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Abstract

Let K be an isotropic convex body in R™ and let Z,(K) be the L,—
centroid body of K. For every N > n consider the random polytope
Ky :=conv{z1,...,zn} where z1,...,zn are independent random points,
uniformly distributed in K. We prove that a random Ky is “asymptoti-
cally equivalent” to Zn(n/n))(K) in the following sense: there exist absolute
constants p1, p2 > 0 such that, for all g € (0, %] and all N > N(n, (), one
has:

(i) Kn 2 ¢(B)Z4(K) for every g < p1In(N/n), with probability greater
than 1 — ¢; exp(—cle_ﬁnﬁ).

(ii) For every ¢ > p2In(N/n), the expected mean width E [w(Kn)] of
K is bounded by cs w(Z,(K)).

As an application we show that the volume radius |Ky| of a random
‘/ln%\f/ﬂ) < |KN|1/n < esLx '\/lnfjg/") for all

1/n

KN satisfies the bounds ¢4
N < exp(n).

1 Introduction

Let K be a convex body of volume 1 in R"™. For every ¢ > 1 we define the L,
centroid body Z,(K) of K by its support function:

(1) a0 (@) = [l = ([ |<y,x>|Qdy)1/q.

The aim of this article is to provide some precise quantitative information on the
“asymptotic shape” of a random polytope Ky = conv{z1,...,zy} spanned by N
independent random points z1,...,zyx uniformly distributed in K. Our approach
is to compare K with the L,-centroid body Z,(K) of K for ¢ ~ In(N/n).

The origin of our work is in the study of the behavior of symmetric random
+1-polytopes, the absolute convex hulls of random subsets of the discrete cube
Ey = {—1,1}". The natural way to produce these random polytopes is to fix
N > n and to consider the convex hull K,, y = conv{i)?l, el i)?N} of N inde-

pendent random points X Tye-- ,)? ~, uniformly distributed over EF. It turns out



(see [9]) that a random polytope K, y has the largest possible volume among all
+1-polytopes with N vertices, at every scale of n and N. This is a consequence of
the following fact: If n > ng and if N > n(lnn)?, then

(1.2) Kon2e («/m(N/n)Bg N BQO)
with probability greater than 1 —e™", where ¢ > 0 is an absolute constant, B is
the Euclidean unit ball in R™ and BZ = [-1,1]™.

In [16], Litvak, Pajor, Rudelson, and Tomczak—Jaegermann worked in a more
general setting which contains the previous Bernoulli model and the Gaussian
model; let K, x be the absolute convex hull of the rows of the random matrix
I'n v = (&j)1<i<n,1<j<n, Where §;; are independent symmetric random variables
satisfying certain conditions (||&;;]/z2z > 1 and ||| Lv. < p for some p > 1, where
| - | zvs is the Orlicz norm corresponding to the function t,(t) = e’ — 1). For
this larger class of random polytopes, the estimates from [9] were generalized and
improved in two ways: the paper [16] provides estimates for all N > (14 §)n, where
0 > 0 can be as small as 1/Inn, and establishes the following inclusion: for every
0<pB<1,

(13) Ko 2 clp) (VBI(N/n) B 1 B,

with probability greater than 1 —exp(—c;n® N'=#) —exp(—cyN). The proof in [16]
is based on a lower bound of the order of /N for the smallest singular value of the
random matrix I, y with probability greater than 1 — exp(—cN).

In a sense, both works correspond to the study of the size of a random polytope
Ky = conv{zy,...,xn} spanned by N independent random points xi,...,TxN
uniformly distributed in the unit cube @, := [-1/2,1/2]". The connection of
the estimates (1.2) and (1.3) with L,—centroid bodies comes from the following
observation.

Remark. For z € R™ and t > 0, define

(1.4) Ky o(x,t) == 1inf {JJulls + ¢z —ull2: v e R"}.

*

If we write (27);<n for the decreasing rearrangement of (|z;|);<, we have Holmst-
edt’s approximation formula

[t?] n 1/2
1
(1.5) “~Kia(wt) < Sar+t D (@)’ < Ky o(x,t)
=1 j=[t2]+1

where ¢ > 0 is an absolute constant (see [14]). Now, for any a > 1 define C'(«) =
aBy N BY . Then,

(1.6) hC(a)(Q) = KLQ(0,0()



for every § € S"~!. On the other hand,

1/2

(L.7) 1O oy =Y 05 +va| D (6;)?

