REMARKS ON THE RÉNYI ENTROPY OF A SUM OF IID RANDOM VARIABLES

BENJAMIN JAYE, GALYNA V. LIVSHYTS, GRIGORIS PAOURIS, AND PETER PIVOVAROV

ABSTRACT. In this note we study a conjecture of Madiman and Wang [MW] which predicted that the generalized Gaussian distribution minimizes the Rényi entropy of the sum of independent random variables. Through a variational analysis, we show that the generalized Gaussian fails to be a minimizer for the problem.

1. INTRODUCTION

For p > 1, the *p*-Rényi entropy [Re] of a (continuous) random variable X in \mathbb{R}^d distributed with density f is defined by

$$h_p(X) = -\frac{1}{p-1} \log \int_{\mathbb{R}^d} f^p dm_d,$$

where m_d denotes the *d*-dimensional Lebesgue measure. As $p \to 1^+$, $h_p(X)$ converges to the Shannon entropy $h(X) = -\int_{\mathbb{R}^d} f \log f dm_d$, provided that the density of X is regular enough to justify passage of the limit. See Principe [Pr] for more information about where the Rényi entropy arises; see also Bobkov, Marsiglietti [BM] for a related discussion.

In this note we make some elementary remarks on the following basic mathematical question: Over all random variables X with $h_p(X)$ some fixed quantity, what are the minimizers of the entropy $h_p(X + X')$, where X' is an independent copy of X?

We learnt about this question from the papers of Madiman, Melbourne, Xu, and Wang [MW, MMX], who studied unifying entropy power inequalities for the Rényi entropy, which, in the limit $p \to 1^+$ recover the statement that, over all probability distributions with h(X)fixed, h(X + X') is minimized if (and only if) X is a Gaussian, see e.g. [DCT].

Following [LYZ, MW, MMX], for $\beta > 0$, consider the *Generalized* Gaussian

$$G_{\beta}(x) = \alpha (1 - \beta |x|^2)_+^{1/(p-1)},$$

where α is chosen so that $\int_{\mathbb{R}^d} G_\beta dm_d = 1$. The generalized Gaussian is the distribution with the smallest *p*-th moment with a given Rényi entropy, see [LYZ]. Madiman and Wang conjectured (Conjecture IV.3 in [MW]) that if X_j , $j = 1, \ldots, n$, are independent random variables with densities f_j , and Z_j are independent random variables distributed with respect to G_{β_i} where β_j is chosen so that

$$h_p(X_j) = h_p(Z_j),$$

then $h_p(X_1 + \dots + X_n) \ge h_p(Z_1 + \dots + Z_n).$

In this note we will show that unfortunately this conjecture does not hold in the special case when d = 1, p = 2, n = 2 and X_1 and X_2 are identically distributed, see Section 4. However, we do suspect that a minimizing distribution is a relatively small perturbation of the generalized Gaussian.

Throughout this note we only consider the case where X_1, \ldots, X_n are independent copies of a random variable X with density f. The question of finding the minimizer of $h_p(X_1 + \ldots X_n)$ with $h_p(X)$ fixed can then be rephrased as a constrained maximization problem, which we introduce in Section 2. Subsequently, in Section 3 we take the first variation of this maximization problem. We have not been able to develop a satisfactory theory of the associated Euler-Lagrange equation (3.1), but we show in Section 4 that the generalized Gaussian is not a solution to (3.1), and so fails to be a maximizer of the extremal problem. We conclude the paper with some elementary remarks and speculation.

Acknowledgement. The first named author is supported by NSF DMS-1830128, DMS-1800015 and NSF CAREER DMS-1847301. The second named author is supported by the NSF CAREER DMS-1753260. The third named author is supported by the NSF DMS-1812240. The fourth named author is supported by the NSF DMS-1612936. The work was partially supported by the NAtional Science Foundation under Grant No. DMS-1440140 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2017 semester.

