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Abstract. We prove Firey’s 1974 conjecture that convex surfaces moving
by their Gauss curvature become spherical as they contract to points.

1. Introduction

W.J. Firey introduced the motion of convex surfaces by their Gauss cur-
vature as a model for the changing shape of a tumbling stone subjected
to collisions from all directions with uniform frequency [F]. He showed
(assuming some existence and regularity of solutions) that surfaces which
are symmetric about the origin contract to points, becoming spherical in
shape in the process. Firey conjectured that the result should hold with-
out any symmetry assumption. The existence and regularity aspects were
resolved by K.S. Chou [T], but the conjecture has remained open despite
approaches by many authors ([Ch1–2], [Ha2–3], [A2], [L], [LO], [O1–2]).

In this paper we prove Firey’s conjecture:

Theorem 1. LetM0 = x0(M)be a compact, smooth, strictly convex surface
inR3, given by an embeddingx0. Then there exists a unique, smooth solution
{Mt = x(M, t)} of the Gauss curvature flow

∂

∂t
x(p, t) = −K(p, t)ν(p, t)

x(p,0) = x0(p)

for t ∈ [0, T ) whereT = V(M0)/4π andV(M0) is the volume of the region
enclosed byM0. The surfacesMt are strictly convex, and converge toq ∈ R3

ast approachesT. Rescaling aboutq gives smooth convergence to a sphere:
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x̃(p, t) = x(p, t) − q

(3(T − t))1/3
→ x̃T(p)

in C∞, wherex̃T is a smooth embedding with̃xT(M) = S2(1) ⊂ R3.

The existence and uniqueness, smoothness and convexity of the solu-
tions, and the uniform convergence to a point, were all proved in [T]. Our
contribution is the last part of the above theorem. The key step in the proof
is an estimate on the difference of the principal curvatures of the evolving
surface, which we prove by a maximum principle argument.

The estimates we obtain also allow us to deal with non-smooth initial
surfaces:

Theorem 2. Let M0 be the boundary of an open bounded convex region
in R3. Then there exists a unique viscosity solution{Mt} for 0 < t <
T = V(M0)/4π of the Gauss curvature flow which converges in Hausdorff
distance toM0 as t approaches zero.Mt is a C1,1 surface fort ∈ (0, T ),
and there existst0 ∈ (0, T ) depending only onV(M0) anddiam(M0) such
that Mt is C∞ and strictly convex fort ≥ t0, and the subsequent behaviour
is the same as in Theorem 1.

The regularity here is probably optimal, as non-strictly convex surfaces
moving by Gauss curvature can contain stationary planar regions [Ha2]
which persist for some time before disappearing, and approximate solutions
indicate that the surface is no more regular thanC1,1 at the boundary of such
a region.

2. Preliminary results

We denote byν the outward-pointing unit normal toMt , and byg andh the
metric and second fundamental form, defined by

gij =
〈
∂x

∂pi
,
∂x

∂pj

〉
and

hij = −
〈
∂2x

∂pi∂pj
, ν

〉
with respect to some local coordinates{p1, p2} for a region ofM. We denote
by gij the inverse of the metric. The Weingarten map is then given by

h j
i = gjkhki,

where we sum over repeated indices. The principal curvaturesλ1 andλ2
are the eigenvalues of the Weingarten map. The surface is strictly convex
when these are positive everywhere onM. The Gauss curvatureK and the
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mean curvatureH are then given byK = deth = h1
1h

2
2 − (h2

1)
2 = λ1λ2,

andH = hi
i = λ1+ λ2.

The Codazzi identity gives an important symmetry of the covariant
derivatives of the second fundamental form:

∇i h jk = ∇ j hik

so∇h is totally symmetric. Here∇ is the Levi-Civita connection of the
metricg.

These quantities evolve by the following formulae, proved in [Ch1]
and [A1]:

∂

∂t
gij = −2Khij ;
∂

∂t
K = K̇kl∇k∇l K + K2H;

∂

∂t
H = K̇kl∇k∇l H + gij K̈ klmn∇i hkl∇ j hmn+ KH2− K |A|2.

