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Abstract

The study of the geometry of log-concave probability measures, in parallel with the study of dis-
tribution of volume on high-dimensional convex bodies, has led to spectacular results culminating in
the final affirmative answer to Bourgain’s slicing problem through the recent works of Q. Guan and
B. Klartag-J. Lehec. In this article we present the main tools and ideas behind these developments,
we survey some of their consequences to the asymptotic theory of convex bodies, and discuss a few
remaining open questions regarding the geometry of isotropic convex bodies.

1 Introduction

Bourgain’s slicing problem asks if there exists an absolute constant c > 0 such that

max{voln−1(K ∩ ξ⊥) : ξ ∈ Sn−1} > c

for every convex body K of volume 1 in Rn that has barycenter at the origin. It turns out that a natural
framework for the study of this problem is the isotropic position of a convex body. A convex body K in Rn
is called isotropic if voln(K) = 1, its barycenter is at the origin and its inertia matrix is a multiple of the
identity, that is, there exists a constant LK > 0 such that∫

K

〈x, ξ〉2dx = L2
K

for every ξ ∈ Sn−1. The number LK is then called the isotropic constant of K. The affine class of any convex
body K contains a unique, up to orthogonal transformations, isotropic convex body; this is the isotropic
position of K. It turns out that an affirmative answer to the slicing problem is equivalent to the following
statement:

There exists an absolute constant C > 0 such that

(1.1) Ln := max{LK : K is an isotropic convex body in Rn} 6 C.

The notion of the isotropic constant can be reintroduced in the more general setting of finite log-concave
measures, and a more general question can be posed in a way that is equivalent to the above when we
consider uniform measures on convex bodies. We say that a finite log-concave measure µ in Rn is isotropic
if µ is a probability measure, its barycenter is at the origin and the covariance matrix Cov(µ) of µ is the
identity matrix In. The isotropic constant of µ is defined in an appropriate way, and a theorem of K. Ball
shows that, in fact, for some absolute constant c > 1,

Ln 6 L̃n := sup{Lµ : µ is isotropic in Rn} 6 cLn.

Around 1985-6 (published in 1990), Bourgain [26] obtained the upper bound Ln 6 c 4
√
n lnn and, in 2006, this

estimate was improved by Klartag [69] to Ln 6 c 4
√
n. Actually, Klartag obtained a solution to the “isomorphic
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slicing problem”, by showing that, for every convex body K in Rn and any ε ∈ (0, 1), one can find a convex
body T ⊂ Rn with barycenter at the origin and a point x ∈ Rn such that (1 + ε)−1T ⊆ K + x ⊆ (1 + ε)T
and LT 6 C/

√
ε for some absolute constant C > 0. A few years later, Dafnis and Paouris [38] developed

an approach that was based on small ball probability estimates and led to the (slightly) weaker estimate
Ln 6 c 4

√
n(lnn)2.

A second main question in this area is the Kannan-Lovász-Simonovits conjecture about the isoperimetric
constant χµ of an isotropic log-concave probability measure µ, defined as the largest constant χ > 0 such
that

µ+(A) > χ min{µ(A), 1− µ(A)}

for every Borel subset A of Rn, where µ+(A) is the Minkowski content of A. If we set ψµ = 1/χµ then the
“KLS conjecture” is the question if there exists an absolute constant C > 0 such that

ψn := sup{ψµ : µ is isotropic log-concave measure on Rn} 6 C.

An equivalent way to formulate the KLS conjecture is to ask that the Poincaré inequality holds for every
isotropic log-concave probability measure µ on Rn with a constant that does not depend on the measure or
the dimension n.

It is now known that Bourgain’s slicing problem has an affirmative answer, and it is also known that
ψn 6 c

√
lnn. Moreover, an affirmative answer has been given for the thin-shell conjecture, which asks if

there exists an absolute constant C > 0 such that, for any n > 1 and any isotropic log-concave probability
measure µ on Rn, one has

Eµ(|x| −
√
n)2 6 C2.

This statement implies that most of the mass of µ is concentrated on a thin spherical cell whose width t
is much smaller than the central radius

√
n. It also implies that high-dimensional log-concave distributions

have approximately Gaussian marginals. If we define σ2
µ =

1

n
Varµ(|x|2) then the thin-shell conjecture is

equivalent to the question if

σn := sup{σµ : µ is isotropic log-concave measure on Rn} 6 C.

Note that σµ 6 Cψµ for every Borel probability measure µ on Rn, and hence σn 6 Cψn. On, the other hand,
Eldan and Klartag [43] showed that there exists an absolute constant C > 0 such that, for every n > 1,

Ln 6 Cσn,

therefore the KLS conjecture implies that Ln is bounded; in fact, any upper bound for ψn is an upper bound
for Ln, up to an absolute constant.

The key for the developments that we shall discuss in this article is Eldan’s stochastic localization, a
technique invented by R. Eldan in his PhD thesis. Stochastic localization allows us to decompose a probability
measure on a high-dimensional space into a mixture of simpler measures that are “localized” in the sense
that they are concentrated on smaller random subsets of the original space. Using this decomposition and
stochastic analysis, one can provide sharp estimates for the heat evolution of a probability measure on Rn,
under the log-concavity assumption. Eldan [42] showed that there exists an absolute constant C > 0 such
that

ψ2
n 6 C lnn

n∑
k=1

σ2
k

k
,

which means that the thin-shell conjecture implies the KLS conjecture up to a polylogarithmic in the dimen-
sion factor. Combining this result with work of Guédon and E. Milman [63], one obtains the bound ψn 6
Cn1/3 lnn. Later, Lee and Vempala [89] developed a variant of Eldan’s stochastic localization and obtained
the bound ψn 6 c 4

√
n. In a breakthrough work, Chen [35] proved that one has ψn 6 exp(C

√
lnn(ln lnn)),

and hence ψn 6 nε for any ε > 0 and all large enough n. This development was the starting point for a

2



series of important works, that led to the estimate ψn 6 c
√

lnn by Klartag [74]. This is currently the best
known result on the KLS conjecture.

A recent technical breakthrough by Guan [62], who also obtained the bound σn = O(ln lnn), was used
by Klartag and Lehec [78] who presented a proof of the conjecture (1.1). Soon afterwards, one more proof
of the isotropic constant conjecture was offered by Bizeul [15]. Even more recently, Klartag and Lehec [79]
confirmed the thin-shell conjecture.

In this article we first introduce Bourgain’s slicing problem and discuss its connection with the asymptotic
versions of several classical problems from convex geometry. Then, we survey some of the consequences of
the affirmative answer to the slicing problem for the asymptotic theory of high-dimensional convex bodies.
The second part of the article presents the tools and ideas behind the developments on the KLS conjecture
and the solution of the slicing problem. Finally, we discuss a few remaining open questions regarding the
geometry of isotropic convex bodies.

We refer to Schneider’s monograph [122] for the classical theory of convex bodies and to the books [2] and
[3] for basic facts from asymptotic convex geometry. We also refer to [30] for more information on isotropic
convex bodies and log-concave probability measures.

2 Isotropic position and the slicing problem

We start with basic notation and definitions from convex geometry. We work in Rn, which is equipped with
the standard inner product 〈·, ·〉. We denote the corresponding Euclidean norm by | · |, and write Bn2 for
the Euclidean unit ball, and Sn−1 for the unit sphere. Volume in Rn is denoted by voln. We write ωn for
the volume of Bn2 and σ for the rotationally invariant probability measure on Sn−1. We also denote the
Haar measure on O(n) by ν. The Grassmann manifold Gn,k of k-dimensional subspaces of Rn is equipped
with the Haar probability measure νn,k. For any integer 1 6 k 6 n − 1 and any F ∈ Gn,k we denote the
orthogonal projection from Rn onto F by PF . We also define BF = Bn2 ∩ F and SF = Sn−1 ∩ F .

The letters c, c′, c1, c2 etc. denote absolute positive constants whose value may change from line to line.
Whenever we write a ≈ b, we mean that there exist absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a.
Also if K,C ⊆ Rn we will write K ≈ C if there exist absolute constants c1, c2 > 0 such that c1K ⊆ C ⊆ c2K.

A convex body in Rn is a compact convex subset K of Rn with non-empty interior. We say that K is
symmetric if K = −K, and that K is centered if its barycenter bar(K) is at the origin, i.e. if∫

K

〈x, ξ〉 dx = 0

for every ξ ∈ Sn−1. If K is a centered convex body in Rn then {T (K) : T ∈ GLn} is the family of positions
of K.

The radial function ρK : Rn \ {0} → R+ of a convex body K with 0 ∈ int(K) is the function ρK(x) =
max{t > 0 : tx ∈ K}, and the support function of K is defined for every y ∈ Rn by hK(y) = max{〈x, y〉 :
x ∈ K}. The mean width of K is the expectation

w(K) =

∫
Sn−1

hK(ξ) dσ(ξ)

of hK over the sphere. The radius of K is

R(K) = max{|x| : x ∈ K}

and the volume radius of K is the quantity

vrad(K) =

(
voln(K)

voln(Bn2 )

)1/n

.

3



The polar body K◦ of a convex body K with 0 ∈ int(K) is the convex body

(2.1) K◦ = {x ∈ Rn : 〈x, y〉 6 1 for all y ∈ K}.

For every convex body K ⊆ Rn we write K for the multiple of K that has volume 1; in other words,
K := voln(K)−1/nK.

A closed bounded set K 6= {0} in Rn is called a star body if for every x ∈ K \ {0} we have that the
interval [0, x) is contained in the interior of K (thus, every straight line passing through the origin crosses the
boundary of K at exactly two points different from the origin), and the Minkowski functional of K defined
by pK(x) = min{t > 0 : x ∈ tK} is a continuous function on Rn.

§ 2.1. Isotropic convex bodies. A convex body K in Rn is called isotropic if it has volume voln(K) = 1,
it is centered, and there is a constant α > 0 such that

(2.2)

∫
K

〈x, y〉2dx = α2|y|2

for all y ∈ Rn. It is useful to note that the isotropic condition (2.2) is equivalent to the fact that

(2.3)

∫
K

xixjdx = α2δij

for every i, j = 1, . . . , n, where xj = 〈x, ej〉 are the coordinates of x with respect to any given orthonormal
basis {e1, . . . , en} of Rn. This is in turn equivalent to the fact that for every linear map T : Rn → Rn (we
write T ∈ L(Rn)),

(2.4)

∫
K

〈x, Tx〉dx = α2tr(T ).

Another consequence of the isotropic condition (2.2) is that∫
K

|x|2dx =

n∑
i=1

∫
K

〈x, ei〉2dx = nα2.

Also, it is easily checked that if K is an isotropic convex body in Rn then U(K) is also isotropic for every
U ∈ O(n).

The next proposition shows that every centered convex body has a linear image which satisfies the
isotropic condition. Moreover, this isotropic position of K is unique up to an orthogonal transformation.

Proposition 2.1. Let K be a centered convex body in Rn. There exists T ∈ GLn such that T (K) is isotropic.

To see this, note that the operator MK ∈ L(Rn) defined by MK(y) =
∫
K
〈x, y〉xdx is symmetric and

positive definite; therefore, it has a symmetric and positive definite square root S. Consider the linear image
K̃ = S−1(K) of K. Then, for every y ∈ Rn we have∫

K̃

〈x, y〉2dx = |detS|−1

∫
K

〈S−1x, y〉2dx = |detS|−1

∫
K

〈x, S−1y〉2dx

= |detS|−1
〈∫

K

〈x, S−1y〉xdx, S−1y
〉

= |detS|−1〈MKS
−1y, S−1y〉 = |detS|−1|y|2.

Normalizing the volume of K̃ we obtain an isotropic convex body.
We can now show that the isotropic position of a convex body is uniquely determined up to orthogonal

transformations, and arises as a solution of a minimization problem. Let K be a centered convex body of
volume 1 in Rn. Define

(2.5) ∆(K) = inf

{∫
TK

|x|2dx : T ∈ SLn
}
.
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We shall show that a position K1 of K, of volume 1, is isotropic if and only if

(2.6)

∫
K1

|x|2dx = ∆(K).

Fix an isotropic position K1 of K. We know that there exists α > 0 such that∫
K1

〈x, Tx〉dx = α2tr(T )

for every T ∈ L(Rn). Then, for every T ∈ SLn we have∫
TK1

|x|2dx =

∫
K1

|Tx|2dx =

∫
K1

〈x, T ∗Tx〉dx = α2tr(T ∗T ) > nα2 =

∫
K1

|x|2dx,(2.7)

where we have used the arithmetic-geometric means inequality in the form tr(T ∗T ) > n(det(T ∗T ))1/n. This
shows that K1 satisfies (2.6). In particular, the infimum in (2.5) is a minimum.

Note also that if we have equality in (2.7) then T ∗T = In, the identity operator, and hence T ∈ O(n).
This shows that any other position K̃ of K which satisfies (2.6) is an orthogonal image of K1, therefore it is
isotropic. Finally, if K2 is some other isotropic position of K then the first part of the proof shows that K2

satisfies (2.6). By the previous step, we must have K2 = U(K1) for some U ∈ O(n).

Based on the above we may define the isotropic constant of any convex body K in Rn by

L2
K =

1

n
min

{
1

voln(TK̃)1+ 2
n

∫
TK̃

|x|2dx
∣∣ T ∈ GLn},

where K̃ = K − bar(K) is the centered translate of K. Note that LK depends only on the affine class of K.
Note also that if K is isotropic then for all ξ ∈ Sn−1 we have∫

K

〈x, ξ〉2dx = L2
K .

The isotropic constant conjecture, which is now a theorem is the following statement.

Theorem 2.2 (isotropic constant problem). There exists an absolute constant C > 0 such that for any
n > 1 and any convex body K in Rn we have

LK 6 C.

As we will see, the isotropic constant problem is equivalent to Bourgain’s slicing problem.

§ 2.2. Bourgain’s slicing problem. The isotropic constant problem was stated explicitly as a question
in the article of V. Milman and Pajor [106] and in the PhD Thesis of K. Ball [6]. The question appears for
the first time in the work of Bourgain [23] on high-dimensional maximal functions associated with arbitrary
convex bodies. Bourgain was interested in bounds for the Lp-norm of the maximal function

MKf(x) = sup

{
1

voln(tK)

∫
tK

|f(x+ y)| dy | t > 0

}
of f ∈ L1

loc(Rn), where K is a symmetric convex body in Rn. Let Cp(K) denote the best constant such that

‖MKf‖p 6 Cp(K)‖f‖p

and C1,1(K) the best constant so that the weak type inequality

‖MKf‖1,∞ 6 C1,1(K)‖f‖1
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is satisfied. Stein proved in [125] that if K = Bn2 is the Euclidean unit ball then Cp(B
n
2 ) is bounded

independently of the dimension for all p > 1. Bourgain showed that there exists an absolute constant C > 0
(independent of n and K) such that

‖MK‖L2(Rn)→L2(Rn) 6 C.

Around the same time, the result for ‖MK‖2→2 was generalized to all p > 3/2 by Bourgain [24] and,
independently, by Carbery [33]. By the definition ofMK it is clear that in order to obtain a uniform bound
on ‖MK‖2→2 one can start with any suitable position T (K) of K. Bourgain used the isotropic position; the
property that played an important role in his argument was that when K is isotropic then LK |K ∩ ξ⊥| ≈ 1
for all ξ ∈ Sn−1. We shall explain this fact in this subsection. Bourgain [23] mentions the fact that LK > c
and asks whether a reverse inequality might hold true.

The slicing problem, which is now a theorem, can be formulated as follows.

Theorem 2.3 (slicing problem). There exists an absolute constant c > 0 such that

(2.8) max{voln−1(K ∩ ξ⊥) : ξ ∈ Sn−1} > c

for every centered convex body K of volume 1 in Rn.

To see the connection of Bourgain’s slicing problem with the isotropic constant problem, we shall exploit
the fact that the moments of inertia of a centered convex body are closely related with the volume of its
hyperplane sections that pass through the origin. In the isotropic case this relation takes the following form.

Theorem 2.4. Let K be a centered convex body of volume 1 in Rn. For every ξ ∈ Sn−1 we have

(2.9)
c1

voln−1(K ∩ ξ⊥)
6

(∫
K

〈x, θ〉2dx
)1/2

6
c2

voln−1(K ∩ ξ⊥)
,

where c1, c2 > 0 are absolute constants. In particular, if K is isotropic then for every ξ ∈ Sn−1 we have

(2.10)
c1
LK

6 voln−1(K ∩ ξ⊥) 6
c2
LK

.

For the proof, given ξ ∈ Sn−1 we consider the function f(t) = fK,ξ(t) = voln−1(K ∩ {x : 〈x, ξ〉 = t}),
t ∈ R. It is a consequence of the Brunn-Minkowski inequality (see [2, Section 1.2]) that ln f is a concave
function on its support.

We restrict our attention to the symmetric case. Then, f is even and ‖f‖∞ = f(0). For the proof in the
general case, which is more or less the same, we need an additional fact (that can be found in Fradelizi [47])
which shows that hyperplane sections through the center of mass are, up to an absolute constant, maximal:
If K is a centered convex body of volume 1 in Rn then, for every ξ ∈ Sn−1,

‖f‖∞ 6 e f(0) = e voln−1(K ∩ ξ⊥).

Proof of Theorem 2.4 (symmetric case). Let f := fK,ξ. To prove the left-hand side of (2.9) we set b =∫ +∞
0

f(t)dt = 1
2 and define

g(t) = ‖f‖∞1[0,b/‖f‖∞](t).

Since g > f on the support of g, we have ∫ s

0

f(t)dt 6
∫ s

0

g(t)dt

for every 0 6 s 6 b/‖f‖∞. The integrals of f and g on [0,+∞) are both equal to b. It follows that∫ ∞
s

g(t)dt 6
∫ ∞
s

f(t)dt
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for every s > 0. Then, ∫ ∞
0

t2f(t)dt =

∫ ∞
0

∫ t

0

2sf(t)dsdt =

∫ ∞
0

2s

(∫ ∞
s

f(t)dt

)
ds

>
∫ ∞

0

2s

(∫ ∞
s

g(t)dt

)
ds =

∫ ∞
0

t2g(t)dt

=

∫ b/‖f‖∞

0

t2‖f‖∞dt =
b3

3‖f‖2∞
.

This shows that ∫
K

〈x, ξ〉2dx = 2

∫ ∞
0

t2f(t) dt >
2b3

3‖f‖2∞
=

1

12f(0)2
.

To prove the right-hand side inequality of (2.9) we distinguish two cases. Assume first that there exists
s > 0 such that f(s) = 1

2f(0). Then,

1

2
=

∫ ∞
0

f(t)dt >
∫ s

0

f(t)dt > sf(s) =
1

2
sf(0),

because, since ln f is even and concave, we have that f(t) > f(s) on [0, s]. On the other hand, if t > s, then

f(s) >
(
f(0)

)1− st (f(t)
) s
t ,

which implies that f(t) 6 f(0)2−t/s. We now write∫ ∞
0

t2f(t)dt =

∫ s

0

t2f(t)dt+

∫ ∞
s

t2f(t)dt 6 f(0)

∫ s

0

t2dt+

∫ ∞
s

t2f(0)2−t/sdt

= f(0)

(
s3

3
+ s3

∫ ∞
1

u22−udu

)
6 c0f(0)s3 6 c0/

(
f(0)

)2
.

Now, assume that, for every s > 0 on the support of f , we have f(s) > 1
2f(0). Then, the role of s is played

by s0 = sup{s > 0 : f(s) > 0}. We have 1
2 > 1

2f(0)s0 and∫ ∞
−∞

t2f(t)dt = 2

∫ ∞
0

t2f(t)dt = 2

∫ s0

0

t2f(t)dt 6
2f(0)s3

0

3
6

2

3
(
f(0)

)2 .
Thus, we get the same estimate as before, without using the fact that ln f is concave.

Theorem 2.4 reveals a close connection between the isotropic constant problem and the slicing problem.
In fact, one direction is very simple by the previous discussion; assume that the slicing problem has an
affirmative answer. If K is isotropic then Theorem 2.4 shows that all sections K ∩ ξ⊥ have volume bounded
from above by c2/LK . Since (2.8) must be true for at least one ξ ∈ Sn−1, we get LK 6 c2/c.

Conversely, we will show in § 2.5 that if there exists an absolute bound C for the isotropic constant,
then the slicing problem has an affirmative answer. We shall first discuss the connection of the isotropic
constant problem and of the slicing problem with two other classical problems from convex geometry and
then establish the equivalence of all four them.

§ 2.3. Busemann-Petty problem. The Busemann-Petty problem was posed in [32], first in a list of
ten problems concerning central sections of symmetric convex bodies in Rn and coming from questions in
Minkowski geometry. It was originally formulated as follows:

Assume that K1 and K2 are symmetric convex bodies in Rn that satisfy

voln−1(K1 ∩ ξ⊥) 6 voln−1(K2 ∩ ξ⊥)

for all ξ ∈ Sn−1. Does it follow that voln(K1) 6 voln(K2)?
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The first breakthrough on the Busemann-Petty problem came in 1975. Larman and Rogers [85] chose
K2 = Bn2 and proved that if n > 12 then there exist symmetric convex bodies K1 which are arbitrarily small
perturbations of Bn2 such that the pair (K1, B

n
2 ) provides a negative answer to the problem. The proof is

probabilistic in nature.
Ball [7] proved that if Qn = [−1/2, 1/2]n is the cube of volume 1 in Rn then voln−1(Qn ∩ ξ⊥) 6

√
2 for

all ξ ∈ Sn−1. Then, he observed in [9] that, if n > 10, and if K1 = Qn and K2 is the Euclidean ball of
volume 1, then

voln−1(Qn ∩ ξ⊥) 6
√

2 < ωn−1ω
−n−1

n
n = voln−1(K2 ∩ ξ⊥)

for all ξ ∈ Sn−1. Ball’s counterexample is essentially different from the one of Larman and Rogers: the cube
is far from being a perturbation of a ball. After Ball’s example, counterexamples to the Busemann-Petty
problem were given independently by Giannopoulos [54] and Bourgain [25] for n > 7, and by Papadimitrakis
[115] in dimensions n = 6 and n = 5.

The key notion that led to the final solution to the Busemann-Petty problem is Lutwak’s definition of an
intersection body. The intersection body IK of a symmetric convex body K in Rn is the symmetric convex
body whose radial function is defined by

ρIK(ξ) = voln−1(K ∩ ξ⊥), ξ ∈ Sn−1.

Lutwak observed in [96] that intersection bodies are closely connected with the Busemann-Petty problem.
Using simple facts from the theory of dual mixed volumes one can see that if K1 is an intersection body
then the answer to the Busemann-Petty problem is affirmative for K1 and any symmetric convex body K2.
However, if K1 is a symmetric convex body that is not an intersection body, then K1 and a perturbation
K2 of K1 provide a counterexample to the question . Therefore, the Busemann-Petty problem has an
affirmative answer in Rn if and only if every symmetric convex body in Rn is an intersection body. Using
this reduction of the problem, Gardner [49], [50] and Zhang [132] gave a negative answer to the problem
for n > 5 by providing examples of non-intersection bodies in R5. Around the same time, Gardner [51]
proved that every symmetric convex body in R3 is an intersection body, and hence the Busemann-Petty
problem has an affirmative answer in dimension n = 3. For a few years it was believed that the problem
has a negative answer in the remaining case n = 4. Through the work of Koldobsky who established a
Fourier analytic characterization of intersection bodies in [82] it was understood that the case n = 4 was still
open. Zhang [134] proved that the answer in R4 is affirmative, and around the same time, using the Fourier
analytic approach, Gardner, Koldobsky and Schlumprecht [53] gave a unified solution to the problem in all
dimensions. Thus, the answer to the Busemann-Petty problem is positive if n 6 4 and negative for all higher
dimensions (see the books of Gardner [52] and Koldobsky [83] for a complete discussion of the problem and
its history).

The asymptotic version of the Busemann-Petty problem, which is now a theorem, can be formulated as
follows.

Theorem 2.5 (asymptotic Busemann-Petty problem). There exists an absolute constant c > 0 such that if
K1 and K2 are centered convex bodies in Rn that satisfy voln−1(K1∩ξ⊥) 6 voln−1(K2∩ξ⊥) for all ξ ∈ Sn−1

then voln(K1)
n−1
n 6 c voln(K2)

n−1
n .

In Section 2.5, assuming that the isotropic constant problem has an affirmative answer, we shall give
a proof of Theorem 2.5, restricted to the class of symmetric convex bodies, with the help of Busemann’s
formula. Later on we shall discuss an alternative approach which works for the class of centered convex
bodies and also settles the lower-dimensional asymptotic Busemann-Petty problem.

§ 2.4. Sylvester problem Let K be a convex body of volume 1 in Rn and let x1, . . . , xn+1 be random
points which are independently and uniformly distributed in K. Their convex hull conv{x1, . . . , xn+1} is a
random simplex contained in K. For every p > 0 we define

mp(K) =

(∫
K

· · ·
∫
K

voln(conv{x1, . . . , xn+1})pdxn+1 · · · dx1

)1/p

.
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If we drop the assumption that |K| = 1 then we normalize as follows:

mp(K) =

(
1

voln(K)n+p+1

∫
K

· · ·
∫
K

voln(conv{x1, . . . , xn+1})pdxn+1 · · · dx1

)1/p

.

Then, mp(K) is invariant under non-degenerate affine transformations: If T ∈ GLn and u ∈ Rn, then
mp(K) = mp(TK + u) for all p > 0. The quantity m1(K) is the expectation of the normalized volume of a
random simplex inside K.

Sylvester’s problem is the question to determine the affine classes of convex bodies for which mp(K) is
minimized or maximized. It is known that, for every p > 0,

mp(K) > mp(B
n
2 )

with equality if and only if K is an ellipsoid (see e.g. Groemer [60] and [61] for the case p > 1 and
Giannopoulos-Tsolomitis [56] for an extension to all p > 0). The problem of the maximum is completely
open in dimensions n > 3. The simplex conjecture asserts that for every convex body K in Rn,

m1(K) 6 m1(∆n)

where ∆n is a simplex in Rn. This has been verified only in the planar case (see [16] and [17]).
Sylvester’s problem is related to the isotropic constant problem: in fact, one can check that the simplex

conjecture implies that Ln 6 C. To see this, we consider the variant of mp(K)

Sp(K) =

(
1

voln(K)n+p

∫
K

· · ·
∫
K

voln(conv{0, x1, . . . , xn})pdxn · · · dx1

)1/p

.

It is not hard to compare the quantities mp(K) and Sp(K).

Proposition 2.6. Let K be a centered convex body of volume 1 in Rn. Then, for every p > 1 we have

Sp(K) 6 mp(K) 6 (n+ 1)Sp(K).

Now, note that voln(conv{0, x1, . . . , xn}) = 1
n! |det(x1 . . . , xn)|. The function fi : K → R defined by

xi 7→ |det(x1, . . . , xn)| for fixed xj in K, j 6= i, is a seminorm, as is the function gi : K → R defined by

xi 7→
∫
K

· · ·
∫
K

|det(x1, . . . , xn)| dxi+1 · · · dxn

for fixed xj in K when j < i. It is a well-known fact, following from Borell’s lemma (see Section 4 below)
that

(2.11) ‖g‖Lq(K) 6
cq

p
‖g‖Lp(K)

for any seminorm g and any 1 6 p < q. With successive applications of Fubini’s theorem, using each time
(2.11) with p = 1 and q = 2, we obtain the following.

Proposition 2.7. Let K be a centered convex body of volume 1 in Rn. Then,

S2(K) 6 cnS1(K),

where c > 0 is an absolute constant.