2. The constrained maximization problem

Denote by $C_n(f)$ the (n-1)-fold convolution of a given function f with itself, that is, $C_n(f) = f * f * \cdots * f$, where there are n factors of f (and n-1 convolutions). Then $C_1(f) = f$, and it will be convenient to set $C_0(f) = \delta_0$, the Dirac delta measure.

Throughout the text, we fix $M > 0, n \in \mathbb{N}$ and $p \in (1, \infty)$. We set

$$\mathcal{F} = \left\{ f \in L^1(\mathbb{R}^d) \cap L^p(\mathbb{R}^d), \ f \ge 0, \ \|f\|_p^p = M, \ \|f\|_1 = 1 \right\}$$

and consider the extremal problem

(2.1)
$$\begin{cases} \text{Maximize } \mathcal{I}(f) \stackrel{\text{def}}{=} \int_{\mathbb{R}^d} \mathcal{C}_n(f)^p dm_d \\ \text{subject to } f \in \mathcal{F}. \end{cases}$$

Put

(2.2)
$$\Lambda = \Lambda(p, M) = \sup\{\mathcal{I}(f) : f \in \mathcal{F}\}.$$

We begin with a simple scaling lemma, which we will use often in what follows.

Lemma 2.1. Suppose that $f \in L^1(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$ is non-negative, and $||f||_1 > 0$. The function

$$\widetilde{f} = \frac{1}{\lambda^d \|f\|_1} f\left(\frac{\cdot}{\lambda}\right), \text{ with } \lambda = \left(\frac{\|f\|_p^p}{M\|f\|_1^p}\right)^{\frac{1}{d(p-1)}},$$

belongs to \mathcal{F} , and

$$\mathcal{I}(\widetilde{f}) = \frac{M}{\|f\|_p^p} \frac{1}{\|f\|_1^{p(n-1)}} \mathcal{I}(f).$$

Proof. Observe that, for any $r \in [1, \infty)$,

$$\|\widetilde{f}\|_{r}^{r} = \frac{1}{\lambda^{d(r-1)}} \|f\|_{1}^{r} \|f\|_{r}^{r}.$$

Plugging in r = 1 and r = p (and recalling the definition of λ) we see that $\tilde{f} \in \mathcal{F}$. Next, observe that

$$\mathcal{C}_n(\widetilde{f})(x) = \frac{1}{\|f\|_1^n \lambda^d} \mathcal{C}_n(f)\left(\frac{x}{\lambda}\right) \text{ for any } x \in \mathbb{R}^d.$$

Whence,

$$\mathcal{I}(\widetilde{f}) = \frac{1}{\lambda^{d(p-1)}} \|f\|_1^{pn} \mathcal{I}(f),$$

and the proof is complete by recalling the definition of λ .

We next prove that (2.1) has a maximizer. A radial function f on \mathbb{R}^d is called decreasing if $f(y) \leq f(x)$ whenever $|y| \geq |x|$.

Proposition 2.2. The problem (2.1) has a lower-semicontinuous, radially decreasing, maximizer Q.

Proof. We begin with two observations.

(1) Repeated application of Young's convolution inequality [LL] yields that, with p' = p/(p-1),

$$\mathcal{I}(f) \le \|f\|_{(np')'}^{np},$$

where (np')' is the Hölder conjugate of np'. Since n > 1, we have that $(np')' \in (1, p)$.

(2) By iterating Riesz's rearrangement inequality [LL, Theorem 3.7] we have that $\mathcal{I}(f) \leq \mathcal{I}(f^*)$, where f^* is the symmetric rearrangement of f; see [B, Section 3.4] for related multiple convolution rearrangement inequalities and their equality cases.

