Asymptotic shape of a random polytope in a convex body

N. Dafnis, A. Giannopoulos, and A. Tsolomitis

Abstract

Let K be an isotropic convex body in \mathbb{R}^n and let $Z_q(K)$ be the L_q-centroid body of K. For every $N > n$ consider the random polytope $K_N := \text{conv}\{x_1, \ldots, x_N\}$ where x_1, \ldots, x_N are independent random points, uniformly distributed in K. We prove that a random K_N is “asymptotically equivalent” to $Z_{\ln(N/n)}(K)$ in the following sense: there exist absolute constants $\rho_1, \rho_2 > 0$ such that, for all $\beta \in (0, \frac{1}{2}]$ and all $N \geq N(n, \beta)$, one has:

(i) $K_N \supseteq c(\beta) Z_q(K)$ for every $q \leq \rho_1 \ln(N/n)$, with probability greater than $1 - c_1 \exp(-c_2 N^{-\beta n^\beta})$.

(ii) For every $q \geq \rho_2 \ln(N/n)$, the expected mean width $E[w(K_N)]$ of K_N is bounded by $c_3 w(Z_q(K))$.

As an application we show that the volume radius $|K_N|^{1/n}$ of a random K_N satisfies the bounds $c_4 \sqrt{\frac{\ln(2N/n)}{\sqrt{n}}} \leq |K_N|^{1/n} \leq c_5 L_K \sqrt{\frac{\ln(2N/n)}{\sqrt{n}}}$ for all $N \leq \exp(n)$.

1 Introduction

Let K be a convex body of volume 1 in \mathbb{R}^n. For every $q \geq 1$ we define the L_q-centroid body $Z_q(K)$ of K by its support function:

$$h_{Z_q(K)}(x) = \|\langle \cdot, x \rangle\|_q := \left(\int_K |\langle y, x \rangle|^q dy \right)^{1/q}.$$

The aim of this article is to provide some precise quantitative information on the “asymptotic shape” of a random polytope $K_N = \text{conv}\{x_1, \ldots, x_N\}$ spanned by N independent random points x_1, \ldots, x_N uniformly distributed in K. Our approach is to compare K_N with the L_q-centroid body $Z_q(K)$ of K for $q \simeq \ln(N/n)$.

The origin of our work is in the study of the behavior of symmetric random ± 1-polytopes, the absolute convex hulls of random subsets of the discrete cube $E_n^2 = \{-1, 1\}^n$. The natural way to produce these random polytopes is to fix $N > n$ and to consider the convex hull $K_{n,N} = \text{conv}\{ \pm \tilde{X}_1, \ldots, \pm \tilde{X}_N \}$ of N independent random points $\tilde{X}_1, \ldots, \tilde{X}_N$, uniformly distributed over E_n^2. It turns out...
(see [9]) that a random polytope $K_{n,N}$ has the largest possible volume among all ± 1-polytopes with N vertices, at every scale of n and N. This is a consequence of the following fact: If $n \geq n_0$ and if $N \geq n(\ln n)^2$, then

$$K_{n,N} \supseteq c\left(\sqrt{\ln(N/n)}B_2^n \cap B_2^n\right)$$

with probability greater than $1 - e^{-n}$, where $c > 0$ is an absolute constant, B_2^n is the Euclidean unit ball in \mathbb{R}^n and $B_\infty^n = [-1,1]^n$.

In [16], Litvak, Pajor, Rudelson, and Tomczak–Jaegermann worked in a more general setting which contains the previous Bernoulli model and the Gaussian model; let $K_{n,N}$ be the absolute convex hull of the rows of the random matrix $\Gamma_{n,N} = (\xi_{ij})_{1 \leq i \leq N, 1 \leq j \leq n}$, where ξ_{ij} are independent symmetric random variables satisfying certain conditions ($\|\xi_{ij}\|_{L^2} \geq 1$ and $\|\xi_{ij}\|_{L^\psi} \leq \rho$ for some $\rho \geq 1$, where $\| \cdot \|_{L^\psi}$ is the Orlicz norm corresponding to the function $\psi(t) = e^{t^2} - 1$). For this larger class of random polytopes, the estimates from [9] were generalized and improved in two ways: the paper [16] provides estimates for all $N \geq (1+\delta)n$, where $\delta > 0$ can be as small as $1/\ln n$, and establishes the following inclusion: for every $0 < \beta < 1$,

$$K_{n,N} \supseteq c(\rho)\left(\sqrt{\beta \ln(N/n)}B_2^n \cap B_\infty^n\right)$$

with probability greater than $1 - \exp(-c_1 n^\beta N^{1-\beta}) - \exp(-c_2 N)$. The proof in [16] is based on a lower bound of the order of \sqrt{N} for the smallest singular value of the random matrix $\Gamma_{n,N}$ with probability greater than $1 - \exp(-cN)$.

In a sense, both works correspond to the study of the size of a random polytope $K_N = \text{conv}\{x_1, \ldots, x_N\}$ spanned by N independent random points x_1, \ldots, x_N uniformly distributed in the unit cube $Q_n := [-1/2,1/2]^n$. The connection of the estimates (1.2) and (1.3) with L_q-centroid bodies comes from the following observation.

Remark. For $x \in \mathbb{R}^n$ and $t > 0$, define

$$K_{1,2}(x,t) := \inf \{\|u\|_1 + t\|x - u\|_2 : u \in \mathbb{R}^n\}.$$

If we write $(x^*_j)_{j \leq n}$ for the decreasing rearrangement of $(|x_j|)_{j \leq n}$ we have Holmstrom’s approximation formula

$$K_{1,2}(x,t) \leq \sum_{j=1}^{[t^2]} x^*_j + t \left(\sum_{j=\lfloor t^2 \rfloor + 1}^{n} (x^*_j)^2\right)^{1/2} \leq K_{1,2}(x,t)$$

where $c > 0$ is an absolute constant (see [14]). Now, for any $\alpha \geq 1$ define $C(\alpha) = \alpha B_2^n \cap B_\infty^n$. Then,

$$h_{C(\alpha)}(\theta) = K_{1,2}(\theta, \alpha)$$
for every $\theta \in S^{n-1}$. On the other hand,

\begin{equation}
\|\langle \cdot, \theta \rangle\|_{L^q(Q_n)} \simeq \sum_{j \leq q} \theta_j^* + \sqrt{q} \left(\sum_{q < j \leq n} (\theta_j^*)^2 \right)^{1/2}
\end{equation}

for every $q \geq 1$ (see, for example, [6]). In other words,

\begin{equation}
C(\sqrt{q}) \simeq Z_q(Q_n)
\end{equation}

where $Z_q(K)$ is the L_q-centroid body of K. This shows that (1.3) or (1.2) can be written in the form

\begin{equation}
K_{n,N} \supseteq c(\rho) Z_{\beta \ln(N/n)}(Q_n).
\end{equation}

This observation leads us to consider a random polytope $K_N = \text{conv}\{x_1, \ldots, x_N\}$ spanned by N independent random points x_1, \ldots, x_N uniformly distributed in an isotropic convex body K and try to compare K_N with $Z_q(K)$ for a suitable value $q = q(N, n) \simeq \ln(N/n)$. Our first main result states that an analogue of (1.9) holds true in full generality.