Consider the matrix of inertia (MK)i,j =

∫
K

xixjdx of K with respect to some fixed orthonormal basis

of Rn. The connection of mp(K) and Sp(K) with the isotropic constant of K becomes clear by the next
identity, which is known as Blaschke formula.
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Proposition 2.8 (Blaschke formula). Let K be a centered convex body of volume 1 in Rn. Then,

S2
2(K) =

det(MK)

n!
.

Proof. By definition,

S2
2(K) =

∫
K

· · ·
∫
K

voln(conv{0, x1, . . . , xn})2dxn · · · dx1.

We write xi = (xij), j = 1, . . . , n. Then,

(n!)2S2
2(K) =

∫
K

· · ·
∫
K

|det(x1, . . . , xn)|2dxn · · · dx1,

and expanding the determinant we get

(n!)2S2
2(K) =

∫
K

· · ·
∫
K

(∑
σ

εσ

n∏
i=1

xi,σ(i)

)(∑
τ

ετ

n∏
i=1

xi,τ(i)

)
dxn · · · dx1

=

∫
K

· · ·
∫
K

(∑
σ,τ

εσετ

n∏
i=1

xi,σ(i)xi,τ(i)

)
dxn · · · dx1

=

∫
K

· · ·
∫
K

(∑
σ,ϕ

εϕ

n∏
i=1

xi,σ(i)xi,ϕ(σ(i))

)
dxn · · · dx1

=
∑
σ,ϕ

εϕ

n∏
i=1

(∫
K

xixϕ(i)dx

)
= n! det(MK),

which completes the proof.

It is not hard to check that if K is a centered convex body of volume 1 in Rn then for every T ∈ SLn
we have that MT (K) = TMKT

∗, and hence det(MK) = det(MT (K)). If we choose T so that T (K) will
be isotropic, then MT (K) = L2

KIn, and hence det(MK) = det(MT (K)) = L2n
K . Therefore, we get the next

theorem.

Theorem 2.9. Let K be a centered convex body in Rn. Then,

L2n
K = n! S2

2(K).

Remark 2.10. Theorem 2.9 already gives the simple bound Ln 6
√
n. Indeed, if K is an isotropic convex

body in Rn then, noting that S2(K) is obviously bounded by 1, we get

LK 6
2n
√
n! 6

√
n.

What is more interesting is the next observation.

Fact 2.11. If the simplex conjecture is true, then LK 6 C for every n > 1 and any convex body K in Rn,
where C > 0 is an absolute constant.

Proof. Consider the simplex ∆n =
{
x ∈ Rn : − 1

n+1 6 xi 6 n
n+1 ,

∑n
i=1 xi 6

1
n+1

}
. Then, ∆′n = (n!)1/n∆n

has volume 1 and barycenter at the origin. A simple computation shows that∫
∆′n

x2
i dx <

(n!)1+ 2
n

(n+ 2)!
,

10



and since MK is symmetric and positive definite, Hadamard’s inequality gives

S2
2(∆′n) =

det(M∆′n
)

n!
6

1

n!

(
(n!)1+ 2

n

(n+ 2)!

)n
6

1

n!
.

Now, if K is an isotropic convex body in Rn we have assumed that m1(K) 6 m1(∆′n), and combining
Propositions 2.6 and 2.8 with Theorem 2.9 we obtain

LnK =
√
n! S2(K) 6

√
n! cnS1(K) 6

√
n! cnm1(K) 6

√
n! cnm1(∆′n)

6
√
n! cn(n+ 1)S1(∆′n) 6

√
n! cn(n+ 1)S2(∆′n) 6 (n+ 1)cn.

This shows that LK 6 2c.

Fact 2.11 has probably been, at least for some people, the strongest evidence that Bourgain’s slicing
problem should have an affirmative answer. Now that this has been confirmed, we can reverse the argument
to obtain an affirmative answer to the so-called asymptotic Sylvester problem.

Theorem 2.12 (asymptotic Sylvester problem). Let K be a convex body in Rn. Then,(
m1(K)

)1/n ≈ 1√
n
.

In fact, Blaschke formula shows that Theorem 2.12 is equivalent with an affirmative answer to the
isotropic constant problem.

§ 2.5. Equivalence of the four problems. We have already seen that Theorem 2.3 implies Theorem 2.2,
and that Theorem 2.12 is equivalent to Theorem 2.2.

Next, we show that Theorem 2.2 implies Theorem 2.3. Let K be a centered convex body of volume 1 in
Rn. Consider the ellipsoid EB(K) defined by

‖y‖2EB(K) = 〈MKy, y〉 =

∫
K

〈x, y〉2dx

where MK is the matrix of inertia of K. The ellipsoid EB(K) is the Binet ellipsoid of K. Note that K
is in isotropic position if and only if EB(K) = L−1

K Bn2 . It is not hard to see that the volume of EB(K) is
invariant under the action of SLn. From the definition of the Binet ellipsoid we check that if T ∈ SLn then
‖y‖EB(T (K)) = ‖T ∗y‖EB(K) for all y ∈ Rn, therefore

EB(T (K)) = (T ∗)−1(EB(K)).

It follows that
voln(EB(T (K))) = voln(EB(K))

for every T ∈ SLn. Now, we use the fact that T0(K) is isotropic for some T0 ∈ SLn and this implies that

voln(EB(T (K))) = voln(EB(T0(K))) = voln(L−1
K Bn2 ) = ωnL

−n
K .

Assume that the isotropic constant conjecture has an affirmative answer and let K be a centered convex
body of volume 1 in Rn. Integration in spherical coordinates shows that

L−nK =
voln(EB(K))

ωn
=

∫
Sn−1

‖ξ‖−nEB(K)dσ(ξ),

and hence there exists a direction ξ ∈ Sn−1 such that∫
K

〈x, ξ〉2dx = ‖ξ‖EB(K) 6 L2
K 6 C2.
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Then, from (2.9) we see that voln−1(K ∩ ξ⊥) > c1/C and this proves the slicing conjecture.

It remains to show the equivalence of Theorem 2.2 with Theorem 2.5. In the symmetric case, one way
to do this is using the Busemann formula.

Theorem 2.13 (Busemann formula). If K is a convex body in Rn with 0 ∈ int(K), then

voln(K)n−1 =
n!ωn

2

∫
Sn−1

voln−1(K ∩ ξ⊥)nS1(K ∩ ξ⊥)dσ(ξ).

Theorem 2.13 is an example of the so-called Blaschke-Petkantschin formulas which, roughly speaking,
allow us to compute the integral of a function of k-tuples (x1, . . . , xk) of points in Rn by first integrating
over all such k-tuples in some F ∈ Gn,k and then averaging with respect to the Haar measure νn,k on Gn,k.

Let K be a symmetric convex body in Rn. Since all central hyperplane sections K ∩ ξ⊥ are symmetric,
and hence centered, from Theorem 2.9 we know that(

S1(K ∩ ξ⊥))
1

n−1 ≈
(
S2(K ∩ ξ⊥)

) 1
n−1 ≈

LK∩ξ⊥√
n

.

Therefore, Theorem 2.13 has the following immediate consequence.

Corollary 2.14. Let K be a symmetric convex body in Rn. Then,

voln(K)
n−1
n ≈

(∫
Sn−1

Ln−1
K∩ξ⊥voln−1(K ∩ ξ⊥)ndσ(ξ)

)1/n

.

Given that the isotropic constant of any convex body is bounded from above and from below by an
absolute positive constant, we get:

Corollary 2.15. Let K be a symmetric convex body in Rn. Then,

voln(K)
n−1
n ≈

(∫
Sn−1

voln−1(K ∩ ξ⊥)ndσ(ξ)

)1/n

.

Now, let K1 and K2 be two symmetric convex bodies in Rn that satisfy

voln−1(K1 ∩ ξ⊥) 6 voln−1(K2 ∩ ξ⊥)

for all ξ ∈ Sn−1. Corollary 2.15 shows that

voln(K1)n−1 6 cn1

∫
Sn−1

voln−1(K1 ∩ ξ⊥)ndσ(ξ) 6 cn1

∫
Sn−1

voln−1(K2 ∩ ξ⊥)nσ(dξ)

6 cn2 voln(K2)n−1,

which gives

voln(K1)
n−1
n 6 c3voln(K2)

n−1
n

for an absolute constant c3 > 0. This shows that Theorem 2.2 implies Theorem 2.5 in the symmetric case.
Conversely, assuming Theorem 2.5 we can give a direct proof of Theorem 2.2. Let K be an isotropic

convex body in Rn. Choose ξ0 ∈ Sn−1 so that

voln−1(K ∩ ξ⊥0 ) = max
ξ∈Sn−1

voln−1(K ∩ ξ⊥)

and r > 0 so that ωn−1r
n−1 = voln−1(K ∩ ξ⊥0 ). Then,

voln−1(K ∩ ξ⊥) 6 ωn−1r
n−1 = voln−1((rBn2 ) ∩ ξ⊥)
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for all ξ ∈ Sn−1, therefore

voln(K)n−1 6 cnvoln(rBn2 )n−1 =
cnωn−1

n

ωnn−1

voln−1(K ∩ ξ⊥0 )n 6 cn1 voln−1(K ∩ ξ⊥0 )n,

for some absolute constant c1 > 0. Since voln(K) = 1, we see that

voln−1(K ∩ ξ⊥0 ) > 1/c1.

On the other hand, K is isotropic and hence we have voln−1(K ∩ ξ⊥) ≈ 1/LK for every ξ ∈ Sn−1. It follows
that LK 6 C for some absolute constant C > 0.

3 The isotropic position is an M-position

Let K and C be two convex bodies in Rn. The covering number N(K,C) of K by C is the least integer N
for which there exist N translates of C whose union covers K:

N(K,C) = min
{
N ∈ N : ∃x1, . . . , xN ∈ Rn such that K ⊆

N⋃
j=1

(xj + C)
}
.

The next theorem of V. Milman [105] establishes the existence of the so-called M -position of a convex body.

Theorem 3.1 (V. Milman). There exists an absolute constant β > 0 such that every centered convex body
K in Rn has a linear image K̃ which satisfies voln(K̃) = voln(Bn2 ) and

(3.1) max
{
N(K̃,Bn2 ), N(Bn2 , K̃), N(K̃◦, Bn2 ), N(Bn2 , K̃

◦)
}
6 exp(βn).

We say that a convex body K̃ which has volume voln(K̃) = voln(Bn2 ) and satisfies (3.1) is in M -position
with constant β.

Pisier [117] (see also [118]) has proposed a different approach to this result in the symmetric case, which
allows one to find a whole family of M -positions and to give more detailed information on the behavior of
the corresponding covering numbers. The precise statement is as follows.

Theorem 3.2 (Pisier). For every 0 < α < 2 and every symmetric convex body K in Rn there exists a linear
image Kα of K such that

max
{
N(Kα, tB

n
2 ), N(Bn2 , tKα), N(K◦α, tB

n
2 ), N(Bn2 , tK

◦
α)
}
6 exp

(
c(α)n

tα

)
for every t > c(α)1/α, where c(α) depends only on α, and c(α) = O

(
(2− α)−α/2

)
as α→ 2−.

As we will see in this section, the fact that Ln 6 C implies that the isotropic position of any convex
body is an M -position with an absolute constant β. This in turn shows that isotropic convex bodies satisfy
the reverse Brunn-Minkowski inequality. It also leads to a simple proof of the reverse Santaló inequality of
Bourgain and V. Milman [27].

§ 3.1. Covering estimates. We assume that Ln 6 C. Our goal is to show that every isotropic convex
body is in M -position with an absolute constant β.

Theorem 3.3. Let K be an isotropic convex body in Rn. Then,

(3.2) max
{

lnN(K,Dn), lnN(Dn,K), lnN(K◦, D◦n), lnN(D◦n,K
◦)
}
6 cn,

where Dn is the centered Euclidean ball of volume 1 in Rn and c > 0 is an absolute constant.
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The proof is based on an observation of V. Milman and Pajor in [106]; they gave an estimate for the
covering numbers N(K, tBn2 ), t > 0, where K is a convex body in Rn, in terms of the quantity

I1(K) =
1

voln(K)1+ 1
n

∫
K

|x| dx.

Lemma 3.4. Let K be a convex body of volume 1 in Rn such that 0 ∈ int(K). For any t > 0 we have that

(3.3) lnN(K, tBn2 ) 6
c1nI1(K)

t
+ ln 2,

where c1 > 0 is an absolute constant.

Proof. Consider the Borel probability measure µ on Rn defined by

µ(A) =
1

cK

∫
A

e−pK(x)dx.

where pK(x) = inf{t > 0 : x ∈ tK} is the Minkowski functional of K and cK =
∫
Rn exp(−pK(x))dx. A

simple computation, based on the fact that {x ∈ Rn : pK(x) 6 t} = tK for any t > 0, shows that cK = n!.
Let {x1, . . . , xN} be a subset of K which is maximal with respect to the condition |xi−xj | > t for i 6= j.

Then K ⊆
⋃

16i6N (xi + tBn2 ), and hence N(K, tBn2 ) 6 N . Let α > 0. Note that if we set yi = (2α/t)xi, by
the subadditivity and positive homogeneity of pK and the fact that pK(xi) 6 2, we have

µ(yi + αBn2 ) >
1

cK

∫
αBn2

e−pK(x)e−pK(yi)dx > e−2α/tµ(αBn2 ).

The bodies yi + αBn2 have disjoint interiors, therefore Ne−2α/tµ(aBn2 ) 6 1. This shows that

N(K, tBn2 ) 6 e2α/t(µ(αBn2 ))−1.

Now, we choose α > 0 so that µ(αBn2 ) > 1/2. A simple computation shows that

(3.4) γ :=

∫
Rn
|x| dµ(x) = (n+ 1)I1(K).

By Markov’s inequality, µ(2γBn2 ) > 1/2, so if we choose α = 2γ, we get

N(K, tBn2 ) 6 2 exp
(
4(n+ 1)I1(K)/t

)
for every t > 0.

If K is an isotropic convex body then I1(K) 6
√
nLK . Let Dn = B

n

2 be the centered Euclidean ball of
volume 1. Since Dn ≈

√
nBn2 , Lemma 3.4 shows that

(3.5) lnN(K, tDn) 6
c2nLK
t

6
c3n

t

for any t > 0 (note that if t is large then this estimate is trivially true, since every isotropic body K satisfies
the inclusion K ⊆ cnLKBn2 for some absolute constant c > 0).

Knowing that, for any set S,

N(S − S, 2Dn) = N(S − S,Dn −Dn) 6 N(S,Dn)2,

we can use (3.5) to also get an upper bound for the covering numbers of the difference body of an isotropic
convex body K by Dn:

lnN(K −K, tDn) 6
2c3n

t
.

The next lemma allows us to bound the dual covering numbers N(Bn2 , tK
◦).
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Lemma 3.5. Let K be a convex body in Rn which contains 0 in its interior. For every t > 0 we set
A(t) := t lnN(K, tBn2 ) and B(t) := t lnN(Bn2 , tK

◦). Then, one has

(3.6) sup
t>0

B(t) 6 16 sup
t>0

A(t).

In particular, if K is isotropic (or a translate of an isotropic convex body which still contains 0 in its interior),
then

(3.7) lnN(Bn2 , tK
◦) 6 lnN

(
Bn2 , t(K −K)◦

)
6
c2n

3/2LK
t

,

where c2 > 0 is an absolute constant.

Proof. We use a well-known idea from [128] (see also [88, Section 3.3]). For any t > 0 we have (t2K◦)∩(4K) ⊆
2tBn2 . Passing to the polar bodies we see that

Bn2 ⊆ conv

(
t

2
K◦,

2

t
K

)
⊆ t

2
K◦ +

2

t
K.

We write

N(Bn2 , tK
◦) 6 N

(
t

2
K◦ +

2

t
K, tK◦

)
6 N

(
2

t
K,

t

2
K◦
)

6 N

(
2

t
K,

1

4
Bn2

)
N

(
1

4
Bn2 ,

t

2
K◦
)

= N

(
K,

t

8
Bn2

)
N(Bn2 , 2tK

◦).

Taking logarithms we get B(t) 6 8A(t/8) + 1
2B(2t) for all t > 0. This implies that B := supt>0B(t) 6 16A,

and the result follows.

Since D◦n ≈ (1/
√
n)Bn2 , (3.5) and (3.7) immediately imply the following.

Proposition 3.6. Let K be an isotropic convex body in Rn. Then,

(3.8) max{lnN(K, tDn), lnN(D◦n, tK
◦)} 6 cn

t

for all t > 0, where c > 0 is an absolute constant.

We shall also use the next covering lemma, which provides some standard entropy estimates that are
valid for arbitrary convex bodies in Rn.

Lemma 3.7. Let K and L be convex bodies in Rn. If L is symmetric, then

(3.9) N(K,L) 6
voln(K + L/2)

voln(L/2)
6 2n

voln(K + L)

voln(L)
.

If L is arbitrary, then

(3.10) N(K,L) 6 4n
voln(K + L)

voln(L)
.

Moreover,

(3.11)
voln(K + L)

voln(L)
6 2nN(K,L).
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Proof. The proof of (3.11) is an immediate consequence of the definitions. To prove (3.9), note that if N is
a maximal subset of K with respect to the property

(3.12) x, y ∈ N and x 6= y =⇒ ‖x− y‖L > 1,

then K ⊆
⋃
x∈N (x+L), while every two sets x+L/2, y+L/2 (x, y ∈ N) have disjoint interiors when x 6= y.

Finally, when L is not necessarily symmetric, we recall that N(K + x, L + y) = N(K,L) for every
x, y ∈ Rn, and also that the ratio voln(K + L)/voln(L) obviously remains unaltered if we translate K or L.
Hence, we can assume that L is centered, in which case it follows from [107, Corollary 3] that

(3.13) voln(L ∩ (−L)) > 2−nvoln(L).

But then, from (3.9) we get that

(3.14) N(K,L) 6 N(K,L ∩ (−L)) 6 2n
voln(K + (L ∩ (−L)))

voln(L ∩ (−L))
6 4n

voln(K + L)

voln(L)
,

and this implies (3.10).

Corollary 3.8. Let K and L be two convex bodies in Rn. Then,

(3.15) N(K,L)1/n ≈ voln(K + L)1/n

voln(L)1/n
.

Consequently, if K and L have the same volume, then

(3.16) N(K,L)1/n 6 8N(L,K)1/n.

Let K be a convex body in Rn. The function z 7→ voln(K) voln((K − z)◦), defined on int(K), is strictly
convex and has a unique point of minimum, the Santaló point s(K) of K. The Blaschke-Santaló inequality
states that voln(K) voln((K − s(K))◦) 6 ω2

n. One can also prove that if bar(K) = 0 then s(K◦) = 0. Since
(K◦)◦ = K, we see that if bar(K) = 0 then

voln(K) voln(K◦) = voln((K◦ − s(K◦))◦) voln(K◦) 6 ω2
n.

Therefore, we get:

Theorem 3.9 (Blaschke-Santaló). Let K be a convex body in Rn with either bar(K) = 0 or s(K) = 0.
Then,

voln(K) voln(K◦) 6 ω2
n = voln(Bn2 )2.

Combining Proposition 3.6 with the Blaschke-Santaló inequality and Corollary 3.8, we can now prove
Theorem 3.3.

Proof of Theorem 3.3. From Proposition 3.6 we already know that

(3.17) max
{
N(K,Dn), N(D◦n,K

◦)
}
6 exp(cn).

For the other two covering numbers we note that N(Dn,K) 6 8nN(K,Dn) by Lemma 3.7, which means
that lnN(Dn,K) 6 (c+ ln 8)n. Similarly,

(3.18) N(K◦, D◦n) 6 2n
voln(K◦ +D◦n)

voln(D◦n)
6 2n

voln(K◦ +D◦n)

voln(K◦)
6 4nN(D◦n,K

◦),

which means that lnN(K◦, D◦n) 6 (c + ln 4)n, where we have also used the fact that voln(K) = voln(Dn)
and hence voln(K◦) 6 voln(D◦n) from the Blaschke-Santaló inequality. This completes the proof.
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§ 3.2. Bourgain-Milman inequality. The Bourgain-Milman inequality [27], also known as reverse Santaló
inequality, states that there exists an absolute constant 0 < c < 1 with the following property: for every
n > 1 and any convex body K in Rn with 0 ∈ int(K),

(3.19) s(K) = voln(K) voln(K◦) > cnω2
n = cnvoln(Bn2 )2.

The existence of an M -position for any convex body and the asymptotic form of the Santaló inequality and
its inverse are interconnected results. We illustrate this by giving a very simple proof of the Bourgain-Milman
inequality starting from the fact that every isotropic convex body is in M -position.

The discussion about the Blaschke-Santaló inequality in the previous subsection shows that if 0 ∈ int(K)
then

voln(K) voln(K◦) > voln(K − s(K)) voln((K − s(K))◦)

therefore we may replace K by K1 := K − s(K). Then, we know that bar(K◦1 ) = 0. It is also easily checked
that

voln(K) voln(K◦) = voln(T (K)) voln((T (K))◦)

for every T ∈ GLn, and hence we may assume that K◦1 is in isotropic position. Then, from Theorem 3.3 we
know that

max
{

lnN(K◦1 , Dn), lnN(Dn,K
◦
1 ), lnN(K1, D

◦
n), lnN(D◦n,K1)

}
6 cn,

where Dn is the centered Euclidean ball of volume 1 in Rn and c > 0 is an absolute constant. It follows that

voln(Dn) 6 N(Dn,K
◦
1 ) voln(K◦1 ) 6 ecnvoln(K◦1 ),

voln(D◦n) 6 N(D◦n,K1) voln(K1) 6 ecnvoln(K1),

and hence
ω2
n = voln(Dn) voln(D◦n) 6 e2cnvoln(K1) voln(K◦1 )

which proves (3.19).

§ 3.3. Reverse Brunn–Minkowski inequality. As a consequence of Theorem 3.3 and Corollary 3.8, we
get the “reverse” Brunn-Minkowski inequality.

Theorem 3.10. Let K1, . . . ,Km be isotropic convex bodies in Rn. Then, for any λ1, . . . , λm > 0,

(3.20) voln(λ1K1 + · · ·+ λmKm)1/n 6 c1m

m∑
j=1

λjvoln(Kj)
1/n

where c1 > 0 is an absolute constant. Moreover, if K1 and K2 are isotropic convex bodies in Rn then, for
any λ1, λ2 > 0,

(3.21) voln(λ1K
◦
1 + λ2K

◦
2 )1/n 6 c2(λ1voln(K◦1 )1/n + λ2voln(K◦2 )1/n).

where c2 > 0 is an absolute constant.

Proof. From Proposition 3.6 we know that

N(λ1K1 + · · ·+ λmKm, t(λ1 + · · ·+ λm)Dn) 6
m∏
j=1

N(Kj , tDn) 6 exp(cmn/t),

and hence
voln(λ1K1 + · · ·+ λmKm)1/n 6 ecm/t (t(λ1 + · · ·+ λm))
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for every t > 0. Choosing t = cm we see that

voln(λ1K1 + · · ·+ λmKm)1/n 6 c1m

m∑
j=1

λj = c1m

m∑
j=1

λjvoln(Kj)
1/n

with c1 = ec. For the second claim, note that Theorem 3.3 implies that

N(λ1K
◦
1 + λ2K

◦
2 , t(λ1 + λ2)D◦n) 6 exp(2cn/t)

for every t > 0, and apply the same reasoning as before to write

voln(λ1K
◦
1 + λ2K

◦
2 )1/n 6 2c(λ1 + λ2)voln(D◦n)1/n.

Since K1 and K2 are isotropic, the argument of the previous subsection shows that voln(D◦n) 6 ecnvoln(K◦i )
for i = 1, 2. In this way we obtain (3.21) with c2 = 2cec.

4 Log-concave probability measures

A Borel measure µ on Rn is called log-concave if µ(H) < 1 for every hyperplane H in Rn and

µ(λA+ (1− λ)B) > µ(A)λµ(B)1−λ

for any pair of compact sets A,B in Rn and any λ ∈ (0, 1). Borell [21] has proved that, under these
assumptions, µ has a log-concave density fµ. Recall that a function f : Rn → [0,∞) is called log-concave if
its support {f > 0} is a convex set in Rn and the restriction of ln f to it is concave. The Brunn-Minkowski
inequality implies that if K is a convex body in Rn then the indicator function 1K of K is the density of a
log-concave measure, the Lebesgue measure on K.

We say that µ is symmetric if µ(−B) = µ(B) for every Borel subset B of Rn and that µ is centered if
the barycenter bar(µ) =

∫
Rn x dµ(x) of µ is at the origin, i.e.∫

Rn
〈x, ξ〉dµ(x) =

∫
Rn
〈x, ξ〉fµ(x)dx = 0

for all ξ ∈ Sn−1. If µ is symmetric then fµ is even and it follows that ‖fµ‖∞ = fµ(0). On the other hand,
Fradelizi [47] has shown that if µ is a centered log-concave probability measure then

(4.1) ‖fµ‖∞ 6 enfµ(0).

Let f : Rn → R be a measurable function. For any α > 1 we define the ψα-norm of f as follows:

‖f‖ψα := inf

{
t > 0 :

∫
Ω

exp ((|f |/t)α) dµ 6 2

}
,

provided that the set on the right-hand side is non-empty. Note that the ψα-norm is exactly the Orlicz norm
corresponding to the function t ∈ R → e|t|

α − 1. An equivalent expression for the ψα-norm in terms of the
Lp-norms is that

‖f‖ψα ≈ sup
p>α

‖f‖Lp(µ)

p1/α
,

up to some absolute constants.
A well-known lemma of Borell (see [30, Lemma 2.4.5] for a proof) asserts that if µ is a log-concave

probability measure on Rn then, for any symmetric convex set A in Rn with µ(A) = α ∈ (0, 1) and any t > 1
we have

(4.2) 1− µ(tA) 6 α

(
1− α
α

) t+1
2

.
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Using Borell’s lemma one can show that there exists an absolute constant c0 > 0 such that for every log-
concave probability measure µ on Rn, for any seminorm f : Rn → R and any q > p > 1, we have

(4.3)

(∫
Rn
|f |p dµ

)1/p

6

(∫
Rn
|f |q dµ

)1/q

6 c0
q

p

(∫
Rn
|f |p dµ

)1/p

(a proof is given in [30, Theorem 2.4.6]). In particular, ‖f‖ψ1
6 c1‖f‖1, where c1 > 0 is an absolute constant.

§ 4.1. Isotropic log-concave probability measures. For any log-concave probability measure µ on Rn
with density fµ, we define the isotropic constant of µ by

Lµ :=

(
supx∈Rn fµ(x)∫

Rn fµ(x)dx

) 1
n (

det Cov(µ)
) 1

2n ,

where Cov(µ) is the covariance matrix of µ with entries

Cov(µ)i,j :=

∫
Rn xixjfµ(x) dx∫

Rn fµ(x) dx
−
∫
Rn xifµ(x) dx∫
Rn fµ(x) dx

∫
Rn xjfµ(x) dx∫
Rn fµ(x) dx

.

A log-concave probability measure µ on Rn is called isotropic if it is centered and Cov(µ) = In, where In is

the identity n × n matrix. By the definition of the isotropic constant, if µ is isotropic then Lµ = ‖fµ‖1/n∞ .
Note that a convex body K of volume 1 is isotropic if and only if the log-concave probability measure µK
with density LnK1K/LK is isotropic.