Now take non-negative functions $f_j \in \mathcal{F}$ such that $\Lambda = \lim_{j\to\infty} \mathcal{I}(f_j)$ (recall Λ from (2.2)). From the second observation we may assume that f_j are radial and decreasing. Passing to a subsequence if necessary, we may in addition assume that $f_j \to f$ weakly in $L^p(\mathbb{R}^d)$. Consequently, f is radial, decreasing, $f \geq 0$, and $||f||_p^p \leq M$. By modifying f on a set of measure zero if necessary, we may assume that f is lower semicontinuous¹.

Our primary goal will be to show that $f_j \to f$ strongly in $L^{(np')'}$ as $j \to \infty$. From this the first observation above would yield that $\mathcal{I}(f) = \Lambda$.

Claim 2.3. As $j \to \infty$, $f_j \to f m_d$ -almost everywhere.

Proof. For r > 0, define $v_j(r) = f_j(x)$ whenever |x| = r. Then since f_j converges weakly to f in $L^p(\mathbb{R}^d)$, we have that whenever I is a closed interval of finite measure in $(0, \infty)$,

$$\lim_{j \to \infty} \int_I v_j dm_1 = \int_I v dm_1$$

Recall that almost every point r of a function $v \in L^1_{loc}((0,\infty))$ is a Lebesgue point, that is,

$$v(r) = \lim_{|I| \to 0, r \in I} \frac{1}{|I|} \int_{I} v dm_1,$$

where the limit is taken over any sequence of intervals I containing r that shrink to r (not necessarily centered at r). But then if r > 0 is a Lebesgue point, and $I_k = [r - 2^{-k}, r]$, then

$$v(r) = \lim_{k \to \infty} \frac{1}{2^{-k}} \int_{I_k} v dm_1 = \lim_{k \to \infty} \lim_{j \to \infty} \frac{1}{2^{-k}} \int_{I_k} v_j dm_1$$

4

¹If f is discontinuous at $x \in \mathbb{R}^d$, then define $f(x) = \sup_{|y| > |x|} f(y)$ (i.e. the one-sided radial limit from the right). Then $\{f > \lambda\}$ is open for every $\lambda > 0$.

but since v_j is decreasing we have that $v_j \ge v_j(r)$ on I_k . Thus

$$v(r) \ge \limsup_{j \to \infty} v_j(r)$$

Arguing similarly with intervals whose left end-point is r, we also have that

$$v(r) \le \liminf_{j \to \infty} v_j(r).$$

Thus $\lim_{j\to\infty} v_j = v$ at every Lebesgue point. From this we readily deduce the claim, since if E is a Lebesgue null set in $(0,\infty)$, then $E \times \mathbb{S}^{d-1}$ is a Lebesgue null set in \mathbb{R}^d .

Notice that, as a consequence of this claim, Fatou's Lemma ensures that $||f||_1 \leq 1$. Our next claim is

Claim 2.4. If 1 < q < p, then $f_j \to f$ strongly in $L^q(\mathbb{R}^d)$ as $j \to \infty$.

The proof of this claim is a variant of the Vitali convergence theorem, but observe that it does not necessarily hold if one was to remove the radially decreasing property of the functions f_j (just consider a sequence of translates of a fixed function).

Proof. Fix $\varepsilon > 0, \delta > 0$. Insofar as the functions f_j and f are radially decreasing,

$$\bigcup_{j} \{ |f_j| \ge \frac{\delta}{2} \} \cup \{ |f| \ge \frac{\delta}{2} \} \subset B_j$$

where B is the closed ball centred at 0 of radius $\left(\frac{2}{m_d(B(0,1))\delta}\right)^{1/d}$. (Otherwise we would have $||f_j||_1 > 1$ for some j, or $||f||_1 > 1$.)

On $\mathbb{R}^d \setminus B$, we have $|f_j| < \delta/2$ for every j, and $|f| < \delta/2$, whence

$$\int_{\mathbb{R}^{d} \setminus B} |f_{j} - f|^{q} dm_{d} \le \delta^{q-1} \Big(\|f_{j}\|_{1} + \|f\|_{1} \Big) \le 2\delta^{q-1} < \frac{\varepsilon}{3}$$

provided $\delta > 0$ is chosen sufficiently small.

