SEEMOUS 2008

South Eastern European Mathematical Olympiad for University Students

Athens - March 7, 2008

Problem 1

Let $f:[1,\infty)\to (0,\infty)$ be a continuous function. Assume that for every a>0, the equation f(x)=ax has at least one solution in the interval $[1,\infty)$.

- (a) Prove that for every a > 0, the equation f(x) = ax has infinitely many solutions.
- (b) Give an example of a strictly increasing continuous function f with these properties.

Problem 2

Let P_0, P_1, P_2, \ldots be a sequence of convex polygons such that, for each $k \geq 0$, the vertices of P_{k+1} are the midpoints of all sides of P_k . Prove that there exists a unique point lying inside all these polygons.

Problem 3

Let $\mathcal{M}_n(\mathbb{R})$ denote the set of all real $n \times n$ matrices. Find all surjective functions $f: \mathcal{M}_n(\mathbb{R}) \to \{0, 1, \dots, n\}$ which satisfy

$$f(XY) \le \min\{f(X), f(Y)\}$$

for all $X, Y \in \mathcal{M}_n(\mathbb{R})$.

Problem 4

Let n be a positive integer and $f:[0,1]\to\mathbb{R}$ be a continuous function such that

$$\int_0^1 x^k f(x) \, dx = 1$$

for every $k \in \{0, 1, \dots, n-1\}$. Prove that

$$\int_0^1 (f(x))^2 \, dx \, \ge \, n^2.$$

Answers

Problem 1

Solution. (a) Suppose that one can find constants a > 0 and b > 0 such that $f(x) \neq ax$ for all $x \in [b, \infty)$. Since f is continuous we obtain two possible cases:

1.) f(x) > ax for $x \in [b, \infty)$. Define

$$c = \min_{x \in [1,b]} \frac{f(x)}{x} = \frac{f(x_0)}{x_0}.$$

Then, for every $x \in [1, \infty)$ one should have

$$f(x) > \frac{\min(a, c)}{2}x,$$

a contradiction.

2.) f(x) < ax for $x \in [b, \infty)$. Define

$$C = \max_{x \in [1,b]} \frac{f(x)}{x} = \frac{f(x_0)}{x_0}.$$

Then,

$$f(x) < 2\max(a, C)x$$

for every $x \in [1, \infty)$ and this is again a contradiction.

(b) Choose a sequence $1 = x_1 < x_2 < \cdots < x_k < \cdots$ such that the sequence $y_k = 2^{k\cos k\pi}x_k$ is also increasing. Next define $f(x_k) = y_k$ and extend f linearly on each interval $[x_{k-1}, x_k]$: $f(x) = a_k x + b_k$ for suitable a_k, b_k . In this way we obtain an increasing continuous function f, for which $\lim_{n\to\infty} \frac{f(x_{2n})}{x_{2n}} = \infty$ and $\lim_{n\to\infty} \frac{f(x_{2n-1})}{x_{2n-1}} = 0$. It now follows that the continuous function $\frac{f(x)}{x}$ takes every positive value on $[1, \infty)$.

Problem 2

Solution. For each $k \geq 0$ we denote by $A_i^k = (x_i^k, y_i^k)$, i = 1, ..., n the vertices of P_k . We may assume that the center of gravity of P_0 is O = (0, 0); in other words,

$$\frac{1}{n}(x_1^0 + \dots + x_n^0) = 0$$
 and $\frac{1}{n}(y_1^0 + \dots + y_n^0) = 0$.

Since $2x_i^{k+1}=x_i^k+x_{i+1}^k$ and $2y_i^{k+1}=y_i^k+y_{i+1}^k$ for all k and i (we agree that $x_{n+j}^k=x_j^k$ and $y_{n+j}^k=y_j^k$) we see that

$$\frac{1}{n}(x_1^k + \dots + x_n^k) = 0$$
 and $\frac{1}{n}(y_1^k + \dots + y_n^k) = 0$

for all $k \geq 0$. This shows that O = (0,0) is the center of gravity of all polygons P_k .

In order to prove that O is the unique common point of all P_k 's it is enough to prove the following claim:

Claim. Let R_k be the radius of the smallest ball which is centered at O and contains P_k . Then, $\lim_{k\to\infty} R_k = 0$. *Proof of the Claim.* Write $\|\cdot\|_2$ for the Euclidean distance to the origin O. One can easily check that there exist $\beta_1, \ldots, \beta_n > 0$ with $\beta_1 + \cdots + \beta_n = 1$ such that

$$A_{j}^{k+n} = \sum_{i=1}^{n} \beta_{i} A_{j+i-1}^{k}$$

for all k and j. Let $\lambda = \min_{i=1,\dots,n} \beta_i$. Since $O = \sum_{i=1}^n A_{j+i-1}^k$, we have the following:

$$||A_{j}^{k+n}||_{2} = \left\| \sum_{i=1}^{n} (\beta_{i} - \lambda) A_{j+i-1}^{k} \right\|_{2}$$

$$\leq \sum_{i=1}^{n} (\beta_{i} - \lambda) ||A_{j+i-1}^{k}||_{2}$$

$$\leq R_{k} \sum_{i=1}^{n} (\beta_{i} - \lambda) = R_{k} (1 - n\lambda).$$

This means that P_{k+n} lies in the ball of radius $R_k(1-n\lambda)$ centered at O. Observe that $1-n\lambda < 1$.