Let µ and ν be two log-concave probability measures on Rn. Let T : Rn → Rn be a measurable function
which is defined µ-almost everywhere and satisfies

ν(B) = µ(T−1(B))

for every Borel subset B of Rn. We then say that T pushes forward µ to ν and write T∗µ = ν. It is
not hard to check that for every log-concave probability measure µ on Rn there exists an invertible affine
transformation T such that the log-concave probability measure T∗µ is isotropic, and LT∗µ = Lµ.

One can prove that the isotropic constants of all log-concave measures are uniformly bounded from
below by a constant c > 0 which is independent of the dimension. If µ is an isotropic log-concave probability
measure, then

(4.4) Lµ = ‖fµ‖1/n∞ ≈ [fµ(0)]1/n > c,

where c > 0 is an absolute constant (see [30, Proposition 2.3.12]). The isotropic constant problem for
log-concave measures, which is now a theorem, can now be stated as follows:

Let µ be an isotropic log-concave probability measure on Rn. Then, Lµ = ‖fµ‖1/n∞ 6 C, where
C > 0 is an absolute constant.

We can define L̃n := max{Lµ : µ is an isotropic log-concave probability measure on Rn}. Since LK = LµK 6
L̃n for every centered convex body K in Rn, it is clear that Ln 6 L̃n.

§ 4.2. K. Ball’s bodies. Let µ be a centered log-concave probability measure on Rn. An important family
of convex bodies associated with µ was introduced by K. Ball, who also established their convexity in [8]:
for every p > 0, we define

Kp(µ) =

{
x ∈ Rn :

∫ ∞
0

rp−1fµ(rx) dr >
fµ(0)

p

}
.

From the definition it follows that the radial function of Kp(µ) is given by

(4.5) %Kp(µ)(x) =

(
1

fµ(0)

∫ ∞
0

prp−1fµ(rx) dr

)1/p
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for x 6= 0. It is easily checked that if K is a convex body in Rn with 0 ∈ K then Kp(1K) = K for all p > 0.
A very useful observation is that

fµ(0)voln(Kn(µ)) = 1.

To see this, we write

voln(Kn(µ)) =

∫
Kn(µ)

1 dx = nωn

∫
Sn−1

∫ ρKn(µ)(ξ)

0

rn−1drdσ(ξ)

=
nωn
fµ(0)

∫
Sn−1

∫ ∞
0

rn−1fµ(rξ)drdσ(ξ) =
1

fµ(0)

∫
Rn
fµ(x) dx =

1

fµ(0)

using (4.5) and integration in spherical coordinates.
Another important observation is that, for every 0 < p 6 q we have that

(4.6)
Γ(p+ 1)

1
p

Γ(q + 1)
1
q

Kq(µ) ⊆ Kp(µ) ⊆ e
n
p−

n
qKq(µ).

A proof is given in [30, Proposition 2.5.7]. As a consequence we obtain an approximate formula for the
volume of Kn+p(µ). When p > 0, we have

(4.7) e−1 6 fµ(0)
1
n+ 1

p voln(Kn+p(µ))
1
n+ 1

p 6 e
n+ p

n
,

while for −n < p < 0 we have

(4.8) e−1 6 fµ(0)
1
−p−

1
n voln(Kn+p(µ))

1
−p−

1
n 6 e.

If µ is an even log-concave probability measure on Rn then T = Kn+2(µ) is a symmetric convex body
that satisfies

c1Lµ 6 LT 6 c2Lµ,

where c1, c2 > 0 are absolute constants (see [30, Proposition 2.5.9]). Furthermore, if µ is isotropic, then
T = voln(T )−1/nT is an isotropic convex body. In the case where the measure µ is centered, but not
necessarily symmetric, we prefer to work with the convex body Kn+1(µ) instead of Kn+2(µ). The reason is
that T = Kn+1(µ) is a centered convex body in Rn and we still have that

c1Lµ 6 LT 6 c2Lµ,

where c1, c2 > 0 are absolute constants.
We briefly sketch the proof (for more details see [30, Proposition 2.5.12]). First we check that T is

centered and satisfies ∫
T

|〈x, ξ〉| dx =
1

fµ(0)

∫
|〈x, ξ〉|fµ(x) dx

for all ξ ∈ Sn−1. Borell’s lemma implies that for every y ∈ Rn(
1

voln(T )

∫
T

〈x, y〉2 dx
)1/2

≈ 1

voln(T )

∫
T

|〈x, y〉| dx =
1

fµ(0)voln(T )

∫
|〈x, y〉|fµ(x) dx

≈ 1

fµ(0)voln(T )

(∫
〈x, y〉2fµ(x) dx

)1/2

,

which, combined with the fact that T and fµ are both centered, implies that there exist absolute constants
c1, c2 > 0 such that as positive definite matrices

c1Cov(1T ) 6 (voln(T )fµ(0))−2Cov(µ) 6 c2Cov(1T ).
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Therefore,

(4.9)
(

det Cov(1T )
)1/n ≈ (voln(T )fµ(0))−2

(
det Cov(µ)

)1/n
.

From the definition of the isotropic constant it follows that

LT =
1

voln(T )1/n

(
det Cov(1T )

) 1
2n ≈ voln(T )−1/n(fµ(0)voln(T ))−1

(
det Cov(µ)

) 1
2n

≈ (fµ(0)voln(T ))−1− 1
nLµ,

where we have also used the fact that ‖fµ‖1/n∞ ≈ fµ(0)1/n by Fradelizi’s inequality (4.1). Finally, applying
(4.7) with p = 1 we get that

(4.10) e−1 6 (fµ(0)voln(T ))1+ 1
n 6 e

n+ 1

n
6 2e,

and this completes the proof. This discussion shows that

L̃n ≈ Ln.

In particular, knowing now that Ln 6 C we get:

Theorem 4.1. There exists an absolute constant C > 0 such that Lµ 6 C for every isotropic log-concave
probability measure on Rn.

§ 4.3. Lp-centroid bodies. Let µ be a centered log-concave probability measure on Rn. For any p > 1 we
define the Lp-centroid body Zp(µ) of µ as the convex body whose support function is

hZp(µ)(y) :=

(∫
Rn
|〈x, y〉|pfµ(x)dx

)1/p

, y ∈ Rn.

The convex bodies Zp(µ) are always symmetric, and Zp(T∗µ) = T (Zp(µ)) for every T ∈ GLn and p > 1.
Note that if µ is isotropic then Z2(µ) = Bn2 . Also, from (4.3) it follows that, for every 1 6 p < q,

(4.11) Zp(µ) ⊆ Zq(µ) ⊆ cq

p
Zp(µ),

where c > 0 is an absolute constant.
If µ = λK is the Lenesgue measure on a centered convex body K of volume 1 in Rn then we denote

Zp(K) := Zp(λK). In this case we have some additional results. For every p > n we have that

(4.12) Zp(K) ⊇ c2Z∞(K)

where c2 > 0 is an absolute constant and Z∞(K) = conv{K,−K}. This is a consequence of the inequality∫
K

|〈x, ξ〉|pdx >
Γ(p+ 1)Γ(n)

2eΓ(p+ n+ 1)
max

{
hpK(ξ), hpK(−ξ)

}
,

which holds true for all ξ ∈ Sn−1 and p > 1. Therefore, if p > n we see that

‖〈·, ξ〉‖Lp(K) ≈ max{hK(ξ), hK(−ξ)},

and hence Zp(K) ⊇ cZ∞(K). In particular, the Rogers-Shephard inequality voln(K−K) 6
(

2n
n

)
voln(K) for

the difference body K −K of K (see [2, Theorem 1.5.2]) implies that

(4.13) c 6 voln(Zn(K))1/n 6 voln(K −K)1/n 6 4
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for some absolute constant c > 0.
A nonsymmetric variant of the Lp-centroid bodies of µ is defined as follows. For every p > 1 we consider

the convex body Z+
p (µ) with support function

hZ+
p (µ)(y) =

(∫
Rn
〈x, y〉p+fµ(x)dx

)1/p

, y ∈ Rn,

where a+ = max{a, 0}. When fµ is even, we have that Z+
p (µ) = 2−1/pZp(µ). In any case, it is clear that

Z+
p (µ) ⊆ Zp(µ). One can also check that if 1 6 p < q then

(4.14)

(
4

e

) 1
p−

1
q

Z+
p (µ) ⊆ Z+

q (µ) ⊆ c1
(

4(e− 1)

e

) 1
p−

1
q q

p
Z+
p (µ).

(for a proof see [63], where the family of bodies Z̃+
p (µ) = 21/pZ+

p (µ) is considered).

The Lp-centroid bodies were introduced, under a different normalization, by Lutwak and Zhang in [97],
while in [112] for the first time, and in [113] later on, Paouris used geometric properties of them to acquire
detailed information about the distribution of the Euclidean norm with respect to µ. A basic observation of
Paouris is the next asymptotic formula that appears in [113].

Theorem 4.2 (Paouris). Let µ be a centered log-concave probability measure on Rn. Then,

(4.15) c1 6
(
fµ(0) voln(Zn(µ))

)1/n
6 c2,

where c1, c2 > 0 are absolute constants.

Proof. Direct computation shows that, for every p > 1,

voln(Kn+p(µ))1+ p
n

∫
Kn+p(µ)

|〈x, ξ〉|p dx =

∫
Kn+p(µ)

|〈x, ξ〉|p dx =
1

fµ(0)

∫
Rn
|〈x, ξ〉|p fµ(x) dx

for all ξ ∈ Sn−1, or equivalently

(4.16) Zp(Kn+p(µ))voln(Kn+p(µ))
1
p+ 1

n fµ(0)
1
p = Zp(µ).

Now, let 1 6 p 6 n. Using also (4.7) we see that

(4.17)
1

e
Zp(Kn+p(µ)) ⊆ fµ(0)1/nZp(µ) ⊆ en+ p

n
Zp(Kn+p(µ)) ⊆ 2eZp(Kn+p(µ)).

On the other hand, using (4.6) we can check that

hZp(Kn+p(µ))(ξ) ≈ hZp(Kn+1(µ))(ξ)

for every ξ ∈ Sn−1. This shows that Zp(Kn+p(µ)) ≈ Zp(Kn+1(µ)). Therefore, for all 1 6 p 6 n we get

(4.18) c1fµ(0)1/nZp(µ) ⊆ Zp(Kn+1(µ)) ⊆ c2fµ(0)1/nZp(µ)

where c1, c2 > 0 are absolute constants.
Now recall that, since µ is centered, the body Kn+1(µ) is also centered. Applying (4.13) for the body

Kn+1(µ) we see that
voln(Zn(Kn+1(µ)))1/n ≈ 1

and hence, by (4.18), (
fµ(0) voln(Zn(µ))

)1/n ≈ voln(Zn(Kn+1(µ)))1/n ≈ 1.

This completes the proof.
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§ 4.4. Marginals and projections. Let µ be a log-concave probability measure on Rn. For any 1 6 k 6
n− 1 and F ∈ Gn,k we define the marginal of µ with respect to F setting

πF (µ)(A) := µ(P−1
F (A))

for every Borel subset A of F . One can check that πF (µ) is a log-concave probability measure on F , whose
log-concave density fπF (µ) agrees almost everywhere with the function πF (fµ) defined by

(4.19) πF (fµ)(x) =

∫
x+F⊥

fµ(y)dy.

Then, for every measurable function g : F → R we have∫
Rn
g(PFx)fµ(x) dx =

∫
F

g(x)πF (fµ)(x) dx.

It follows that if fµ is centered then, for every F ∈ Gn,k we have that πF (fµ) is also centered, and if f is
isotropic then πF (fµ) is also isotropic.

A basic observation of Paouris from [112] is that any projection of the Lp-centroid body of µ coincides
with the Lp-centroid body of the corresponding marginal of µ.

Theorem 4.3. Let µ be a centered log-concave probability measure on Rn. For every 1 6 k 6 n and any
F ∈ Gn,k and p > 1, we have that

(4.20) PF (Zp(µ)) = Zp(πF (µ)).

The proof is a direct application of Fubini’s theorem.
Applying Theorem 4.2 to πF (µ) and taking into account (4.20) we obtain the following result.

Theorem 4.4. Let µ be a centered log-concave probability measure on Rn. Then, for every 1 6 k 6 n − 1
and any F ∈ Gn,k we have

(4.21) c1 6
(
πF (fµ)(0) volk(PF (Zk(f)))

)1/k
6 c2,

where c1, c2 > 0 are absolute constants.

5 Geometry of isotropic convex bodies

In this section we still assume that Ln 6 C. We shall discuss a few important consequences of this fact on
the geometry of high-dimensional isotropic convex bodies.

§ 5.1. The ellipsoid intersection conjecture. We start with the positive answer to the following
conjecture.

Theorem 5.1 (ellipsoid intersection conjecture). For every centered convex body K of volume 1 in Rn there
exists a centered ellipsoid E of volume voln(E) = voln(K) = 1 such that

voln(K ∩ c1E) >
1

2
voln(K)

where c1 > 0 is an absolute constant.
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For the proof we may assume that K is isotropic. Then,

∫
K

|x|2dx = nL2
K 6 Cn for some absolute

constant C > 0. From Markov’s inequality we immediately see that

voln(K \
√

2CnBn2 ) = voln({x ∈ K : |x| >
√

2Cn}) 6 1

2Cn

∫
K

|x|2dx 6
1

2
.

It follows that voln(K ∩
√

2C
√
nBn2 ) > 1

2voln(K) and since Dn ≈
√
nBn2 it is simple to check that

voln(K ∩ c1Dn) >
1

2
voln(K)

for some absolute constant c1 > 0.
Let us note that the ellipsoid intersection conjecture is in fact equivalent to the isotropic constant

conjecture.

§ 5.2. Volume of sections and projections. The next theorem gives a very useful estimate for the
volume of sections of an isotropic convex body through its barycenter.

Theorem 5.2. Let K be an isotropic convex body in Rn. Then, for every 1 6 k 6 n− 1 and any F ∈ Gn,k,

(5.1) voln−k(K ∩ F⊥)1/k ≈ 1.

Proof. We denote by µK the isotropic log-concave probability measure with density LnK1 K
LK

and write fK

for the density of µK . Fix 1 6 k 6 n − 1 and F ∈ Gn,k. We know that πF (µK) is isotropic. Using (4.18)
with p = 2 we get:

LKk+1(πF (µK)) =

(
volk(Z2(Kk+1(πF (µK))))

volk(BF )

)1/k

≈ πF (fK)(0)1/k

(
volk(Z2(πF (µK)))

volk(BF )

)1/k

= πF (fK)(0)1/k

(
volk(PF (Z2(µK)))

volk(BF )

)1/k

,

where we have also used the identity Z2(πF (µK)) = PF (Z2(µK)) from Theorem 4.3. Since K is isotropic,
we get

Z2(µK) = L−1
K Z2(K) = Bn2 and hence PF (Z2(µK)) = BF .

Moreover, we have

πF (fK)(0) =

∫
F⊥

fK(y) dy = LnKvoln−k

(
1
LK

K ∩ F⊥
)

= LkKvoln−k(K ∩ F⊥).

Combining the above we conclude that LKk+1(πF (µK)) ≈ LKvoln−k(K ∩ F⊥)1/k, which is assertion of the
theorem.

The next inequality estimates the product of the volumes of a projection of a convex body K in Rn and
of the section of K with the orthogonal subspace (see [119] for the first and [124] for the second claim).

Theorem 5.3 (Rogers-Shephard/Spingarn). Let K be a convex body in Rn with 0 ∈ int(K). Then, for any
1 6 k 6 n− 1 and any F ∈ Gn,k we have that

volk(PF (K)) voln−k(K ∩ F⊥) 6

(
n

k

)
voln(K).

If bar(K) = 0 then we also have that

voln(K) 6 volk(PF (K)) voln−k(K ∩ F⊥).
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In the case where K is isotropic, these estimates lead to the next fact.

Theorem 5.4. Let K be an isotropic convex body in Rn. Then, for any 1 6 k 6 n − 1 and any F ∈ Gn,k
we have that

c1 6 volk(PF (K))1/k 6 c2
n

k

where c1, c2 > 0 are absolute constants.

This follows from Theorem 5.3 and from the fact that if K is isotropic then voln−k(K ∩ F⊥)1/k ≈ 1 by
Theorem 5.2.

§ 5.3. Volume of the centroid bodies. A lower bound for the volume of the Lp-centroid bodies Zp(K)
of a star body K in Rn has been given by Lutwak, Yang and Zhang in [98], and later Haberl and Schuster
in [64] obtained a similar lower bound for the nonsymmetric Lp-centroid bodies Z+

p (K) of K. If K is a star
body, with respect to the origin, in Rn then, for every 1 6 p < ∞, the body M+

p (K) is defined through its
support function

hM+
p (K)(y) =

(
cn,p(n+ p)

∫
K

〈x, y〉p+dx
)1/p

,

where

cn,p =
Γ
(
n+p

2

)
π
n−1

2 Γ
(
p+1

2

) .
The normalization of M+

p (K) is chosen so that M+
p (Bn2 ) = Bn2 for every p. Haberl and Schuster [64,

Theorem 6.4] proved that if K is a star body, with respect to the origin, in Rn then, for every p > 1,

voln(K)−
n
p−1voln(M+

p (K)) > voln(Bn2 )−
n
p

with equality if and only if K is a centered ellipsoid in Rn. Since M+
p (K) = (cn,p(n + p))1/pZ+

p (K), we
conclude that if voln(K) = 1 then

voln(Z+
p (K))1/n = (cn,p(n+ p))−1/pvoln(M+

p (K))1/n >

(
1

cn,p(n+ p)ωn

)1/p

.

Taking into account the value of the constant cn,p we can formulate this result as follows.

Proposition 5.5 (Lutwak-Yang-Zhang/Haberl-Schuster). Let K be a convex body of volume 1 in Rn. Then,

voln(Zp(K))1/n > voln(Zp(B
n

2 ))1/n > c
√
p/n

and
voln(Z+

p (K))1/n > voln(Z+
p (B

n

2 ))1/n > c
√
p/n

for every 1 6 p 6 n, where c > 0 is an absolute constant.

Paouris [112] showed that a reverse inequality holds true (up to the isotropic constant).

Theorem 5.6 (Paouris). If µ is an isotropic log-concave measure on Rn, then for every 1 6 p 6 n we have
that

(5.2) voln(Zp(µ))1/n 6 c
√
p/n.

Moreover, if K is a centered convex body of volume 1 in Rn, then for every 1 6 p 6 n we have that

(5.3) voln(Zp(K))1/n 6 c
√
p/nLK 6 c1

√
p/n,

where c, c1 > 0 are absolute constants.
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For the proof we shall use a number of classical facts from the Brunn-Minkowski theory (see [122] for a
complete exposition). Steiner’s formula asserts that for every convex body C in Rn we have

voln(C + tBn2 ) =

n∑
k=0

(
n

k

)
Wk(C)tk

for all t > 0, where Wk(C) = Vn−k(C) = V (C;n − k,Bn2 ; k) is the k-th quermassintegral of C. Also,
the Aleksandrov-Fenchel inequality implies the log-concavity of the sequence (W0(C), . . . ,Wn(C)), and in
particular we have that

(5.4)

(
Wn−i(C)

ωn

)1/i

>

(
Wn−j(C)

ωn

)1/j

,

for all 1 6 i < j 6 n. We shall also use Kubota’s integral formula:

(5.5) Wn−m(C) =
ωn
ωm

∫
Gn,m

volm(PF (C)) dνn,m(F ), 1 6 m 6 n.

Proof of Theorem 5.6. It is enough to prove (5.2) for integer values of 1 6 p 6 n− 1. Observe that for any
F ∈ Gn,p we have

volp(PF (Zp(µ)))1/p = volp(Zp(πF (µ)))1/p 6
c1(

fπF (µ)(0)
)1/p 6 c2,

where we have used Theorem 4.3, Theorem 4.2 and (4.4) for the isotropic density fπF (µ) = πF (fµ). Applying
(5.5) we get

Wn−p(Zp(µ)) 6
ωn
ωp
cp2.

Now, we apply (5.4) for the convex body C = Zp(µ) with j = n and i = p; this gives

W
1/p
n−p(Zp(µ)) > voln(Zp(µ))1/nω1/p−1/n

n .

Combining the above, we get

voln(Zp(µ))1/n 6
ω

1/n
n

ω
1/p
p

c2.

Since ω
1/k
k ≈ 1/

√
k, we obtain (5.2). For the second assertion of the theorem we may assume that K is

isotropic (because the volume of Zp(T (K)) is the same for all T ∈ SLn). Consider the measure µ with
density fµ = LnK1 K

LK

. Then, µ is isotropic and we easily check that Zp(µ) = L−1
K Zp(K). Thus, the result

follows immediately from (5.2) and the fact that the isotropic constant conjecture is true.

§ 5.4. Lower dimensional Busemann-Petty problem. In this subsection we discuss a natural gener-
alization of the Busemann-Petty problem, for lower dimensional sections. Let 1 6 k 6 n− 1 and let βn,k be
the smallest constant β > 0 with the property that for every pair of centered convex bodies K and C in Rn
that satisfy

voln−k(K ∩ F ) 6 voln−k(C ∩ F )

for all F ∈ Gn,n−k, one has

voln(K)
n−k
n 6 βk voln(C)

n−k
n .

It is known that βn,k > 1 if k < n − 3, while for k = n − 2 and k = n − 3 (two- and three-dimensional
sections) it is not known whether βn,k has to be strictly greater than 1. The asymptotic lower dimensional
Busemann-Petty problem asks if the constants βn,k are uniformly bounded. The next theorem provides an
affirmative answer.
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Theorem 5.7. There exists an absolute constant C > 0 such that βn,k 6 C for all n and k.

For the proof we introduce the dual affine quermassintegrals of a convex body. Let 1 6 k 6 n −
1. For every convex body K, or more generally for any bounded Borel set, in Rn, the k-th dual affine
quermassintegral of K is defined by

Ψk(K) = voln(K)−
n−k
kn

(∫
Gn,k

voln−k(K ∩ F⊥)ndνn,k(F )

) 1
kn

.

Grinberg proved in [59] that this is an affinely invariant quantity and that

(5.6) Ψk(K) 6 Ψk(Bn2 ) 6
√
e

for every bounded Borel set K of positive volume in Rn.
Now, let K be a centered convex body in Rn. Since Ψk(K) = Ψk(T (K)) for every T ∈ GLn, we may

assume that K is isotropic. From Theorem 5.2 we know that voln−k(K ∩ F⊥)1/k ≈ 1 for every F ∈ Gn,k,
and hence

Ψk(K) =

(∫
Gn,k

voln−k(K ∩ F⊥)ndνn,k(F )

) 1
kn

≈ 1.

In other words, for every centered convex body K in Rn and any 1 6 k 6 n− 1 we have that

(5.7) c1 6 Ψk(K) 6 c2

where c1, c2 > 0 are absolute constants.

Proof of Theorem 5.7. Let K,C be two centered convex bodies in Rn. Assume that for some 1 6 k 6 n− 1
we have that

voln−k(K ∩ F ) 6 voln−k(C ∩ F )

for all F ∈ Gn,n−k. Then,

Ψk(K) voln(K)
n−k
kn =

(∫
Gn,k

voln−k(K ∩ F⊥)ndνn,k(F )

) 1
kn

6

(∫
Gn,k

voln−k(C ∩ F⊥)ndνn,k(F )

) 1
kn

= Ψk(C) voln(C)
n−k
kn .

Taking into account (5.7) we get

voln(K)
n−k
n 6

(
Ψk(C)

Ψk(K)

)k
voln(C)

n−k
n 6

(
c2
c1

)k
voln(C)

n−k
n

and the result follows.

Note. In particular, the case k = 1 of Theorem 5.7 shows that the isotropic constant conjecture implies
the asymptotic Busemann-Petty conjecture for the class of centered convex bodies, thus completing the
discussion in §2.5.

The affine quermassintegrals of a convex body K in Rn were introduced by Lutwak in [95]. We shall
discuss an appropriately normalized variant that was considered by Dafnis and Paouris in [39]. For every
convex body K in Rn and every 1 6 k 6 n, we define the normalized k-th affine quermassintegral of K by

Φk(K) := voln(K)−
1
n

(∫
Gn,k

volk(PF (K))−n dνn,k(F )

)− 1
kn

.
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Grinberg proved in [59] that these quantities are invariant under volume preserving affine transformations.
In this language, Lutwak conjectured in [96] that the affine quermassintegrals satisfy the inequalities

(5.8) Φk(K) > Φk(Bn2 ).

Dafnis and Paouris studied in [39] an isomorphic variant of Lutwak’s conjecture, which asks if there exist
absolute constants c1, c2 > 0 such that for every convex body K in Rn and any 1 6 k 6 n− 1,

(5.9) c1
√
n/k 6 Φk(K) 6 c2

√
n/k.

Note that in the case k = 1, (5.9) follows by the Blaschke-Santaló and the Bourgain-Milman inequality, while
in the case k = n − 1 the conjectured rate of growth for Φn−1(K) is again true, by the Petty projection
inequality and its reverse, proved by Zhang [133].

The left-hand side of (5.9) was proved by Paouris and Pivovarov in [114]; it confirms Lutwak’s conjecture
in an isomorphic sense. The proof relies on a duality argument, that employs the Blaschke Santaló inequality
and the Bourgain-Milman inequality, combined with Grinberg’s inequality (5.6). Subsequently, E. Milman
and Yehudayoff [104] established the sharp lower bound Φk(Bn2 ) 6 Φk(K) and verified Lutwak’s conjecture,
including a characterization of the equality cases, for all 1 6 k 6 n−1: ellipsoids are the only local minimizers
with respect to the Hausdorff metric.

Regarding the upper bound in (5.9), an almost optimal estimate (up to a lnn-term) was given by Dafnis
and Paouris in [39]. Let us briefly recall their argument: The Aleksandrov inequalities (see [122, Section
6.4]) imply that if K is a convex body in Rn then the sequence

(5.10) Qk(K) =

(
1

ωk

∫
Gn,k

volk(PF (K)) dνn,k(F )

)1/k

is decreasing in k. In particular, for any 1 6 k 6 n− 1 we have Qk(K) 6 Q1(K), which may be written in
the equivalent form

(5.11)

(
1

ωk

∫
Gn,k

volk(PF (K)) dνn,k(F )

) 1
k

6 w(K),

where w(K) is the mean width of K. Then, by Hölder’s inequality,(∫
Gn,k

volk(PF (K))−n dνn,k(F )

)− 1
kn

6

(∫
Gn,k

volk(PF (K)) dνn,k(F )

) 1
k

6 ω
1/k
k w(K).

Since the term on the left-hand side of this inequality is invariant under volume preserving affine trans-
formations, we may assume that K has minimal mean width, and it is known that in this case we have
w(K) 6 c

√
n lnn voln(K)1/n for some absolute constant c > 0 (see [2, Chapter 6]). Combining the above we

get

(5.12) Φk(K) 6 c2
√
n/k lnn.

It was also shown in [39] that

Φk(K) 6 c3(n/k)3/2
√

ln (en/k).

In other words, if k is proportional to n then the upper bound for Φk(K) is of the order of 1. The main
question that remains open is whether the lnn-term in (5.12) can actually be dropped.

§ 5.5. The deviation inequality of Paouris. Our goal in this subsection is to briefly explain the proof
of a very useful deviation inequality of Paouris from [112].
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Theorem 5.8 (Paouris). Let µ be an isotropic log-concave probability measure in Rn. Then,

(5.13) µ({x ∈ Rn : |x| > ct
√
n}) 6 exp

(
−t
√
n
)

for every t > 1, where c > 0 is an absolute constant.

The proof of Theorem 5.8 is reduced to the behavior of the moments of the function x 7→ |x|. For every
p > 1 we define

Ip(µ) =

(∫
Rn
|x|pdµ(x)

)1/p

.