Theorem 1.1 Let $\beta \in (0, 1/2]$ and $\gamma > 1$. If

\begin{equation}
N \geq N(\gamma, n) = c_1 \gamma n,
\end{equation}

where $c > 0$ is an absolute constant, for every isotropic convex body K in \mathbb{R}^n we have

\begin{equation}
K_N \supseteq c_2 Z_q(K) \text{ for all } q \leq c_2 \beta \ln(N/n),
\end{equation}

with probability greater than

\begin{equation}
1 - \exp\left(-c_3 N^{1-\beta} n^3\right) - \mathbb{P}(\|\Gamma : \ell_2^n \to \ell_2^n\| \geq \gamma L_K \sqrt{N}),
\end{equation}

where $\Gamma : \ell_2^n \to \ell_2^n$ is the random operator $\Gamma(y) = (\langle x_1, y \rangle, \ldots, \langle x_N, y \rangle)$ defined by the vertices x_1, \ldots, x_N of K_N.

The proof of Theorem 1.1 is given in Section 2, where we also collect what is known about the probability $\mathbb{P}(\|\Gamma : \ell_2^n \to \ell_2^n\| \geq \gamma L_K \sqrt{N})$ which appears in (1.12).

It should be emphasized that a reverse inclusion of the form $K_N \subseteq c_4 Z_q(K)$ cannot be expected with probability close to 1, unless q is of the order of n. This follows by a simple volume argument which makes use of the upper estimate of Paouris (see [20]) for the volume of $Z_q(K)$ and is presented in Section 3. However, one can easily see that K_N is “weakly sandwiched” between $Z_{q_i}(K)$ ($i = 1, 2$), where $q_i \simeq \ln(N/n)$, in the following sense:

Proposition 1.2 For every $\alpha > 1$ one has

\begin{equation}
\mathbb{E} \left[\sigma(\theta : (h_{K_N}(\theta) \geq \alpha h_{Z_{q_i}(K)}(\theta))) \right] \leq N \sigma^{-q_i}.
\end{equation}
This shows that if \(q \geq c_5 \ln(N/n) \) then, for most \(\theta \in S^{n-1} \), one has \(h_{K_N}(\theta) \leq c_6 h_{Z_q(K)}(\theta) \). It follows that several geometric parameters of \(K_N \), e.g. the mean width, are controlled by the corresponding parameter of \(Z_{\ln(N/n)}(K) \).

As an application, we discuss the volume radius of \(K_N \): Let \(K \) be a convex body of volume 1 in \(\mathbb{R}^n \). The question to estimate the expected volume radius

\[
\mathbb{E}(K, N) = \int_K \cdots \int_K |\text{conv}(x_1, \ldots, x_N)|^{1/n} dx_N \cdots dx_1
\]

of \(K_N \) was studied in [12] where it was proved that for every isotropic convex body \(K \) in \(\mathbb{R}^n \) and every \(N \geq n + 1 \),

\[
\mathbb{E}(B(n), N) \leq \mathbb{E}(K, N) \leq cL_K \frac{\ln(2N/n)}{\sqrt{n}}
\]

where \(B(n) \) is a ball of volume 1. This estimate is rather weak for large values of \(N \): a strong conjecture is that

\[
\mathbb{E}(K, N) \simeq \min \left\{ \frac{\sqrt{\ln(2N/n)}}{\sqrt{n}}, 1 \right\} L_K
\]

for every \(N \geq n + 1 \). This was verified in [10] in the unconditional case, where it was also shown that the general problem is related to the \(\psi_2 \)-behavior of linear functionals on isotropic convex bodies. Using a recent result of G. Paouris [21] on the negative moments of the support function of \(h_{Z_q(K)} \) we can settle the question for the full range of values of \(N \).

Theorem 1.3 For every \(N \leq \exp(n) \), one has

\[
c_4 \frac{\sqrt{\ln(2N/n)}}{\sqrt{n}} \leq |K_N|^{1/n} \leq c_5 L_K \frac{\sqrt{\ln(2N/n)}}{\sqrt{n}}
\]

with probability greater than \(1 - \frac{1}{N} \), where \(c_4, c_5 > 0 \) are absolute constants.

Notation and terminology. We work in \(\mathbb{R}^n \), which is equipped with a Euclidean structure \(\langle \cdot, \cdot \rangle \). We denote by \(\| \cdot \|_2 \) the corresponding Euclidean norm, and write \(B_2^n \) for the Euclidean unit ball, and \(S^{n-1} \) for the unit sphere. Volume is denoted by \(| \cdot | \). We write \(\omega_n \) for the volume of \(B_2^n \) and \(\sigma \) for the rotationally invariant probability measure on \(S^{n-1} \). We also write \(A \) for the homothetic image of volume 1 of a convex body \(A \subseteq \mathbb{R}^n \), i.e. \(A := \frac{A}{|A|^{1/n}} \).

A convex body is a compact convex subset \(C \) of \(\mathbb{R}^n \) with non-empty interior. We say that \(C \) is symmetric if \(-x \in C \) whenever \(x \in C \). We say that \(C \) has center of mass at the origin if \(\int_C \langle x, \theta \rangle dx = 0 \) for every \(\theta \in S^{n-1} \). The support function \(h_C : \mathbb{R}^n \to \mathbb{R} \) of \(C \) is defined by \(h_C(x) = \max \{ \langle x, y \rangle : y \in C \} \). The mean width of \(C \) is defined by

\[
w(C) = \int_{S^{n-1}} h_C(\theta) \sigma(d\theta).
\]
The radius of C is the quantity $R(C) = \max\{\|x\|_2 : x \in C\}$, and the polar body C° of C is

\begin{equation}
C^\circ := \{y \in \mathbb{R}^n : \langle x, y \rangle \leq 1 \text{ for all } x \in C\}.
\end{equation}

Whenever we write $a \simeq b$, we mean that there exist universal constants $c_1, c_2 > 0$ such that $c_1 a \leq b \leq c_2 a$. The letters $c, c', c_1, c_2 > 0$ etc., denote universal positive constants which may change from line to line.

A convex body K in \mathbb{R}^n is called isotropic if it has volume $|K| = 1$, center of mass at the origin, and there is a constant $L_K > 0$ such that

\begin{equation}
\int_K \langle x, \theta \rangle^2 dx = L_K^2.
\end{equation}

for every θ in the Euclidean unit sphere S^{n-1}_2. For every convex body K in \mathbb{R}^n there exists an affine transformation T of \mathbb{R}^n such that $T(K)$ is isotropic. Moreover, if we ignore orthogonal transformations, this isotropic image is unique, and hence, the isotropic constant L_K is an invariant of the affine class of K. We refer to [18] and [8] for more information on isotropic convex bodies.