J<q q<j<n
for every ¢ > 1 (see, for example, [6]). In other words,

(1.8) C(VQ) ~ Zy(Qn)

where Z,(K) is the Lg-centroid body of K. This shows that (1.3) or (1.2) can be
written in the form

(19) Kn7N 2 C(P)ZB ln(N/’rL) (QTL)'
This observation leads us to consider a random polytope Ky = conv{z1,...,zxN}
spanned by NN independent random points x1, ..., 2y uniformly distributed in an

isotropic convex body K and try to compare Ky with Z,(K) for a suitable value
g =q(N,n) ~1In(N/n). Our first main result states that an analogue of (1.9) holds
true in full generality.

Theorem 1.1 Let 5 € (0,1/2] and v > 1. If
(1.10) N > N(v,n) = cyn,

where ¢ > 0 is an absolute constant, for every isotropic conver body K in R™ we
have

(1.11) Kn D1 Zy(K) for all ¢ < coB1In(N/n),
with probability greater than
(1.12) 1—exp (—ezN'Pnf) — (|0 : 05 — 6| > yLxVN),

where T : €3 — (X is the random operator T'(y) = ((x1,y),...(xxn,y)) defined by
the vertices x1,...,xn of Kn.

The proof of Theorem 1.1 is given in Section 2, where we also collect what is known
about the probability P(||T" : £ — £Y|| > vLx+v/N) which appears in (1.12).

It should be emphasized that a reverse inclusion of the form Ky C ¢4 Z,(K)
cannot be expected with probability close to 1, unless ¢ is of the order of n. This
follows by a simple volume argument which makes use of the upper estimate of
Paouris (see [20]) for the volume of Z,(K) and is presented in Section 3. However,
one can easily see that Ky is “weakly sandwiched” between Z,,(K) (i = 1,2),
where ¢; ~ In(N/n), in the following sense:

Proposition 1.2 For every o > 1 one has

(1.13) E [0(0: (hgy(0) > ahg, k)(0))] < Na™9.



This shows that if ¢ > c5In(N/n) then, for most § € S"~1, one has hy, (8) <
cehz,( i) (0). Tt follows that several geometric parameters of Ky, e.g. the mean
width, are controlled by the corresponding parameter of Zj,(n/ny (K).

As an application, we discuss the volume radius of Ky: Let K be a convex
body of volume 1 in R™. The question to estimate the expected volume radius

(1.14) E(K,N) = / . / lconv(x1,...,xx5) | dey - - - day
K K
of K was studied in [12] where it was proved that for every isotropic convex body
K in R™ and every N > n+1,
In(2N/n)
Vi

where B(n) is a ball of volume 1. This estimate is rather weak for large values of
N: a strong conjecture is that

(1.16) E(K,N):min{'ln(mv/n),l} Lk

(1.15) E(B(n), N) < E(K,N) < cLy

vn

for every N > n + 1. This was verified in [10] in the unconditional case, where it
was also shown that the general problem is related to the “is-behavior” of linear
functionals on isotropic convex bodies. Using a recent result of G. Paouris [21] on
the negative moments of the support function of hz (k) we can settle the question
for the full range of values of N.

Theorem 1.3 For every N < exp(n), one has

. In(2N/n)
R

with probability greater than 1 —

In(2N/n)
\/ﬁ

where cq4,c5 > 0 are absolute constants.

(1.17) < |Kn|M" < esLi

1
N )
Notation and terminology. We work in R™, which is equipped with a Euclidean
structure (-,-). We denote by || - ||z the corresponding Euclidean norm, and write
BY for the Euclidean unit ball, and S™~! for the unit sphere. Volume is denoted
by | -|. We write w,, for the volume of Bf and o for the rotationally invariant
probability measure on S"~!. We also write A for the homothetic image of volume
1 of a convex body A C R", ie. A:= ‘A%/n.