From (4.3) we see that for all y ∈ Rn and p, q > 1 we have

Ipq(K) 6 c1pIq(K).

In particular, we have

(5.14) Ip(µ) 6 c2pI2(µ)

for all p > 2. Paouris proved the following.

Theorem 5.9 (Paouris). There exist absolute constants c1, c2 > 0 such that if µ is an isotropic log-concave
probability measure on Rn then

(5.15) Ip(µ) 6 c1I2(µ)

for all p 6 c2
√
n.

Assuming that we have proved Theorem 5.9, we obtain Theorem 5.8 as follows: we consider an isotropic
log-concave probability measure µ in Rn. From Markov’s inequality, for every p > 2 we have

µ({|x| > e3Ip(µ)}) 6 e−3p.

Then, Borell’s lemma gives

µ({|x| > e3Ip(µ)s}) 6 (1− e−3p)

(
e−3p

1− e−3p

)(s+1)/2

6 e−ps

for every s > 1. Choosing p = c2
√
n, and using (5.15), we see that

µ({|x| > c1e
3I2(µ)s}) 6 exp(−c2

√
ns)

for all s > 1. Since µ is isotropic, we have I2(µ) =
√
n. This proves Theorem 5.8.

We pass to the proof of Theorem 5.9. We will actually prove a stronger statement.

Theorem 5.10. Let µ be a centered log-concave probability measure on Rn. For every p > 1,

(5.16) Ip(µ) 6 C (I2(µ) +R(Zp(µ))) ,

where R(Zp(µ)) = max{|x| : x ∈ Zp(µ)} is the radius of Zp(µ).

Note that if µ is isotropic then R(Zp(µ)) 6 cp, and hence the right-hand side of (5.16) is bounded by
c1 max{I2(µ), p}. Since I2(µ) =

√
n, for all p 6

√
n we get

Ip(µ) 6 c1 max{I2(µ), p} = c1I2(µ),

which is exactly the statement of Theorem 5.9.
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The proof of Theorem 5.10 requires a number of basic results from the asymptotic theory of convex
bodies. We write k∗(C) for the largest integer k 6 n which satisfies

νn,k

({
F ∈ Gn,k :

w(C)

2
|x| 6 hC(x) 6 2w(C)|x|, x ∈ F

})
>

n

n+ k
.

In the terminology of [2] this is the so-called Dvoretzky dimension of C◦, i.e. the largest k for which the
majority of k-dimensional sections of C◦ are 4-Euclidean. The next theorem of V. Milman and Schechtman
from [109] shows that the dimension k∗(C) is determined by the parameters w(C) and R(C) up to an absolute
constant.

Theorem 5.11 (V. Milman-Schechtman). There exist absolute constants c1, c2 > 0 such that

c1n
w(C)2

R(C)2
6 k∗(C) 6 c2n

w(C)2

R(C)2
,

for every symmetric convex body C in Rn.

For every p 6= 0 we define

wp(C) =

(∫
Sn−1

hC(θ)pdσ(θ)

)1/p

.

Note that w1(C) = w(C). The parameters wp, p > 1 were studied by Litvak, V. Milman and Schechtman in
[93].

Theorem 5.12 (Litvak-V. Milman-Schechtman). Let C be a symmetric convex body in Rn. Then,

max

{
w(C), c1

R(C)
√
p

√
n

}
6 wp(C) 6 max

{
2w(C), c2

R(C)
√
p

√
n

}
for all 1 6 p 6 n, where c1, c2 > 0 are absolute constants.

Note that the behavior of wp(C) changes when p ≈ n(w(C)/R(C))2. This value of p is roughly equal
to the “dual Dvoretzky dimension” k∗(C) of C. One also has wn(C) ≈ R(C), and since wp(C) 6 R(C) for
every p > 1 we conclude that wp(C) ≈ R(C) for all p > n.

Concerning wp(C) for negative values of p, Klartag and Vershynin [81] established the next important
result.

Theorem 5.13 (Klartag-Vershynin). Let C be a symmetric convex body in Rn. Then, wp(C) ≈ w−p(C) for
all 1 6 p 6 ck∗(C), where c > 0 is an absolute constant.

We start with the next lemma, which relates the p-moment of the Euclidean norm with respect to µ
with the parameters wp and the Lp-centroid bodies of µ.

Lemma 5.14. Let µ be a log-concave probability measure in Rn. For every p > 1 we have

wp(Zp(µ)) = an,p

√
p

p+ n
Ip(µ)

where an,p ≈ 1.

Proof. Direct computation shows that for every x ∈ Rn we have(∫
Sn−1

|〈x, ξ〉|pdσ(ξ)

)1/p

= an,p

√
p

√
p+ n

|x|,

where an,p ≈ 1. Since

wp(Zp(µ)) =

(∫
Sn−1

∫
Rn
|〈x, ξ〉|pdµ(x)σ(dξ)

)1/p

,

the lemma follows.
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Proof of Theorem 5.10. We start with the formula Ip(µ) = cn,pwp(Zp(µ)) from Lemma 5.14, where cn,p ≈
max{1,

√
n/p}. Therefore, we need to show that

wp(Zp(µ)) 6 C min{1,
√
p/n} (I2(µ) +R(Zp(µ))) .

Since wp(Zp(µ)) 6 R(Zp(µ)), we clearly have the result when p > n, and hence in the sequel we may assume
that p is an integer and 1 6 p 6 n.

From Theorem 5.12 we have that

(5.17) wp(Zp(µ)) 6 c1 max{w(Zp(µ)),
√
p/nR(Zp(µ))}.

Therefore, the theorem will follow if we show that, for all 1 6 p 6 n,

(5.18) w(Zp(µ)) 6 C
√
p/n(I2(µ) +R(Zp(µ))).

If p > k∗(Zp(µ)) then we have

(5.19) w(Zp(µ)) 6 c2
√
p/nR(Zp(µ))

by Theorem 5.11. If p 6 k∗(Zp(µ)) then by the definition of k∗(Zp(µ)) we can find some F ∈ Gn,p that
satisfies both ∫

|PF (x)|2 dµ(x) 6 c3(p/n)I2
2 (µ)

(this is justified by averaging over all F ∈ Gn,k and then applying Markov’s inequality) and

(5.20) w(Zp(µ))BF ⊆ c4PF (Zp(µ)).

Since PF (Zp(µ)) = Zp(πF (µ)) and πF (µ) is a p-dimensional centered log-concave probability measure, we
get

(5.21) vrad(Zp(πF (µ))) ≈
√
p

‖πF (µ)‖1/p∞
=
√
p

(
det Cov(πF (µ))

) 1
2p

LπF (µ)
.

Using the fact that LπF (µ) > c for an absolute constant c > 0, we see that

(5.22) vrad(Zp(πF (µ))) 6 c5

(∫
|x|2dπFµ(x)

)1/2
LπF (µ)

6 c6

(∫
|PF (x)|2 dµ(x)

)1/2

6 c7
√
p/nI2(µ).

Combining (5.20) and (5.22) we see that

(5.23) w(Zp(µ)) 6 c8
√
p/nI2(µ).

This completes the proof.

In the case where µ = µK for an isotropic convex body K in Rn, the inequality (5.13) takes the form

(5.24) voln({x ∈ K : |x| > ct
√
nLK}) 6 exp

(
−t
√
n
)

for all t > 1. Taking also into account the fact that LK ≈ 1, we obtain a much stronger statement than that
of the ellipsoid intersection theorem of § 5.1.
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6 A reduction of the slicing problem

In this section we do not assume the affirmative answer to the isotropic constant conjecture. We discuss
small ball probability estimates for isotropic log-concave probability measures, starting with the work of
Paouris in [113]. In particular, we describe a reduction of the isotropic constant conjecture to such small
ball estimates. An optimal result of this type turns out to be the key fact in the affirmative answer to the
problem given by Bizeul in [15].

First we introduce two parameters that are essential for the study of these questions.

§ 6.1. The parameter q∗(µ). A parameter which was originally central in the work of Paouris is q∗(µ),
which is defined for every centered log-concave probability measure µ in Rn, as follows:

q∗(µ) = max{p ∈ [2, n] : k∗(Zp(µ)) > p}.

The next proposition provides a lower bound for q∗(µ).

Proposition 6.1. There exists an absolute constant c > 0 with the following property: if µ is a centered
log-concave probability measure on Rn then

q∗(µ) > c
√
k∗(Z2(µ)).

Proof. We set q∗ := q∗(µ). From Theorem 5.12, Lemma 5.14, Hölder’s inequality, and the simple observation
that I2(µ) =

√
nw2(Z2(µ)), we get

w(Zq∗(µ)) > c1wq∗(Zq∗(µ)) > c2
√
q∗/nIq∗(µ) > c2

√
q∗/nI2(µ) = c2

√
q∗/n

√
nw2(Z2(µ)).

In other words,

(6.1) w(Zq∗(µ)) > c2
√
q∗w(Z2(µ)).

Since R(Zq∗(µ)) 6 c3q∗R(Z2(µ)), using the definition of q∗ and Theorem 5.11 we write

2q∗ > k∗(Zq∗(µ)) > c4n

(
w(Zq∗(µ))

R(Zq∗(µ))

)2

> c4n
c22q∗
c23q

2
∗

w2(Z2(µ))

R2(Z2(µ))
> c5

k∗(Z2(µ))

q∗
.(6.2)

This shows that q∗(µ) > c
√
k∗(Z2(µ)) for some absolute constant c > 0.

Note that if µ is isotropic then k∗(Z2(µ)) = n. Therefore, in the isotropic case we have:

Corollary 6.2. There exists an absolute constant c > 0 with the following property: for every isotropic
log-concave probability measure µ on Rn,

q∗(µ) > c
√
n.

We close this subsection with the following observation.

Theorem 6.3. Let µ be an isotropic log-concave probability measure in Rn. If 1 6 p 6 c
√
n, then

(6.3) w(Zp(µ)) ≈ √p.

For the proof we write w(Zp(µ)) ≈ wp(Zp(µ)) ≈
√
p/nIp(µ) ≈ √p, where the first equality holds because

c
√
n 6 q∗(µ) by Corollary 6.2, the second comes from Lemma 5.14 and the third follows from Theorem 5.9.

§ 6.2. Small ball probability estimates. Let µ be a centered log-concave probability measure on Rn.
We extend the definition of Ip(µ), allowing negative values of p, in the obvious way: for every p ∈ (−n,∞),
p 6= 0, we define

Ip(µ) :=

(∫
Rn
|x|pdµ(x)

)1/p

.
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Also, given any ζ > 1, we define the parameter

(6.4) q−c(µ, ζ) := max{p > 1 : I2(µ) 6 ζI−p(µ)}.

The first main result of this section is the next theorem.

Theorem 6.4 (Paouris). Let µ be a centered log-concave probability measure on Rn. For every integer
1 6 k 6 q∗(µ) we have

I−k(µ) ≈ Ik(µ).

In particular, Theorem 6.4 shows that for every 1 6 k 6 q∗(µ) we have Ik(µ) 6 cI2(µ), where c > 0 is
an absolute constant. Assuming that µ is isotropic and taking into account Corollary 6.2, we immediately
obtain the assertion of Theorem 5.9.

The proof of Theorem 6.4 is based on two identities.

Claim 6.5. If µ is a centered log-concave probability measure on Rn and 1 6 k 6 n− 1 is a positive integer,
then

(6.5) I−k(µ) = cn,k

(∫
Gn,k

πF (fµ)(0)dνn,k(F )

)−1/k

,

where

cn,k =

(
(n− k)ωn−k

nωn

)1/k

≈
√
n.

Proof. Let 1 6 k 6 n− 1. Then, we have∫
Gn,k

πF (fµ)(0) dνn,k(F ) =

∫
Gn,n−k

πE⊥(fµ)(0) dνn,n−k(E) =

∫
Gn,n−k

∫
E

fµ(y) dy dνn,n−k(E)

=

∫
Gn,n−k

(n− k)ωn−k

∫
SE

∫ ∞
0

rn−k−1fµ(rξ) dr dσE(ξ) dνn,n−k(E)

=
(n− k)ωn−k

nωn
nωn

∫
Sn−1

∫ ∞
0

rn−k−1fµ(rξ) dr dσ(ξ)

=
(n− k)ωn−k

nωn

∫
Rn
|x|−kfµ(x) dx =

(n− k)ωn−k
nωn

I−k−k (µ).

It follows that

I−k(µ) =

(
(n− k)ωn−k

nωn

)1/k
(∫

Gn,k

πF (fµ)(0) dνn,k(F )

)−1/k

.

Finally, we check that cn,k =
(

(n−k)ωn−k
nωn

)1/k

≈
√
n.

Claim 6.6. If C is a symmetric convex body in Rn and 1 6 k 6 n− 1 is a positive integer, then

(6.6) w−k(C) ≈
√
k

(∫
Gn,k

volk(PF (C))−1dνn,k(F )

)− 1
k

.

Proof. Using the Blaschke-Santaló and the Bourgain-Milman inequality, we write

w−1
−k(C) =

(∫
Sn−1

1

hkC(ξ)
dσ(ξ)

)1/k

=

(∫
Gn,k

∫
SF

1

‖ξ‖k(PFC)◦
dσ(ξ)dνn,k(F )

)1/k

=

(∫
Gn,k

volk(PF (C))◦

volk(Bk2 )
dνn,k(F )

)1/k

≈

(∫
Gn,k

volk(Bk2 )

volk(PF (C))
dνn,k(F )

)1/k

,

and the result follows.
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Now, consider a centered log-concave probability measure µ on Rn and an integer 1 6 k 6 n− 1. Recall
that from Theorem 4.4 we also have

1

volk(PF (Zk(µ)))1/k
≈ πF (fµ)(0)1/k.

for every subspace F ∈ Gn,k. Combining Claim 6.5 and Claim 6.6 we get

(6.7)
√
k/n I−k(µ) ≈ w−k(Zk(µ)).

Proof of Theorem 6.4. Let 1 6 k 6 n− 1. We know that wk(Zk(µ)) ≈
√
k/n Ik(µ) and (6.7) shows that we

also have w−k(Zk(µ)) ≈
√
k/n I−k(µ)

We set k0 = bq∗c, where q∗ = q∗(µ). Then,

(6.8) k∗(Zk0
(µ)) ≈ k∗(Zq∗(µ)) > c1q∗ > c1k0.

From Theorem 5.13 we have

(6.9) w−k(Zk0(µ)) ≈ wk(Zk0(µ))

for every 1 6 k 6 c2k∗(Zk0(µ)), and (6.8) shows that (6.9) holds for every k 6 c3q∗(µ). Setting k1 =
bc3q∗(µ)c ≈ k0, and using the fact that Zk0

(µ) ≈ Zk1
(µ), we get

(6.10) w−k1
(Zk1

(µ)) ≈ wk1
(Zk1

(µ)).

It is now clear that I−k1
(µ) ≈ Ik1

(µ) and since k1 ≈ q∗(µ) we see that q 7→ Iq(µ) is “constant” in the range
1 6 |q| 6 cq∗(µ).

Suppose that µ is isotropic. Then, q∗(µ) > c1
√
n, and since I2(µ) 6 Ip(µ) 6 c2I−p(µ) for all 1 6 p 6

cq∗(µ), we obtain the following.

Corollary 6.7. Let µ be an isotropic log-concave probability measure on Rn. Then, q−c(µ, ζ0) > c
√
n, where

c, ζ0 > 0 are absolute constants.

Another consequence of Theorem 6.4 is the next small ball probability estimate:

Theorem 6.8. Let µ be an isotropic log-concave probability measure on Rn. Then, for every 0 < ε < ε0 we
have

(6.11) µ({x ∈ Rn : |x| 6 ε
√
n}) 6 εc

√
n,

where ε0, c > 0 are absolute constants.

Proof. We know that I2(µ) 6 c1I−p(µ) for all 1 6 p 6 c2
√
n. It follows that

µ({x ∈ Rn : |x| 6 εI2(µ)}) 6 µ({x : |x| 6 c1εI−p(µ)})
6 (c1ε)

p 6 εp/2,

for every 0 < ε < c−2
1 and p 6 c2

√
n. This gives the result with ε0 = c−2

1 and c = c2/2.

The next theorem shows that if the hyperplane conjecture is correct then there are absolute constants
τ, ζ0 > 0 such that, for every isotropic convex body K in Rn, one has q−c(µK , ζ0) > τn.

Theorem 6.9 (Dafnis-Paouris). There exists an absolute constant c > 0 such that, for every n and every
isotropic convex body K in Rn,

q−c(µK , cLn) > n− 1.
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Proof. Using Theorem 5.2, for every 1 6 s 6 n− 1 we write

I−s(K) ≈
√
n

(∫
Gn,s

voln−s(K ∩ F⊥) dνn,s(F )

)−1/s

≈
√
n

(∫
Gn,s

(
LKs+1(πF (µK))

LK

)s
dνn,s(F )

)−1/s

>

√
nLK
Ls

.

This shows that

I−s(K) >
c1
√
nLK
Ls

>
c2
√
nLK
Ln

because it is known that Ls 6 c3Ln for all integers 1 6 s 6 n− 1 (see [28]). Since I2(K) =
√
nLK , we get

q−c(K, c
−1
2 Ln) := max{p > 1 : I2(K) 6 c−1

2 LnI−p(K)} > n− 1.

This is the claim of the theorem.

§ 6.3. A reduction of the isotropic constant problem. In the previous subsection we introduced the
parameter

q−c(K, ζ) := max{p > 1 : I2(K) 6 ζI−p(K)}.

We shall show that the hyperplane conjecture is equivalent to the following statement:

There exist absolute constants c, ζ0 > 0 such that q−c(K, ζ0) > cn for every isotropic convex
body K in Rn.

We already know that there exists a parameter q∗ := q∗(K), related to the Lp-centroid bodies of K, with
the following properties:

(i) q∗(K) > c
√
n,

(ii) q−c(K, ζ0) > q∗(K) for some absolute constant ζ0 > 1, and hence, I2(K) 6 ζ0I−q∗(K).

What is not clear is the behavior of I−p(K) when p lies in the interval [q∗, n].

The main idea of Dafnis and Paouris in [38] is to start with an “extremal” isotropic convex body K in
Rn with maximal isotropic constant LK ≈ Ln which is at the same time in α-regular M -position. Their
starting point, which has a rather technical proof, is the following precise statement.

Theorem 6.10 (Dafnis-Paouris). There exist absolute constants κ, τ > 1 and δ > 0 such that, for every
α ∈ [1, 2), we can find an isotropic convex body Kα in Rn with the following properties:

(i) LKα > δLn,

(ii) for every t > τ(2− α)−3/2

(6.12) lnN(Kα, t
√
nBn2 ) 6

κn

(2− α)2α tα
.

Sketch of the proof. We shall give a very rough sketch of the proof of Theorem 6.10 for the case α = 1. We
should note here that the idea of considering convex bodies with “maximal” isotropic constant and their
M -ellipsoids had been previously used by Bourgain, Klartag and V. Milman in [28].

We may assume that n = 2m is even, and we start with an isotropic convex body K0 that has isotropic
constant LK0

> δ0L2m, where δ0 ∈ (0, 1). Then, for every k-codimensional subspace F of R2m we have

vol2m−k(K ∩ F⊥)1/k ≈
LKk+1(πF (µK))

LK
6 c1(δ0),
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where c1(δ0) is a constant depending only on δ0. If E1 is a 1-regular M -ellipsoid for K0 then we see that for
every F ∈ G2m,m we have

volm(PF (K0))1/m 6 c1 volm(PF (E1))1/m.

From Theorem 5.3 we know that(
volm(K0 ∩ F )volm(PF⊥(K0))

)1/m ≈ (volm(E1 ∩ F )volm(PF⊥(E1))
)1/m ≈ 1.

Combining the above with the fact that, for any 1 6 k 6 n− 1, the maximal/minimal volume k-dimensional
section and projection of an ellipsoid coincide, we conclude that

c2(δ0) 6 volm(K ∩ F⊥)1/m 6 c1(δ0)

for every F ∈ G2m,m. Using this fact we can check that if λ1 > · · · > λ2m > 0 are the semi-axes of E1 then
λm ≈δ

√
n. Now, we use the standard fact that there exists F0 ∈ G2m,m such that PF0

(E1) = λmBF0
, and

hence
c3(δ0)BF0 ⊆ PF0(E1) ⊆ c4(δ0)BF0 .

Then, we define W = Km+1(πF0
(µK0

))) and K1 = W × U(W ), where U ∈ O(2m) satisfies U(F0) = F⊥0 .
The convex body K1 satisfies the assertion of the theorem for α = 1.

Then, Dafnis and Paouris try taking advantage of the fact that small ball estimates are closely related
to estimates for covering numbers. The key lemma is the following.

Lemma 6.11. Let K be a centered convex body of volume 1 in Rn. Assume that, for some s > 0,

(6.13) rs := lnN(K, sBn2 ) < n.

Then,
I−rs(K) 6 3es.

Proof. Let z0 ∈ Rn be such that voln(K ∩ (−z0 + sBn2 )) > voln(K ∩ (z + sBn2 )) for every z ∈ Rn. It follows
that

(6.14) voln((K + z0) ∩ sBn2 )N(K, sBn2 ) > voln(K) = 1.

Let q = rs. Then, using Markov’s inequality, the definition of I−q(K + z0) and (6.13), we get

voln((K + z0) ∩ 3−1I−q(K + z0)Bn2 ) 6 3−q < e−q = e−rs 6
1

N(K, sBn2 )
.

and hence
voln((K + z0) ∩ 3−1I−q(K + z0)Bn2 ) < voln((K + z0) ∩ sBn2 ),

which implies that
3−1I−q(K + z0) 6 s.

Finally, we can check that I−k(K + z) > e−1I−k(K) for any 1 6 k 6 n − 1 and z ∈ Rn. Indeed, using
Claim 6.5 and the fact that K is centered (more precisely, Fradelizi’s inequality (4.1) for the centered log-
concave function πF⊥(1K) where F ∈ Gn,k) we write

I−k(K + z) = cn,k

(∫
Gn,k

voln−k(K + z) ∩ F⊥) dνn,k(F )

)−1/k

>
cn,k
e

(∫
Gn,k

voln−k(K ∩ F⊥) dνn,k(F )

)−1/k

=
1

e
I−k(K).

This proves the lemma.
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We can now prove the main theorem.

Theorem 6.12 (Dafnis-Paouris). Assume that q−c(K, ζ) > βn for some ζ > 1, some β ∈ (0, 1) and every
isotropic convex body K in Rn. Then,

(6.15) Ln 6
Cζ√
β

ln2(e/β),

where C > 0 is an absolute constant.

Proof. We set α := 2 − ln(e/β)−1 and, for this value of α, we apply Theorem 6.10 to find an isotropic
convex body Kα which satisfies its conclusion: for some absolute constants κ, τ > 1 and δ > 0 it holds that
LKα > δLn and

lnN(Kα, t
√
nBn2 ) 6

κn

(2− α)2αtα
for all t > τ ln3/2(e/β).

We may clearly assume that τ2 6 eκ as well. We choose

t1 = (eκ)1/α 1√
β

ln2(e/β).

Note that τ 6
√
eκ 6 (eκ)1/α, and hence t1 > τ 1√

β
ln2(e/β) > τ ln3/2(e/β). Therefore, (6.12) is valid for

t = t1, and this shows that

r1 := lnN(Kα, t1
√
nBn2 ) 6

κn

(2− α)2αtα1
6

1

e
(
√
β)αn 6 βn.

Then, from Lemma 6.11 we get
I−r1(Kα) 6 3et1

√
n.

On the other hand, since q−c(Kα, ζ) > βn and r1 6 βn, we have that

√
nLKα = I2(Kα) 6 ζI−r1(Kα).

It follows that

LKα 6 3eζt1 = 3eζ(eκ)1/α 1√
β

ln2(e/β) 6
3e2ζκ√

β
ln2(e/β).

Since LKα > δLn, the result follows.

Remark 6.13. Since q−c(K, ζ0) > q∗(K) > c
√
n for some absolute constants ζ0 > 1 and c > 0, we may

apply Theorem 6.12 with ζ = ζ0 and β = c/
√
n to get

(6.16) Ln 6
Cζ√
c

4
√
n ln2

(e√n
c

)
6 c1

4
√
n(lnn)2,

where c1 > 0 is an absolute constant. This is a non-trivial estimate for Ln, slightly weaker but close to the
estimate Ln = O( 4

√
n lnn) of Bourgain [26] and the estimate Ln = O( 4

√
n) of Klartag [69].

We close this section with a much more direct reduction of the problem but with a much stronger
assumption. We shall use the following corollary of Theorem 6.10.

Proposition 6.14. For every n > 1 there exists an isotropic convex body K in Rn such that LK > c1Ln
and

voln(K ∩
√
c2nB

n
2 ) > cn0

where ci > 0 are absolute constants.

37



Proof. We apply Theorem 6.10 with α = 1 to find an isotropic convex body K in Rn such that LK > c1Ln
and

lnN(K, t
√
nBn2 ) 6

c3n

t

for all t > c3. Then, it is clear that

1 = voln(K) 6 enN(K,
√
c2nB

n
2 ) voln(K ∩

√
c2nB

n
2 ) 6 e2nvoln(K ∩

√
c2nB

n
2 )

if c2 = c23, and the result follows.

From Proposition 6.14 we deduce the following direct reduction of the isotropic constant conjecture to
small ball estimates.

Theorem 6.15. Assume that there exist ε0, c0 > 0 such that for every isotropic convex body K in Rn and
any 0 < ε 6 ε0 we have that

voln({x ∈ K : |x| 6 ε
√
nLK}) 6 εc0n.

Then, Ln 6 C for all n > 1, where C = C(ε0, c0) depends only on ε0 and c0.

Proof. Proposition 6.14 shows that there exists an isotropic convex body K in Rn with Ln 6 C1LK and
voln(K ∩

√
C2nB

n
2 ) > cn2 for some absolute constants C1, C2, c2 > 0.

On the other hand, applying the hypothesis we see that for any 0 < ε 6 ε0,

voln(K ∩ ε
√
nLK B

n
2 ) 6 εc0n.

Choosing ε1 = min
{
ε0, c

1
c0
2

}
, and comparing the above inequalities, we get

L2
n 6 C2

1L
2
K 6

C2
1C2

ε1
.

7 Eldan’s stochastic localization

Eldan’s stochastic localization has been the key for the recent developments in Bourgain’s slicing problem
and other well-known isoperimetric problems about high-dimensional log-concave probability measures and
convex bodies, such as the Kannan-Lovász-Simonovits conjecture that we shall discuss in the next section.
In this section we briefly introduce the stochastic localization scheme that we shall use.

First we recall with some preliminaries from stochastic calculus. We refer to [111], [120] and [41] for
definitions and background on semimartingales and stochastic integration.

Let xt and yt be real-valued stochastic processes. The quadratic variations [x]t and [x, y]t are real-valued
stochastic processes defined by

[x]t = lim
|P |→0

∞∑
i=1

(xτn − xτn−1
)2 and [x, y]t = lim

|P |→0

∞∑
n=1

(xτn − xτn−1
)(yτn − yτn−1

),

where P = {0 = τ0 6 τ1 6 τ2 · · · ↑ t} is a stochastic partition of the non-negative real numbers, |P | =
maxn(τn − τn−1) is the mesh of P , and the limit is defined using convergence in probability. Note that [x]t
is non-decreasing in t and [x, y]t satisfies the equation

[x, y]t =
1

4
([x+ y]t − [x− y]t).
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Assume that the processes xt and yt satisfy the differential equations dxt = a(xt)dt + σ(xt)dWt and dyt =
b(yt)dt+ η(yt)dWt where (Wt) is a standard Brownian motion. Then we have

[x]t =

∫ t

0

σ2(xs)ds and [x, y]t =

∫ t

0

σ(xs)η(ys)ds.