2 The main inclusion

In this Section we prove Theorem 1.1. Let K be an isotropic convex body in \mathbb{R}^n. For every $q \geq 1$ consider the L_q–centroid body $Z_q(K)$ of K; recall that

\begin{equation}
h_{Z_q(K)}(x) = \|\langle \cdot, x \rangle\|_q := \left(\int_K |\langle y, x \rangle|^q dy\right)^{1/q}.
\end{equation}

Since $|K| = 1$, we readily see that $Z_1(K) \subseteq Z_p(K) \subseteq Z_q(K) \subseteq Z_\infty(K)$ for every $1 \leq p \leq q \leq \infty$, where $Z_\infty(K) = \text{conv}\{K, -K\}$. On the other hand, one has the reverse inclusions

\begin{equation}
Z_q(K) \subseteq \frac{cq}{p} Z_p(K)
\end{equation}

for every $1 \leq p < q < \infty$, as a consequence of the ψ_1–behavior of $y \mapsto \langle y, x \rangle$. Observe that $Z_q(K)$ is always symmetric, and $Z_q(TK) = T(Z_q(K))$ for every $T \in SL(n)$ and $q \in [1, \infty]$. Also, if K has its center of mass at the origin, then $Z_q(K) \supseteq cZ_\infty(K)$ for all $q \geq n$, where $c > 0$ is an absolute constant. We refer to [8] for proofs of these assertions and further information.

Lemma 2.1 Let $0 < t < 1$. For every $\theta \in S^{n-1}$ one has

\begin{equation}
P \left(\{x \in K : |\langle x, \theta \rangle| \geq t \|\langle \cdot, \theta \rangle\|_q\}\right) \geq \frac{(1 - t^q)^2}{Cq}.
\end{equation}
Proof. We apply the Paley-Zygmund inequality

\[P(g(x) \geq t^q \mathbb{E}(g)) \geq (1 - t^q)^2 \frac{\mathbb{E}(g)^2}{\mathbb{E}(g^2)} \]

for the function \(g(x) = |\langle x, \theta \rangle|^q \). Since, by (2.2),

\[\mathbb{E}(g^2) = \mathbb{E}|\langle x, \theta \rangle|^2q \leq C^q (\mathbb{E}|\langle x, \theta \rangle|^q)^2 = C^q [\mathbb{E}(g)]^2 \]

for some absolute constant \(C > 0 \), the lemma is proved. \(\square \)

Lemma 2.2 For every \(\sigma \subseteq \{1, \ldots, N\} \) and any \(\theta \in S^{n-1} \) one has

\[P(\{ \tilde{X} = (x_1, \ldots, x_N) \in K_N : \max_{j \in \sigma} |\langle x_j, \theta \rangle| \leq \frac{1}{2} \|\langle \cdot, \theta \rangle\|_q \}) \leq \exp \left(-|\sigma|/(4C^q) \right), \]

where \(C > 0 \) is an absolute constant.

Proof. Applying Lemma 2.1 with \(t = 1/2 \) we see that

\[P \left(\max_{j \in \sigma} |\langle x_j, \theta \rangle| \leq \frac{1}{2} \|\langle \cdot, \theta \rangle\|_q \right) = \prod_{j \in \sigma} P \left(|\langle x_j, \theta \rangle| \leq \frac{1}{2} \|\langle \cdot, \theta \rangle\|_q \right) \]

\[\leq \left(1 - \frac{1}{4C^q} \right)^{|\sigma|} \leq \exp \left(-|\sigma|/(4C^q) \right), \]

since \(1 - v < e^{-v} \) for every \(v > 0 \). \(\square \)

Proof of Theorem 1.1. Let \(\Gamma : \ell_2^n \rightarrow \ell_2^N \) be the random operator defined by

\[\Gamma(y) = (\langle x_1, y \rangle, \ldots, \langle x_N, y \rangle). \]

We modify an idea from [16]. Define \(m = \lceil 8(N/n)^{2/3} \rceil \) and \(k = \lceil N/m \rceil \). Fix a partition \(\sigma_1, \ldots, \sigma_k \) of \(\{1, \ldots, N\} \) with \(m \leq |\sigma_i| \) for all \(i = 1, \ldots, k \) and define the norm

\[\|u\|_0 = \frac{1}{k} \sum_{i=1}^k \|P_{\sigma_i}(u)\|_\infty. \]

Since

\[h_{K_N}(z) = \max_{1 \leq j \leq N} |\langle x_j, z \rangle| \geq \|P_{\sigma_i}(\Gamma(z))\|_\infty \]

for all \(z \in \mathbb{R}^n \) and \(i = 1, \ldots, k \), we observe that

\[h_{K_N}(z) \geq \|\Gamma(z)\|_0. \]
If \(z \in \mathbb{R}^n \) and \(\| \Gamma(z) \|_0 < \frac{1}{4} \| \langle \cdot, z \rangle \|_q \), then, Markov’s inequality implies that there exists \(I \subset \{1, \ldots, k\} \) with \(|I| > k/2 \) such that \(\| P_{\sigma_i} \Gamma(z) \|_\infty < \frac{1}{2} \| \langle \cdot, z \rangle \|_q \), for all \(i \in I \). It follows that, for fixed \(z \in S^{n-1} \) and \(\alpha \geq 1 \),

\[
P \left(\| \Gamma(z) \|_0 < \frac{1}{4} \| \langle \cdot, z \rangle \|_q \right) \leq \sum_{|I|=[(k+1)/2]} \prod_{i \in I} P \left(\| P_{\sigma_i} \Gamma(z) \|_\infty < \frac{1}{2} \| \langle \cdot, z \rangle \|_q \right)
\]

\[
\leq \sum_{|I|=[(k+1)/2]} \prod_{i \in I} \exp \left(-|\sigma_i|/(4C^q) \right)
\]

\[
\leq \left(\frac{k}{[(k+1)/2]} \right) \exp \left(-c_1 km/C^q \right)
\]

\[
\leq \exp \left(k \ln 2 - c_1 km/C^q \right).
\]

Choosing

(2.11) \[q \simeq \beta \ln(N/n) \]

we see that

(2.12) \[P \left(\| \Gamma(z) \|_0 < \frac{1}{4} \| \langle \cdot, z \rangle \|_q \right) \leq \exp \left(-c_2 N^{1-\beta} n^\beta \right). \]

Let \(S = \{ z : \| \langle \cdot, z \rangle \|_q/2 = 1 \} \) and consider a \(\delta \)-net \(U \) of \(S \) with cardinality \(|U| \leq (3/\delta)^n \). For every \(u \in U \) we have

(2.13) \[P \left(\| \Gamma(u) \|_0 < \frac{1}{2} \right) \leq \exp \left(-c_2 N^{1-\beta} n^\beta \right), \]

and hence,

(2.14) \[P \left(\bigcup_{u \in U} \left\{ \| \Gamma(u) \|_0 < \frac{1}{2} \right\} \right) \leq \exp \left(n \ln(3/\delta) - c_2 N^{1-\beta} n^\beta \right). \]