Now fix $\varkappa > 0$. Observe that,

$$\int_{B \cap \{|f_j - f| < \varkappa\}} |f_j - f|^q dm_d \le m_d(B)\varkappa^q < \frac{\varepsilon}{3}$$

if \varkappa is chosen sufficiently small. On the other hand, inasmuch as *B* has finite measure, we have that $f_j \to f$ in measure on *B* as $j \to \infty$. From the inequalities

$$\begin{split} \int_{B \cap \{|f_j - f| \ge \varkappa\}} |f_n - f|^q dm_d &\leq m_d (B \cap \{|f_j - f| \ge \varkappa\})^{1 - q/p} \|f_j - f\|_p^q \\ &\leq 2^q M^{q/p} m_d (B \cap \{|f_j - f| \ge \varkappa\})^{1 - p/q}, \end{split}$$

we infer that there exists $N \in \mathbb{N}$ such that

$$\int_{B \cap \{|f_j - f| \ge \varkappa\}} |f_j - f|^q dm_d < \frac{\varepsilon}{3} \text{ for all } j \ge N.$$

Bringing these estimates together, it follows that $||f_j - f||_q^q < \varepsilon$ for every $j \ge N$.

In particular, since $(np')' \in (1, p)$, this second claim ensures that $f_j \to f$ in $L^{(np')'}$ as $j \to \infty$. Thus by the remarks preceding Claim 2.3, we have $\mathcal{I}(f) = \Lambda$ (so f is not identically zero). It remains to show that $f \in \mathcal{F}$. To this end, we apply Lemma 2.1: Consider the function

$$\widetilde{f} = \frac{1}{\|f\|_1 \lambda^d} f\left(\frac{\cdot}{\lambda}\right), \text{ with } \lambda = \left(\frac{\|f\|_p^p}{M\|f\|_1^p}\right)^{\frac{1}{d(p-1)}}$$

Then $\widetilde{f} \in \mathcal{F}$ and $\mathcal{I}(\widetilde{f}) = \frac{M}{\|f\|_p^p} \frac{1}{\|f\|_1^{p(n-1)}} \Lambda$. Consequently, if $\|f\|_p^p < M$ or $\|f\|_1 < 1$, then $\mathcal{I}(\widetilde{f}) > \Lambda$, which is absurd. Thus $f \in \mathcal{F}$ and the proof of the proposition is complete.

3. The First Variation

With the existence of a maximizer proved, we now wish to analyze it analytically. We shall derive the following criterion.

Proposition 3.1. A radial non-negative lower-semicontinuous function Q is a maximizer of the problem (2.1) if and only if

(3.1)
$$C_{n-1}(Q) * [C_n(Q)]^{p-1} = \frac{\Lambda}{Mn}Q^{p-1} + \frac{\Lambda(n-1)}{n} \text{ on } \{Q > 0\}.$$

Proof. The sufficiency is easy to show. Integrating both sides of (3.1) against Q, and recalling that $Q \in \mathcal{F}$, yields

$$\int_{\mathbb{R}^d} Q \cdot (\mathcal{C}_{n-1}(Q) * [\mathcal{C}_n(Q)]^{p-1}) dm_d = \Lambda.$$

But using Tonelli's theorem, the left hand side equals $\mathcal{I}(Q)$. This is just the fact that, for even functions f, g and h, $\int f(g * h) dm_d = \int (f * g) h dm_d$.