Also, d[x, y]t = σ(xt)η(yt)dt.
Analogously, for vector valued differential equations dxt = a(xt)dt + Σ(xt)dWt and dyt = b(yt)dt +

H(yt)dWt we have that

[xi, xj ]t =

∫ t

0

(Σ(xs)Σ
T (xs))ijds and d[xi, yj ]t = (Σ(xt)H

T (yt))ijdt.

We shall use Itô’s formula: If x is a semimartingale and f is a twice continuously differentiable function then

(7.1) df(xt) =
∑
i

df(xt)

dxi
dxi +

1

2

∑
i,j

d2f(xt)

dxidxj
d[xi, xj ]t.

§ 7.1. Eldan’s stochastic localization. A variant of the stochastic localization scheme that we shall use
was introduced by Eldan in [42]. Then, his idea was used in a number of subsequent works [90], [35], [76].

Given a probability measure µ = µ0 on Rn with density % = %0, the starting idea of localization is to
restrict the distribution to a random half-space and then repeat this process. The discrete version of this
procedure is to define

%t+1(x) = %t(x)
(
1 +
√
h〈x− at, w〉

)
where at is the barycenter of the measure µt, the parameter h > 0 is sufficiently small and w is a Gaussian
random vector. So, each step is a renormalization of the measure with a linear function in a random direction.
Using the approximation 1 + y ∼ ey−

1
2y

2

as y → 0 we see that this process introduces a Gaussian factor in
the exponent, which is more and more concentrated as t → ∞. Eventually, µt becomes a Dirac measure,
and then any set has measure 0 or 1. The idea is to stop at a large enough time t so that the density would
include a strong Gaussian factor but at the same time we would still be able to compare the original measure
µ with µt.

In stochastic localization, the discrete steps described above are replaced by infinitesimal steps. We are
given a probability measure µ on Rn, and a standard Brownian motion (Wt) on Rn. We consider an infinite
system of stochastic differential equations whose unknown is the family (%t) of functions from Rn to R+,
with %0(x) = 1 and

d%t(x) = %t(x) 〈x− at, dWt〉,

where

at =

∫
Rn〈x, %t(x)〉 dµ(x)∫

Rn %t(x) dµ(x)

is the barycenter of %t(x) dµ(x). Note that we have only one Brownian motion (Wt) which is used for every
x. This simplified version of Eldan’s process was introduced by Lee and Vempala in [90].

We may assume that %t(x) > 0 for all t, almost surely. We have

d

(∫
Rn
%t(x) dµ(x)

)
=

∫
Rn
d%t(x) dµ(x) =

〈∫
Rn

(x− at)%t(x) dµ(x), dWt

〉
= 0

by the definition of at, which shows that the total mass of %tdµ remains constant. So, µt := %t dµ is a random
probability measure for every t > 0. We can also check that %t(x) is a martingale for all x. In particular,

E(%t(x)) = %0(x) = 1
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for all x. This shows that the random measure µt is equal to µ on average:

E(µt) = µ.

Finally, we can solve the equation
d%t(x) = %t(x)〈x− at, dWt〉

explicitly: Applying Itô’s formula to ln %t(x) we get

d(ln %t(x)) =
d%t(x)

%t(x)
− 1

2

d[%t(x)]t
%2
t (x)

= 〈x− at, dWt〉 −
1

2
|x− at|2 dt,

which gives

%t(x) = exp

(∫ t

0

〈x− as, dWs〉 −
1

2

∫ t

0

|x− as|2 ds
)

= exp

(
ct + 〈x, ξt〉 −

t

2
|x|2
)
,

where (ct) and (ξt) are random processes that do not depend on x. This shows that the density %t of µt
with respect to µ is just a Gaussian factor. The linear term and the normalizing constant are random but
the quadratic term is deterministic, equal to t

2 |x|
2.

This means that if the original measure µ is log-concave then the measure µt is t-uniformly log-concave
(i.e. the function %t(x)et|x|

2/2 is log-concave) almost surely, and the process becomes more and more peaked
as t grows. For every t > 0 we have expressed the log-concave measure µ as a mixture of t-uniformly log-
concave measures. Moreover, this mixture is constructed as a solution of a stochastic differential equation,
and using Itô’s formula we can try to control its behavior over time.

§ 7.3. Construction of the process. A rigorous construction of this stochastic localization process is
provided in [77] (see also [80]). Consider a standard n-dimensional Brownian motion (ξt) defined on some
probability space (Ω,A, P ) equipped with a filtration (At). For every x ∈ Rn the process (Et) defined by

Et = exp

(
〈x, ξt〉 −

t

2
|x|2
)

is a martingale. Then, for any test function g, the process

Nt =

∫
Rn
g(x) exp

(
〈x, ξt〉 −

t

2
|x|2
)
dµ(x)

is also a martingale, and in particular we have that E(Nt) = N0 = Eµ(g).
We define the random probability measure µt on Rn with

(7.2) dµt(x) =
1

Zt
exp

(
〈x, ξt〉 −

t

2
|x|2
)
dµ(x)

where

Zt =

∫
Rn

exp

(
〈x, ξt〉 −

t

2
|x|2
)
dµ(x)

is a suitable normalization constant. Then,

Nt = Zt

∫
Rn
g(x) dµt(x).

We fix T > 0. Since (Zt)t6T is a positive martingale with expectation equal to 1, if Q is the probability
measure on (Ω,A) with density ZT with respect to P we have that the process (Mt) defined by

Mt =

∫
Rn
g(x) dµt(x)
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is a martingale with respect to Q. Using Girsanov’s change of measure formula we check that the Itô
derivative of Mt is given by the formula

dMt =
〈∫

Rn
g(x)(x− at) dµt(x), dWt

〉
where at =

∫
Rn x dµt(x) is the barycenter of µt.

One can also obtain a concrete description of the law of (ξt). It is proved in [80] that (ξt) has the same
law as the process (tX + Wt) where (Wt) is a standard Brownian motion and X is a random vector which
is independent from (Wt) and is distributed according to µ.

§ 7.4. Time reversal. Let % denote the density of µ with respect to the Lebesgue measure. Then, we can
reformulate the definition (7.2) of µt as follows:

(7.3)

∫
Rn
g dµt =

∫
Rn g(x)%(x) exp

(
〈ξt, x〉 − t

2 |x|
2
)
dx∫

Rn %(x) exp
(
〈ξt, x〉 − t

2 |x|2
)
dx

for any test function g. We introduce the heat semi-group

Ptf(x) = E(f(x+Wt)) = f ∗ γt

where γt(x) = (2πt)−n/2e−|x|
2/2t is the density of the Gaussian measure with mean 0 and covariance matrix

tIn. Then (7.3) takes the form ∫
Rn
g dµt =

P1/t(g%)

P1/t%

(
ξt
t

)
.

Now set s = 1/t. Since the process (ξt) has the same law as the process (tX +Wt) we have

ξt
t

=
tX +Wt

t
= X + sW1/s

in law. Since W̃s := sW1/s is again a standard Brownian motion we conclude that up to the time reversal
t = 1/s, the process (

∫
g dµt)t>0 has the same distribution as (Qsg(X +Ws))s>0, where Qs is the operator

defined by

Qsg =
Ps(g%)

Ps%
.

Since the heat semigroup is self-adjoint in L2(dx) we may also check that

Qsg(X +Ws) = E
(
g(X) | X +Ws

)
.

Combining the above we see that the stochastic localization process (µt) initiated from µ has the same law as
the measure-valued process obtained by looking at the conditional law of X given X+Ws and then reversing
time by setting t = 1/s. In particular, for every test function g the variable

∫
Rn g dµt has the same law as

E(g(X) | X +
√
sG) where G is a standard Gaussian random vector independent of X.

8 Kannan-Lovász-Simonovits conjecture

Let µ be a Borel probability measure on Rn. For every Borel set A ⊆ Rn we define the Minkowski content
µ+(A) as follows:

µ+(A) = lim inf
t→0+

µ(At)− µ(A)

t
,
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where At = {x ∈ Rn : dist(x,A) < t} is the t-extension of A. The isoperimetric ratio of A is defined by
χµ(A) := µ+(A)/min{µ(A), 1− µ(A)}. Then, the (reciprocal) Cheeger constant ψµ of µ is the quantity

ψµ := sup
A

1

χµ(A)
= sup

A

min{µ(A), 1− µ(A)}
µ+(A)

,

where the supremum is over all open sets A ⊂ Rn with smooth boundary and 0 < µ(A) < 1. It follows from
results of Rothaus, Cheeger, Maz’ya (see [19]) that if αµ is the smallest constant with the property that for
every integrable, locally Lipschitz function f : Rn → R one has∫

Rn
|f(x)− Eµ(f)| dµ(x) 6 αµ

∫
Rn
|∇f(x)| dµ(x),

then αµ/2 6 ψµ 6 2αµ.

§ 8.1. Isoperimetric profile. The isoperimetric profile Iµ : [0, 1]→ [0,+∞] of µ is the function

Iµ(t) = inf{µ+(A) : A Borel, µ(A) = t}.

Note that

ψµ = sup
0<t61/2

t

min{Iµ(t), Iµ(1− t)}
.

The next important result of E. Milman, whose proof employs deep tools from geometric measure theory, is
very useful.

Theorem 8.1 (E. Milman). Let µ be a log-concave probability measure on Rn. Then, the isoperimetric
profile Iµ of µ is concave on (0, 1), and for every t ∈ (0, 1) we have Iµ(t) = Iµ(1− t). As a consequence,

ψµ = sup
0<t61/2

t

Iµ(t)
=

1

2Iµ(1/2)
.

The concavity of the isoperimetric profile on a convex domain was first obtained by Sternberg and
Zumbrun in [126]. They showed that if n > 2 and K is a convex body in Rn, then IλK is concave on [0, 1],

where λK is the uniform probability measure on K. Kuwert later noted in [84] that I
n/(n−1)
λK

is also concave
on [0, 1]. This is precisely the correct power to use. Kuwert’s result was extended to convex domains in
Riemannian manifolds with non-negative Ricci curvature by Bayle and Rosales [14]. E. Milman showed in
[101] that the concavity of Iµ remains valid for log-concave measures on Rn.

Theorem 8.1 asserts that we can calculate the Cheeger constant of a log-concave probability measure µ
by looking only at Borel sets A with µ(A) = 1/2. In fact, E. Milman proved in [101] that one can determines
the order of the Poincaré constant of a log-concave probability measure µ on Rn just by testing 1-Lipschitz
functions of the form x 7→ d(x,A).

Theorem 8.2 (E. Milman). Let µ be a log-concave probability measure on Rn. Then,

(8.1) ψµ ≈ sup

{∫
d(x,A)dµ(x) : µ(A) >

1

2

}
.

§ 8.2. Kannan-Lovász-Simonovits conjecture. Kannan, Lovász and Simonovits conjectured in [67]
that the isoperimetric ratio of any Borel set A with respect to the uniform measure λK on a convex body
K in Rn should be, up to an absolute constant, at least as large as the minimal isoperimetric ratio over all
half-spaces. Recall that when K is an isotropic convex body in Rn then 1/LK is approximately equal to the
(n − 1)-dimensional volume of the section of K with any hyperplane passing through the origin: we know
that voln−1(K ∩ ξ⊥) ≈ 1/LK for every ξ ∈ Sn−1. On the other hand, voln−1(K ∩ ξ⊥) is the Minkowski
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content of the intersection of K with the half-space H+
ξ := {x : 〈x, ξ〉 > 0} or H−ξ := {x ∈ K : 〈x, ξ〉 6 0}.

Therefore, the KLS conjecture amounts to asking whether ψλK 6 cLK . Taking into account the isotropic
constant conjecture and the different normalization that we have chosen in the definition of isotropic log-
concave measures, we can restate the KLS conjecture in the more general setting of isotropic log-concave
probability measures as follows:

Conjecture 8.3 (KLS conjecture). If µ is an isotropic log-concave probability measure on Rn then the
reciprocal Cheeger constant of µ satisfies ψµ 6 C for some absolute constant C > 0. In other words,

ψn := sup{ψµ : µ is isotropic log-concave measure on Rn} 6 C.

Kannan, Lovász and Simonovits [67] gave an upper bound for ψλK in terms of the quantity

I1(K) :=
1

voln(K)

∫
K

|x− bar(K)| dx,

where bar(K) is the barycenter of K.

Theorem 8.4 (Kannan-Lovász-Simonovits). For every convex body K in Rn one has

(8.2) ψλK 6 cI1(K).

The proof of Theorem 8.4 exploited the localization lemma of Lovász and Simonovits from [94], a
very useful tool that allows one to reduce inequalities for log-concave functions in Rn to one-dimensional
inequalities. Note that, if K is an isotropic convex body in Rn then

I1(K) 6
(∫

K

|x|2dx
)1/2

=
√
nLK ,

and hence (8.2) implies that

(8.3) ψλK 6 c
√
nLK ,

where c > 0 is an absolute constant.
The KLS-conjecture is stronger than the isotropic constant conjecture. Ball and Nguyen [10] showed

that Ln 6 exp(cψ2
n) for an absolute constant c > 0. In fact, from their work one can conclude that for

each individual isotropic log-concave probability measure µ, a bound for the KLS-constant implies a bound
for the isotropic constant: one has that Lµ 6 exp(cψ2

µ). An important result of Eldan and Klartag [43]
establishes a linear dependence of Ln on ψn.

Theorem 8.5 (Eldan-Klartag). There exists an absolute constant C > 0 such that, for every n > 1,

Ln 6 Cψn.

Theorem 8.5 shows that any upper bound for ψn implies an equivalent, up to an absolute constant,
upper bound for Ln. In fact, as we will see in this section, Klartag has established in [74] the upper bound
ψn 6 c

√
lnn.

§ 8.3. Poincaré constant and KLS constant. The Cheeger constant is closely related to another
isoperimetric constant associated to µ, the Poincaré constant, defined to be the best, i.e. the smallest,
constant ϑµ with the property that

Varµ(f) =

∫
Rn
f2 dµ−

(∫
Rn
f dµ

)2

6 ϑ2
µ

∫
Rn
|∇f |2 dµ
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for all locally Lipschitz functions f : Rn → R with
∫
|∇f |2 dµ <∞. We shall use the fact that the Poincaré

constant is subadditive: if µ, ν are probability measures then ϑ2
µ∗ν 6 ϑ2

µ + ϑ2
ν , where µ ∗ ν is the convolution

measure of µ and ν; this follows by a classical variance decomposition and the convexity of t 7→ t2 (see
e.g. [22]).

A theorem of Maz’ya [99], [100] and Cheeger [37] shows that the Poincaré constant ϑµ of µ is bounded
by the reciprocal Cheeger constant ψµ.

Theorem 8.6 (Maz’ya, Cheeger). Let µ be a Borel probability measure with reciprocal Cheeger constant ψµ.
Then its Poincaré constant ϑµ satisfies

(8.4) ϑµ 6 2ψµ.

On the other hand, the assumption that µ is log-concave implies a reverse inequality with a constant
that does not depend on the dimension. The next theorem is due to Buser [31] (see also Ledoux [86]).

Theorem 8.7 (Buser, Ledoux). Let µ be a log-concave probability measure on Rn. Then, ψµ 6 c ϑµ, where
c > 0 is an absolute constant.

§ 8.4. Improved log-concave Lichnerowicz inequality. One of the crucial ingredients in Klartag’s
estimate for ψn is an improved log-concave Lichnerowicz inequality which we now describe.

In what follows we assume that µ is a log-concave probability measure with a density % = e−ϕ, where
ϕ is a convex function on Rn. There are some issues that we shall ignore in our discussion. What we will
do requires that µ is regular. We assume that the density % of µ is smooth and positive on Rn, and there
exists δ > 0 such that δIn 6 ∇2ϕ 6 δ−1In, where ∇2ϕ denotes the Hessian of ϕ. Also, we assume that ϕ
and all its partial derivatives grow at most polynomially at infinity. One can obtain a reduction to this case,
because of the following lemma: For every µ and ε > 0 we may find a regular ν that satisfies ϑ2

ν > ϑ2
µ − ε

and ‖Cov(ν)− Cov(µ)‖op 6 ε. A proof of this fact is given in [74, Lemma 2.1].
We consider the class Fµ of all functions u on Rn which are smooth and have subexponential decay

relative to %, i.e. there exist C, a > 0 such that

|u(x)| 6 C√
%(x)

e−a|x|,

where % is the density of µ. We also require that the same is true for the partial derivatives of u. The
Laplace-Beltrami operator is defined for u ∈ Fµ by

Lµu = ∆u− 〈∇ϕ,∇u〉.

The Laplace-Beltrami operator satisfies the basic identity

(8.5)

∫
Rn

(Lµu) v dµ = −
∫
Rn
〈∇u,∇v〉 dµ

for all u, v ∈ Fµ. We will also use Bochner’s formula

(8.6)

∫
Rn

(Lµu)2 dµ =

∫
Rn
‖∇2u‖2HS dµ+

∫
Rn
〈(∇2ϕ)∇u,∇u〉 dµ

which holds true for every u ∈ Fµ. Note that −Lµ is essentially self-adjoint and positive semi-definite in
Fµ ⊂ L2(µ), and has a discrete spectrum λ0 6 λ1 6 · · · 6 λj 6 · · · . The minimal eigenvalue λ0 of Lµ is 0, a
simple eigenvalue with constant eigenfunctions. Let λµ = λ1 denote the smallest positive eigenvalue of Lµ.
If −Lµg = λµg with

∫
g dµ = 0, then

λµ

∫
Rn
g2 dµ =

∫
Rn

(−Lµg) g dµ =

∫
Rn
|∇g|2 dµ.

This shows that 1/λµ 6 ϑ2
µ. In fact, we have equality by the next lemma.
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Lemma 8.8. For every log-concave probability measure µ on Rn we have that

1/λµ = ϑ2
µ.

Proof. Define the energy functional

E(f, g) =

∫
Rn
〈∇f,∇g〉 dµ

for f, g ∈ Fµ. Note that E(·, ·) is linear in each of its arguments and E(f, f) > 0 for all f ∈ Fµ. We can
write any f ∈ Fµ as

f = 〈f, w0〉w0 +

∞∑
j=1

〈f, wj〉wj ,

where −Lµwj = λjwj and ‖wj‖L2(µ) = 1 for all j > 0. Note that w0 ≡ 1, and hence 〈f, w0〉 =
∫
f dµ. For

every s > 1 we have that

0 6 E

f − s∑
j=1

〈f, wj〉wj , f −
s∑

k=1

〈f, wk〉wk


= E(f, f)− 2

s∑
j=1

〈f, wj〉E(wj , f) +

s∑
j,k=1

〈f, wj〉〈f, wk〉E(wj , wk).

On observing that

E(wj , wk) = λj

∫
Rn
wjwk dµ = λjδj,k

and

E(wj , f) =

∫
Rn
〈∇wj ,∇f〉 dµ =

∫
Rn

(−Lµwj) f dµ = λj

∫
Rn
wjf dµ = λj〈f, wj〉

for all 1 6 j, k 6 s, we conclude that

0 6 E(f, f)−
s∑
j=1

λj〈f, wj〉2,

and this shows that

λ1Varµ(f) = λ1

(∫
Rn
f2 dµ−

(∫
Rn
f dµ

)2
)

6
∞∑
j=1

λj〈f, wj〉2 6 E(f, f) =

∫
Rn
|∇f |2 dµ.

It follows that ϑ2
µ 6 1/λ1, and this completes the proof.

Definition 8.9. We say that a Borel probability measure µ on Rn with density % = e−ϕ is t-uniformly

log-concave if the function %(x)et|x|
2/2 is log-concave. Then, ϕ(x)− t|x|2

2 is convex, that is ∇2ϕ(x) > tIn for
all x ∈ Rn.

A theorem of Bakry and Ledoux [4] asserts that if µ is t-uniformly log-concave then

(8.7) ϑ2
µ =

1

λµ
6

1

t
.

This inequality is known as the log-concave Lichnerowicz inequality, because it is analogous to some inves-
tigations of Lichnerowicz [92] in Riemannian geometry (see [5] and [87]). The following stronger “improved
log-concave Lichnerowicz inequality” was proved by Klartag in [74].
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Theorem 8.10 (Klartag). Let t > 0 and let µ be a t-uniformly log-concave probability measure on Rn.
Then,

(8.8) ϑ2
µ =

1

λµ
6

√
‖Cov(µ)‖op

t
.

Note that (8.8) is stronger than (8.7), since ‖Cov(µ)‖op 6 1/λµ, and hence
√
‖Cov(µ)‖op

t 6 1√
λµt

. So,

from (8.8) we get 1
λµ

6 1√
λµt

, which in turn gives (8.7). On the other hand, the Kannan-Lóvasz-Simonovits

conjecture asks for the estimate
1

λµ
6 c ‖Cov(µ)‖op

for an absolute constant c > 0. Therefore, in the context of t-uniformly log-concave measures, (8.8) stands
between the Bakry-Ledoux theorem and the Kannan-Lóvasz-Simonovits conjecture.

Equality in Theorem 8.10 is attained when µ is a Gaussian measure, with any covariance matrix. In
this case we have that ϑ2

µ and ‖Cov(µ)‖op coincide, and they also coincide with the inverse lower bound

on the Hessian of the potential. If γ
(s)
n is the distribution of a Gaussian random vector of mean zero

and covariance matrix sIn in Rn then γ
(s)
n satisfies the assumptions of Theorem 8.10 for t = 1/s while

ϑ2

γ
(s)
n

= ‖Cov(γ
(s)
n )‖op = s.

The proof of Theorem 8.10 is based on the next lemma.

Lemma 8.11. Let µ be a regular log-concave probability measure on Rn with density % = e−ϕ, where ϕ is a
convex function. If w1 is an eigenfunction corresponding to λ1 = λµ, with ‖w1‖L2(µ) = 1, then∫

Rn
〈(∇2ϕ)∇w1,∇w1〉 dµ 6 λ3

1‖Cov(µ)‖op.

Proof. Applying Bochner’s formula (8.6) for w1 we get

λ2
1 =

∫
Rn

(Lµw1)2 dµ =

∫
Rn
〈(∇2ϕ)∇w1,∇w1〉 dµ+

∫
Rn
‖∇2w1‖2HS dµ.

Note that ∫
Rn
‖∇2w1‖2HS dµ =

n∑
i=1

∫
Rn
|∇∂iw1|2 dµ

> λ1

(
n∑
i=1

∫
Rn
|∂iw1|2 dµ−

n∑
i=1

∣∣∣∣∫
Rn
∂iw1 dµ

∣∣∣∣2
)

= λ1

(∫
Rn
|∇w1|2 dµ−

∣∣∣∣∫
Rn
∇w1 dµ

∣∣∣∣2
)

> λ2
1

∫
Rn
w2

1 dµ− λ1

∣∣∣∣∫
Rn
∇w1 dµ

∣∣∣∣2
= λ2

1 − λ1

∣∣∣∣∫
Rn
∇w1 dµ

∣∣∣∣2 .
Therefore,

λ2
1 >

∫
Rn
〈(∇2ϕ)∇w1,∇w1〉 dµ+ λ2

1 − λ1

∣∣∣∣∫
Rn
∇w1 dµ

∣∣∣∣2 ,
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which implies that

(8.9)

∫
Rn
〈(∇2ϕ)∇w1,∇w1〉 dµ 6 λ1

∣∣∣∣∫
Rn
∇w1 dµ

∣∣∣∣2 .
Now, let ξ ∈ Sn−1 and consider the function gξ(x) = 〈x, ξ〉. Set Eξ =

∫
gξ dµ. We may write∣∣∣∣〈 ∫

Rn
∇w1 dµ, ξ

〉∣∣∣∣2 =

∣∣∣∣∫
Rn
〈∇w1,∇gξ〉 dµ

∣∣∣∣2 =

∣∣∣∣∫
Rn

(−Lµw1)gξ dµ

∣∣∣∣2
= λ2

1

∣∣∣∣∫
Rn
w1gξ dµ

∣∣∣∣2 = λ2
1

∣∣∣∣∫
Rn
w1(gξ − Eξ) dµ

∣∣∣∣2
6 λ2

1

∫
Rn
w2

1 dµ ·
∫
Rn

(gξ − Eξ)2 dµ = λ2
1〈Cov(µ)ξ, ξ〉.

It follows that ∣∣∣∣∫
Rn
∇w1 dµ

∣∣∣∣2 = sup
ξ∈Sn−1

∣∣∣∣〈 ∫
Rn
∇w1 dµ, ξ

〉∣∣∣∣2 6 λ2
1 sup
ξ∈Sn−1

〈Cov(µ)ξ, ξ〉(8.10)

= λ2
1‖Cov(µ)‖op.

Combining (8.9) and (8.10) we obtain the assertion of the lemma.

Note. For every ξ ∈ Sn−1 we have ∇gξ = ξ, and hence

〈Cov(µ)ξ, ξ〉 = Varµ(gξ) 6
1

λ1

∫
Rn
|∇gξ|2 dµ =

1

λ1
.

This shows that

(8.11) ‖Cov(µ)‖op 6
1

λ1
.

Proof of Theorem 8.10. By Lemma 8.11, using also the assumption that ∇2ϕ > tIn, we have that

tλµ = t

∫
Rn
|∇w1|2 dµ 6

∫
Rn
〈(∇2ϕ)∇w1,∇w1〉 dµ 6 λ3

µ‖Cov(µ)‖op,

which implies that

(8.12)
1

λ2
µ

6
‖Cov(µ)‖op

t
.

This is the claim of the theorem.

§ 8.5. Stochastic localization. Let µ be an isotropic log-concave probability measure on Rn with a
regular log-concave density % = e−ϕ. Set %0 = %, µ0 = µ, a0 = bar(µ), A0 = Cov(µ) = In and λ0 = λµ. Our
goal is to show that

λ0 >
c

‖A0‖op
= c,

for some absolute constant c > 0. For t > 0 and ξ ∈ Rn consider the measure µt,ξ with density

%t,ξ(x) =
1

Zt,ξ
e〈x,ξ〉−t|x|

2/2%0(x),
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where Zt,ξ is a suitable normalizing constant. Note that µt,ξ is t-uniformly log-concave and if we set λt,ξ =
λµt,ξ , At,ξ = Cov(µt,ξ) etc., then

λt,ξ >

√
t

‖At,ξ‖op
> t

by Theorem 8.10. As in Section 7, we choose ξt in a random way, by the stochastic differential equation

ξ0 = 0, dξt = dWt + at,ξtdt,

where (Wt)t>0 is a standard Brownian motion in Rn with W0 = 0. One can check that (ξt)t>0 coincides in
law with the process (tX +Wt)t>0, where X ∼ µ is independent from Wt. We set

µt = µt,ξt , %t = %t,ξt , at = bar(µt), At = Cov(µt), λt = λµt .

From Itô’s formula we see that

d%t(x) = %t(x)〈x− at, dWt〉, x ∈ Rn.

The process (%t(x))t>0 is a martingale with respect to the filtration induced by the Brownian motion, and
in particular

(8.13) E
(
%t(x)

)
= %0(x) = %(x)

for all t > 0 and x ∈ Rn. Recall that A0 = In because µ is isotropic, therefore ‖A0‖op = 1. One of the
crucial properties of the covariance process (At)t>0 is the following fact.

Theorem 8.12. For every 0 < t 6 c/(ψ2
n lnn) we have

(8.14) E ‖At‖op 6 C,

where C > 0 is an absolute constant.