Fix \(\gamma > 1 \) and set

(2.15) \[\Omega_\gamma = \{ \Gamma : \| \Gamma : \ell_2^N \to \ell_2^N \| \leq \gamma L_K \sqrt{N} \}. \]

Since \(Z_q(K) \supseteq c_L K B_2^q \), we have

(2.16) \[\| \Gamma(z) \|_0 \leq \frac{1}{\sqrt{k}} \| \Gamma(z) \|_2 \leq c_L K \sqrt{N/k} \| z \|_2 \leq c_L \sqrt{N/k} \| \langle \cdot, z \rangle \|_q \]

for all \(z \in \mathbb{R}^n \) and all \(\Gamma \) in \(\Omega_\gamma \).
Let \(z \in S \). There exists \(u \in U \) such that \(\frac{1}{2}\|\langle \cdot, z - u \rangle\|_q < \delta \), which implies that

\[(2.17) \quad \|\Gamma(u)\|_0 \leq \|\Gamma(z)\|_0 + c\gamma\delta\sqrt{N/k}\]
on \(\Omega_\gamma \). Now, choose \(\delta = \sqrt{k/N/(4c\gamma)} \). Then,

\[
\mathbb{P}\left(\{ \Gamma \in \Omega_\gamma : \exists z \in \mathbb{R}^n : \|\Gamma(z)\|_0 \leq \|\langle \cdot, z \rangle\|_q/8 \} \right)
\]
\[
= \mathbb{P}\left(\{ \Gamma \in \Omega_\gamma : \exists z \in \mathbb{R}^n : \|\Gamma(z)\|_0 \leq 1/4 \} \right)
\]
\[
\leq \mathbb{P}\left(\{ \Gamma \in \Omega_\gamma : \exists u \in U : \|\Gamma(u)\|_0 \leq 1/2 \} \right)
\]
\[
\leq \exp \left(n \ln(12c\gamma\sqrt{N/k}) - c_2N^{1-\beta}n^\beta \right)
\]
\[
\leq \exp \left(-c_3N^{1-\beta}n^\beta \right)
\]

provided that \(N \) is large enough. Since \(h_{K_N}(z) \geq \|\Gamma(z)\|_0 \) for every \(z \in \mathbb{R}^n \), we get that \(K_N \geq cZ_q(K) \) with probability greater than \(1 - \exp \left(-c_4N^{1-\beta}n^\beta \right) - \mathbb{P}(\|\Gamma : \ell_2^n \rightarrow \ell_2^N \| \geq \gamma L_K\sqrt{N}) \).

We now analyze the restriction for \(N \); we need \(n \ln(12c\gamma\sqrt{N/k}) \leq CN^{1-\beta}n^\beta \) for some suitable constant \(C > 0 \). Assuming

\[(2.18) \quad N \geq 12c\gamma n,\]

and since \(\beta \in (0, \frac{1}{2}] \), using the definitions of \(k \) and \(m \) we see that it is enough to guarantee

\[\ln(N/n) \leq C\sqrt{N/n},\]

which is valid if \(N/n \geq c_5 \) for a suitable absolute constant \(c_5 > 0 \). We get the result taking (2.18) into account.

Remark 2.3 The statement of Theorem 1.1 raises the question to estimate the probability

\[(2.19) \quad \mathbb{P}(\Omega_\gamma) = \mathbb{P}(\|\Gamma : \ell_2^n \rightarrow \ell_2^N \| \geq \gamma L_K\sqrt{N}).\]

In [16] it was proved that if \(I_{n,N} = (\xi_{ij})_{1 \leq i \leq n, 1 \leq j \leq N} \) is a random matrix, where \(\xi_{ij} \) are independent symmetric random variables satisfying \(\|\xi_{ij}\|_{L_2} \geq 1 \) and \(\|\xi_{ij}\|_{L_\infty} \leq \rho \) for some \(\rho \geq 1 \), then \(\mathbb{P}(\Omega_\gamma) \leq \exp(-c(\rho, \gamma)N) \). In our case, \(\Gamma \) is a random \(N \times n \) matrix whose rows are \(N \) uniform random points from an isotropic convex body \(K \) in \(\mathbb{R}^n \). Then, the question is to estimate the probability that, \(N \) random points \(x_1, \ldots, x_N \) from \(K \) satisfy

\[(2.20) \quad \frac{1}{N} \sum_{j=1}^{N} (x_j, \theta)^2 \leq \gamma^2L_K^2\]

for all \(\theta \in S^{n-1} \). This is related to the following well-studied question of Kannan, Lovász and Simonovits [15] which has its origin in the problem of finding a fast
algorithm for the computation of the volume of a given convex body: given \(\delta, \varepsilon \in (0, 1) \), find the smallest positive integer \(N_0(n, \delta, \varepsilon) \) so that if \(N \geq N_0 \) then with probability greater than \(1 - \delta \) one has

\[
(1 - \varepsilon)L_K^2 \leq \frac{1}{N} \sum_{j=1}^{N} (x_j, \theta)^2 \leq (1 + \varepsilon)L_K^2
\]

for all \(\theta \in S^{n-1} \). In [15] it was proved that one can have \(N_0 \simeq c(\delta, \varepsilon)n^2 \), which was later improved to \(N_0 \simeq c(\delta, \varepsilon)n(\ln n)^3 \) by Bourgain [2] and to \(N_0 \simeq c(\delta, \varepsilon)n(\ln n)^2 \) by Rudelson [24]. One can actually check (see [11]) that this last estimate can be obtained by Bourgain’s argument if we also use Alesker’s concentration inequality. For subsequent developments, see see, for instance, [20], [13], [17] and [1].

Here, we are only interested in the upper bound of (2.21): actually, we need an isomorphic version of this upper estimate, since we are allowed to choose an absolute constant \(\gamma \gg 1 \) in (2.20). An application of the main result of [17] to the isotropic case gives such an estimate: If \(N \geq c_1 n \ln^2 n \), then

\[
P(\| \Gamma : \ell_2^n \rightarrow \ell_2^N \| \geq \gamma L_K \sqrt{N}) \leq \exp \left(-c_2 \gamma \left(\frac{N}{(\ln N)(n \ln n)} \right)^{1/4} \right)
\]

A slightly better estimate can be extracted from the work of Guédon and Rudelson in [13]. It should be emphasized that this term does not allow us to fully exploit the second term \(\exp \left(-c_3 N^{1-\beta} n^{\delta} \right) \) in the probability estimate of Theorem 1.1. However, it is not clear if it is optimal.

