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Abstract

We establish the existence of a reqular functional M-position, in the sense of Pisier, for geometric
log-concave functions. This provides a functional analogue of Pisier’s regular M-positions for convex
bodies and yields uniform control of covering numbers at all scales. Specifically, we show that every
isotropic geometric log-concave function f : R™ — [0, c0) satisfies, for all ¢t > 1,

2
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where f* denotes the Legendre dual of f, (t® f)(z) = f(z/t) is the t-homothety of f, and 7, < c(Inn)?.
Our result shows that the isotropic position of a log-concave function already provides an almost 1-
regular functional M-position.

1 Introduction

The study of covering numbers lies at the intersection of asymptotic geometric analysis and high-dimensional
probability. Sharp covering estimates have found important applications in analysis, geometry, probability
and combinatorics. Milman’s theory of M-positions reveals that every convex body has a highly regular
affine image whose covering behavior, and that of its polar, exhibit near-optimal exponential bounds. Recent
developments have extended these ideas to log-concave functions, uncovering a rich functional counterpart
to classical convex-geometric notions.

The purpose of this paper is to show that geometric log-concave functions admit a regular functional
M-position, in the sense of Pisier, and that, remarkably, the isotropic position already provides such a
regular position. In particular, isotropic log-concave functions satisfy almost 1-regular covering estimates at
all scales.

Let K and T be convex bodies in R™. The covering number N (K, T) is the smallest number of translates
of T needed to cover K:

N
N(K,T) = min{N €N:3ay,...,ay € R” such that K C | J(x; +T)}.
j=1

A classical theorem of V. Milman [23] asserts that every centered convex body K can be placed in M-position,
namely there exists a linear image K with vol, (K) = vol, (BY) such that

(1.1) max{N(K, B}), N(B},K), N(K°, B}), N(B},K°)} < exp(Bn),

for an absolute constant 8 > 0, where BY is the Euclidean unit ball and K° is the polar body of K.
Background material on convex bodies and log-concave functions is collected in Section

The framework of covering numbers was extended to functions by Artstein-Avidan and Slomka in [3] (see
also the earlier work [2] of Artstein-Avidan and Raz). Given measurable f, g : R" — [0, 00), the functional
covering number of f by g is defined by

N(f,9) :inf{,u(R") Y/ f},



where the infimum runs over non-negative Borel measures u satisfying
(nxg)(x) = / glx —t)du(t) > f(z) for all z € R™.

Let LC,(R™) denote the class of geometric log-concave functions; these are the upper semi-continuous
log-concave functions f : R™ — [0,00) with f(0) = ||f|lec = 1. If f =e~¥ € LC,(R"), its Legendre dual is
f* = e %%, where

Lp(x) = 555{@’ y) — oY)}

is the Legendre transform of ¢. In the functional setting, the dual function f* plays a role analogous to
that of the polar body in classical convex geometry: many geometric inequalities relating a convex body to
its polar admit functional counterparts involving a log-concave function and its Legendre dual. A notable
example is the functional Blaschke-Santald inequality,

/ exp(—p(x)) dx - / exp(—Lp(x)) dx < (2m)".
The natural analogue of the Euclidean ball is the Gaussian
g(z) = exp(—21|z|?), for which ¢* = g.

Artstein-Avidan and Slomka [4] established the existence of a functional version of Milman’s M-position for
geometric log-concave functions.

Theorem 1.1 (Artstein—Slomka). Let f : R™ — [0,00) be a geometric log-concave function. There exists
T € GL,, such that f = f o T satisfies [ f = (2m)"/? and

max{N(f.9). N(F".g), N(g. ), N(g.]")} < ",
for an absolute constant C' > 0.

In this work we establish the existence of a regular functional M-position, in the sense of Pisier, for
geometric log-concave functions. Pisier [25] constructed an entire family of M-positions for any symmetric
convex body K C R"”, providing quantitative control of covering numbers at all scales.

Theorem 1.2 (Pisier). Let 0 < av < 2 and let K C R™ be a symmetric convex body. Then K has a linear
image K such that

max{N(f(,th), N(BE,tK), N(K°, tBy), N(Bg,ﬁ?O)} < exp(e(a) n/t)

for every t > c(a)t/*, where c(a) = O((2 — a)_“/Q) as o — 27,
A convex body satisfying the above is said to be in a-regular M-position.