A convex body is a compact convex subset C' of R™ with non-empty interior.
We say that C' is symmetric if —x € C' whenever x € C'. We say that C has center
of mass at the origin if [ (z,0)dz = 0 for every 6§ € S"~'. The support function
he : R™ — R of C is defined by ho(x) = max{(z,y) : y € C}. The mean width of
C is defined by

(1.18) w(C) = /5 he(®)o ().
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The radius of C' is the quantity R(C) = max{||z||2 : € C}, and the polar body
C° of C'is

(1.19) C°:={yeR": (z,y) <lforalzeC}.

Whenever we write a ~ b, we mean that there exist universal constants cy,co > 0
such that cia < b < cpa. The letters ¢, c’, c1,co > 0 ete., denote universal positive
constants which may change from line to line.

A convex body K in R™ is called isotropic if it has volume |K| = 1, center of
mass at the origin, and there is a constant Ly > 0 such that

(1.20) /K<x, 0)2dx = L3

for every # in the Euclidean unit sphere S5~'. For every convex body K in R”
there exists an affine transformation 7" of R™ such that T'(K) is isotropic. Moreover,
if we ignore orthogonal transformations, this isotropic image is unique, and hence,
the isotropic constant Ly is an invariant of the affine class of K. We refer to [18]
and [8] for more information on isotropic convex bodies.

2 The main inclusion

In this Section we prove Theorem 1.1. Let K be an isotropic convex body in R™.
For every ¢ > 1 consider the L,—centroid body Z,(K) of K; recall that

(2.1) hay(1) (@) = s g o= ( /K |<y,x>|qdy>1/q.

Since | K| = 1, we readily see that Z;(K) C Z,(K) C Z,(K) C Z(K) for every
1 <p<q< oo, where Zoo(K) = conv{K,—K}. On the other hand, one has the
reverse inclusions

(2:2) 24(K) € ~.2,(K)
for every 1 < p < g < o0, as a consequence of the ¢;—behavior of y — (y,x).
Observe that Z,(K) is always symmetric, and Z,(TK) = T(Z,(K)) for every T €
SL(n) and g € [1,00]. Also, if K has its center of mass at the origin, then Z,(K) D
c¢Zs(K) for all ¢ > n, where ¢ > 0 is an absolute constant. We refer to [8] for
proofs of these assertions and further information.

Lemma 2.1 Let 0 <t < 1. For every § € S"~! one has

_ $9)2
2.3 P(lx e K |(@.0)] = t]-0)]) > L



Proof. We apply the Paley-Zygmund inequality

(2.4) P(g(z) > t"E (g)) > (1 —t9)? [E gg])

for the function g(z) = |(x,#)|?. Since, by (2.2),
(2.5) E(¢°) = E|(x,0)"" < C* (E |(z,0)|)* = C* [E (9))*
for some absolute constant C' > 0, the lemma is proved. O

Lemma 2.2 For every o C {1,...,N} and any 6 € S"~* one has
(2.6)

= 1
P (18 = (1) €KY 5 max,0)) < 5160 ) < ex(-ol/4C),
where C' > 0 is an absolute constant.

Proof. Applying Lemma 2.1 with ¢t = 1/2 we see that

P (max|(;,0) < 100, ) = [T (165.0)] < 21,0,
(et 0 < 50600) = TTP (o001 <

JEOT

jEOT
|o]
1
< (1——
< ()
< exp(=lo]/(4C7)),
since 1 —v < e for every v > 0. |

Proof of Theorem 1.1. Let I' : % — ¢5 be the random operator defined by

(2.7) I(y) = ({@1,9), o (ensy)).

We modify an idea from [16]. Define m = [8(N/n)*] and k = [N/m]. Fix a
partition o1,...,0% of {1,..., N} with m < |o;| for all i = 1,...,k and define the
norm

(28) o = 2 3 125 )l
i=1
Since
(29) hacy(2) = max (@, 2)] = [ PrL(:) o
for all z€ R" and i = 1,..., k, we observe that
(2.10) hicy (2) 2 [IT(2)]lo-



If z € R" and ||T'(2)[lo < %[[{,2)|lg, then, Markov’s inequality implies that there
exists I C {1,...,k} with |I| > k/2 such that ||P;,I'(2)|lsc < 3/[(,2)|q, for all
i € I. Tt follows that, for fixed z € S"~! and o > 1,

1
(TGl < 116,231)
< Y <Paif(z)||oo < 2l Bl for all i e I)

H=[(k+1)/2]