Remark 2.4 G. Paouris and E. Werner [22] have recently studied the relation between the family of \(L_q \)-centroid bodies and the family of floating bodies of a convex body \(K \). Given \(\delta \in (0, \frac{1}{2}] \), the floating body \(K_\delta \) of \(K \) is the intersection of all halfspaces whose defining hyperplanes cut off a set of volume \(\delta \) from \(K \). It was observed in [18] that \(K_\delta \) is isomorphic to an ellipsoid as long as \(\delta \) stays away from 0. In [22] it is proved that

\[
c_1 Z_{\ln(1/\delta)}(K) \subseteq K_\delta \subseteq c_2 Z_{\ln(1/\delta)}(K)
\]

where \(c_1, c_2 > 0 \) are absolute constants. From Theorem 1.1 it follows that if \(K \) is isotropic and if, for example, \(N \geq n^2 \) then

\[
K_N \supseteq c_3 K_{1/N}
\]

with probability greater than \(1 - o_n(1) \), where \(c_3 > 0 \) is an absolute constant. This fact should be compared with the following well-known result from [3]: for any convex body \(K \) in \(\mathbb{R}^n \) one has \(c|K_{1/N}| \leq E|K_N| \leq c_n|K_{1/N}| \) (where the constant on the left is absolute and the right hand side inequality holds true with a constant \(c_n \) depending on the dimension, for \(N \) large enough; the critical value of \(N \) is exponential in \(n \)).
2.1 Unconditional case

In this subsection we consider separately the case of unconditional convex bodies: we assume that K is centrally symmetric and that, after a linear transformation, the standard orthonormal basis $\{e_1, \ldots, e_n\}$ of \mathbb{R}^n is a 1-unconditional basis for $\| \cdot \|_K$, i.e. for every choice of real numbers t_1, \ldots, t_n and every choice of signs $\varepsilon_j = \pm 1$,

$$\|\varepsilon_1 t_1 e_1 + \cdots + \varepsilon_n t_n e_n\|_K = \|t_1 e_1 + \cdots + t_n e_n\|_K.$$

Then, a diagonal operator brings K to the isotropic position. It is also known that the isotropic constant of an unconditional convex body K satisfies $L_K \simeq 1$.

Bobkov and Nazarov have proved that $K \supseteq c_2 Q_n$, where $Q_n = [-\frac{1}{2}, \frac{1}{2}]^n$ (see [4]). The following argument of R. Latała (private communication) shows that the family of L_q-centroid bodies of the cube Q_n is extremal in the sense that $Z_q(K) \supseteq cZ_q(Q_n)$ for all $q \geq 1$, where $c > 0$ is an absolute constant: Let $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ be independent and identically distributed ± 1 random variables, defined on some probability space (Ω, \mathcal{F}, P), with distribution $P(\varepsilon_i = 1) = P(\varepsilon_i = -1) = \frac{1}{2}$. For every $\theta \in S^{n-1}$, by the unconditionality of K, Jensen’s inequality and the contraction principle, one has

$$\|\langle \cdot, \theta \rangle\|_{L^q(K)} = \left(\int_K \left| \sum_{i=1}^n \theta_i x_i \right|^q dx \right)^{1/q} \geq \left(\int_{Q_n} \sum_{i=1}^n t_i \varepsilon_i \int_K |x_i| dx \right)^{1/q} = \left(\int_{Q_n} \sum_{i=1}^n t_i \varepsilon_i \right)^{1/q} \geq \left(\int_{Q_n} \sum_{i=1}^n t_i \theta_i y_i \right)^{1/q} = \|\langle \cdot, \theta \rangle\|_{L^q(Q_n)},$$

where $t_i = \int_K |x_i| dx$ and $\theta = (t_1 \theta_1, \ldots, t_n \theta_n)$. Since $t_i \simeq 1$ for all $i = 1, \ldots, n$, from (1.7) we readily see that

$$\|\langle \cdot, \theta \rangle\|_{L^q(K)} \geq \|\langle \cdot, (\theta) \rangle\|_{L^q(K)} \geq c \|\langle \cdot, \theta \rangle\|_{L^q(Q_n)}.$$}

In view of (1.8), this observation and Theorem 1.1 show that, if K is unconditional, then a random K_N contains $Z_{\ln(n/n)}(Q_n)$:

Theorem 2.5 Let $\beta \in (0, 1/2]$ and $\gamma > 1$. There exists an absolute constant $c > 0$ so that if

$$N \geq N(\gamma, n) = c \gamma n,$$

and if $K_N = \text{conv}\{x_1, \ldots, x_N\}$ is a random polytope spanned by N independent random points x_1, \ldots, x_N uniformly distributed in an unconditional isotropic convex body K in \mathbb{R}^n, then we have

$$K_N \supseteq c_1 C(\alpha) = c_1 \left(\alpha B^n_2 \cap B^n_\infty \right) \text{ for all } \alpha \leq c_2 \sqrt{\beta \ln(n/n)},$$

\[10]
with probability greater than
\begin{equation}
1 - \exp\left(-c_3N^{1-\beta}n^\beta\right) - \mathbb{P}(\|\Gamma: \ell_2^n \to \ell_2^N\| \geq \gamma \sqrt{N}),
\end{equation}
where $\Gamma: \ell_2^n \to \ell_2^N$ is the random operator $\Gamma(y) = (\langle x_1, y \rangle, \ldots, \langle x_N, y \rangle)$ defined by the vertices x_1, \ldots, x_N of K_N.

Next, we outline a direct proof of Theorem 2.5 (in which L_q-centroid bodies are not involved): For $k \in \mathbb{N}$ and $y \in \mathbb{R}^n$, define
\begin{equation}
\|y\|_{P(k)} := \sup \left\{ \sum_{i=1}^k \left(\sum_{j \in B_i} y_j^2 \right)^{1/2} : \bigcup_{i=1}^k B_i = [n], B_i \cap B_j = \emptyset (i \neq j) \right\},
\end{equation}
where we write $[n]$ for the set $\{1, 2, \ldots, n\}$. Montgomery–Smith has shown (see [19]) that: For any $y \in \mathbb{R}^n$ and $k \in \mathbb{N}$, one has
\begin{equation}
\mathbb{P}\left(\sum_{i=1}^n \epsilon_i y_i \geq \lambda \|y\|_{P(k)} \right) \geq \left(\frac{1}{3} \right)^k (1 - 2\lambda^2)^{2k} \quad (0 \leq \lambda \leq 1/\sqrt{2}).
\end{equation}
Also, for $y \in \mathbb{R}^n$, one has
\begin{equation}
\|y\|_{P(t^2)} \leq K_{1,2}(y, t) \leq \sqrt{2} \|y\|_{P(t^2)}
\end{equation}
when $t^2 \in \mathbb{N}$, from where one concludes the following:

Lemma 2.6 There exists a constant $c > 0$ such that, for all $y \in \mathbb{R}^n$ and any $t > 0$,
\begin{equation}
\mathbb{P}\left(\sum_{i=1}^n \epsilon_i y_i \geq \lambda K_{1,2}(y, t) \right) \geq e^{-\phi(\lambda)t^2},
\end{equation}
where $\phi(\lambda) = 4 \ln(3(1 - 2\lambda^2)^{-2})$ for $0 < \lambda < 1/\sqrt{2}$.