Here|A|2 = h j
i h

i
j = λ2

1+λ2
2, K̇ ij = ∂K

∂hij
= K

(
h−1

)ij
, andK̈klmn = ∂2K

∂hkl∂hmn
.

We observe that the last two terms in the evolution equation forH can be
rewritten using the identityH2−|A|2 = (λ1+λ2)

2−λ2
1−λ2

2 = 2λ1λ2 = 2K ,
to give:

∂

∂t
H = K̇kl∇k∇l H + gij K̈(∇i h,∇ j h)+ 2K2.

3. The curvature estimate

Proposition 3. Let {Mt = x(M, t)}0≤t<T be a smooth, strictly convex solu-
tion of the Gauss curvature flow. Then

sup
M
|λ1(p, t) − λ2(p, t)| ≤ sup

M
|λ1(p,0)− λ2(p,0)| .

Proof. We will apply the maximum principle to the quantity

Q = H2− 4K = (λ1− λ2)
2.

We first compute an evolution equation forQ, observing that in the evolution
equation for

∂

∂t
Q = 2H

∂

∂t
H − 4

∂

∂t
K

= 2H
(

K̇kl∇k∇l H + gij K̈(∇i h,∇ j h)+ 2K2
)

− 4
(
K̇kl∇k∇l K + K2H

)
= K̇kl∇k∇l Q− 2K̇kl∇kH∇l H + 2Hgij K̈(∇i h,∇ j h).



154 B. Andrews

Supposep is a point inM where a maximum ofQ is attained at time
t ∈ [0, T ). Choose local coordinates forM nearQ such thatgij (p, t) = δij
andh is diagonal. At this point the leading term on the right hand side of the
above evolution equation is non-positive. We now estimate the remaining
terms, using the fact that∇Q = 0 at p:

0= ∇1Q = 2H∇1H − 4∇1K
= 2(λ1+ λ2) (∇1h11+∇2h22)− 4λ2∇1h11− 4λ1∇1h22

= 2(λ1− λ2) (∇1h11−∇1h22) .

If λ1 = λ2 then Q = 0 and we have nothing to prove. So we can assume
that∇1h11= ∇1h22 at the pointp. Similarly we have∇2h11= ∇2h22. Now
we compute:

K̈(∇1h,∇1h) = 2∇1h11∇1h22− 2(∇1h12)
2

= 2∇1h2
11− 2∇2h2

11

= 2∇1h2
11− 2∇2h2

22

by using the∇1Q = 0 condition and the Codazzi identity. Similarly,

K̈(∇2h,∇2h) = 2∇2h2
22− 2∇1h2

11.

Therefore at the pointp we have

gij K̈(∇i h,∇ j h) = K̈(∇1h,∇1h)+ K̈(∇2h,∇2h) = 0.

Thus the last term on the right-hand side of the evolution equation forQ
vanishes, and the second term is manifestly non-positive. The maximum
principle (see for example [Ha1], Lemma 3.5) applies to show that the
supremum ofQ over M is a non-increasing function of time. ut

4. Convergence

In this section we apply the curvature estimate to prove Theorem 1. We
begin with an isoperimetric estimate:

Proposition 4. If {Mt} evolves by the Gauss curvature flow, then there exists
q̃(t) ∈ R3 such that for any directionp ∈ M,∣∣∣∣〈x(p, t) − q̃, ν(p, t)〉 − 1

8π

∫
Mt

H dµ

∣∣∣∣ ≤ C

4π
A(M),

whereA(Mt) is the surface area ofMt, and

C = sup
p∈M
|λ1(p,0) − λ2(p,0)|.
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Proof. For any directionz ∈ S2, the widthw(z, t) of Mt in directionz is

w(z, t) = sup
x,y∈Mt

〈x− y, z〉.