Conversely, consider a bounded function φ compactly supported in the open set $\{Q > 0\}$. Since Q is lower-semicontinuous, $\inf_{\text{supp}(\varphi)} Q >$ 0. Therefore, (insofar as φ is bounded) there exists a constant C > 0such that

$$(3.2) |\varphi| \le CQ ext{ on } \mathbb{R}^d,$$

so in particular, there exists $t_0 > 0$ such that for $|t| \leq t_0$ it follows that $Q_t \stackrel{\text{def}}{=} Q + t\varphi$ is non-negative. In the notation of Lemma 2.1 with $f = Q_t$, we consider the function

$$\widetilde{Q}_t = \frac{1}{\lambda^d} \frac{(Q + t\varphi)\left(\frac{\cdot}{\lambda}\right)}{\|Q + t\varphi\|_1},$$

with the corresponding $\lambda > 0$ satisfying $\|\widetilde{Q}_t\|_p^p = \|Q\|_p^p = M$. Of course we also have $\int_{\mathbb{R}} \widetilde{Q}_t dm_d = 1$ regardless of λ for $|t| < t_0$. We conclude that \widetilde{Q}_t belongs to \mathcal{F} – and therefore $\mathcal{I}(\widetilde{Q}_t) \leq \mathcal{I}(Q) = \Lambda$ – for all $|t| < t_0$. Moreover, as in Lemma 2.1,

(3.3)
$$\mathcal{I}(\widetilde{Q}_t) = \frac{1}{\lambda^{d(p-1)} \|Q + t\varphi\|_1^{np}} \int_{\mathbb{R}^d} \mathcal{C}_n (Q + t\varphi)^p dm_d.$$

For $|t| < t_0$, we calculate, using commutativity and associativity of the convolution operator,

$$\frac{d}{dt}\mathcal{C}_n(Q+t\varphi)^p = pn[\varphi * \mathcal{C}_{n-1}(Q+t\varphi)][\mathcal{C}_n(Q+t\varphi)]^{p-1}$$

and

$$(3.4)$$

$$\frac{d^2}{dt^2} \mathcal{C}_n(Q+t\varphi)^p = pn(n-1)\varphi * \varphi * \mathcal{C}_{n-2}(Q+t\varphi)[\mathcal{C}_n(Q+t\varphi)]^{p-1}$$

$$+ n^2 p(p-1)[\varphi * \mathcal{C}_{n-1}(Q+t\varphi)]^2 [\mathcal{C}_n(Q+t\varphi)]^{p-2}.$$

Crudely employing the bound (3.2) in (3.4), we infer that there is a constant C > 0 such that for all $|t| < t_0$,

$$\left|\frac{d^2}{dt^2}\mathcal{C}_n(Q+t\varphi)^p\right| \le C\mathcal{C}_n(Q)^p$$

Whence, the second order Taylor formula yields that

(3.5)

$$|\mathcal{C}_n(Q+t\varphi)^p - \mathcal{C}_n(Q)^p - npt[\varphi * \mathcal{C}_{n-1}(Q)][\mathcal{C}_n(Q)]^{p-1}| \le Ct^2 \mathcal{C}_n(Q)^p,$$

for $|t| < t_0$. Integrating the pointwise inequality (3.5) yields

(3.6)

$$\int_{\mathbb{R}^d} \mathcal{C}_n(Q+t\varphi)^p dm_d = \Lambda + npt \int_{\mathbb{R}^d} [\varphi * \mathcal{C}_{n-1}(Q)] [\mathcal{C}_n(Q)]^{p-1} dm_d + O(t^2)$$
as $t \to 0$.

Now, recalling the definition of λ , we calculate

(3.7)

$$\lambda^{d(p-1)} \|Q + t\varphi\|_{1}^{np} = \frac{\|Q + t\varphi\|_{p}^{p}}{M} \|Q + t\varphi\|_{1}^{(n-1)p}$$

$$= \left(1 + \frac{pt}{M} \int_{\mathbb{R}^{d}} \varphi Q^{p-1} dm_{d} + O(t^{2})\right) \left(1 + t(n-1)p \int \varphi dm_{d} + O(t^{2})\right),$$

where in the expansion of $||Q + t\varphi||_p^p$ we have again used the inequality (3.2) to obtain the $O(t^2)$ term.