< Y TP(IRrGl < 5620)

|1|=[(k+1) /2] i€1

< Y Iew o/

|1|=[(k+1)/2) i€]
k
< —c1km/C1?
< (4 1) 0 et/
<exp(kln2—c1km/C?).
Choosing
(2.11) q =~ BIn(N/n)

we see that

(212) P (ITG < 3162l ) < exp (-eaV' 0

Let S = {2z : ||(-,2)|lq/2 = 1} and consider a d-net U of S with cardinality |U| <
(3/6)™. For every u € U we have

(2.13) P <||I‘(u)||0 < ;) < exp (—caN'"Pnf),

and hence,

(2.14) P (U {||I‘(u)||0 < ;}) < exp (nIn(3/68) — Cle_ﬁnﬁ) .

uelU

Fix v > 1 and set

(2.15) Q, ={0:|: 05 — 6| <yLgVN}.

Since Z,(K) 2 cLk By, we have

(2.16) IT(2)llo < TIIF 2)lla < evLr v/ N/K|zlls < evv/N/EII(, 2) g

for all z € R” and all I' in Q,,.



Let z € S. There exists u € U such that 1||(-,z — u)||q; < 6, which implies that

(2.17) IT(w)llo < IT(2)llo + cvd+/N/k
on Q.. Now, choose 6 = \/k/N/(4cy). Then,
Pl e Qy: 3z e R":[[T(2)llo < [[{-;2)ll4/8})
=P({T'eQ,: Jz€S5:|I'(2)|lo <1/4})
<PHT €Qy: JuelU:|T(u)|o<1/2})

< exp (n In(12¢y+/N/k) — cle_ﬁnﬁ)
< exp (—CSNl_BnB)

provided that N is large enough. Since hi, (z) > |[|[T'(2)]|o for every z € R™, we get
that Ky 2 c¢Z,(K) with probability greater than 1 — exp (—csN'=#nf) — P(||T" :
03 — Y| > vLxVN).

We now analyze the restriction for N; we need nln(12¢c47/N/k) < CN'=Pnh
for some suitable constant C' > 0. Assuming

(2.18) N > 12¢yn,

and since 8 € (0, %], using the definitions of k£ and m we see that it is enough to

guarantee
In(N/n) < C+/N/n,

which is valid if N/n > ¢5 for a suitable absolute constant c¢5 > 0. We get the result
taking (2.18) into account. O

Remark 2.3 The statement of Theorem 1.1 raises the question to estimate the
probability

(2.19) P(2,) = P(||T : €5 — €] > vLxg V'N).

In [16] it was proved that if I, y = (&;;)1<i<n, 1<j<n is @ random matrix, where ;;
are independent symmetric random variables satisfying ||&;;|| L2 > 1 and [|&;;| 4. <
p for some p > 1, then P(Q2,) < exp(—c(p,v)N). In our case, I' is a random N X n
matrix whose rows are N uniform random points from an isotropic convex body
K in R™. Then, the question is to estimate the probability that, N random points
r1,...,xN from K satisfy

N
1
(2.20) ¥ > (x;,0) <4°Lik
j=1

for all § € S*~!. This is related to the following well-studied question of Kannan,
Lovész and Simonovits [15] which has its origin in the problem of finding a fast



algorithm for the computation of the volume of a given convex body: given d,¢ €
(0,1), find the smallest positive integer Ny(n,d,e) so that if N > Ny then with
probability greater than 1 — § one has

N
(2.21) (1-e)L% < }V;m,w? < (1+2)L

for all @ € S™~L. In [15] it was proved that one can have Ny ~ ¢(d, €)n?, which was
later improved to Ny ~ ¢(6, e)n(Inn)3 by Bourgain [2] and to Ny ~ ¢(4, ¢)n(Inn)?
by Rudelson [24]. One can actually check (see [11]) that this last estimate can be
obtained by Bourgain’s argument if we also use Alesker’s concentration inequality.
For subsequent developments, see see, for instance, [20], [13], [17] and [1].