In [A1], Theorem 5.1 the author proved the following identity:

w(z, t) = 1

2π

∫
Mt

K̇(ez(p),ez(p))dµ(p),

whereez(p) is the unit vector tangent to the image inMt of a great circle
throughν(p) andz under the inverse of the Gauss map. If we writee⊥z for
the orthogonal unit vector at each point, then

H = K̇(ez,ez)+ K̇
(
e⊥z ,e

⊥
z

)
,

and Proposition 3 gives the estimate∣∣K̇(ez,ez)− K̇
(
e⊥z ,e

⊥
z

)∣∣ ≤ C,

sinceK̇(e,e) lies betweenλ1 andλ2 for any unit vectore. This gives:∣∣∣∣w(z, t)− 1

4π

∫
M

H dµ

∣∣∣∣ ≤ C

4π
A(M).

Now we need another identity:

Lemma 5. Let M be a compact strictly convex smooth surface, and define
q̃ = 1

4π

∫
M Kxdµ(x). Letx ∈ M, and writez= ν(x). Then

〈x− q̃, z〉 = 1

2
w(z)+ 1

4π

∫
M

K̇(ez,ez)〈ν, z〉dµ.

Proof. We work onS2, choosing standard angle coordinatesθ ∈ [0, π] and
π ∈ [0,2π) such thatz has coordinatesθ = 0. Let s : S2 → R be the
support function ofM, defined by

s(z′) = sup
y∈M
〈y, z′〉

for anyz′ ∈ S2. Then (see [A1] or [T]) we have the identities

〈y, ν(y)〉 = s(ν(y))

for eachy ∈ M,
w(z′) = s(z′)+ s(−z′)

for eachz ∈ S2, and

h−1(ez,ez) = ∂2s

∂θ2
+ s.
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In these terms we have

q̃ = 3

4π

∫
S2

s(z′)z′dµ(z′).

Computing this integral in theθ andφ coordinates, we find:

〈q̃, z〉 = 3

4π

∫
S2

s(z′)〈z, z′〉dµ(z′)

= 3

4π

∫ 2π

0

∫ π

0
s(θ, φ) cosθ sinθdθdφ

= 3

8π

∫ 2π

0

∫ π

0
s(θ, φ) sin 2θdθdφ.

Now note that∂
2

∂θ2 sin 2θ + sin 2θ = −3 sin 2θ, so that

〈q̃, z〉 = − 1

8π

∫ 2π

0

∫ π

0
s(θ, φ)

(
∂2

∂θ2
sin 2θ + sin 2θ

)
dθdφ

= − 1

8π

∫ 2π

0

∫ π

0

(
∂2s

∂θ2
+ s

)
sin 2θdθdφ − 1

2
s(−z)+ 1

2
s(z)

= − 1

4π

∫
S2

h−1(ez,ez)〈z, z′〉dµ(z′)+ 1

2
s(z)− 1

2
s(−z).

So

〈x− q̃, z〉 = 1

4π

∫
S2

h−1(ez,ez)〈z, z′〉dµ(z′)+ 1

2
s(z)+ 1

2
s(−z)

= 1

4π

∫
M

Kh−1(ez,ez)〈z, ν〉dµ+ 1

2
w(z)

= 1

4π

∫
m

K̇(ez,ez)〈z, ν〉dµ+ 1

2
w(z).

ut
This gives, in combination with the previous identity,∣∣∣∣〈x− q̃, z〉− 1

8π

∫
M

H dµ

∣∣∣∣
≤ 1

2

∣∣∣∣w(z)− 1

4π

∫
M

H dµ

∣∣∣∣ + ∣∣∣∣〈x− q̃, z〉 − 1

2
w(z)

