Probl�emes Con
rets d'Analyse Fon
tionelle, Gauthier-Villars, Paris (1951).[83℄ D.R. Lewis, Ellipsoids de�ned by Bana
h ideal norms, Mathematika 26 (1979),18-29.[84℄ E.H. Lieb, Gaussian kernels have only Gaussian maximizers, Inventiones Mathe-mati
ae 102 (1990), 179-208.[85℄ M.A. Lifshits, Gaussian Random Fun
tions, Mathemati
s and its Appli
ations 322,Kluwer A
ademi
 Publishers, Dordre
ht, 1995.[86℄ J. Lindenstrauss, Almost spheri
al se
tions, their existen
e and their appli
ations,Jber. Deuts
h. Math.-Vereinig., Jubil�aumstagung 1990 (Teubner, Stuttgart), 39-61.[87℄ J. Lindenstrauss and V.D. Milman, The Lo
al Theory of Normed Spa
es and itsAppli
ations to Convexity, Handbook of Convex Geometry (edited by P.M. Gruberand J.M. Wills), Elsevier 1993, 1149-1220.[88℄ J. Lindenstrauss and A. Szankowski, On the Bana
h-Mazur distan
e between spa
eshaving an un
onditional basis, Vol. 122 of Math. Studies, North-Holland, 1986.[89℄ A. Litvak, V.D. Milman and G. S
he
htman, Averages of norms and quasi-norms,Math. Ann. 312 (1998), 95-124.[90℄ P. Mani, Random Steiner symmetrizations, Studia S
i. Math. Hungar. 21 (1986),373-378.[91℄ P. Mankiewi
z, Finite dimensional spa
es with symmetry 
onstant of order pn,Studia Math. 79 (1984), 193-200.[92℄ P. Mankiewi
z and N. Tom
zak-Jaegermann, Families of random proje
tions ofsymmetri
 
onvex bodies, Geom. and Fun
t. Analysis 11 (2001), 1282-1326.[93℄ P. Mankiewi
z and N. Tom
zak-Jaegermann, Quotients of �nite-dimensional Ba-na
h spa
es; random phenomena, Handbook of the Geometry of Bana
h spa
es(Lindenstrauss-Johnson eds), Elsevier (2003), 1201-1246.[94℄ B. Maurey, Constru
tions de suites sym�etriques, C.R. A
ad. S
i. Paris 288 (1979),679-681. 62



[95℄ B. Maurey, Some deviation inequalities, Geom. Fun
t. Anal. 1 (1991), no.2, 188{197.[96℄ R.J. M
Cann, Existen
e and uniqueness of monotone measure preserving maps,Duke Math. J. 80 (1995), 309-323.[97℄ V.D. Milman, New proof of the theorem of Dvoretzky on se
tions of 
onvex bodies,Fun
t. Anal. Appl. 5 (1971), 28-37.[98℄ V.D. Milman, Geometri
al inequalities and mixed volumes in the Lo
al Theory ofBana
h spa
es, Ast�erisque 131 (1985), 373-400.[99℄ V.D. Milman, Random subspa
es of proportional dimension of �nite dimensionalnormed spa
es: approa
h through the isoperimetri
 inequality, Le
ture Notes inMathemati
s 1166 (1985), 106-115.[100℄ V.D. Milman, Almost Eu
lidean quotient spa
es of subspa
es of �nite dimensionalnormed spa
es, Pro
. Amer. Math. So
. 94 (1985), 445-449.[101℄ V.D. Milman, Inegalit�e de Brunn-Minkowski inverse et appli
ations �a la th�eorielo
ale des espa
es norm�es, C.R. A
ad. S
i. Paris 302 (1986), 25-28.[102℄ V.D. Milman, The 
on
entration phenomenon and linear stru
ture of �nite-dimensional normed spa
es, Pro
eedings of the ICM, Berkeley (1986), 961-975.[103℄ V.D. Milman, A few observations on the 
onne
tion between lo
al theory and someother �elds, Le
ture Notes in Mathemati
s 1317 (1988), 283-289.[104℄ V.D. Milman, The heritage of P. L�evy in geometri
al fun
tional analysis, Ast�erisque157-158 (1988), 273-302.[105℄ V.D. Milman, Isomorphi
 symmetrization and geometri
 inequalities, Le
ture Notesin Mathemati
s 1317 (1988), 107-131.[106℄ V.D. Milman, A note on a low M�-estimate, in \Geometry of Bana
h spa
es,Pro
eedings of a 
onferen
e held in Strobl, Austria, 1989" (P.F. Muller and W.S
ha
hermayer, Eds.), LMS Le
ture Note Series, Vol. 158, Cambridge UniversityPress (1990), 219-229.[107℄ V.D. Milman, Spe
trum of a position of a 
onvex body and linear duality relations,in Israel Math. Conf. Pro
eedings 3, Fests
hrift in Honor of Professor I. Piatetski-Shapiro, Weizmann S
ien
e Press of Israel (1990), 151-162.[108℄ V.D. Milman, Some appli
ations of duality relations, Le
ture Notes in Mathemati
s1469 (1991), 13-40.[109℄ V.D. Milman, Dvoretzky's theorem - Thirty years later, Geom. Fun
tional Anal. 2(1992), 455-479.[110℄ V.D. Milman, Topi
s in asymptoti
 geometri
 analysis, Pro
eedings of \Visions inMathemati
s - Towards 2000", GAFA 2000, Spe
ial Volume (2000), 792-815.[111℄ V.D. Milman and A. Pajor, Isotropi
 position and inertia ellipsoids and zonoids ofthe unit ball of a normed n-dimensional spa
e, Le
ture Notes in Mathemati
s 1376,Springer, Berlin (1989), 64-104. 63