Plugging the two expansions (3.7) and (3.6) into (3.3) yields that, as $t \to 0$,

$$\mathcal{I}(\widetilde{Q}_t) = \Lambda + pt \Big\{ n \int_{\mathbb{R}^d} [\varphi * \mathcal{C}_{n-1}(Q)] [\mathcal{C}_n(Q)]^{p-1} dm_d \\ - \frac{\Lambda}{M} \int_{\mathbb{R}^d} \varphi Q^{p-1} dm_d - (n-1)\Lambda \int \varphi \, dm_d \Big\} + O(t^2).$$

Since $\lim_{t\to 0} \frac{\mathcal{I}(\tilde{Q}_t) - \mathcal{I}(Q)}{t} = 0$, the second term in the above expansion must vanish. Therefore, we get that

$$\int_{\mathbb{R}^d} \varphi \Big\{ n[\mathcal{C}_{n-1}(Q)] * [\mathcal{C}_n(Q)]^{p-1} - \frac{\Lambda}{M} Q^{p-1} - (n-1)\Lambda \Big\} dm_d = 0.$$

Since φ was any bounded function compactly supported in $\{Q > 0\}$, we conclude that (3.1) holds.

4. On the Madiman-Wang conjecture

Proposition 4.1. The generalized Gaussian is not necessarily the extremizer for problem (2.1).

Proof. Consider the simplest case d = 1, p = 2, and n = 2. We shall show that the function $G(x) = \alpha(1 - |x|^2)_+$ does not satisfy the equation

(4.1)
$$C_3(f) = af + b \text{ on } [-1,1] \text{ with } a, b > 0,$$

and so no function of the form $\frac{c}{\lambda}G(\frac{\cdot}{\lambda})$, with $c, \lambda > 0$, satisfies (3.1), for any value of Λ . In fact, we shall show that $\mathcal{C}_3(G) = G * G * G$ is not a quadratic polynomial near 0.

For this, observe:

$$G'' = 2\alpha(\delta_{-1} - \chi_{[-1,1]} + \delta_1).$$

Thus, $(G * G * G)^{\prime\prime\prime\prime\prime\prime} = (G^{\prime\prime} * G^{\prime\prime} * G^{\prime\prime})$ is the threefold convolution of the above measure. The threefold convolution of $-2\chi_{[-1,1]}$ equals $-8(3 - |x|^2)_+$, and no other term in the convolution $G^{\prime\prime} * G^{\prime\prime} * G^{\prime\prime}$ is

8

quadratic in |x|. Therefore, G * G * G has non-vanishing sixth derivative at 0, but a + bG does have vanishing sixth derivative at 0.

5. Any radially decreasing solution of (3.1) is compactly supported

In this section, we discuss the following

Proposition 5.1. Decreasing radial solutions of (3.1) are compactly supported.

Proof. Suppose that $\int_{\mathbb{R}^d} Q \, dm_d = 1$ and Q is not compactly supported. Since Q is non-negative and radially decreasing, its support is \mathbb{R}^d .

Since $\|\mathcal{C}_{n-1}(Q) * (\mathcal{C}_n(Q))^{p-1}\|_1 < \infty$ and Q (along with any multiple convolution of Q) is radially decreasing, we have that $\lim_{|x|\to\infty} |\mathcal{C}_{n-1}(Q) * (\mathcal{C}_n(Q))^{p-1}(x)| = 0$. Since also $Q^{p-1}(x) \to 0$ as $|x| \to \infty$, we have that $\Lambda = 0$ in the equation (3.1). But, on the other hand, $\Lambda > 0$. \Box

6. Remarks

In this section we make some remarks that suggest that although the generalized Gaussian is not an optimal distribution for the problem (2.1), a reasonably small perturbation of the generalized Gaussian could well be.