Here, we are only interested in the upper bound of (2.21); actually, we need
an isomorphic version of this upper estimate, since we are allowed to choose an
absolute constant v > 1 in (2.20). An application of the main result of [17] to the
isotropic case gives such an estimate: If N > ¢;n1n?n, then

1/4
(222)  P(T: ¢ — Y| > yLxgVN) < exp (C‘” <(h1N)(annn)> ) '

A slightly better estimate can be extracted from the work of Guédon and Rudelson
in [13]. It should be emphasized that this term does not allow us to fully exploit
the second term exp (703N l’ﬁnﬁ) in the probability estimate of Theorem 1.1.
However, it is not clear if it is optimal.

Remark 2.4 G. Paouris and E. Werner [22] have recently studied the relation
between the family of L,-centroid bodies and the family of floating bodies of a
convex body K. Given ¢ € (0, %], the floating body K of K is the intersection of
all halfspaces whose defining hyperplanes cut off a set of volume § from K. It was
observed in [18] that Kj is isomorphic to an ellipsoid as long as § stays away from
0. In [22] it is proved that

(2.23) 1216 (K) C Ks C caZin1/5)(K)

where c1,co > 0 are absolute constants. From Theorem 1.1 it follows that if K is
isotropic and if, for example, N > n? then

(2.24) KN 2 csKy/n

with probability greater than 1 —o0,(1), where c5 > 0 is an absolute constant. This
fact should be compared with the following well-known result from [3]: for any
convex body K in R™ one has c|K;,y| < E|Ky| < ¢,|K; x| (Where the constant
on the left is absolute and the right hand side inequality holds true with a constant
¢, depending on the dimension, for N large enough; the critical value of N is
exponential in n).



2.1 Unconditional case

In this subsection we consider separately the case of unconditional convex bodies:
we assume that K is centrally symmetric and that, after a linear transformation,

the standard orthonormal basis {e1,...,e,} of R™ is a l-unconditional basis for
| - ||k, i.e. for every choice of real numbers ¢1,...,t, and every choice of signs
g5 = +1,

(2.25) Haltlel —+ -+ €ntn€nHK = Htlel + -4 tnenHK.

Then, a diagonal operator brings K to the isotropic position. It is also known that
the isotropic constant of an unconditional convex body K satisfies Lx ~ 1.
Bobkov and Nazarov have proved that K D ¢3Q),,, where Q,, = [f%, %]” (see
[4]). The following argument of R. Latala (private communication) shows that the
family of L,-centroid bodies of the cube @, is extremal in the sense that Z,(K) D
cZ4(Qy) for all ¢ > 1, where ¢ > 0 is an absolute constant: Let £1,¢e2,...,¢&,
be independent and identically distributed +1 random variables, defined on some
probability space (£2, F,P), with distribution P(e; = 1) = P(¢; = —1) = 1. For ev-
ery § € S !, by the unconditionality of K, Jensen’s inequality and the contraction

principle, one has
q 1/q q 1/q
/ dz = // dz dP(e)
K |z QJK |;=

€5 O Ml La(xc)

n n
> > bieilai]
i=1 i=1

n q 1/q n q 1/q
Q=1 K Q=1
n q 1/q
> (/Q Ztioiyi dy) = [I¢, @)l La(@.)
n |i=1

where t; = fK |x;|dx and t0 = (t161,...,t,0,). Since t; ~ 1 for all ¢ = 1,...,n,
from (1.7) we readily see that
1€ O llLacrey = 16, @) a(@n) = el Ol La(@n)-

In view of (1.8), this observation and Theorem 1.1 show that, if K is unconditional,
then a random K contains Zi,(n/n)(@Qn):

Theorem 2.5 Let 5 € (0,1/2] and v > 1. There exists an absolute constant ¢ > 0
so that if

(2.26) N > N(v,n) = cyn,
and if Ky = conv{zy,...,xny} is a random polytope spanned by N independent
random points x1, ..., xN uniformly distributed in an unconditional isotropic conver

body K in R™, then we have
(2.27) Ky 21 C(a)=ci (aByNBL)  for alla < cay/BIn(N/n),
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with probability greater than
(2.28) 1—exp (—esN'7PnP) —P(|T: 65 — 65| > yV/N),

where T : €5 — (Y is the random operator T'(y) = ((x1,y),...(xxn,y)) defined by
the vertices x1,...,xn of Kn.