[112℄ V.D. Milman and A. Pajor, Entropy and asymptoti
 geometry of non-symmetri

onvex bodies, Adv. Math. 152 (2000), 314-335.[113℄ V.D. Milman and G. S
he
htman, Asymptoti
 Theory of Finite DimensionalNormed Spa
es, Le
ture Notes in Mathemati
s 1200 (1986), Springer, Berlin.[114℄ V.D. Milman and G. S
he
htman, An \isomorphi
" version of Dvoretzky's theorem,C.R. A
ad. S
i. Paris 321 (1995), 541-544.[115℄ V.D. Milman and G. S
he
htman, Global versus Lo
al asymptoti
 theories of �nite-dimensional normed spa
es, Duke Math. Journal 90 (1997), 73-93.[116℄ G. Paouris, On the isotropi
 
onstant of non-symmetri
 
onvex bodies, Le
tureNotes in Mathemati
s 1745 (2000), 239-243.[117℄ C.M. Petty, Surfa
e area of a 
onvex body under aÆne transformations, Pro
.Amer. Math. So
. 12 (1961), 824-828.[118℄ A. Piets
h, Theorie der Operatorenideale (Zusammenfassung), Friedri
h-S
hiller-Universit�at Jena (1972).[119℄ G. Pisier, Holomorphi
 semi-groups and the geometry of Bana
h spa
es, Ann. ofMath. 115 (1982), 375-392.[120℄ G. Pisier, Probabilisti
 methods in the geometry of Bana
h spa
es, Le
ture Notesin Mathemati
s 1206 (1986), 167-241.[121℄ G. Pisier, The Volume of Convex Bodies and Bana
h Spa
e Geometry, CambridgeTra
ts in Mathemati
s 94 (1989).[122℄ A. Pajor and N. Tom
zak-Jaegermann, Remarques sur les nombres d'entropie d'unop�erateur et de son transpos�e, C.R. A
ad. S
i. Paris 301 (1985), 743-746.[123℄ A. Pajor and N. Tom
zak-Jaegermann, Subspa
es of small 
odimension of �nitedimensional Bana
h spa
es, Pro
. Amer. Math. So
. 97 (1986), 637-642.[124℄ T.R. Ro
kafellar, Convex Analysis, Prin
eton University Press (1970).[125℄ C.A. Rogers and G. Shephard, The di�eren
e body of a 
onvex body, Ar
h. Math.8 (1957), 220-233.[126℄ M. Rudelson, Conta
t points of 
onvex bodies, Israel J. Math. 101 (1997), 93-124.[127℄ M. Rudelson, Distan
es between non-symmetri
 