A sketch of the proof of Theorem 8.12 will be presented in the Appendix (Section 11). We also need the
next lemma.

Lemma 8.13. Let f ∈ L2(µ). For every t > 0 we have that

E
(
Var%t(f)

)
6 Var%0

(f) 6

(
2 +

t

λ0

)
E
(
Var%t(f)

)
.

Proof. For f ∈ L2(µ) we set

Mt,ξ(f) =

∫
Rn
f(x)%t,ξ(x) dx.

This is a smooth function of ξ, and differentiation under the integral sign shows that

(8.15) ∇ξMt,ξ(f) =

∫
Rn

(x− at,ξ)f(x)%t,ξ(x) dx =

∫
Rn

(x− at,ξ)(f(x)−Mt,ξ(f))%t,ξ(x) dx.

From (8.13) and Fubini’s theorem we see that

Var%0
(f) =

∫
Rn

(f −M0)2%0 = E
(∫

Rn
(f −M0)2%t

)
(8.16)

= E
(∫

Rn
(f −Mt)

2%t

)
+ E(Mt −M0)2.
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Note that

E
(∫

Rn
(f −Mt)

2%t

)
= E

(
Var%t(f)

)
6 Var%0

(f).

Next, we observe that
E(Mt −M0)2 = Var(Mt) = Var(Mt,ξt(f)),

where ξt ∼ tX + Wt, where X has distribution µ and Wt is a Gaussian random vector in Rn, independent
from X, with mean zero and covariance matrix tIn. From the subbaditivity property of the Poincaré constant
we get

(8.17) ϑ2
ξt = ϑ2

tX+Wt
6 ϑ2

tX + ϑ2
Wt

=
t2

λ0
+ t.

From (8.15) and the Cauchy-Schwartz inequality we see that

|∇ξMt,ξ(f)| = sup
u∈Sn−1

∫
Rn
〈x− at,ξ, u〉(f(x)−Mt,ξ(f))%t,ξ(x) dx

6
√
‖At,ξ‖op

√
Var%t,ξ(f)

for any ξ ∈ Rn. Using the Poincaré inequality for the random vector ξt and (8.17), we get

Var(Mt,ξt(f)) 6

(
1 +

t

λ0

)
tE|∇ξtMt,ξt(f)|2(8.18)

6

(
1 +

t

λ0

)
tE
(
‖At‖opVar%t(f)

)
6

(
1 +

t

λ0

)
E
(
Var%t(f)

)
,

where we have also used the fact that ‖At‖op 6 1/t. Combining (8.16) and (8.18) we see that

Var%0(f) 6 E
(
Var%t(f)

)
+

(
1 +

t

λ0

)
E
(
Var%t(f)

)
=

(
2 +

t

λ0

)
E
(
Var%t(f)

)
,

as claimed.

A consequence of Lemma 8.13 is the next proposition.

Proposition 8.14. For any α > 0 and 0 < t 6 αλ0,

(8.19)
1

λ0
6 c1(α+ 2)E(1/λt) 6 c1(α+ 2)

E(
√
‖At‖op)
√
t

,

where c1 > 0 is an absolute constant.

Proof. Recall E. Milman’s Theorem 8.2 which states that

(8.20) cλ−1
0 6 sup

ϕ
Varµ(f),

where the supremum is over all 1-Lipschitz functions f : Rn → R and c > 0 is an absolute constant.
Therefore, we may choose a 1-Lipschitz function f : Rn → R such that

(8.21) Varµ(f) > cλ−1
0 /2.
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Lemma 8.13 and the Poincaré inequality imply that

Varµ(f) = Var%0
(f) 6 (2 + α)E

(
Var%t(f)

)
6 (2 + α)E

(
1

λt

∫
Rn
|∇f |2%t

)
(8.22)

6 (2 + α)E(λ−1
t ).

Now, the left-hand side inequality in (8.19) is a consequence of (8.21) and (8.22), while the right-hand side
inequality follows from (8.8).

§ 8.6. Upper bound for the KLS-constant. We are now ready to prove the main theorem.

Theorem 8.15. For any n > 2 we have that

ψn 6 C
√

lnn,

where C > 0 is an absolute constant.

Proof. We may choose an isotropic log-concave probability measure µ on Rn so that

(8.23) ψµ >
ψn
2
.

From (8.14) we know that, for t = cψ−2
n / lnn,

(8.24) E
(√
‖At‖op

)
6
√

E‖At‖op 6 C1,

where C1 > 0 is an absolute constant. By the definition of t and the fact that ψn ≈ ψµ ≈ ϑµ and λ0 = ϑ−2
µ

we get

(8.25) t 6 c1ψ
−2
n 6 c2ψ

−2
µ 6 c3λ0.

Then, we can apply Proposition 8.14 with α = c3. Combining (8.19) with (8.24) and the choice of t gives

(8.26) λ−1
0 6 C2

E(
√
‖At‖op)
√
t

6
C3√
t
6 C4ψn

√
lnn.

Then, from (8.23), (8.26) and the equivalence λ−1
0 = ϑ2

µ ≈ ψ2
µ we get

ψ2
n 6 4ψ2

µ 6 C5λ
−1
0 6 C6ψn

√
lnn,

which shows that ψn 6 C
√

lnn for an absolute constant C > 0.

9 The slicing theorem

Our aim in this section is to describe the affirmative answer to the slicing problem. More precisely, we shall
show that the equivalent isotropic constant conjecture is true.

Theorem 9.1. There exists an absolute constant C > 0 such that Ln 6 C for all n > 1.

We shall present the proof of P. Bizeul [15] which makes use of the reduction to small ball estimates
that we presented in Section 6. In what follows, we say that a random vector X in Rn is b-subgaussian if
for every p > 1 and any ξ ∈ Sn−1

(E |〈X − E(X), ξ〉|p)1/p
6 b
√
p.

The small ball estimate of Theorem 6.8 can be also stated for a not necessarily isotropic log-concave random
vector. Then, it takes the following form (see Paouris [113]).
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Theorem 9.2 (Paouris). Let X be a b-subgaussian log-concave random vector in Rn with covariance matrix
A. For any 0 < ε 6 c0 and any y ∈ Rn,

P
(
|X − y|2 6 ε tr(A)

)
6 ε

c0tr(A)

b2‖A‖op‖A−1‖op

where c0 > 0 is an absolute constant.

One can check that the theorem is tight, up to absolute constants, by considering the case where X is
a standard Gaussian random vector. However, for general isotropic log-concave random vectors, it provides
a suboptimal exponent of order

√
n. Lee and Vempala [90] obtained an improved estimate using stochastic

localization.

Theorem 9.3 (Lee-Vempala). Let X be an isotropic log-concave random vector in Rn. For any y ∈ Rn and
any 0 < ε 6 c0,

P
(
|X − y|2 6 εn

)
6 ε

c0n

ψ2
n ln(n)

where c0 > 0 is an absolute constant.

In the previous section we discussed the best known bound for the KLS constant, due to Klartag [74]:
we saw that

ψ2
n 6 C lnn

for some absolute constant C > 0. Inserting this estimate into Theorem 9.3 we get an exponent which is of
the order of n up to a factor (lnn)2. However, even if we knew that the KLS conjecture has an affirmative
answer, the estimate of Lee and Vempala would still include a suboptimal factor lnn.

§ 9.1. The slicing theorem. Following Bizeul [15] we shall see how one can remove the extra logarithmic
factor that appears in Theorem 9.3 and establish an optimal small ball estimate.

Theorem 9.4. Let X be an isotropic log-concave random vector in Rn. For any 0 < ε 6 c0 and any y ∈ Rn,

P
(
|X − y|2 6 εn

)
6 εc0n

where c0 > 0 is an absolute constant.

Then, we will show that Theorem 9.4 implies the isotropic constant conjecture. In Section 6 we described
in detail the work of Dafnis and Paouris and the reduction of the isotropic constant conjecture to the optimal
small ball estimate. Theorem 9.4 is actually equivalent to Theorem 9.1. For the inverse direction note that
if Ln is bounded above by some constant C1 > 0 then we have seen that the same holds true for L̃n. This
means that for any isotropic log-concave random vector X with density f and any ε > 0 and y ∈ Rn, we
have that

P
(
|X − y|2 6 εn

)
=

∫
B(y,

√
εn)

f(x) dx 6 Cn1 voln(
√
εnBn2 ) 6 (C2ε)

n/2
,

which implies Theorem 9.4.

We start with some preliminary facts that will be used in the proof. The first one is a variant of
Theorem 9.2.

Lemma 9.5. Let X be a b-subgaussian log-concave random vector with covariance matrix A. Then, for any
y ∈ Rn and any 0 < ε 6 c0 we have that

P
(
|X − y|2 6 ε tr(A)

)
6

(
4n‖A‖op

tr(A)
ε

) c0tr(A)3

8n2b2‖A‖2op

where c0 > 0 is the constant from Theorem 9.2.
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Proof. Let λ1 > . . . > λn be the eigenvalues of the matrix A. For any 2 6 k 6 n we have that

(9.1) nλk >
n∑
i=k

λi = tr(A)−
k−1∑
i=1

λi > tr(A)− kλ1.

We choose

k = max

{⌊ tr(A)

2λ1

⌋
, 1

}
.

If k > 2 then (9.1) implies that

λk >
tr(A)

2n
,

which remains true when k = 1. Let E be the k-dimensional subspace associated to the eigenvalues λ1, . . . , λk,
and let XE = PEX be the projection of X onto E, and AE = PEAPE the covariance matrix of XE . Then,
XE is b-subgaussian and its covariance matrix satisfies :

‖AE‖op 6 ‖A‖op, ‖A−1
E ‖op 6

2n

tr(A)
, tr(AE) >

k

n
tr(A) >

tr(A)2

4n‖A‖op
.

Let y ∈ Rn and define yE = PEy. If 0 < ε 6 c0 then

P
(
|X − y|2 6 ε tr(A)

)
6 P

(
|XE − yE |2 6 εtr(A)

)
6

(
ε tr(A)

tr(AE)

) c0tr(AE)

b2‖AE‖op‖A
−1
E
‖op

6

(
4nε‖A‖op

tr(A)

) c0tr(A)3

8b2n2‖A‖2op

where the second inequality follows by applying Theorem 9.2 to XE .

We shall also use some classical facts about log-concave vectors. The next lemma is a special case of
(4.3).

Lemma 9.6. There exists an absolute constant κ0 > 1 such that for any log-concave real random variable
Y and any p > 2

(E|Y |p)1/p 6 κ0pE
(
|Y |2

)1/2
.

Recall also that a random vector, or its density, is called t-uniformly log-concave for some t > 0 if it is
log-concave with respect to a Gaussian of variance 1

t . The next lemma follows from a log-concave/convex
correlation inequality of Hargé [65].

Lemma 9.7. Let X be a t-uniformly log-concave random vector. Then it is 1√
t
-subgaussian.

Proof. Without loss of generality we may assume that t = 1 so that X is log-concave with respect to the
standard Gaussian measure denoted by γn. We may also assume that E(X) = 0. Hargé’s result states that
if f is log-concave and g is convex then

(9.2) Covγn(f, g) 6 0.

Let f be the relative density of X with respect to γn. Applying (9.2) with g(x) = |〈x, ξ〉|p for all p > 1 and
all ξ ∈ Sn−1 we obtain the result.

§ 9.2. Reduction to small diameter. A first observation, which has been also used in previous approaches
to the problem, is that in order to prove Theorem 9.4 we may assume that X is supported in a ball of radius
of the order of

√
n and that y = 0. In this subsection we explain this reduction.
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Lemma 9.8. Let X be an isotropic log-concave random vector in Rn. There exists an isotropic log-concave
random vector Y which has support inside the ball B(0,

√
c1n), where c1 > 0 is an absolute constant, and

satisfies

P
(
|X − y| 6 ε

√
n
)2

6 P
(
|Y | 6 2ε

√
n
)

for every 0 < ε < 1 and any y ∈ Rn.

Proof. We consider the symmetrized version X1 = X−X̃√
2

of X, where X̃ is an independent copy of X. Then,

X1 is an isotropic symmetric log-concave random vector with the property that, for any r > 0,

P (|X − y| 6 r) =
[
P
(
|X − y| 6 r, |X̃ − y| 6 r

)]1/2
(9.3)

6
[
P
(∣∣∣ 1√

2
(X − X̃)

∣∣∣ 6 √2r
)]1/2

=
[
P
(
|X1| 6

√
2r
)]1/2

.

We set K = B(0, 8κ2
0

√
n) = {x ∈ Rn : |x| 6 8κ2

0

√
n}, where κ0 > 1 is the constant from Lemma 9.6, and

define the random vector
X2 = X1 · 1X1∈K .

If f1 is the density of X1, then X2 has density

(9.4) f2 =
f11K∫
K
f1

6 2f11K ,

where the inequality above holds because
∫
K
f1 > 1

2 . To see this, we first use the fact that X1 is isotropic
and Markov’s inequality to write

(9.5) P(X1 ∈ Kc) = P(|X1|2 > 64κ4
0n) 6

1

64κ4
0n

E|X2
1 | =

1

64κ4
0

<
1

2
,

and this implies that ∫
K

f1 = 1− P(X1 ∈ Kc) > 1− 1

2
=

1

2
.

We know that X2 is symmetric, and hence, from (9.4) we get

Cov(X2) 6 2In.

In fact, we claim that

(9.6)
1

2
In 6 Cov(X2) 6 2In.

To see the left-hand side inequality, for any ξ ∈ Sn−1 we write∫
Rn
〈x, ξ〉2f2(x) dx >

∫
K

〈x, ξ〉2f1(x) dx

= 1−
∫
Kc

〈x, ξ〉2f1(x) dx

> 1− P(X1 ∈ Kc)1/2

(∫
Rn
〈x, ξ〉4f1(x) dx

)1/2

> 1− 1

8κ2
0

(2κ0)2

∫
Rn
〈x, ξ〉2f1(x) dx =

1

2
,
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where we have used the Cauchy-Schwarz inequality, Lemma 9.6 and (9.5). Finally, we set

X3 = Cov(X2)−1/2X2.

Note that X3 is an isotropic log-concave random vector by construction. Furthermore, using (9.6), we see
that it has support inside the ball B(0, 8

√
2κ2

0

√
n). For any 0 6 ε < 1, setting r = ε

√
n we get

P (X ∈ B(y, r))
2 6 P

(
X1 ∈ B(0,

√
2r
)

(9.7)

6 P
(
X2 ∈ B(0,

√
2r
)

= P
(
X3 ∈ Cov(X2)−1/2B(0,

√
2r)
)

6 P (X3 ∈ B(0, 2r))

where we used successively (9.3), the fact that B(0,
√

2r) ⊂ K = B(0, 8κ2
0

√
n) and in the last line the

inequality (9.6).

It is now clear from (9.7) that in order to prove Theorem 9.4 we may assume X has support inside a
ball of diameter

√
c1n, where c1 > 0 is an absolute constant.

§ 9.3. Bounds for the shrinkage of sets. The main idea for the proof of Theorem 9.4 is again to
use stochastic localization as in the previous section. We recall some basic facts from Section 7. If µ is a
log-concave probability measure with density % with respect to the Lebesgue measure, for t ∈ R and ξ ∈ Rn
we define a density

(9.8) %t,ξ(x) =
1

Zt,ξ
e〈x,ξ〉−

t
2 |x|

2

%(x), x ∈ Rn

where Zt,ξ is a normalizing factor. Note that %t,ξ is t-uniformly log-concave. We also define

at,ξ =

∫
Rn
x%t,ξ(x) dx

and

At,ξ =

∫
Rn

(x− at,ξ)⊗2%t,ξ(x) dx,

the barycenter and covariance matrix of %t,ξ respectively. The tilt process (ξt)t>0 is defined as the solution
of the stochastic differential equation:

(9.9) dξt = at,ξtdt+ dWt

where (Wt)t>0 is a standard Brownian motion. The process %t,ξt is the stochastic localization process starting
at %. We abbreviate %t = %t,ξt and similarly for the barycenter and covariance, at and At. We also define
µt to be the random measure with density %t. For any x ∈ Rn, %t is an Itô process satisfying the stochastic
differential equation

(9.10) d%t(x) = 〈x− at, dWt〉%t(x).

Integrating (9.10) we see that for any integrable function ϕ, the process (
∫
Rn ϕdµt)t>0 is a martingale. In

particular, for any t > 0

(9.11) Eµ(ϕ) = E
(
Eµt(ϕ)

)
.

Therefore, for any t > 0 we have decomposed the original log-concave probability measure µ into a mixture
of measures µt which are t-uniformly log-concave.
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By the log-concave Lichnerowicz inequality (8.7) we have that

(9.12) At 6
1

t
In

almost surely, in the sense of symmetric matrices. Using Klartag’s improved log-concave Lichnerowicz
inequality of Theorem 8.10, Guan [62] obtained a lower-bound on the trace of At up to a time of order 1:

Theorem 9.9. Assume that the starting measure µ is an isotropic log-concave probability measure. Then,

E
(
tr(Aδ1)

)
> δ1n,

where δ1 > 0 is an absolute constant.

A sketch of the proof of Theorem 9.9 will be presented in the Appendix (Section 11).

Our goal in this subsection is to obtain estimates for the evolution of the measure of sets along the
stochastic localization process under the additional assumption that µ has bounded support of diameter D.

Proposition 9.10. Let µ be an isotropic log-concave probability measure with bounded support of dimameter
D. For any measurable set S and any λ > 1 we have that

µ(S) 6 e
D2t

2 µt(S)
1
λ

with probability at least 1− 1
λ , where (µt)t>0 is the stochastic localization process starting at µ.

Proof. Let S ⊂ Rn be a set of positive measure and let gt = µt(S). Using (9.10), we can check that

dgt =
〈∫

S

(x− at)dµt(x), dWt

〉
.

Then,

d[g]t =

∣∣∣∣∫
S

(x− at)dµt(x)

∣∣∣∣2 dt.
Note that µt is supported in the same set as µ, which has diameter D, and hence∣∣∣∣∫

S

(x− at)dµt(x)

∣∣∣∣2 6 sup
x∈supp(µt)

|x− at|2
(∫

S

dµt(x)

)2

6 D2µt(S)2 = D2g2
t .

It follows that

(9.13) d[g]t 6 D2g2
t dt.

Using Itô’s formula (7.1) we compute d
(

ln(g−1
t )
)

= −dgt
gt

+
1

2

d[g]t
g2
t

, which implies that dE
(

ln(g−1
t )
)
6
D2t

2
,

and hence

(9.14) E
(

ln(g−1
t )
)
6 ln

(
g−1

0

)
+
D2t

2
.

Now, let λ > 1. From (9.14), using Markov’s inequality, we see that with probability at least 1− 1
λ

ln(g−1
t ) 6 λ

(
ln(g−1

0 ) +
D2t

2

)
.

Equivalently,

ln g0 6
1

λ
ln gt +

D2t

2

and the result follows.
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§ 9.4. Proof of the slicing theorem. We start with the proof of the optimal small ball estimate of
Theorem 9.4.

Proof of Theorem 9.4. Lemma 9.8 shows that it is enough to consider an isotropic log-concave random vector
X distributed according to an isotropic log-concave probability measure µ with support of diameter

√
c1n,

where c1 > 0 is an absolute constant. Let (µt)t>0 be the stochastic localization process starting at µ and let
Xt be the random vector with law µt. Let δ1 be the constant in Guan’s Theorem 9.9. We consider the event

(9.15) E0 = {tr(Aδ1) > δ1n/2}.

Lemma 9.11. We have P(E0) > δ2
1/2.

Proof. We set p0 = P(E0). From (9.12) we know that Aδ1 6 1
δ1
In almost surely, and hence

δ1n 6 E
(
tr(Aδ1)

)
= E

(
tr(Aδ1)1E0

)
+ E

(
tr(Aδ1)1Ec0

)
6
np0

δ1
+
δ1n

2
,

which implis that p0 > δ2
1/2.

Let c̄0 > 0 be the constant from Lemma 9.5. For every 0 < ε < c̄0 we set Sε = B(0,
√
εn). We also fix

λ = 4
δ2
1
. Lemma 9.10 shows that the probability p1 of the event

E1 =

{
µ(Sε) 6 e

c21δ1n

2 µδ1(Sε)
1
λ

}
satisfies p1 > 1− δ2

1

4 , therefore

P(E0 ∩ E1) > p0 + p1 − 1 >
δ2
1

4
> 0.

On the event E0 ∩ E1 we have tr(Aδ1) > δ1n/2, and also ‖Aδ1‖op 6 1/
√
δ1. Moreover, Xδ1 is 1/

√
δ1-

subgaussian by Lemma 9.7. Inserting all these estimates into Lemma 9.5 we get that

µ(Sε) 6 e
c21δ1n

2 µδ1(Sε)
4

δ21 6 e
c21δ1n

2

(
8ε

δ2
1

) c̄0δ
6
1n

64

6 ε
c̄0δ

6
1n

128

if we assume that

ε < ε0 := min

{
c̄0,

δ4
1

64
exp

(
−64c21
c̄0δ5

1

)}
.

This establishes Theorem 9.4 with c0 = min
{
c̄0,

δ4
1

64 exp
(
− 64c21
c̄0δ5

1

)
,
c̄0δ

6
1

128

}
.

Proof of Theorem 9.1. Basically, we repeat the proof of Theorem 6.15. From Proposition 6.14 we know that
there exists an isotropic convex body K in Rn with Ln 6 C1LK and voln(K ∩

√
C2nB

n
2 ) > cn2 for some

absolute constants C1, C2, c2 > 0.
Theorem 9.4 shows that there exists an absolute constant c0 > 0 such that for any 0 < ε 6 c0,

voln(K ∩ ε
√
nLK B

n
2 ) 6 εc0n.

Choosing ε1 = min
{
c0, c

1
c0
2

}
, and comparing the above inequalities, we get LK 6

√
C2/ε1, and hence

L2
n 6 C2

1L
2
K 6

C2
1C2

ε2
1

.

This shows that Ln is bounded by an absolute constant.
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§ 9.5. The thin-shell conjecture. A third well-known conjecture about isotropic log-concave probability
measures is the thin-shell conjecture which has its origin in the central limit problem, the question to identify
those high-dimensional distributions that have approximately Gaussian marginals. A typical example is given
by the random vector X = (X1, . . . , Xn) which is distributed uniformly in the cube Q(n) = [−

√
3,
√

3]n (the
normalization is so that Var(X2

j ) = 1 for all 1 6 j 6 n). It is well-known that, if the ξj ’s satisfy e.g.
Lindeberg’s condition, then the distribution of

〈X, ξ〉 =

n∑
j=1

ξjXj

is approximately Gaussian. A second example is given by the ball D(n) =
√
n+ 2Bn2 . Let X be a random

vector which is uniformly distributed in D(n). From Maxwell’s observation that, if n is large enough, then

σ ({ξ ∈ Sn−1 : ξj 6 t}) ∼
√

n

2π

∫ t

−∞
exp(−s2n/2) ds

for all t ∈ [−1, 1], as well as the symmetry of D(n), one can check that the distribution of 〈X, ξ〉 is close to
the standard normal distribution for any ξ ∈ Sn−1.

Assume now that µ is an isotropic Borel probability measure on Rn, i.e. normalized so that

Eµ(xj) = 0 and Eµ(xixj) = δij , i, j = 1, . . . , n.

It has been observed that if µ satisfies a “thin shell bound” then the central limit problem has an affirmative
answer for µ. More precisely, if

µ
({
x ∈ Rn :

∣∣ |x| − √n ∣∣ > ε
√
n
})

6 ε

for some ε ∈ (0, 1/2), then, for all directions ξ in a subset A of Sn−1 of measure σ(A) > 1 − exp(−c1
√
n),

we have
|P (〈X, ξ〉 6 t)− Φ(t)| 6 c2(ε+ n−α) for all t ∈ R,

where Φ(t) is the standard Gaussian distribution function and c1, c2, α > 0 are absolute constants.
Note that in the statement above we have assumed that the dimension is large enough but we have not

assumed independence of the coordinate functions x 7→ xj and we have not made any symmetry assumptions
about µ. Sudakov’s work [127] is probably the first place where it is observed that a thin-shell condition
implies that most marginals of a high-dimensional distribution are approximately Gaussian. Related early
works are the ones by Diaconis and Freedman [40], and by von Weizsäker [130]. The case where µ = µK is
the measure with density LnK1 K

LK

for an isotropic symmetric convex body K in Rn was studied by Anttila,

Ball and Perissinaki in [1] who showed that a thin-shell estimate implies an affirmative answer to the central
limit problem for µK . This work made the central limit problem widely known among people working in
convex geometry. A clear exposition of both the general and the log-concave case can be found in Bobkov’s
article [18].

As Klartag notes in [73], it is not hard to construct simple examples of isotropic distributions for which
a thin-shell estimate is not possible. If we write σt for the uniform probability measure on the sphere tSn−1

then, for t1 =
√
n/2 and t2 =

√
7n/2, the isotropic probability measure µ = 1

2 (σt1 + σt2) does not have
Gaussian marginals, and hence it does not satisfy a thin shell bound. However, it was conjectured that
the assumption of log-concavity guarantees a thin-shell bound. Bobkov and Koldobsky [20] defined the
parameter

σ2
µ =

1

n
Varµ(|x|2)

and asked if

σn = sup{σµ : µ is an isotropic log-concave probability measure on Rn} 6 C
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for some absolute constant C > 0. It is easily checked that this is equivalent to the question if there exists
an absolute constant C > 0 such that, for any n > 1 and any isotropic log-concave probability measure µ on
Rn, one has

Eµ(|x| −
√
n)2 6 C2.

Moreover, applying the Poincaré inequality for the function f(x) = |x|2 we see that

Varµ(|x|2) 6 4ϑ2
µ

∫
Rn
|x|2dµ(x) = 4ϑ2

µn,

which shows that σµ 6 2ϑµ, and hence
σn 6 Cψn

for all n, where C > 0 is an absolute constant. In other words the KLS conjecture implies the thin-shell
conjecture. An important fact is that the thin-shell conjecture is also related to the isotropic constant
conjecture. Eldan and Klartag [43] proved that the there exists an absolute constant C > 0 such that

Ln 6 Cσn

for every n > 1.
The first non-trivial upper bound for σn was given by Klartag in [70] in his proof of the central limit

theorem for convex bodies. He proved that

σn 6 C
√
n/ lnn.

This estimate was then improved to σn 6 Cn2/5+o(1) by Klartag [71], to σn 6 Cn3/8 by Fleury [46], to
σn 6 Cn1/3 by Guédon and E. Milman [63], and to σn 6 Cn1/4 by Lee and Vempala [89]. A consequence
of the more recent developments on the KLS conjecture is that σn 6 C

√
lnn by the corresponding bound

ψn = O(
√

lnn) of Klartag in [74]. An even more recent breakthrough of Guan [62] showed that

σn 6 C ln lnn.

Finally, Klartag and Lehec [79] announced an affirmative answer to the thin-shell conjecture.

Theorem 9.12 (Klartag-Lehec). There exists an absolute constant C > 0 such that

Varµ(|x|2) 6 Cn

for every n > 1 and every isotropic log-concave probability measure µ on Rn. Equivalently, supn σn 6 C.

Using reverse Hölder inequalities for polynomials of a random vector distributed uniformly in a convex
body (see [26], [110]) one can deduce from Theorem 9.12 that, for any isotropic log-concave probability
measure µ on Rn and for any t > 0,

µ({x ∈ Rn :
∣∣ |x| − √n ∣∣ > t}) 6 c1 exp(−c2

√
t).