Continuing in the same way we see that P_{mn} lies in the ball of radius $R_0(1-n\lambda)^m$ centered at O. Therefore, $R_{mn} \to 0$. Since $\{R_n\}$ is decreasing, the proof is complete.

Problem 3

Solution. We will show that the only such function is $f(X) = \operatorname{rank}(X)$. Setting $Y = I_n$ we find that $f(X) \leq f(I_n)$ for all $X \in \mathcal{M}_n(\mathbb{R})$. Setting $Y = X^{-1}$ we find that $f(I_n) \leq f(X)$ for all invertible $X \in \mathcal{M}_n(\mathbb{R})$. From these facts we conclude that $f(X) = f(I_n)$ for all $X \in GL_n(\mathbb{R})$.

For $X \in GL_n(\mathbb{R})$ and $Y \in \mathcal{M}_n(\mathbb{R})$ we have

$$\begin{split} f(Y) &= f(X^{-1}XY) \leq f(XY) \leq f(Y), \\ f(Y) &= f(YXX^{-1}) \leq f(YX) \leq f(Y). \end{split}$$

Hence we have f(XY) = f(YX) = f(Y) for all $X \in GL_n(\mathbb{R})$ and $Y \in \mathcal{M}_n(\mathbb{R})$. For k = 0, 1, ..., n, let

$$J_k = \left(\begin{array}{cc} I_k & O \\ O & O \end{array}\right).$$

It is well known that every matrix $Y \in \mathcal{M}_n(\mathbb{R})$ is equivalent to J_k for $k = \operatorname{rank}(Y)$. This means that there exist matrices $X, Z \in GL_n(\mathbb{R})$ such that $Y = XJ_kZ$. From the discussion above it follows that $f(Y) = f(J_k)$. Thus it suffices to determine the values of the function f on the matrices J_0, J_1, \ldots, J_n . Since $J_k = J_k \cdot J_{k+1}$ we have $f(J_k) \leq f(J_{k+1})$ for $0 \leq k \leq n-1$. Surjectivity of f imples that $f(J_k) = k$ for $k = 0, 1, \ldots, n$ and hence $f(Y) = \operatorname{rank}(Y)$ for all $Y \in \mathcal{M}_n(\mathbb{R})$.

Problem 4

Solution. There exists a polynomial $p(x) = a_1 + a_2x + \cdots + a_nx^{n-1}$ which satisfies

(1)
$$\int_0^1 x^k p(x) \, dx = 1 \quad \text{for all } k = 0, 1, \dots, n - 1.$$

It follows that, for all $k = 0, 1, \ldots, n - 1$,

$$\int_0^1 x^k (f(x) - p(x)) \, dx = 0,$$

and hence

$$\int_0^1 p(x)(f(x) - p(x)) \, dx = 0.$$

Then, we can write

$$\int_0^1 (f(x) - p(x))^2 dx = \int_0^1 f(x)(f(x) - p(x)) dx$$
$$= \int_0^1 f^2(x) dx - \sum_{k=0}^{n-1} a_{k+1} \int_0^1 x^k f(x) dx,$$

and since the first integral is non-negative we get

$$\int_0^1 f^2(x) \, dx \ge a_1 + a_2 + \dots + a_n.$$

To complete the proof we show the following:

Claim. For the coefficients a_1, \ldots, a_n of p we have

$$a_1 + a_2 + \dots + a_n = n^2.$$

Proof of the Claim. The defining property of p can be written in the form

$$\frac{a_1}{k+1} + \frac{a_2}{k+2} + \dots + \frac{a_n}{k+n} = 1, \quad 0 \le k \le n-1.$$

Equivalently, the function

$$r(x) = \frac{a_1}{x+1} + \frac{a_2}{x+2} + \dots + \frac{a_n}{x+n} - 1$$

has $0, 1, \ldots, n-1$ as zeros. We write r in the form

$$r(x) = \frac{q(x) - (x+1)(x+2)\cdots(x+n)}{(x+1)(x+2)\cdots(x+n)},$$

where q is a polynomial of degree n-1. Observe that the coefficient of x^{n-1} in q is equal to $a_1+a_2+\cdots+a_n$. Also, the numerator has $0,1,\ldots,n-1$ as zeros, and since $\lim_{x\to\infty} r(x) = -1$ we must have

$$q(x) = (x+1)(x+2)\cdots(x+n) - x(x-1)\cdots(x-(n-1)).$$

This expression for q shows that the coefficient of x^{n-1} in q is $\frac{n(n+1)}{2} + \frac{(n-1)n}{2}$. It follows that

$$a_1 + a_2 + \dots + a_n = n^2.$$