Next, we outline a direct proof of Theorem 2.5 (in which L,-centroid bodies are
not involved): For k € N and y € R", define

1/2
k k
(229) [yllpg =suwp D> | Do cUBi=l, BinB; =0 (i #3) ¢,
i=1 \jEB; i=1
where we write [n] for the set {1,2,...,n}. Montgomery—Smith has shown (see

[19]) that: For any y € R™ and k € N, one has
n 1 k

(230) P (Z i > A||y|p(k)> > (3) 1-22%  (0<A<1V9).
i=1

Also, for y € R™, one has

(2.31) Yl P2y < K12y, t) < V2[lyllpee

when #? € N, from where one concludes the following:

Lemma 2.6 There exists a constant ¢ > 0 such that, for ally € R™ and any t > 0,

n
(232) P (Z EilYi Z )\KLQ(y,t)) Z €7¢(A)t2,

i=1
where ¢(A) = 4In(3(1 — 2A%)72) for 0 < A < 1/V2.

P. Pivovarov [23] has recently obtained the following result: There exists an
absolute constant C' > 1 such that for any unconditional isotropic convex body K
in R™, the spherical measure of the set of & € S"~! such that

P (|(z,0)| > t) > exp(—Ct?)

whenever C' <t < C‘l/fn, is at least 1 — 27™. The proof of the next Lemma follows

more or less the same lines.

Lemma 2.7 Let K be an isotropic unconditional convezr body in R™. For every
6 € S* ! and any a > 1 we have

(2.33) P, ((2,0) > heo)(0)) > cre™e".
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Proof. For § = (0;)7, € S* !, x € K and 0 < s < 1/+/2 define the set
(2.34) Ks(0)={z e K : Ki12(0,a) < sKjz(x0,a)},

where by “z6” we mean the vector with coordinates x;6; and s is to be chosen. We
have:

P, <Z z;0; > hC(a)(9)> = P, (Z gixib; > hC(a)(9)>
=1

i=1
= / ]P)E (Z Ez(xzez) Z hC(a)(9)> dx
K i=1
— / ]Pe (Zaz(zzﬁz) Z KLQ(Q,OL)) dI
K i=1
> / P. (Z gi(xi0;) > SKLQ(JJ@,O()> dx
K(0) i=1
> T POTR(0),
by Lemma 2.6.
Assume first that m := a2 is an integer and let By, B, ..., B,, be a partition
of the set {1,2,...,n} so that
1/2
(2.35) Kia(0,0)=> | > 16, =: A.
i=1 \j€B;
Consider the seminorm
1/2
(2.36) F@)=> " > l=05°
i=1 \jEB;

Then, using the reverse Holder inequality c1 || f[|z2(x) < || fllz1 (k) and the fact that
Ly ~1, we get

1/2
/Kl,z(xe,a)dx > /Z > Jw05
K K =1 \jeB;
1/2
> ad [ S0k [ e
i=1 \jeB; K
> cA.

We now apply the Paley-Zygmund inequality to get
(BIfJ? ~ (s4)°)

(2.37) |Ks(0)| =P, (f > SA) > E [f4]

12



Choosing s = ﬁ min{c, 1} we get

cA4

E[f]

for a suitable new absolute constant ¢ > 0. On the other hand, we can estimate
E [f4] from above, by the reverse Holder inequality:

[Ks(0)] =

1/2
B[PV < ACE[f|=4¢) E| D |20
=1 JEB;
1/2
< deLe Y | Y0105 < 4cA.
1=1 \JEB;
As a result, [K4(6)| > c. Returning to the estimate
(2.38) Pz (Z ziti 2 hc(a)(9)> > e PO KL(6)]
i=1

we get:
(2.39) P, (Z 2:0; > hc(a)(9)> > ce—c0”

i=1
This proves the Lemma for a? € N and the result follows easily for every a. ]

Proof of Theorem 2.5. Now, using the procedure of the proof of Theorem 1.1 we
complete the proof of Theorem 2.5. a

Remark 2.8 Regarding the probability P(||T : ¢4 — £Y| > vv/N), in the un-
conditional case Aubrun has proved in [1] that for every p > 1 and N > pn, one
has

(2.40) P(|T: €5 — 657 > e1(p)V'N) < exp(—ca(p)n'/?).
In particular, one can find ¢, C > 0 so that, if N > Cn, then
(2.41) P(|T: £y — €5 > CVN) < exp(—en'/®).