∣∣∣∣
≤ C

8π
A(M)+ 1

4π

∣∣∣∣∫
M

K̇(ez,ez)〈z, ν〉dµ
∣∣∣∣
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≤ C

4π
A(M) + 1

8π

∣∣∣∣∫
M

H〈z, ν〉dµ
∣∣∣∣

+ 1

8π

∫
M

∣∣K̇(ez,ez)− K̇
(
e⊥z ,e

⊥
z

)∣∣ |〈z, ν〉| dµ
≤ C

4π
A(M)

where we applied the estimates
∣∣K̇(ez,ez)− K̇

(
e⊥z ,e⊥z

)∣∣≤C and|〈z, ν〉|≤1
in the second integral in the second-last line, and

∫
M Hνdµ = 0 in the first

integral. ut
Corollary 6. For (T − t) ≤ 1

3(8C)3
, Mt is contained between concentric

spheres centred at̃q(t) with radii r− ≤ r+ satisfying

r+
r−
≤ 1+ 8C(3(T − t))1/3.

Proof. We can take

r− = 1

8π

∫
Mt

Hdµ− C

4π
A(M)

and

r+ = 1

8π

∫
Mt

Hdµ+ C

4π
A(M).

Then, sinceA(M) ≤ 4πr 2+, we find 0≤ 2Cr2+ − r+ + r−, which implies

r+ ≤ 2r−
1+√1− 8Cr−

.

Since we also haver− ≤
(

3V
4π

)1/3 = (3(T − t))1/3, the result follows from
the inequality 2/(1+√1− x) ≤ 1+ x which holds forx ∈ [0,1]. ut

Next we show thatM̃t = x̃(M, t) becomes uniformly smooth and convex
for t close toT:

Proposition 7. For T − t ≤ min{C0C−3, T/2},∣∣K(p, t) − (3(T − t))−2/3
∣∣ ≤ C1C1/2(T − t)−1/2

and for any unit vectore∈ TMt,∣∣h(e,e)− (3(T − t))−1/3
∣∣ ≤ C2C

1/2(T − t)−1/6

whereC0, C1, andC2 are constants.
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Proof. We will prove this in several stages: First an upper bound on the
Gauss curvature, then a lower bound, and then upper and lower bounds on
the principal curvatures.

We will use the Harnack estimate from [Ch2], which implies that if
z ∈ S2 and p(z, t) ∈ M is the point withν(p(z, t), t) = z for eacht, then

d

dt

(
t2/3K(p(z, t), t)

) ≥ 0.

We also note that

K(p(z, t), t) = − d

dt
s(z, t)

so we can bound an average ofK(p(z, t), t) over a time interval by control-
ling the distance moved by the tangent plane ofMt in directionz.

Fix a timet close toT, and translate the origin tõq(t) Mt lies between
spheres of radiir− andr+, so by the comparison principleMt+τ lies outside
the sphere of radius(r 3− − 3τ)1/3 for τ > 0. Therefore the distance moved
by the tangent plane in a directionz is at mostr+ − (r 3− − 3τ)1/3 ≤ τr−2

− +
τ2r−5
− + r+ − r−. Therefore

inf
t≤t ′≤t+τ

≤ 1

τ

∫ t+τ

t
K(p(z, t′), t′)dt′

≤ r−2
− + τr−5

− +
r+ − r−
τ

.

Choosingτ = r 5/2
− (r+ − r−)1/2 and using the bounds onr+ andr− from

Corollary 6, we findτ ∝ C1/2(T − t)1/6, and

K(p(z, t), t) ≤
(

t + τ
t

)2/3

inf
t≤t ′≤t+τ

K(p(z, t′), t′)

≤ (3(T − t))−2/3+ C1C
1/2(T − t)−1/2.

where we used the Harnack estimate in the first line.
A lower bound onK follows similarly, by obtaining a lower bound on the

distance travelled by the tangent plane in a directionz over a time interval
[t − τ, t] with τ ∝ C1/2(T − t)1/6.