This is a thin-shell estimate because it shows that if 1� t�
√
n then most of the mass of µ is concentrated

on a thin spherical cell {x ∈ Rn :
√
n − t 6 |x| 6

√
n + t} whose width t is much smaller than the central

radius
√
n.

The proof of Theorem 9.12 starts from ideas that Klartag used in [72], where he established an opti-
mal thin-shell bound for unconditional log-concave measures. This approach was extended by Barthe and
Cordero-Erausquin in [12] who adapted Klartag’s techniques to provide spectral gap estimates for log-concave
measures with many symmetries, and by Barthe and Klartag in [13]. Given a log-concave probability mea-
sure µ on Rn, let H1(µ) be the space of all functions f ∈ L2(µ) with weak partial derivatives in L2(µ),
equipped with the norm

‖f‖2H1(µ) =

(∫
Rn
|f |2dµ+

∫
Rn
|∇f |2dµ

)1/2

.
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Barthe and Klartag showed in [13] that C∞c (Rn) is dense in H1(µ). Now, for every f ∈ L2(µ) with
∫
f dµ = 0,

define

‖f‖H−1(µ) = sup

{∫
Rn
fg dµ : g ∈ H1(µ),

∫
Rn
|∇g|2dµ 6 1

}
= sup

{∫
Rn
fg dµ : g ∈ C∞c (Rn),

∫
Rn
|∇g|2dµ 6 1

}
.

In [13] and [72] it is shown, by using Bochner’s formula, that

(9.16) ‖f‖2L2(µ) 6 ‖∇f‖
2
H−1(µ) :=

n∑
i=1

‖∂if‖2H−1(µ)

for every smooth function f ∈ H1(µ) that satisfies
∫
f dµ = 0 and

∫
∇f dµ = 0. Applying (9.16) for an

isotropic log-concave probability measure µ and the function f(x) = |x|2 − n, we see that

Varµ(|x|2) 6 4

n∑
i=1

‖xi‖2H−1(µ).

Klartag and Lehec prove the next inequality, which immediately implies Theorem 9.12.

Theorem 9.13 (Klartag-Lehec). There exists an absolute constant C > 0 such that

n∑
i=1

‖xi‖2H−1(µ) 6 Cn

for every n > 1 and every isotropic log-concave probability measure µ on Rn.

The proof is based again on stochastic localization. Klartag and Lehec consider the family of exponential
tilts of log-affine perturbations of the original measure µ and construct suitable couplings between these tilts.
Then, they use these couplings to bound the H−1(µ)-norm by the growth of the covariance process (At)t>0

using a variant of Guan’s technique from [62].

10 The MM ∗-estimate for isotropic convex bodies

Let K be a convex body in Rn with 0 ∈ int(K). Recall that pK is the Minkowski functional of K, defined
by pK(x) = inf{t > 0 : x ∈ tK}, and hK is the support function hK(x) = max{〈x, y〉 : y ∈ K} of K. The
parameters

M(K) =

∫
Sn−1

pK(ξ) dσ(ξ) and M∗(K) =

∫
Sn−1

hK(ξ) dσ(ξ)

play a central role in the asymptotic theory of finite dimensional normed spaces.

Recall that vrad(K) = (voln(K)/voln(Bn2 ))
1/n

denotes the volume radius of K. It is known that

M(K)−1 6 vrad(K) 6M∗(K) = M(K◦),

where K◦ = {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K} is the polar body of K. The right-hand side inequality
is a classical inequality of Urysohn, while the left-hand side inequality follows by integration in spherical
coordinates and an application of Hölder’s inequality. Therefore,

M(K)M∗(K) > 1
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for every convex body K in Rn with 0 ∈ int(K). A fundamental fact in the other direction, following
from results of Figiel–Tomczak-Jaegermann [45], Lewis [91] and Pisier’s estimate [116] on the norm of the
Rademacher projection, states that for any symmetric convex body K in Rn there exists T ∈ GLn such that

M(T (K))M∗(T (K)) 6 c lnn,

where c > 0 is an absolute constant.
In the general case, without the symmetry assumption for K, it is natural to consider the parameter

E(K) = inf M(T (K))M∗(T (K))

where the infimum is taken over all invertible affine transformations of Rn for which 0 ∈ int(T (K)). The
question to obtain a sharp upper bound for maxE(K) remains open in the nonsymmetric case. Banaszczyk,
Litvak, Pajor and Szarek showed in [11] that if K is a convex body in Rn which is in John’s position (i.e.
the ellipsoid of maximal volume inscribed in K is the Euclidean unit ball) then

M∗(K) 6 c
√
n lnn.

When K is in John’s position, from the inclusion K ⊇ Bn2 we also obtain the trivial upper bound M(K) 6
M(Bn2 ) = 1, and this implies that E(K) 6 c

√
n lnn. This estimate was improved by Rudelson in [121]: he

showed that if K is a convex body in Rn then

E(K) 6 c 3
√
n(lnn)b

where b > 0 is an absolute constant.
In this section we review the known upper bounds for the parameters M∗(K) and M(K), when K is in

the isotropic position. E. Milman proved in [103] that if K is a symmetric isotropic convex body in Rn then

M∗(K) 6 c1
√
n(lnn)2LK 6 c2

√
n(lnn)2

where the second inequality takes into account the fact that now we know that Ln 6 C. Urysohn’s inequality
shows that the dependence on n is optimal up to the logarithmic term. The dual problem, to estimate M(K)
in the isotropic position, is not well-understood. Some first non-trivial results were obtained in [57]. The
currently best known estimate appears in [55]:

M(K) 6
C(n lnn)1/3

√
n

(see also [123]).

§ 10.1. The general approach. A starting point for the question to bound M∗(K) is Dudley’s entropy
estimate (see e.g. [118, Theorem 5.5]):

(10.1)
√
nM∗(K) 6 C1

n∑
k=1

1√
k
ek(K,Bn2 )

where ek(A,B) is the k-th entropy number of A and B, defined for k > 1 as

ek(A,B) = inf{t > 0 : N(A, tB) 6 2k−1}.

We set ek(K) := ek(K,Bn2 ). Although (10.1) is usually stated for symmetric convex bodies, it should
be noted that the same estimate holds true for non-symmetric convex bodies too. This follows from the
observation that M∗(K) = 1

2M
∗(K −K) and

(10.2) ek−1(K −K,Bn2 ) 6 2ek/2(K,Bn2 )
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for every even integer k, as a consequence of the simple estimate

N(K −K, 2t0Bn2 ) 6 N(K, t0B
n
2 )N(−K, t0Bn2 ) 6 2k−2

if t0 = ek/2(K,Bn2 ).
Our MM∗-estimates will depend on the following volumetric parameters that can be defined for any

convex body K in Rn with 0 ∈ int(K):

wk(K) := sup {vrad(K ∩ E) : E ∈ Gn,k} , vk(K) := sup {vrad(PE(K)) : E ∈ Gn,k} ,

and
w−k (K) := inf {vrad(K ∩ E) : E ∈ Gn,k} , v−k (K) := inf {vrad(PE(K)) : E ∈ Gn,k} .

If K is symmetric then we have that

0 < c 6 w−k (K)vk(K◦) 6 1 and 0 < c 6 v−k (K)wk(K◦) 6 1

where c > 0 is an absolute constant, by the Blaschke-Santaló inequality and the Bourgain-Milman inequality.
Note that, for every F ∈ Gn,k,

volk(PF (K)) 6 N(PF (K), ek(K)PF (Bn2 ))volk(ek(K)BF ) 6 N(K, ek(K)Bn2 )ek(K)kvolk(BF )(10.3)

6 (2ek(K))kvolk(BF ),

and hence,

(10.4) vk(K) 6 2ek(K).

In view of (10.4), the next theorem of V. Milman and Pisier [108] is an alternative, and sometimes stronger,
version of Dudley’s bound.

Theorem 10.1 (V. Milman-Pisier). For every symmetric convex body K in Rn one has

(10.5)
√
nM∗(K) 6 c2

n∑
k=1

1√
k

Radk(K)vk(K),

where Radk(K) := sup{Rad(XPF (K)) : F ∈ Gn,k}, and Rad(Y ) 6 c3 ln(d(Y, `
dim(Y )
2 ) + 1) is the Rademacher

constant of Y .

We refer to [2, Chapter 6] for more information on the Rademacher constant; what we really use here is
that Radk(K) = O(lnn) for all 1 6 k 6 n. When K is assumed isotropic, Theorem 10.1 is the basis for the
M∗-estimate of E. Milman [103], which is essentially optimal and, as we will see, can be easily transferred
to nonsymmetric convex bodies.

For the M -estimate we need to introduce the so-called Gelfand numbers. Given any pair of convex bodies
K,L in Rn with 0 ∈ int(K) ∩ int(L), the Gelfand numbers ck(K,L), 0 6 k 6 n− 1 are defined as follows:

ck(K,L) = inf{diamL∩F (K ∩ F ) : F ∈ Gn,n−k},

where diamA(B) := inf{R > 0 : B ⊆ RA}. We set ck(K) := ck(K,Bn2 ).
In the symmetric case, Carl’s theorem [34] relates any reasonable Lorentz norm of the sequence of entropy

numbers {em(K,L)} with that of the Gelfand numbers {cm(K,L)}. In particular, for any α > 0, there exist
constants c(α), c′(α) > 0 such that, for any n > 1

(10.6) sup
k=1,...,n

kαek(K,L) 6 c(α) sup
k=1,...,n

kαck(K,L),
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and

(10.7)

n∑
k=1

k−1+αek(K,L) 6 c′(α)

n∑
k=1

k−1+αck(K,L).

In fact, Pisier deduces the covering estimates of Theorem 3.2 from an application of Carl’s theorem, after
establishing the following estimates:

(10.8) max{ck(K, E), ck(K◦, E◦)} 6 c1(α)
(n
k

)1/α

for all k ∈ {1, . . . , n}.

The next theorem from [55] can serve as a basis for the M -estimate.

Theorem 10.2. Let K be a symmetric convex body in Rn. Then for any k = 1, . . . , n/2,

(10.9) c2k(K) 6 c
n

k
ln
(
e+

n

k

)
wk(K).

In other words, there exists F ∈ Gn,n−2k such that

(10.10) K ∩ F ⊆ cn
k

ln
(
e+

n

k

)
wk(K)BF ,

and dually, there exists F ∈ Gn,n−2k such that

(10.11) PF (K) ⊇ 1

cnk ln(e+ n
k )
v−k (K)BF .

Proof. Given k = 1, . . . , n/2, let E be an α-regular M -ellipsoid for K, for some α ∈ [1, 2) to be determined.
Consider any H ∈ Gn,k. We know that Nt = N(K, tE) 6 exp(c(α)n/tα) for every t > c(α)1/α. Let

x1, . . . , xNt be points in Rn such that K ⊆
⋃Nt
i=1(xi + tE). Then, PH(K) ⊆

⋃Nt
i=1(PH(xi) + tPH(E)), and

hence
volk(PH(K)) 6 Nt volk(tPH(E)) 6 exp(c(α)n/tα)tkvolk(PH(E)).

Choosing t = c(α)
1
α (n/k)

1
α we see that

(10.12) vrad(PH(E)) >
c1

c(α)
1
α

(
k

n

)1/α

vrad(PH(K)) >
c1

c(α)
1
α

(
k

n

)1/α

v−k (K).

By the second estimate in (10.8), we know that there exists E ∈ Gn,n−k so that:

(10.13) PE(K) ⊇ 1

c(α)
1
α

(
k

n

)1/α

PE(E).

Consider the ellipsoid E ′ = PE(E), let H be the subspace spanned by the k shortest axes of E ′, and set F to
be its orthogonal complement into E. Then, F ∈ Gn,n−2k and

(10.14) PF (E ′) ⊇ vrad(PH(E ′))BF .

From (10.14) and (10.12) we get

PF (E ′) ⊇ c1

c(α)
1
α

(
k

n

)1/α

v−k (K)BF

and then (10.13) shows that

(10.15) PF (K) ⊇ c1

c(α)
2
α

(
k

n

)2/α

v−k (K)BF .

Choosing α = 2− 1
ln(e+n/k) we obtain (10.11). The estimate (10.10) then follows by duality.
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Corollary 10.3. Let K be a symmetric convex body in Rn. For every k = 1, . . . , n and α > 0,

ek(K,Bn2 ) 6 c(α) sup
m=1,...,k

(m
k

)α n

m
ln
(
e+

n

m

)
wm(K),

where c(α) > 0 is a constant depending only on α.

Proof. The claim follows from Theorem 10.2 and Carl’s theorem (see (10.6)). Since k 7→ ck(K,Bn2 ) is non-
increasing, there is no difference whether we take the supremum on the right-hand-side just on the even
integers.

Corollary 10.4. Let K be a symmetric convex body in Rn such that K ⊆ RBn2 . Then,

√
nM∗(K) 6 c

n∑
k=1

1√
k

min
{
R,

n

k
ln
(
e+

n

k

)
wk(K)

}
.

Dually, for every symmetric convex body K in Rn with K ⊇ rBn2 we have that

√
nM(K) 6 c

n∑
k=1

1√
k

min

{
1

r
,
n

k
ln
(
e+

n

k

) 1

v−k (K)

}
.

Proof. We explain the first claim, and then the second follows by duality. For the proof it is enough to
combine Dudley’s entropy estimate (10.1) with Carl’s theorem (see (10.7)): we have

√
nM∗(K) 6 c1

n∑
k=1

1√
k
ek(K) 6 c2

n∑
k=1

1√
k
ck(K).

Since ck(K) 6 R for all k, the assertion follows from the estimate (10.9) of Theorem 10.2.

§ 10.2. MM∗-estimate for isotropic symmetric convex bodies. Let K be an isotropic symmetric
convex body in Rn. First we describe a simplified version of E. Milman’s proof of the next almost sharp
estimate for the mean width of K.

Theorem 10.5 (E. Milman). Let K be an isotropic symmetric convex body in Rn. Then,

(10.16) M∗(K) 6 c
√
n(lnn)2

where c > 0 is an absolute constant.

Proof. A direct consequence of Theorem 10.1 is the inequality

(10.17)
√
nM∗(K) 6 c1(lnn)

n∑
k=1

1√
k
vk(K).

We shall apply (10.17) for an isotropic convex body K in Rn. Let F ∈ Gn,k. From Theorem 5.4 we know
that volk(PF (K))1/k 6 c1

n
k where c1 > 0 is an absolute constant, and hence

vrad(PF (K)) ≈
√
kvolk(PF (K))1/k 6 c2

n√
k
.

Therefore, vk(K) 6 c2n/
√
k for all 1 6 k 6 n− 1. Going back to (10.17) we get

√
nM∗(K) 6 c3(lnn)

n∑
k=1

1√
k

n√
k

= c3n (lnn)

n∑
k=1

1

k
6 c4n(lnn)2,

and the theorem follows.
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Next, we prove the upper bound for M(K).

Theorem 10.6 (Giannopoulos-E. Milman). Let K be an isotropic symmetric convex body in Rn. Then,

(10.18) M(K) 6
c(n lnn)1/3

√
n

where c > 0 is an absolute constant.

Proof. From Corollary 10.4 we know that

(10.19)
√
nM(K) 6 c1

n∑
k=1

1√
k

min

{
1

r
,
n

k
ln
(
e+

n

k

) 1

v−k (K)

}
where v−k (K) := inf{vrad(PF (K)) : F ∈ Gn,k} and r is the “inradius” of K. Since K is isotropic and
symmetric, we know that

hK(ξ) = ‖〈·, ξ〉‖L∞(K) > ‖〈·, ξ〉‖L2(K) = LK ≈ 1,

and hence K ⊇ c1B
n
2 . Therefore, we may use (10.19) with r ≈ 1. From Theorem 5.4 we also know that

volk(PF (K))1/k > c2 for every F ∈ Gn,k, and hence vrad(PF (K)) > c3
√
k, which gives

v−k (K) > c3
√
k.

Set kn = (n lnn)2/3. Inserting the above estimates into (10.19) we get

√
nM(K) 6 c4

n∑
k=1

1√
k

min

{
1,
n (lnn)

k3/2

}

6 c5

(
kn∑
k=1

1√
k

+

n∑
k=kn

n lnn

k2

)
≈ (n lnn)1/3.

This proves the theorem.

§ 10.3. The nonsymmetric case. In the nonsymmetric case the upper bound for M∗(K) remains
the same. In fact, the proof does not present any difficulties. Let K be an isotropic convex body in
Rn and consider the difference body K − K of K. Since 0 ∈ K we have that K ⊆ K − K and hence
M∗(K) 6M∗(K −K). In fact, M∗(K) = 1

2M
∗(K −K). We apply Theorem 10.1 for K −K to get

(10.20)
√
nM∗(K −K) 6 c1(lnn)

n∑
k=1

1√
k
vk(K −K).

Given 1 6 k 6 n− 1, for every F ∈ Gn,k we have

volk(PF (K −K))1/k = volk(PF (K)− PF (K))1/k 6 4volk(PF (K))1/k,

by the Rogers-Shephard inequality volk(C − C) 6
(

2k
k

)
volk(C) where C is a k-dimensional convex body.

Then, as in the proof of Theorem 10.5, we see that vk(K −K) 6 c2n/
√
k, and inserting these bounds into

(10.17) we get
√
nM∗(K) 6 c3n(lnn)2.

The best known upper bound for M(K), when K is isotropic but not necessarily symmetric, is due to
Vritsiou [131]. For every isotropic convex body K in Rn one has that

(10.21) M(K) 6
cn10/22(lnn)5/22

√
n
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where c > 0 is an absolute constant. The proof is based on the existence of β-regular M -ellipsoids for
nonsymmetric convex bodies. It is proved in [131] that for every β ∈

(
0, 2

5

)
there exists a constant d(β) > 1

such that the following holds: For every convex body K in Rn with either bar(K) = 0 or s(K) = 0 there
exists a linear image Kβ of K such that

(10.22) max{N(Kβ , tB
n
2 ), N(K◦β , tB

n
2 ), N(Bn2 , tKβ), N(Bn2 , tK

◦
β)} 6 exp

(
d(β)n/tβ

)
for every t > d(β)1/β . Moreover, the constants d(β) satisfy d(β) ≈

(
c
(

4β
2−3β

)) 2−3β
2 = O

((
2 − 5β

)−β)
as

β → 2
5

−
, where c(α) with α = 4β

2−3β are the constants appearing in Theorem 3.2. The optimal form that
this result may have is not clear.

Another ingredient in the proof of (10.21) is a Blaschke-Santaló inequality for projections of not-
necessarily symmetric convex bodies, which is again established in [131]: If K is a convex body in Rn
such that either bar(K) = 0 or s(K) = 0 then for every 1 6 k 6 n− 1 and any F ∈ Gn,k we have that(

volk(PF (K)) volk(K◦ ∩ F )
)1/k

6 c
n

k
ω

2/k
k

where c > 0 is an absolute constant.
Having developed these tools, one can obtain a weaker variant of (10.19), namely,

√
nM(K) 6 c

n∑
k=1

1√
k

min

{
1

r(K)
,
(n
k

)5

ln2
(en
k

) 1

v−k (K)

}
and (10.21) follows.

§ 10.4. A multi-integral norm. Let K be a symmetric convex body in Rn. For any s-tuple C =
(C1, . . . , Cs) of symmetric convex bodies Cj of volume 1 in Rn, consider the norm on Rs, defined by

‖t‖C,K =

∫
C1

· · ·
∫
Cs

∥∥∥ s∑
j=1

tjxj

∥∥∥
K
dxs · · · dx1

where t = (t1, . . . , ts). If C = (C, . . . , C) then we write ‖t‖Cs,K instead of ‖t‖C,K . A question posed by
V. Milman is to determine if, in the case C = K, one has that ‖ · ‖Ks,K is equivalent to the standard
Euclidean norm up to a term which is logarithmic in the dimension, and in particular, if under some cotype
condition on the norm induced by K to Rn one has equivalence between ‖ · ‖Ks,K and the Euclidean norm.

This question was studied by Bourgain, Meyer, V. Milman and Pajor. For simplicity let us assume that
voln(K) = 1 (this is only a matter of normalization). It was proved in [29] that

‖t‖C,K > c
√
s
( s∏
j=1

|tj |
)1/s

where c > 0 is an absolute constant. Later, Gluskin and V. Milman obtained a better lower bound in [58],
in fact working in a more general context: Let A = (A1, . . . , As) be an s-tuple of measurable sets of volume
1 in Rn and let K be a star body of volume 1 in Rn with 0 ∈ int(K). Then,

(10.23) ‖t‖A,K > c |t|

for all t = (t1, . . . , ts) ∈ Rs. Their argument was based on the Brascamp-Lieb-Luttinger inequality (see also
[3, Chapter 4]).

The question to obtain upper bounds for the quantity ‖t‖Cs,K is open. Since ‖t‖Cs,K = ‖t‖(TC)s,TK

for any T ∈ SLn, we may restrict our attention to the case where C is isotropic. In fact, we are particularly
interested in the case where C is isotropic and K = C, which corresponds to V. Milman’s original question.
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For any centered log-concave probability measure µ on Rn and any symmetric convex body K in Rn,
consider the parameter

(10.24) I1(µ,K) :=

∫
Rn
‖x‖Kdµ(x).

Let C be an isotropic symmetric convex body in Rn and let X1, . . . , Xs be independent random vectors,
uniformly distributed in C. For any t = (t1 . . . , ts) ∈ Rs we write νt for the distribution of the random
vector t1X1 + · · · + tsXs. Since ‖t‖Cs,K is a norm, we may always assume that |t| = 1. Note that νt is an
even log-concave probability measure on Rn (this is a consequence of the Prékopa-Leindler inequality; see
[2]). We write gt for the density of νt. Our starting point is the next observation from [36].

Lemma 10.7. For any t = (t1 . . . , ts) ∈ Rs, we write νt for the distribution of the random vector t1X1 +
· · ·+ tsXs. Then,

‖t‖Cs,K =

∫
Rn
‖x‖Kdνt(x).

It is easily verified that the covariance matrix Cov(νt) of νt is a multiple of the identity: more precisely,

Cov(νt) = L2
C In.

It follows that the function ft(x) = LnCgt(LCx) is the density of an isotropic log-concave probability measure
µt on Rn. Indeed, we have∫

Rn
ft(x)xixj dx = LnC

∫
Rn
gt(LCx)xixj dx = L−2

C

∫
Rn
gt(y)yiyj dy = δi,j

for all 1 6 i, j 6 n.

Note. It is proved in [36, Lemma 3.2] that if |t| = 1 then ‖gt‖∞ 6 en. From this inequality we see that

Lµt = ‖ft‖
1
n∞ = LC‖gt‖

1
n∞ 6 eLC for all t ∈ Rs with |t| = 1.

One may easily check that if µ is an isotropic log-concave probability measure on Rn and K is a symmetric
convex body in Rn then∫

O(n)

I1(µ,U(K)) dν(U) =

∫
Rn

∫
O(n)

‖x‖U(K)dν(U) dµ(x)

= M(K)

∫
Rn
|x| dµ(x) ≈

√
nM(K)

where ν, σ denote the Haar probability measures on O(n) and Sn−1 respectively. It follows that

(10.25)

∫
O(n)

‖t‖Cs,U(K) dν(U) ≈ (LC
√
nM(K)) |t|.

Therefore, one might hope to obtain a quantity of the order of LC
√
nM(K) |t| as an upper estimate for

‖t‖Cs,K . The next theorem of Skarmogiannis [123] provides a logarithmic in n, and independent from s,
upper bound for ‖t‖Cs,K .

Theorem 10.8. Let C be an isotropic symmetric convex body in Rn and K be a symmetric convex body in
Rn. Then,

‖t‖Cs,K 6 c1
√
n(lnn)M(K)|t|

for every t = (t1, . . . , ts) ∈ Rs, where c1 > 0 is an absolute constant.
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In the case C = K, Theorem 10.8 and (10.23) show that, for any symmetric convex body K of volume
1 in Rn,

c1|t| 6 ‖t‖Ks,K 6 c2
√
n(lnn)M(K∗)LK∗ |t|

for every s > 1 and every t = (t1, . . . , ts) ∈ Rs, where ci > 0 are absolute constants and K∗ is an isotropic
linear image of K (note that LK∗ = LK). Thus, we have a reduction of V. Milman’s question to the problem
of estimating the parameter M(K∗) for an isotropic symmetric convex body K∗ in Rn, the main question
that we discuss in this section.

The estimate of Theorem 10.8 is based on the next result.

Theorem 10.9. Let µ be an isotropic log-concave probability measure on Rn. For any symmetric convex
body K in Rn we have that

I1(µ,K) 6 c2
√
n(lnn)M(K)

where c2 > 0 is an absolute constant.

Theorem 10.9 follows from an upper bound for the same quantity, due to Eldan and Lehec [44], which
involves the constant

τ2
n = sup

µ
sup

ξ∈Sn−1

n∑
i,j=1

Eµ(xixj〈x, ξ〉)2

where the first supremum is over all isotropic log-concave probability measures µ on Rn.

Theorem 10.10 (Eldan-Lehec). Let µ be an isotropic log-concave probability measure on Rn. For any
symmetric convex body K in Rn we have that∫

Rn
‖x‖K dµ(x) 6 c1

√
lnn τn

∫
Rn
‖x‖K dγn(x)

where γn is the standard Gaussian measure on Rn and c1 > 0 is an absolute constant.

Proof of Theorem 10.9. Let µ be an isotropic log-concave probability measure on Rn. A result of Eldan [42]
relates the constant τn with the thin-shell constant

σn = sup
µ

√
Varµ(|x|)

where the supremum is over all isotropic log-concave probability measures µ on Rn. Eldan proved that

τ2
n 6 c2

n∑
k=1

σ2
k

k

where c2 > 0 is an absolute constant. Klartag and Lehec [79] have recently confirmed the thin-shell conjec-
ture: it is now known that σn 6 C. where C > 0 is an absolute constant. Combining these estimates, one
gets

τ2
n 6 c2

n∑
k=1

σ2
k

k
6 c3 lnn.

Therefore, the estimate of Eldan and Lehec immediately implies that

I1(µ,K) :=

∫
Rn
‖x‖K dµ(x) 6 c4 lnn

∫
Rn
‖x‖K dγn(x)

where c4 > 0 is an absolute constant. Finally, integration in spherical coordinates shows that∫
Rn
‖x‖K dγn(x) ≈

√
n

∫
Sn−1

‖ξ‖K dσ(ξ) ≈
√
nM(K)

and hence the proof of Theorem 10.9 is complete.
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We can now complete the proof of Theorem 10.8. It combines the approach of [36] with Theorem 10.9.

Proof of Theorem 10.8. We compute

‖t‖Cs,K =

∫
Rn
‖x‖K dνt(x) = L−nC

∫
Rn
‖x‖Kft(x/LC) dx = LC

∫
Rn
‖y‖Kdµt(y)

and hence we get

(10.26) ‖t‖Cs,K = LCI1(µt,K)

for all t ∈ Rs with |t| = 1. Now, we use Theorem 10.9 to estimate I1(µt,K). As a result, we obtain the
upper bound

‖t‖Cs,K 6 c1LC
√
n(lnn)M(K) ≈

√
n(lnn)M(K),

which is the assertion of Theorem 10.8.

11 Appendix: Covariance estimates

In this last section we sketch the proofs of the two main technical covariance estimates that were used for
the bound ψn = O(

√
lnn) and the bound Ln = O(1). The first one is Theorem 8.12 which we state again

below for the convenience of the reader.

Theorem 11.1. For every 0 < t 6 c/(ψ2
n lnn) we have

(11.1) E ‖At‖op 6 C,

where C > 0 is an absolute constant.