P. Pivovarov [23] has recently obtained the following result: There exists an absolute constant $C \geq 1$ such that for any unconditional isotropic convex body K in \mathbb{R}^n, the spherical measure of the set of $\theta \in S^{n-1}$ such that
\begin{equation}
\mathbb{P}(\|x, \theta\| \geq t) \geq \exp(-Ct^2)
\end{equation}
whenever $C \leq t \leq \sqrt{\frac{2\ln n}{2n}}$, is at least $1 - 2^{-n}$. The proof of the next Lemma follows more or less the same lines.

Lemma 2.7 Let K be an isotropic unconditional convex body in \mathbb{R}^n. For every $\theta \in S^{n-1}$ and any $\alpha \geq 1$, we have
\begin{equation}
\mathbb{P}_x(\langle x, \theta \rangle \geq h_{C(\alpha)}(\theta)) \geq c_1 e^{-c_2 \alpha^2}.
\end{equation}
Proof. For $\theta = (\theta_i)_{i=1}^n \in S^{n-1}$, $x \in K$ and $0 < s < 1/\sqrt{2}$ define the set

\begin{equation}
K_s(\theta) = \{ x \in K : K_{1,2}(\theta, \alpha) \leq sK_{1,2}(x \theta, \alpha) \},
\end{equation}

where by “$x \theta$” we mean the vector with coordinates $x_i \theta_i$ and s is to be chosen. We have:

\begin{equation}
\mathbb{P}_x \left(\sum_{i=1}^n x_i \theta_i \geq h_{C(\alpha)}(\theta) \right) = \mathbb{P}_x \left(\sum_{i=1}^n \varepsilon_i x_i \theta_i \geq h_{C(\alpha)}(\theta) \right)
\end{equation}

\begin{align*}
&= \int_K \mathbb{P}_x \left(\sum_{i=1}^n \varepsilon_i (x_i \theta_i) \geq h_{C(\alpha)}(\theta) \right) dx \\
&= \int_K \mathbb{P}_x \left(\sum_{i=1}^n \varepsilon_i (x_i \theta_i) \geq K_{1,2}(\theta, \alpha) \right) dx \\
&\geq \int_{K_{1,2}(\theta)} \mathbb{P}_x \left(\sum_{i=1}^n \varepsilon_i (x_i \theta_i) \geq sK_{1,2}(x \theta, \alpha) \right) dx \\
&\geq e^{-\phi(s)\alpha^2} |K_s(\theta)|,
\end{align*}

by Lemma 2.6.

Assume first that $m := \alpha^2$ is an integer and let B_1, B_2, \ldots, B_m be a partition of the set $\{1, 2, \ldots, n\}$ so that

\begin{equation}
K_{1,2}(\theta, \alpha) = \sum_{i=1}^m \left(\sum_{j \in B_i} |\theta_j|^2 \right)^{1/2} =: A.
\end{equation}

Consider the seminorm

\begin{equation}
f(x) = \sum_{i=1}^m \left(\sum_{j \in B_i} |x_j \theta_j|^2 \right)^{1/2}.
\end{equation}

Then, using the reverse Hölder inequality $c_1 \|f\|_{L^2(K)} \leq \|f\|_{L^1(K)}$ and the fact that $L_K \simeq 1$, we get

\begin{align*}
\int_K K_{1,2}(x \theta, \alpha) dx &\geq \int_K \sum_{i=1}^m \left(\sum_{j \in B_i} |x_j \theta_j|^2 \right)^{1/2} \\
&\geq c_1 \sum_{i=1}^m \left(\sum_{j \in B_i} |\theta_j|^2 \int_K |x_j|^2 \right)^{1/2} \\
&\geq cA.
\end{align*}

We now apply the Paley-Zygmund inequality to get

\begin{equation}
|K_s(\theta)| = \mathbb{P}_x (f > sA) \geq \frac{(\mathbb{E}|f|^2 - (sA)^2)^2}{\mathbb{E}[f^4]}.
\end{equation}
Choosing \(s = \frac{1}{2\sqrt{2}} \min\{c, 1\} \) we get

\[
|K_s(\theta)| \geq cA^4 \frac{E[f^4]}{\|f\|^4},
\]

for a suitable new absolute constant \(c > 0 \). On the other hand, we can estimate \(E[f^4] \) from above, by the reverse Hölder inequality:

\[
\left(E[f^4] \right)^{1/4} \leq 4cL K m \sum_{i=1}^m \left(\sum_{j \in B_i} |\theta_j|^2 \right)^{1/2} \leq 4cA.
\]

As a result, \(|K_s(\theta)| \geq c \). Returning to the estimate (2.38)

\[
P_X \left(\sum_{i=1}^n x_i \theta_i \geq h_{C(\alpha)}(\theta) \right) \geq e^{-\phi(s)\alpha^2} |K_s(\theta)|,
\]

we get:

(2.39)

\[
P_X \left(\sum_{i=1}^n x_i \theta_i \geq h_{C(\alpha)}(\theta) \right) \geq ce^{-c\alpha^2}.
\]

This proves the Lemma for \(\alpha^2 \in \mathbb{N} \) and the result follows easily for every \(\alpha \). \(\square \)

Proof of Theorem 2.5. Now, using the procedure of the proof of Theorem 1.1 we complete the proof of Theorem 2.5. \(\square \)

Remark 2.8 Regarding the probability \(\mathbb{P}(\|\Gamma : \ell_2^n \to \ell_2^n \| \geq \gamma \sqrt{N}) \), in the unconditional case Aubrun has proved in [1] that for every \(\rho > 1 \) and \(N \geq \rho n \), one has

(2.40)

\[
\mathbb{P}(\|\Gamma : \ell_2^n \to \ell_2^n \| \geq c_1(\rho) \sqrt{N}) \leq \exp(-c_2(\rho)n^{1/5}).
\]

In particular, one can find \(c, C > 0 \) so that, if \(N \geq Cn \), then

(2.41)

\[
\mathbb{P}(\|\Gamma : \ell_2^n \to \ell_2^n \| \geq C \sqrt{N}) \leq \exp(-cn^{1/5}).
\]

This allows us to use Theorem 2.5 with a probability estimate \(1 - \exp(-cn^c) \) for values of \(N \) which are proportional to \(n \).
3 Weakly sandwiching K_N

We proceed to the question whether the inclusion given by Theorem 1.1 is sharp. It was already mentioned in the Introduction that we cannot expect a reverse inclusion of the form $K_N \subseteq c_4 Z_q(K)$ with probability close to 1, unless q is of the order of n. To see this, observe that, for any $\alpha > 0$,

$$\mathbb{P}(K_N \subseteq \alpha Z_q(K)) = \mathbb{P}(x_1, x_2, \ldots, x_N \in \alpha Z_q(K)) = \left(\mathbb{P}(x \in \alpha Z_q(K))\right)^N \leq |\alpha Z_q(K)|^N.$$

It was proved in [20] that, for every $q \leq n$, the volume of $Z_q(K)$ is bounded by $(c \sqrt{q/n} L_K)^n$. This leads immediately to the estimate

$$(3.1) \quad \mathbb{P}(K_N \subseteq \alpha Z_q(K)) \leq (c\alpha \sqrt{q/n} L_K)^n N^N,$$

where $c > 0$ is an absolute constant. Assume that K has bounded isotropic constant and we want to keep $\alpha \approx 1$. Then, (3.1) shows that, independently from the value of N, we have to choose q of the order of n so that it might be possible to show that $\mathbb{P}(K_N \subseteq \alpha Z_q(K))$ is really close to 1. Actually, if $q \sim n$ then this is always the case, because $Z_n(K) \supseteq cK$.