This allows us to use Theorem 2.5 with a probability estimate 1 — exp(—cn®) for
values of N which are proportional to n.
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3 Weakly sandwiching Ky

We proceed to the question whether the inclusion given by Theorem 1.1 is sharp. It
was already mentioned in the Introduction that we cannot expect a reverse inclusion
of the form Ky C ¢4 Z,(K) with probability close to 1, unless if ¢ is of the order
of n. To see this, observe that, for any a > 0,

P(Kny CaZy(K)) = P(21,22,...,2n5 € aZy(K))
= (P(z € an(K)))N
< JaZy(K)M.

It was proved in [20] that, for every ¢ < n, the volume of Z,(K) is bounded by
(cr/q/nLk)™. This leads immediately to the estimate

(3.1) P(Ky C aZy(K)) < (car/q/nLr)™Y,

where ¢ > 0 is an absolute constant. Assume that K has bounded isotropic constant
and we want to keep o ~ 1. Then, (3.1) shows that, independently from the value
of N, we have to choose ¢ of the order of n so that it might be possible to show
that ]P’(KN - an(K)) is really close to 1. Actually, if ¢ ~ n then this is always
the case, because Z,,(K) D cK.

Lemma 3.1 Let K be a convex body of volume 1 in R™ and let N > n. Fiz o > 1.
Then, for every § € S"~1 one has

(3.2) P (hxy(0) > ahz, k) (0) < Na™9.
Proof. Markov’s inequality shows that
(3.3) Pla,0) :=P(x € K : |(z,0)] = o[ (-,0)][4) < a7
Then,
Phiey (0) 2 ahz, i) (0) =P (max [(z;,0)] = of|(-,O)lg) < N P(e, )
and the result follows. a

Lemma 3.2 Let K be a convex body of volume 1 in R™ and let N > n. For every
a > 1 one has

(3.4) E[0(0: (hxy(0) > ahz,k)(0))] < Na™?

Proof. Immediate: observe that

E[o(0: (hrey (0) = 0z, a0 (0)] = [ Py (0) = bz 1 0)) do(0)
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by Fubini’s theorem. O

The estimate of Lemma 3.2 is already enough to show that if ¢ > c¢Iln N then,
on the average, hx, (0) < chz, (x)(f) with probability greater than 1 — N~¢. 1In
particular, the mean width of a random Ky is bounded by the mean width of
Zln(N/n) (K)

Proposition 3.3 Let K be an isotropic convex body in R™. If ¢ > 2In N then
(3.5) E [w(Kn)] < cw(Z4(K)),
where ¢ > 0 is an absolute constant.

Proof. We write

(3.6) w(Ky) < /A hicy (0) do(8) + co(AS )nLi,

where Ay = {0 : hr (0) < ahz, (k)(0)}. Then,

(3.7) w(Ky) < a /A iz, i) (6) do(6) + co (A% )nLi,

and hence, by Lemma 3.2,

(3.8) Ew(Kn) < aw(Zy(K)) +cNna 9Lk.
Since w(Zy(K)) > w(Z2(K)) = Lk, we get

(3.9) Ew(Kx) < (@ + cNna™)w(Z,(K)).

The result follows if we choose o = e. O

3.1 Volume radius of K

Next, we discuss the volume radius of K. A lower bound follows by comparison
with the Euclidean ball. It was proved in [12, Lemma 3.3] that if K is a convex
body in R™ with volume 1, then

(3.10) P(|Kn|>t) > P(|[B;]n| > t)

for every ¢ > 0. Therefore, it is enough to consider the case of By. In [10] it is
shown that there exist ¢; > 1 and ¢y > 0 such that if7N > cin and zq,...,TN are
independent random points uniformly distributed in B;, then

(3.11) [By]n 2 chin{ln(QN/"),l}BZ

Jn
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with probability greater than 1 — exp(—n). It follows that if N > ¢in then, with
probability greater than 1 — exp(—n) we have

(3.12) K| M" Z@min{hlgﬁzv/n),l},

where ¢; > 1 and ¢y > 0 are absolute constants.

The case n < N < c¢in was studied in [7] where it was proved that (3.11)
continues to hold true with probability greater than 1 — exp(—cn/lnn), where
¢ > 0 is an absolute constant. Combining this fact with (3.10), we see that (3.12)
is valid for all N > n.