Beginning with $f_0(x) = \mathbf{1}_{[-1,1]}$, consider the following iteration for $j \ge 1$

$$f_j(x) = \frac{\mathcal{C}_3(f_{j-1})(x) - \mathcal{C}_3(f_{j-1})(1)}{\mathcal{C}_3(f_{j-1})(0) - \mathcal{C}_3(f_{j-1})(1)}.$$

Numerically, this iteration converges pointwise to a solution of the equation (4.1) for some a, b > 0 satisfying the constraints f(0) = 1 and f(1) = 0 (so the support of f is [-1, 1]). The resulting function f can then be re-scaled via the transformation $\frac{c}{\lambda}f(\frac{\cdot}{\lambda})$ ($c, \lambda > 0$) to have any given positive integral and L^2 -norm. We do not know if the solution of $C_3(f) = af + b$ is unique (modulo natural invariants in the problem), so we cannot say that this function f corresponds to a solution of the constrained maximization problem (2.1).

We provide the graphs of f_1, f_2, f_3 and f_4 (see Figure 1 below), and the algebraic expressions for f_1, f_2 and f_3 on [-1, 1].

$$f_1(x) = 1 - x^2, \ f_2(x) = 1 - \frac{6x^2}{5} + \frac{x^4}{5}$$
$$f_3(x) = 1 - \frac{62325x^2}{50521} + \frac{12810x^4}{50521} - \frac{1050x^6}{50521} + \frac{45x^8}{50521} - \frac{x^{10}}{50521}.$$

FIGURE 1. The graphs of f_1, \ldots, f_4 on [-1, 1].

References

[BM]	S. Bobkov, A. Marsiglietti, Asymptotic behavior of Rényi entropy in the central limit theorem, submitted, arXiv:1802.10212.
[B]	A. Burchard, Cases of equality in the Riesz rearrangement inequality. Thesis (Ph.D.)Georgia Institute of Technology. 1994. 94 pp.
[DCT]	A. Dembo, T. M. Cover and J. A. Thomas, <i>Information theoretic in-equalities</i> , IEEE Transactions on Information Theory, vol. 37, no. 6, pp. 1501–1518, Nov. 1991.
[LL]	E. Lieb and M. Loss <i>Analysis, 2nd Edition</i> , AMS Graduate Studies in Mathematics, 2002.
[LYZ]	E. Lutwak, D. Yang and G. Zhang, <i>Moment-Entropy Inequalities for</i> a <i>Random Vector</i> , IEEE Transactions on Information Theory, vol. 53, no. 4, pp. 1603–1607, April 2007.
[MW]	M. Madiman and L. Wang, <i>Beyond the entropy power inequality, via rearrangements.</i> IEEE Transactions on Information Theory, vol. 60, no. 9, pp. 5116-5137, Sept. 2014.
[MMX]	M. Madiman, J. Melbourne and P. Xu Forward and reverse entropy power inequalities in convex geometry. Convexity and Concentration, E. Carlen, M. Madiman, E. Werner (eds.), The IMA Volumes in Math- ematics and its Applications, Vol. 161, pp. 427–485, Springer, 2017.
$[\Pr]$	J. C. Principe, <i>Information theoretic learning</i> , Springer-Verlag New York 2010.
[Re]	A. Rényi. On Measures of Entropy and Information. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Prob- ability, Volume 1: Contributions to the Theory of Statistics, 547–561, University of California Press, Berkeley, Calif., 1961.

SCHOOL OF MATHEMATICAL SCIENCES, CLEMSON UNIVERSITY E-mail address: bjaye@clemson.edu

DEPARTMENT OF MATHEMATICS, GEORGIA TECH E-mail address: glivshyts6@math.gatech.edu

DEPARTMENT OF MATHEMATICS, TEXAS A&M *E-mail address*: grigoris@math.tamu.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI *E-mail address*: pivovarovp@missouri.edu