Lemma 3.1 Let K be a convex body of volume 1 in \mathbb{R}^n and let $N > n$. Fix $\alpha > 1$. Then, for every $\theta \in S^{n-1}$ one has

$$(3.2) \quad \mathbb{P}(h_{K_N}(\theta) \geq \alpha h_{Z_q(K)}(\theta)) \leq N \alpha^{-q}.$$

Proof. Markov’s inequality shows that

$$(3.3) \quad \mathbb{P}(\alpha, \theta) := \mathbb{P}(x \in K : |\langle x, \theta \rangle| \geq \alpha \|\langle \cdot, \theta \rangle\|_q) \leq \alpha^{-q}.$$

Then,

$$\mathbb{P}(h_{K_N}(\theta) \geq \alpha h_{Z_q(K)}(\theta)) = \mathbb{P}(\max_{j \leq N} |\langle x_j, \theta \rangle| \geq \alpha \|\langle \cdot, \theta \rangle\|_q) \leq N \mathbb{P}(\alpha, \theta)$$

and the result follows. \hfill \square

Lemma 3.2 Let K be a convex body of volume 1 in \mathbb{R}^n and let $N > n$. For every $\alpha > 1$ one has

$$(3.4) \quad \mathbb{E} \left[\sigma(\theta : (h_{K_N}(\theta) \geq \alpha h_{Z_q(K)}(\theta))) \right] \leq N \alpha^{-q}.$$

Proof. Immediate: observe that

$$\mathbb{E} \left[\sigma(\theta : (h_{K_N}(\theta) \geq \alpha h_{Z_q(K)}(\theta))) \right] = \int_{S^{n-1}} \mathbb{P}(h_{K_N}(\theta) \geq \alpha h_{Z_q(K)}(\theta)) d\sigma(\theta)$$

14
by Fubini’s theorem. □

The estimate of Lemma 3.2 is already enough to show that if \(q \geq c \ln N \) then, on the average, \(h_{K_N}(\theta) \leq c h_{Z_q(K)}(\theta) \) with probability greater than \(1 - N^{-c} \). In particular, the mean width of a random \(K_N \) is bounded by the mean width of \(Z_{\ln(N/n)}(K) \):

Proposition 3.3 Let \(K \) be an isotropic convex body in \(\mathbb{R}^n \). If \(q \geq 2 \ln N \) then

\[
E[w(K_N)] \leq c w(Z_q(K)),
\]

where \(c > 0 \) is an absolute constant.

Proof. We write

\[
w(K_N) \leq \int_{A_N} h_{K_N}(\theta) \, d\sigma(\theta) + c\sigma(A_N) n L_K,
\]

where \(A_N = \{ \theta : h_{K_N}(\theta) \leq a h_{Z_q(K)}(\theta) \} \). Then,

\[
w(K_N) \leq \alpha \int_{A_N} h_{Z_q(K)}(\theta) \, d\sigma(\theta) + c\sigma(A_N) n L_K,
\]

and hence, by Lemma 3.2,

\[
E[w(K_N)] \leq \alpha w(Z_q(K)) + cNn\alpha^{-q}L_K.
\]

Since \(w(Z_q(K)) \geq w(Z_2(K)) = L_K \), we get

\[
E[w(K_N)] \leq (\alpha + cNn\alpha^{-q})w(Z_q(K)).
\]

The result follows if we choose \(\alpha = e \).

3.1 Volume radius of \(K_N \)

Next, we discuss the volume radius of \(K_N \). A lower bound follows by comparison with the Euclidean ball. It was proved in [12, Lemma 3.3] that if \(K \) is a convex body in \(\mathbb{R}^n \) with volume 1, then

\[
\mathbb{P}(|K_N| \geq t) \geq \mathbb{P}(||B^n_2|| \geq t)
\]

for every \(t > 0 \). Therefore, it is enough to consider the case of \(B^n_2 \). In [10] it is shown that there exist \(c_1 > 1 \) and \(c_2 > 0 \) such that if \(N \geq c_1 n \) and \(x_1, \ldots, x_N \) are independent random points uniformly distributed in \(B^n_2 \), then

\[
[B^n_2]] \geq c_2 \min \left\{ \frac{\ln(2N/n)}{\sqrt{n}}, 1 \right\} B^n_2
\]

15
with probability greater than $1 - \exp(-n)$. It follows that if $N \geq c_1 n$ then, with probability greater than $1 - \exp(-n)$ we have

$$|K_N|^{1/n} \geq c_2 \min \left\{ \frac{\sqrt{\ln(2N/n)}}{\sqrt{n}}, 1 \right\},$$

where $c_1 > 1$ and $c_2 > 0$ are absolute constants.

The case $n < N < c_1 n$ was studied in [7] where it was proved that (3.11) continues to hold true with probability greater than $1 - \exp(-cn/\ln n)$, where $c > 0$ is an absolute constant. Combining this fact with (3.10), we see that (3.12) is valid for all $N > n$.

We now pass to the upper bound; Proposition 3.3, combined with Urysohn’s inequality, yields the following:

Proposition 3.4 Let K be an isotropic convex body in \mathbb{R}^n. If $N > n$ and $q \geq 2 \ln N$, then

$$\mathbb{E}(K, N) \leq c_1 \frac{\mathbb{E}[w(K_N)]}{\sqrt{n}} \leq c_2 \frac{w(Z_q(K))}{\sqrt{n}},$$

where $c_1, c_2 > 0$ are absolute constants.

Proposition 3.4 reduces, in a sense, the question to that of giving upper bounds for $w(Z_q(K))$. It is proved in [20] that, if $q = \ln N \leq \sqrt{n}$ then $w(Z_q(K)) \leq c\sqrt{q}L_K$. It follows that

$$\mathbb{E}(K, N) \leq c\frac{\sqrt{\ln(N/n)}L_K}{\sqrt{n}},$$

which is the conjectured estimate for $N \leq e^{\sqrt{n}}$. For $q = \ln N > \sqrt{n}$ we know that $w(Z_q(K)) \leq \frac{qL_K}{\sqrt{n}}$ since $Z_q(K) \subseteq (q/\sqrt{n})Z_{\sqrt{n}}(K)$. This is most probably a non-optimal bound.