In fact, using the improved log-concave Lichnerowicz inequality (Theorem 8.10) we can show that the
statement of Theorem 11.1 is true for all 0 < t 6 c/(lnn)2.

As in Section 9, if µ is a log-concave probability measure with density % with respect to the Lebesgue
measure, we consider the stochastic localization process starting at %. The tilt process (ξt)t>0 is defined as
the solution of the stochastic differential equation dξt = at,ξtdt+dWt where (Wt)t>0 is a standard Brownian

motion. For t > 0 we denote by µt := µt,ξt the measure with density %t,ξt(x) = 1
Zt,ξt

e〈x,ξt〉−
t
2 |x|

2

%(x), and we

write at := at,ξt and At := At,ξt = Cov(µt,ξt) for the barycenter and covariance matrix of µt,ξt respectively.

§ 11.1. Preliminary observations. In Section 7 we saw that, for any test function f , the martingale
Mt =

∫
Rn f dµt satisfies

dMt =
〈∫

Rn
f(x)(x− at) dµt, dWt

〉
,

where (Wt) is some standard Brownian motion. This extends to vector valued functions as follows. If
F : Rn → Rk is a vector valued function that grows mildly at infinity, then the process (Mt) given by

Mt =

∫
Rn
F dµt

is a martingale, and

dMt =
〈∫

Rn
F (x)⊗ (x− at) dµt, dWt

〉
.

To see this, writing xi for the i-th coordinate of a vector x ∈ Rn we get

(11.2) dMt =

n∑
i=1

(∫
Rn
F (x)(x− at)i dµt

)
dWt,i.

Applying (11.2) to the tensors F (x) = x and F (x) = x ⊗ x and then rearranging the terms appropriately,
we obtain the next lemma.
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Lemma 11.2. If at and At are the barycenter and the covariance matrix of µt, respectively, then dat =
AtdWt and

dAt =

n∑
i=1

(∫
Rn

(x− at)⊗2 (x− at)i dµt
)
dWt,i −A2

t dt.

As Lemma 11.2 shows, the derivative of the barycenter is expressed in terms of the covariance, and the
derivative of the covariance depends on 3-tensors.

§ 11.2. Auxiliary results. We start with an inequality about the Hessian of the function φ(A) = tr(eA)
where A is a symmetric matrix.

Lemma 11.3. Let φ be the function defined on the space Sn(R) of symmetric n×n matrices by φ(A) = tr(eA).
For every pair of symmetric matrices A,H we have that

∇2φ(A)(H,H) 6 〈∇φ(A), H2〉 = tr(eAH2),

where ∇2φ(A) is the Hessian matrix of φ at A, viewed as a bilinear form on Sn(R).

Proof. Assume first that the matrix A is positive. We use the following fact (see [77] for a simple proof): If
K and H are symmetric matrices, and K is positive semi-definite, then for any s,m ∈ N we have

tr(KsHKmH) 6 tr(Ks+mH2).

Applying this inequality we get

∇2φ(A)(H,H) =
∑
k>1

1

k!

k−1∑
s=0

tr(AsHAk−s−1H)

6
∑
k>1

1

k!
k tr(Ak−1H2) = tr(eAH2).

For the case where A has some negative eigenvalues, we observe that φ satisfies the identity

φ(A+ tIn) = etφ(A)

and differentiating this equality with respect to A we see that ∇φ and ∇2φ also satisfy the same equation,
which means that adding a multiple of the identity to A leads to an equivalent inequality. This reduces the
proof of the lemma to the case of positive A.

Recall the equation for At

dAt =

n∑
i=1

Hi,tdWi −A2
t dt,

where

Hi,t =

∫
Rn

(x− at)⊗2(x− at)i dµt

and at is the barycenter of µt. Therefore, the matrix Hi,t is of the form E(XiX
⊗2) for some random vector

with mean 0. In what follows, for any u ∈ Sn−1 we define Hu = E(〈X,u〉X⊗2).

Lemma 11.4. Let X be a centered log-concave random vector. Then,

sup
u∈Sn−1

‖Hu‖op 6 c1‖Cov(X)‖3/2op

where c1 > 0 is an absolute constant.
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Proof. Let u, v ∈ Sn−1. Using the Cauchy-Schwarz inequality we get

〈Hu(v), v〉 = E
(
〈X,u〉 〈X, v〉2

)
6
(
E〈X,u〉2

)1/2(E〈X, v〉4)1/2.
Since the random variable 〈X, v〉 is centered and log-concave, its fourth moment and the square of its second
moment are of the same order. It follows that

〈Hu(v), v〉 6 c1
(
E〈X,u〉2

)1/2(E〈X, v〉2) 6 c1‖Cov(X)‖3/2op

for some absolute constant c1 > 0. Taking the supremum over all u and v in Sn−1 we conclude the proof.

Lemma 11.5. Let X be a centered random vector with finite Poincaré constant ϑ(X). Then,∥∥∥∥∥
n∑
i=1

(
E(XiX

⊗2)
)2∥∥∥∥∥

op

6 4ϑ2(X) ‖Cov(X)‖2op.

Proof. For every coordinate vector ei we set Hi := Hei . In this notation the lemma asserts that

n∑
i=1

〈H2
i u, u〉 6 4ϑ2(X) ‖Cov(X)‖2op

for every u ∈ Sn−1. We check that
∑n
i=1〈H2

i u, u〉 = tr(H2
u) and, using the assumption that X is centered,

from the Cauchy-Schwarz inequality and the Poincaré inequality we get

tr(H2
u) = E

(
〈X,u〉 〈HuX,X〉

)
6
(
E〈X,u〉)2

)1/2(
Var(〈HuX,X〉)

)1/2
6
(
E〈X,u〉)2

)1/2(
4ϑ2(X)E|HuX|2

)1/2
= 〈Cov(X)u, u〉1/2

(
4ϑ2(X) tr(H2

uCov(X))
)1/2

6 ‖Cov(X)‖op

(
4ϑ2(X) tr(H2

u)
)1/2

.

This shows that tr(H2
u) 6 4ϑ2(X)‖Cov(X)‖2op, which is exactly the assertion of the lemma.

The last result that we need is a deviation inequality for martingales (see Freedman [48]).

Lemma 11.6. Let (Mt)t>0 be a continuous local martingale with M0 = 0. For every u > 0 and σ 6= 0 we
have

P(∃t > 0 : Mt > u and 〈M〉t 6 σ2) 6 e−u
2/(2σ2).

For the proof, we first check that if (Zt) is a square integrable martingale such that 〈Z〉t 6 σ2 for all
t > 0 and almost surely, then Z∞ = lim

t→+∞
Zt exists and satisfies

P(Z∞ > u) 6 e−u
2/(2σ2)

for all u > 0. Then, we consider the stopping time

τ = inf{t > 0 : 〈M〉t > σ2}

and apply the previous claim to the martingale (Mt) stopped at time τ .

§ 11.3. Proof of Theorem 11.1. The basic step is to prove the next theorem.
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Theorem 11.7. Let µ be an isotropic log-concave probability measure on Rn and let (At) be the covariance
process of the stochastic localization starting from µ. Then,

P (∃s 6 t : ‖As‖op > 2) 6 exp

(
− 1

c0t

)
for all 0 6 t 6 1

c0(lnn)2 , where c0 > 0 is an absolute constant.

Proof. We consider the function hβ(M) := 1
β ln(tr (eβM )) on Sn(R). Then, hβ is a smooth function and

λmax(M) 6
1

β
ln(tr (eβM )) 6 λmax(M) +

lnn

β
.

Therefore, if β ≈ lnn then we have that hβ(M) ≈ λmax(M) up to an additive absolute constant.
From Itô’s formula we see thar

dhβ(A) =
〈
∇hβ(A),

n∑
i=1

HidBi

〉
−
〈
∇hβ(A), A2 dt

〉
+

1

2

n∑
i=1

∇2hβ(A)(Hi, Hi) dt.

The matrix

M = ∇hβ(A) =
eβA

tr(eβA)

is positive semi-definite and has trace 1. Using Lemma 11.3 we see that the second derivative of hβ satisfies

∇2hβ(A)(Hi, Hi) 6 β tr(MH2
i ).

This implies that

dhβ(A) 6
n∑
i=1

tr(MHi) dBi +
β

2
tr

(
M

n∑
i=1

H2
i

)
dt.

We concentrate on the absolutely continuous part. Since M is positive and has trace 1, from Lemma 11.5
we see that

tr

(
M

n∑
i=1

H2
i

)
6

∥∥∥∥∥
n∑
i=1

H2
i

∥∥∥∥∥
op

6 4ϑ2
µt ‖At‖

2
op.

Since µt is t-uniformly log-concave almost surely, from the improved log-concave Lichnerowicz inequality
(Theorem 8.10) we get

ϑ2
µt 6

(
‖At‖op

t

)1/2

,

and hence

dhβ(A) 6
n∑
i=1

tr(MHi) dBi +
2β√
t
‖At‖5/2op dt.

Next, we give an upper bound for the quadratic variation of the martingale part. For any u ∈ Sn−1 we set
Hu =

∑
Hiui. Then, Lemma 11.4 shows that

n∑
i=1

tr(MHi)ui = tr(MHu) 6 ‖Hu‖op 6 c1‖At‖3/2op .

It follows that
n∑
i=1

tr(MHi)
2 6 c21‖At‖3op.
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The above calculations show that

‖At‖op 6 hβ(At) 6 hβ(A0) + Zt + 2β

∫ t

0

r−1/2‖Ar‖5/2op dr(11.3)

= 1 +
lnn

β
+ Zt + 2β

∫ t

0

r−1/2‖Ar‖5/2op dr

where (Zt) is a continuous martingale starting from 0 with quadratic variation that satisfies

(11.4) [Z]t 6 c2

∫ t

0

‖Ar‖3op dr.

We choose β = 2 lnn, and assume that there exists s 6 t such that ‖As‖op > 2. If s is the smallest such
time, then before time s the operator norm of A is less than 2, and then (11.3) shows that

2 = ‖As‖op 6
3

2
+ Zs + c3s

1/2 lnn 6
3

2
+ Zs + c3t

1/2 lnn,

where c3 > 0 is an absolute constant. If t is a sufficiently small multiple of (lnn)−2 then this last inequality
implies that Zs > 1

4 . Moreover, (11.4) shows that [Z]s 6 c4s 6 c4t. Therefore,

P(∃s 6 t : ‖As‖op > 2) 6 P
(
∃s > 0 : Zs >

1

4
and [Z]s 6 c4t

)
.

Applying Lemma 11.6 we conclude the proof.

Theorem 11.7 implies the upper bound for the expectation of At.

Proof of Theorem 11.1. Since µt is t-uniformly log-concave, we have At 6 1
t In, and in particular ‖At‖op 6

1/t, almost surely. Therefore,

E‖At‖op 6 2 +
1

t
P(‖At‖op > 2).

Since x exp
(
− 1
c0
x
)

is a bounded function of x, Theorem 11.7 shows that

E‖At‖op 6 C

on the time interval
[
0, 1

c0(lnn)2

]
.

Note. Instead of the improved log-concave Lichnerowicz inequality, we could have bounded ϑµt by the KLS
constant ψn. It is not hard to see that for any log-concave random vector X

ϑ2(X) 6 ψ2
n‖Cov(X)‖op,

so we can use the inequality
ϑ2
µt 6 ψ2

n‖At‖op.

Using this estimate instead of Theorem 8.10 we would get Theorem 11.1 in the (weaker) form that we have
stated it.

The second main estimate, which played a key role in the proof of the isotropic constant conjecture, is
Guan’s theorem [62], which we state again below for the convenience of the reader.

Theorem 11.8. Let µ be an isotropic log-concave probability measure on Rn. Then,

E
(
tr(Aδ1)

)
> δ1n,

where δ1 > 0 is an absolute constant.
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§ 11.4. Auxiliary results. For i, j, k = 1, . . . , n we denote

Rij(t, ξt) =

∫
Rn

(x− a)(x− a)i(x− a)j%t,ξt(x) dx

and

Rijk(t, ξt) =

∫
Rn

(x− a)i(x− a)j(x− a)k%t,ξt(x) dx

where xi are the coordinates of x with respect to an orthonormal basis {ui(t, ξt)}ni=1 of eigenvectors corre-
sponding to the eigenvalues 0 < λ1(t, ξt) 6 · · · 6 λn(t, ξt) 6 1/t of At,ξt .

For any r > 0 let
d(r) = d(r)(t, ξt) = max{i > 1 : λi(t, ξt) 6 r}.

Lemma 11.9. Let r > 0. For any 1 6 k 6 n we have

d(r)∑
i,j=1

R2
ijk 6 4t−1/2r3/2λk.

Proof. Let E be the subspace of Rn spanned by the first d(r) eigenvectors of At,ξt . The measure νE =
(PE)∗µt,ξt is t-uniformly log-concave and Cov(νE) 6 rPE . We set

gk(x) =

d(r)∑
i,j=1

Rijk(x− a)i(x− a)j .

Using the Cauchy-Schwarz inequality and Theorem 8.10 we write

d(r)∑
i,j=1

R2
ijk =

∫
E

gk(x)(x− a)kdνE(x) 6
√

VarνE (gk)

(∫
E

(x− a)2
kdµt,ξt(x)

)1/2

=
√
λk
√

VarνE (gk) 6
√
λk

(
‖Cov(νE)‖op

t

)1/4(∫
E

|∇gk|2dνE
)1/2

6 2
√
λk

(r
t

)1/4

 d(r)∑
i,j=1

λjR
2
ijk

1/2

6 2
√
λk t

−1/4r3/4

 d(r)∑
i,j=1

R2
ijk

1/2

and the lemma follows.

The starting point of Guan’s work is the next lemma.

Lemma 11.10. For any smooth function f : [0,∞)→ R with bounded second derivative we have

d

dt
E(tr(f(At))) =

1

2

n∑
i,j=1

E(|Ri,j |2)
f ′(λi)− f ′(λj)

λi − λj
−

n∑
i=1

λ2
i f
′(λi),

where the quotient in the above formula is interpreted as f ′′(λi) if λi = λj.

Lemma 11.10 is applied for a function f(λ) which is quadratic when λ is relatively large and exponential
when λ is small. In this way, the analysis of At is restricted on the large eigenvalues. The precise construction
of such an f is given in [62, Lemma 2.2].

Lemma 11.11. Let D0 > 4 and 7
3 6 r0 6 8

3 . There exists b ∈
[

1
20 ,

1
5

]
and an increasing twice differentiable

positive function f on [0,∞) such that f(r) = eD0(r−r0) if 0 6 r 6 r0−1/D0 and f(r) = br2 if r > r0, which
satisfies |f ′′(r)| 6 D2

0f(r) for all r > 0.
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A direct consequence of Lemma 11.9 and of the fact that λi 6 1/t is that if i > d(r0) + 1 then

(11.5) b

i∑
j,k=1

R2
ijk 6 4bt−1λ

3/2
i λi 6 4bt−1/2λ2

i = 4t−1f(λi).

Instead of estimating E(tr(At)) directly, Guan is using the above in order to estimate E(Ft), where

Ft =

n∑
i=1

f(λi) = tr(f(At)).

To this end, we apply the formula of Lemma 11.10. The first step is the next lemma (see [75]) which exploits
(11.5) and the fact that, for any x,

n∑
i,j,k=1
λj>x

R2
ijk 6 3

n∑
i=d(x)

i∑
j,k=1

R2
ijk.

This last inequality holds true because R2
ijk is symmetric in i, j, k, therefore we may sum over those triples

that satisfy i > max{j, k} and then multiply by 3.

Lemma 11.12. For any t > 0,

d

dt
E(Ft) 6

(
300

t
+

400D2
0√

t

)
E(Ft).

Proof. Since the second summand in Lemma 11.10 is negative, we have

(11.6)
d

dt
E(tr(f(At))) 6

1

2

n∑
i,j=1

E(|Ri,j |2)
f ′(λi)− f ′(λj)

λi − λj
.

Consider the right-hand side sum

(11.7)

n∑
i,j=1

|Ri,j |2
f ′(λi)− f ′(λj)

λi − λj
.

We split this quantity into four sums, according to whether i, j 6 d(r0) or not. From (11.5) we see that

(11.8) b

n∑
i,j=d(r0)+1

|Ri,j |2 = b

n∑
i,j=d(r0)+1

n∑
k=1

R2
ijk 6 3b

n∑
i=d(r0)+1

i∑
j,k=1

R2
ijk 6 12t−1

n∑
i=d(r0)+1

f(λi).

Recall that r0 6 8
3 . Using again (11.5) and the fact that x/(x− y) 6 3

(
r0 + 1

3

)
when x > r0 + 1

3 and y 6 r0,
we see that the indices with i 6 d(r0) and j > d(r0 + 1/3) or i > d(r0 + 1/3) and j 6 d(r0) contribute to the
sum (11.7) at most

d(r0)∑
i=1

n∑
j=d(r0+1/3)+1

n∑
k=1

R2
ijk

2bλj
λi − λj

6 2b · 3(r0 + 1/3)

d(r0)∑
i=1

n∑
j=d(r0+1/3)+1

n∑
k=1

R2
ijk(11.9)

6 54b

n∑
i=d(r0+1/3)+1

n∑
j,k=1

R2
ijk 6 216t−1

n∑
i=d(r0)+1

f(λi).
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Since |f ′′(r)| 6 D2
0f(r) for all r > 0, the indices with i, j 6 d(r0 + 1/3) contribute to the sum (11.7) at most

(11.10)
1

2

d(r0+1/3)∑
i,j=1

n∑
k=1

R2
ijk

|f ′(λj)− f ′(λi)|
|λj = λi|

6
D2

0

2

d(r0+1/3)∑
i,j=1

n∑
k=1

R2
ijkf(max{λi, λj}).

We split the last sum into two parts. From Lemma 11.9 we see that the terms with k 6 d(r0 +1/3) contribute
at most

3D2
0

2

d(r0+1/3)∑
i=1

f(λi)

d(λi)∑
j,k=1

(R2
ijk 6 6D2

0t
−1/2

d(r0+1/3)∑
i=1

λ
3/2
i λif(λi)(11.11)

6 6D2
0t
−1/2(r0 + 1/3)5/2

d(r0+1/3)∑
i=1

f(λi) 6 6 · 35/2D2
0t
−1/2

d(r0+1/3)∑
i=1

f(λi).

Using Lemma 11.9 again, and taking into account that b ∈
[

1
20 ,

1
5

]
, f(3) 6 2 and 7

60x 6 bx2 = f(x) for
x > 8

3 , we see that the terms with k > d(r0 + 1/3) contribute at most

D2
0

n∑
k=d(r0+1/3)+1

d(r0+1/3)∑
i=1

f(λi)

d(r0+1/3)∑
j=1

E(R2
ijk) 6 4D2

0f(3)t−1/2(r0 + 1/3)3/2
n∑

k=d(r0+1/3)+1

λk(11.12)

6 8 · 33/2 · 60

7
D2

0t
−1/2

n∑
k=d(r0+1/3)+1

f(λk).

From (11.8), (11.9),(11.10) and (11.11) we finally get

d

dt
E(Ft) 6

(
12 + 216

t
+
D2

0√
t

max

{
6 · 35/2, 8 · 33/2 · 60

7

})
E

(
n∑
i=1

f(λi)

)

6

(
300

t
+

400D2
0√

t

)
E(Ft),

and the proof is complete.

A consequence of Lemma 11.12 is that

(11.13) E(Fs) 6
(s
t

)700

E(Ft)

for all 0 < t 6 s 6 D−4
0 . It is known (see [76, Lemma 5.2]) that this implies the bound

(11.14) P(‖At‖op > 2) 6 c1 exp(−c2/t)

for all 0 < t 6 c3/(lnn)2. In particular, if 0 6 t 6 t1 = c/(lnn)2, where c > 0 is an absolute constant, then

(11.15) P(‖At‖op > 2) 6
1

n
.

§ 11.5. Proof of Theorem 11.8. We set s1 = 7/3 and consider the function f1 = fD0,r0 from Lemma 11.11
with r0 = s1 and D0 = (ln t1)4. If we assume that n > n0, where n0 is a large enough absolute constant,
then we know that D0 > 3. We define F1,t = tr(f1(At)) and using (11.13) and the fact that At 6 1

t In we
see that

(11.16) E(F1,t1) 6

(
1− 1

n

)
n f1(2) +

1

n
n f1(1/t1) = (n− 1)e−| ln t1|

4/3 + bt−2
1 .
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For k > 2 we define

tk = | ln tk−1|−16, sk =
7

3
+

k∑
i=2

| ln tk|−1/2, fk = f(ln tk)4,sk , Fk,t = tr(fk(At)).

We denote by bk the constant in
[

1
20 ,

1
5

]
from the construction of the function fk = f(ln tk)4,sk . We set

k0 = max{k > 1 : tk 6 e−100}. Since the summands in the sum of the definition of sk decay very fast,
if we assume that n > n0 for a large enough absolute constant n0 > 0 then we see that sk ∈

[
7
3 ,

8
3

]
and

0 < t1 < t2 6 · · · 6 tk0
6 e−100. Also, for every 2 6 k 6 k0 we have

(11.17) sk−1 = sk −
1√
| ln tk|

6 sk −
1

(ln tk)4
.

Lemma 11.13. Let n > n0, where n0 is a large enough absolute constant. For all 1 6 k 6 k0 and
t ∈ [tk, tk+1],

(11.18) E(Fk,t) 6 n exp(−(ln tk)2).

Proof. We shall show that for every k > 2 and r > sk−1,

(11.19) fk(r) 6 5fk−1(r).

If r > sk then
fk(r)

fk−1(r)
=

bk
bk−1

6 4.

If sk−1 6 r 6 sk then
fk(r) 6 fk(sk) = bks

2
k 6 4bk−1s

2
k 6 5bk−1r

2 = 5fk−1(r)

So, (11.19) is true. We shall prove (11.18) by induction on k. For the case k = 1, recall that t1 = c/(lnn)2.
Using (11.13), (11.16) and the fact that b 6 1/5 we see that

E(F1,t) 6

(
t2
t1

)700

E(F1,t1) 6 t−700
1

(
(n− 1)e−| ln t1|

4/3 + t−2
1 /5

)
6 n e−(ln t1)2

for every t ∈ [t1, t2], provided that n > n0. Now, let k > 2 and assume that (11.18) holds true for k − 1.
From (11.17) and (11.19) we have

E(Ft,k) = E

(
n∑
i=1

fk(λi,tk)

)
= E

d(sk−1)∑
i=1

f(ln tk)4,sk(λi,tk)

+

n∑
i=d(sk−1)+1

fk(λi,tk)

6 d(sk−1) e(ln tk)4(sk−1−sk) + 5

n∑
i=d(sk−1)+1

fk−1(λi,tk)

6 n e−| ln tk|
7/2

+ 5E(Fk−1,tk).

From (11.13) and the induction hypothesis we see that if t ∈ [tk, tk+1] then

E(Fk,t) 6

(
tk+1

tk

)700

E(Fk,tk) 6

(
tk+1

tk

)700 [
n e−| ln tk|

7/2

+ 5n e−(ln tk−1)2
]

(11.20)

6 n
[
t−700
k e−| ln tk|

7/2

+ 5t−700
k e−t

−1/8
k

]
6 n

[
1

2
e−| ln tk|

2

+
1

2
e−| ln tk|

2

]
,

using also the fact that tk 6 exp(−100) and tk = | ln tk−1|−16. Now, (11.20) gives (11.18) and the proof is
complete.
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We can proceed now with Guan’s main estimate in [62].

Theorem 11.14. Let µ be an isotropic log-concave probability measure on Rn. If (At)t>0 is the covariance
process associated with the stochastic localization starting from µ, then

E(tr(A2
t )) 6 cn

for all t > 0, where c > 0 is an absolute constant.

Proof. We first assume that n > n0 where n0 is a large enough absolute constant. Let c1 > 0 be an absolute
constant such that c1 < tk0+1. If t ∈ [t1, c1] then there exists 1 6 k 6 k0 such that tk 6 t 6 tk+1. From
Lemma 11.13 we know that

E(tr(A2
t )) = E

(
n∑
i=1

λ2
i

)
6

(
8

3

)2

n+ E

 ∑
{i:λi>8/3}

λ2
i

 6
64

9
n+ 20E(Fk,t) 6 n

(
64

9
+ e−(ln tk)2

)
6
n

8
.

On the other hand, if 0 < t 6 t1 then (11.15) and the fact that At 6 1
t In show that

E(tr(A2
t )) 6 4nP(‖At‖op 6 2) +

1

t2
P(‖At‖op > 2) 6 4n+

c2n

t2
exp(−c3/t) 6 8n,

where we have taken into account that t 6 c/(lnn)2 and n > n0. Note also that if t > c1 then

E(tr(A2
t )) 6

1

c1
n

because At 6 1
c1
In. Finally, the case n < n0 is covered e.g. by [76, Corollary 5.4] which provides a bound

for E‖At‖2op and hence for E(tr(A2
t )).

It is not hard now to prove Theorem 11.8.

Proof of Theorem 11.8. Using the formula

dAt =

∫
Rn

(x− at)⊗2〈x− at, dWt〉 dµt(x)−A2
tdt

and taking into account that A0 = In, from the estimate E(tr(A2
t )) 6 Cn for 0 6 t 6 δ1 we see that

E(tr(At)) > δ1n

for all 0 6 t 6 δ1, where δ1 is a suitably small positive absolute constant.
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C.R. Acad. Sci. Paris 302 (1986), 25–28.

[106] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed
n-dimensional space, Geometric aspects of functional analysis (1987–88), 64–104, Lecture Notes in Math., 1376,
Springer, Berlin, 1989.

[107] V. D. Milman, A. Pajor, Entropy and Asymptotic Geometry of Non-Symmetric Convex Bodies, Adv. in Math.
152 (2000), 314–335.

[108] V. D. Milman and G. Pisier, Gaussian processes and mixed volumes, Ann. Probab. 15 (1987), no. 1, 292–304.

[109] V. D. Milman and G. Schechtman, Global versus Local asymptotic theories of finite-dimensional normed spaces,
Duke Math. J. 90 (1997), 73–93.

[110] F. Nazarov, M. Sodin and A. Volberg, The geometric Kannan-Lovász-Simonovits lemma, dimension-free es-
timates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic
functions, Algebra i Analiz, 14 (2002), no. 2, 214–234.

[111] B. Oksendal, Stochastic Differential Equations: An Introduction with Applications, Sixth edition. Universitext.
Springer-Verlag, Berlin, 2003. xxiv+360 pp.

[112] G. Paouris, Concentration of mass in convex bodies, Geom. Funct. Anal. 16 (2006), no. 5, 1021–1049.

[113] G. Paouris, Small ball probability estimates for log-concave measures, Trans. Amer. Math. Soc. 364 (2012),
287–308.

[114] G. Paouris and P. Pivovarov, Small-ball probabilities for the volume of random convex sets, Discrete Comput.
Geom. 49 (2013), 601–646.

[115] M. Papadimitrakis, On the Busemann-Petty problem about convex, centrally symmetric bodies in Rn, Mathe-
matika 39 (1992), 258–266.

[116] G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces, Ann. of Math. 115 (1982), 375–392.

[117] G. Pisier, A new approach to several results of V. Milman, J. Reine Angew. Math. 393 (1989), 115–131.

[118] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, 94.
Cambridge University Press, Cambridge, 1989. xvi+250 pp

[119] C. A. Rogers and G. C. Shephard, Convex bodies associated with a given convex body, J. London Math. Soc. 33
(1958), 270–281.

[120] L. C. G. Rogers and D. Williams, Diffusions, Markov processes, and martingales. Vol. 2: Itô calculus, Reprint
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