We now pass to the upper bound; Proposition 3.3, combined with Urysohn’s
inequality, yields the following:

Proposition 3.4 Let K be an isotropic conver body in R™. If N > n and q >
2In N, then

G [w(En)] _ e w(Zy(K)
N

where c1,co > 0 are absolute constants.

(3.13) E(K,N) <

Proposition 3.4 reduces, in a sense, the question to that of giving upper bounds
for w(Z,(K)). It is proved in [20] that, if ¢ = In N < \/n then w(Z,(K)) < ¢,/qLk.
It follows that

(3.14) E(K,N) < cvln(%l)LK,

which is the conjectured estimate for N < evV™. For ¢ = InN > v/n we know
that w(Z,(K)) < qé% since Zy(K) C (q¢/v/n) Z /m(K). This is most probably a
non-optimal bound.

However, we can further exploit the simple estimate of Lemma 3.1 to obtain a

sharp estimate for larger values of N. We will make use of the following facts:

Fact 1. Let A be a symmetric convex body in R™. For any 1 < ¢ < n, set

(3.15) w_g(A) = </s }ﬂ:@daw)) 71/q.

An application of Holder’s inequality shows that
(3.16)

(||§;||>1/n (/.. 0 io(0)) BE (/.. 0 io(0)) "~ el

From the Blaschke—-Santalé inequality, it follows that
crw—q(A)
v

(3.17) AV < B3y (A) <
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Fact 2. A recent result of G. Paouris (see [21, Proposition 5.4]) shows that if A is
an isotropic convex body in R™ then, for any 1 < g < n/2,

(3.18) wog(Zy(4)) = VA1 y(4)
where

1/p
(3.19) I,(A) = (/A 1S dm) , p > —n.

Fact 3. Let K be an isotropic convex body in R™, let N > n? and ¢ = 2In(2N).
We write

2

1
[w_g/2(Zy(K))]™4 = —75—— do(0)
/5"71 hZ/q(K)(e)

(/Sn thiW) da(9)> (/S m da(0)> .

Observe that Ky € K C (n+ 1)Lk and Z,(K) O Zo(K) D Lk By, and hence,
hicy (0) < (n+1)hz, (k) (0) for all @ € S"~'. Therefore,

M — n+1 q—1 o .
(3.20) /SM W o @) dcr(@)—/o gt [0 (01 hiy (0) > thy,x)(0))] dt.

Fact 4. Taking expectations in (3.20) and using Lemma 3.2, we see that, for every

a>1,
hi . (0)
E / BN do(0
N AN ) ”]

IN

n+1
al +/ gt Nt dt
1
= a?4+¢gNln (H) .
a

Choosing a = 2e and using the fact that e? = (2N)? by the choice of ¢, we see that

M ® 1
/3"*1 hqzq(K)(@) ¢ (9)] =

(3.21) E

where c; > 0 is an absolute constant. Then, Markov’s inequality implies that

hic, (6) .
(3.22) /5 a0 do(0) < (cze)
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with probability greater than 1 — e™9. Going back to Fact 3, we conclude that
[w—q/2(Z4(K))] 77 < fw—q(Kn)) 7, Le.

(3.23) w_q(Kn) < caw_g/o(Z4(K))

with probability greater than 1 — e~ 9.

Proof of Theorem 1.3. Assume that Ky satisfies (3.23) and set Sy = Ky — K.
From Fact 1 we have

(3.24) IKn |V < [Sy|Vm < %w_q(sN) = 2w (Ky).

vn

Now, Fact 4 shows that

(3.25) |Kn|™ < %w—q/Z(Zq(K))

with probability greater than 1 —e~%. Since Zy(K) C cZ,/5(K), using Fact 2 we
write

(3.26) g2 Zo(K)) < ow_g/a(Zoya(K)) < %‘? (K.

Since K is isotropic, we have I_,/5(K) < I3(K) = \/n L, which implies
(327) w_q/g(Zq(K)) S 07\/6LK.
Putting everything together, we have
v/In(N/n)L
(3.28) Ky |Y™ < v Ly =~ M7
Vn Vvn

with probability greater than 1 —e™7 > 1 — % This completes the proof. o
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