However, we can further exploit the simple estimate of Lemma 3.1 to obtain a sharp estimate for larger values of N. We will make use of the following facts:

Fact 1. Let A be a symmetric convex body in \mathbb{R}^n. For any $1 \leq q < n$, set

$$w_{-q}(A) = \left(\int_{S^{n-1}} \frac{1}{h_A^q(\theta)} d\sigma(\theta) \right)^{-1/q}.$$

An application of Hölder’s inequality shows that

$$\left(\frac{|A|^q}{|B_2|^q} \right)^{1/n} = \left(\int_{S^{n-1}} \frac{1}{h_A^q(\theta)} d\sigma(\theta) \right)^{1/n} \geq \left(\int_{S^{n-1}} \frac{1}{h_{B_2}^q(\theta)} d\sigma(\theta) \right)^{1/q} \geq \frac{1}{w_{-q}(A)}.$$

From the Blaschke–Santaló inequality, it follows that

$$|A|^{1/n} \leq |B_2|^{1/n} w_{-q}(A) \leq \frac{c_1 w_{-q}(A)}{\sqrt{n}}.$$
Fact 2. A recent result of G. Paouris (see [21, Proposition 5.4]) shows that if A is an isotropic convex body in \mathbb{R}^n then, for any $1 \leq q < n/2$,

\[(3.18) \quad w_q(Z_q(A)) \simeq \sqrt[2]{I_{-q}(A)}\]

where

\[(3.19) \quad I_p(A) = \left(\int_A \|x\|_p^p \, dx \right)^{1/p}, \quad p > -n.\]

Fact 3. Let K be an isotropic convex body in \mathbb{R}^n, let $N > n^2$ and $q = 2 \ln(2N)$. We write

\[
[w_{-q/2}(Z_q(K))]^{-q} = \left(\int_{S^{n-1}} \frac{1}{h^{q/2}_{Z_q(K)}(\theta)} \, d\sigma(\theta) \right)^2 \leq \left(\int_{S^{n-1}} \frac{1}{h^{q}_{K_N}(\theta)} \, d\sigma(\theta) \right) \left(\int_{S^{n-1}} \frac{h^{q}_{K_N}(\theta)}{h^{q}_{Z_q(K)}(\theta)} \, d\sigma(\theta) \right).
\]

Observe that $K_N \subseteq K \subseteq (n + 1)L_K$ and $Z_q(K) \supseteq Z_2(K) \supseteq L_K B_{n/2}$, and hence, $h_{K_N}(\theta) \leq (n + 1)h_{Z_q(K)}(\theta)$ for all $\theta \in S^{n-1}$. Therefore,

\[(3.20) \quad \int_{S^{n-1}} \frac{h^{q}_{K_N}(\theta)}{h^{q}_{Z_q(K)}(\theta)} \, d\sigma(\theta) = \int_{0}^{n+1} q^{t-q-1} \left[\sigma(\theta : h_{K_N}(\theta) \geq th_{Z_q(K)}(\theta)) \right] \, dt.
\]

Fact 4. Taking expectations in (3.20) and using Lemma 3.2, we see that, for every $a > 1$,

\[
\mathbb{E} \left[\int_{S^{n-1}} \frac{h^{q}_{K_N}(\theta)}{h^{q}_{Z_q(K)}(\theta)} \, d\sigma(\theta) \right] \leq a^q + \int_{a}^{n+1} q^{t-q-1} Nt^{-q} \, dt = a^q + qN \ln \left(\frac{n+1}{a} \right).
\]

Choosing $a = 2e$ and using the fact that $e^q = (2N)^2$ by the choice of q, we see that

\[(3.21) \quad \mathbb{E} \left[\int_{S^{n-1}} \frac{h^{q}_{K_N}(\theta)}{h^{q}_{Z_q(K)}(\theta)} \, d\sigma(\theta) \right] \leq c_2^q \]

where $c_2 > 0$ is an absolute constant. Then, Markov’s inequality implies that

\[(3.22) \quad \int_{S^{n-1}} \frac{h^{q}_{K_N}(\theta)}{h^{q}_{Z_q(K)}(\theta)} \, d\sigma(\theta) \leq (c_2e)^q\]
with probability greater than $1 - e^{-q}$. Going back to Fact 3, we conclude that
\[
[w_{-q/2}(Z_q(K))]^{-q} \leq c_3[w_{-q}(K_N)]^{-q}, \text{ i.e.}
\]
(3.23) \[w_{-q}(K_N) \leq c_4 w_{-q/2}(Z_q(K))\]
with probability greater than $1 - e^{-q}$.

Proof of Theorem 1.3. Assume that K_N satisfies (3.23) and set $S_N = K_N - K_N$.
From Fact 1 we have
\[
|K_N|^{1/n} \leq |S_N|^{1/n} \leq \frac{c_1}{\sqrt{n}} w_{-q}(S_N) = 2 \frac{c_1}{\sqrt{n}} w_{-q}(K_N).
\]
(3.24)

Now, Fact 4 shows that
\[
|K_N|^{1/n} \leq \frac{c_5}{\sqrt{n}} w_{-q/2}(Z_q(K))
\]
(3.25)
with probability greater than $1 - e^{-q}$. Since $Z_q(K) \subseteq cZ_{q/2}(K)$, using Fact 2 we write
\[
w_{-q/2}(Z_q(K)) \leq c_6 w_{-q/2}(Z_{q/2}(K)) \leq \frac{c_7 \sqrt{q}}{\sqrt{n}} I_{-q/2}(K).
\]
(3.26)

Since K is isotropic, we have $I_{-q/2}(K) \leq I_2(K) = \sqrt{n} L_K$, which implies
\[
w_{-q/2}(Z_q(K)) \leq c_7 \sqrt{q} L_K.
\]
(3.27)

Putting everything together, we have
\[
|K_N|^{1/n} \leq \frac{c_8 \sqrt{q}}{\sqrt{n}} L_K \simeq \frac{\sqrt{\ln(N/n)} L_K}{\sqrt{n}},
\]
(3.28)
with probability greater than $1 - e^{-q} \geq 1 - \frac{1}{N}$. This completes the proof. \qed

Acknowledgement. We would like to thank Grigoris Paouris for bringing to our attention his formula on negative moments of the support function of centroid bodies.

References

G. Paouris and E. Werner, *Personal communication*.

19

N. Dafnis: Department of Mathematics, University of Athens, Panepistimiopolis 157 84, Athens, Greece.
E-mail: nikdafnis@googlemail.com

A. Giannopoulos: Department of Mathematics, University of Athens, Panepistimiopolis 157 84, Athens, Greece.
E-mail: apgiannop@math.uoa.gr

A. Tsolomitis: Department of Mathematics, University of the Aegean, Karlovassi 832 00, Samos, Greece.
E-mail: atsol@aegean.gr