onvex bodies and the MM�-estimate, Positivity 4 (2000), 161-178.[128℄ M. Rudelson, Distan
es between se
tions of 
onvex bodies, Geom. Fun
t. Anal. 14(2004), no. 5 (to appear).[129℄ M. Rudelson and R. Vershynin, Embedding of L�evy families into Bana
h spa
es,Geom. Fin
t. Anal. 12 (2002), 183-198.[130℄ M. Rudelson and R. Vershynin, Combinatori
s of random pro
esses and se
tions of
onvex bodies, Preprint.[131℄ G. S
he
htman, L�evy type inequality for a 
lass of metri
 spa
es, Martingale theoryin harmoni
 analysis and Bana
h spa
es, Springer-Verlag, Berlin-New York (1981),211-215. 64



[132℄ G. S
he
htman, Con
entration results and appli
ations, Handbook of the Geometryof Bana
h spa
es (Lindenstrauss-Johnson eds), Elsevier (2003), 1603-1634.[133℄ G. S
he
htman and M. S
hmu
kens
hl�ager, A 
on
entration inequality for harmoni
measures on the sphere, in Geometri
 Aspe
ts of Fun
tional Analysis, OperatorTheory: Advan
es and Appli
ations 77 (1995), 255-273.[134℄ R. S
hneider, Convex Bodies: The Brunn-Minkowski Theory, En
y
lopedia ofMathemati
s and its Appli
ations 44, Cambridge University Press, Cambridge(1993).[135℄ V.N. Sudakov, Gaussian random pro
esses and measures of solid angles in Hilbertspa
es, Soviet Math. Dokl. 12 (1971), 412-415.[136℄ S.J. Szarek, On Kashin's almost Eu
lidean orthogonal de
omposition of `n1 , Bull.A
ad. Polon. S
i. 26 (1978), 691-694.[137℄ S.J. Szarek, The �nite dimensional basis problem, with an appendix on nets ofGrassman manifold, A
ta Math. 159 (1983), 153-179.[138℄ S.J. Szarek, Spa
es with large distan
e to `n1 and random matri
es, Amer. J. Math.112 (1990), 899-942.[139℄ S.J. Szarek, On the Existen
e and Uniqueness of Complex Stru
ture and Spa
eswith \Few" Operators, Trans. Amer. Math. So
. 293 (1986), 339{353.[140℄ S.J. Szarek, A Bana
h spa
e without a basis whi
h has the bounded approximationproperty, A
ta Math. 159 (1987), 81-98.[141℄ S.J. Szarek and M. Talagrand, An isomorphi
 version of the Sauer-Shelah lemmaand the Bana
h-Mazur distan
e to the 
ube, Le
ture Notes in Mathemati
s 1376(1989), 105-112.[142℄ S.J. Szarek and M. Talagrand, On the 
onvexi�ed Sauer-Shelah theorem, J. Com-binat. Theory, Ser. B 69 (1997), 183-192.[143℄ S.J. Szarek and N. Tom
zak-Jaegermann, On nearly Eu
lidean de
ompositions ofsome 
lasses of Bana
h spa
es, Compositio Math. 40 (1980), 367-385.[144℄ S.J. Szarek and N. Tom
zak-Jaegermann, Saturating 
onstru
tions for normedspa
es, Geom. Fun
t. Anal. 14 (2004), no. 6 (to appear).[145℄ N. Tom
zak-Jaegermann, The Bana
h-Mazur distan
e between symmetri
 spa
es,Israel J. Math. 46 (1983), 40-66.[146℄ N. Tom
zak-Jaegermann, Dualit�e des nombres d'entropie pour des op�erateurs �avaleurs dans un espa
e de Hilbert, C.R. A
ad. S
i. Paris 305 (1987), 299-301.[147℄ N. Tom
zak-Jaegermann, Bana
h-Mazur Distan
es and Finite Dimensional Opera-tor Ideals, Pitman Monographs 38 (1989), Pitman, London.A.A. Giannopoulos: Department of Mathemati
s, University of Crete, Irak-lion, Gree
e. E-mail: giannop�fourier.math.uo
.grV.D. Milman: Department of Mathemati
s, Tel Aviv University, Tel Aviv,Israel. E-mail: vitali�math.tau.a
.il 65