Finally, the bound on the principal curvatures follows immediately by
combining the bound on the difference between the principal curvatures
with these bounds above and below on the Gauss curvature, since

H2 = 4K + (λ1− λ2)
2

and

λ2 = 1

2
H + 1

2
(λ2− λ1);

λ1 = 1

2
H − 1

2
(λ2− λ1).

ut



Gauss curvature flow 159

C∞ regularity of the rescaled solutions now follows as in [T], and the
convergence ofM̃t to the unit sphere ast → T, as well as the convergence
of the embeddings̃x(., t) to a smooth limitx̃T , follow as in [A1].

This completes the proof of Theorem 1.

5. Viscosity solutions

Theorem 2 is a consequence of the following curvature bound, which es-
tablishes a bound on the curvature of a smooth solution depending only on
time and the volume and diameter of the initial surface:

Proposition 8. Let {Mt} be smooth, strictly convex hypersurfaces moving
under the Gauss curvature flow. Then for eacht ∈ (0, T ) there existsC(t)
depending only onV(M0) anddiam(M0) such that

sup
Mt

|A|2 ≤ C(t).

Proof. First note that we have bounds onK for any t > 0 (see [A2],
Theorem 6), so without loss of generality we can work on an inerval where
K is bounded. Choose the origin such thatM0 is contained in a ball of radius
R about the origin.

We consider the evolution of the quantityS= H
2R−|x|2 : Since|x| is de-

creasing, the denominator remains positive. We have the evolution equations

∂

∂t
|x|2 = −2K〈x, ν〉 = K̇kl∇k∇l |x|2+ 2K〈x, ν〉 − 2H,

so that

∂

∂t
S= K̇kl∇k∇l S+ 2

2R− |x|2 K̇ ij∇i (2R− |x|2)∇ j S

+ 1

(2R− |x|2)
(

K̈(∇i h,∇i h)+ 2K2
)

− H

(2R− |x|2)2 (−2K〈x, ν〉 + 2H) .

The last term gives us a very strong negative term. The first term is elliptic,
so non-positive at a maximum ofS, and the second term is a gradient term
which vanishes at a maximum. SinceK is bounded, the only dangerous
term is the one involvingK̈(∇i h,∇i h), which we now proceed to estimate
using the fact the∇Svanishes at a maximum point: This says that

∇1h11 = −∇1h22− H

2R− |x|2∇1|x|2

and

∇2h22= −∇2h11− H

2R− |x|2∇2|x|2.
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So we have at the maximum point

K̈(∇i h,∇i h) = 2∇1h11∇1h22+ 2∇2h11∇2h22− 2∇1h2
22− 2∇2h2

11

= − 2H

2R− |x|2∇1|x|2∇1h22− 2H

2R− |x|2∇2|x|2∇2h11

− 4∇1h2
22− 4∇2h

2
11

≤ 1

4

(
H

2R− |x|2
)2

|∇1|x|2|2+ 1

4

(
H

2R− |x|2
)2

|∇2|x|2|2

= S2
(|x|2− 〈x, ν〉2) .

Thus at the maximum point we have

∂

∂t
S≤

( |x|2− 〈x, ν〉2
2R− |x|2 − 2

)
S2+ 2K2

2R− |x|2 +
2KH〈x, ν〉
(2R− |x|)2

2

.

Our choice ofR means that|x|2 ≤ C− |x|2, so that the coefficient ofS2 is
less than or equal to−1. So we have

∂

∂t
S2 ≤ −1

2
S2+ C3(supK, R)

and hence supS≤ C4(supK, r)+ 2/t for t sufficiently small. ut
Corollary 9. Any viscosity solution{Mt} of Gauss curvature flow isC1,1

for t > 0, has Q = H2 − 4K bounded fort > 0, and hasQ uniformly
bounded on(t, T ) for anyt > 0.

This follows immediately, since we have proved each of these statements
for smooth solutions with bounds independent of the regularity of the initial
solution. Hence the same bounds apply for the viscosity solution.

Theorem 2 follows, because the isoperimetric estimates and convergence
results of Section 4 depend only on a bound onQ.
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