Main results. We prove that geometric log-concave functions admit an almost 1-regular functional M-
position. Moreover, we show that the isotropic position already enjoys this regularity. Background material
on isotropic convex bodies and isotropic log-concave functions is provided in Section In our results,
homothetic dilation of log-concave functions is given by

o f)(x)=flz/t), >0



Theorem 1.3. Let f: R™ — [0,00) be an isotropic geometric log-concave function. Then for every t > 1,

2
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and

52
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where 7, < c(Inn)? and §, < clnn.

Thus the isotropic position yields a universal functional M-position whose regularity exponent is arbi-
trarily close to 1.

We outline the main ideas of the proof. To each isotropic f we associate the convex body
Ry :={x € R": f(x) > exp(—50n)}.

One may compare Ry with the isotropic convex body K,,41(f) introduced by K. Ball [7], and verify that their
geometric distance is bounded by an absolute constant. We then use an observation of the second named
author [28], based on E. Milman’s sharp M*-estimate [22] and the recent optimal M-estimate of Bizeul and
Klartag [9] for isotropic convex bodies, to show that Ry satisfies almost 2-regular covering estimates. These
geometric bounds are transferred to the functional covering numbers N(f, t ©® ¢g) and N(g, t ©® f) using a
decomposition of exp(—50n|| - [z, ), a corresponding decomposition of the Gaussian g, and basic structural
properties of functional covering numbers.
A dual argument applies to the Legendre transform. A result of Fradelizi and Meyer [I5] implies that

50n (Rf)o C Ry C 1001 (Rf)o.

Combined with the Blaschke-Santalé and Bourgain—-Milman inequalities, this yields analogous regularity for
the covering numbers of R+, and hence for N(f*, t © g) and N(g, t © f*).

We also show that isotropic geometric log-concave functions satisfy the conclusion of Theorem [I[.1} That
is, the isotropic position already provides a universal functional M-position in the sense of Milman.

Theorem 1.4. Let f:R™ — [0,00) be an isotropic geometric log-concave function.. Then,

maX{N(f,g)»N(f*7g)7N(g,f)7N(g,f*)} < cn

for an absolute constant C' > 0.

The proof combines ideas from the proof of Theorem in [4] with techniques employed in the proof of
Theorem [I.3] Compared with Theorem [I.3] Theorem [I.4] yields sharper estimates for the covering numbers
in the regime where ¢ > 1 is bounded above by a small power of Inn. Thus, the isotropic position furnishes
an efficient and robust functional M-position without requiring additional regularization assumptions.

Our second main result shows that similar regular estimates for the functional covering numbers hold
true for another choice of the dual of f, which is based on the polarity transform. The polar function ¢° of
a convex lower semi-continuous function ¢ : R™ — [0, 0o] with ¢(0) = 0 is defined by the A-transform of :

#(a) = (o)(a) = sup %

The definition of the A-transform appears in the book by Rockafellar [27), page 136], where it is also proved
that it commutes with the Legendre transform. However, the polarity transform was introduced and studied
in depth by Artstein-Avidan and Milman in [I] as the functional extension of convex-body polarity and plays
a central role in functional versions of the Blaschke-Santalé and Bourgain-Milman inequalities.



Consider the geometric log-concave function f = e~ ?. A result of V. Milman and Rotem from [24]
implies that if we consider the scaled polar function

pa(r) = (50n)*¢°(x/n)

and if we define f4 = e~ %4 then
n(Ry)® C Ry, © 2n(Ry)°.

Using the same strategy as in the proof of Theorem [1.3] we show that f4 also admits regular covering
estimates.

Theorem 1.5. Let f: R™ — [0,00) be an isotropic geometric log-concave function. Then for every t > 1,

2
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N(g,t® fa) < exp< ;

where 7, < c(Inn)? and 5, < clnn.
We also obtain the corresponding analogue of Theorem [1.4]

Theorem 1.6. Let f: R™ — [0,00) be an isotropic geometric log-concave function. Then,

max{N(f.g), N(fa.9). Ng.f). N(g. fa)} < C",

for an absolute constant C' > 0.

Together, Theorems [I.3] and [L.5] show that, in the isotropic position, a log-concave function f and its
duals f* and f4 behave like well-balanced Gaussians at all scales. This establishes a functional analogue of
Pisier’s theorem on the existence of regular M-positions for convex bodies, and may have further applications
in the analysis of log-concave functions.

For background on isotropic convex bodies and log-concave measures and functions, see [12]; for general
information on the local theory of normed spaces, see [5l [6] 26].

2 Convex bodies and log-concave functions

We work in R™, equipped with the standard inner product (-,-). The corresponding Euclidean norm is
denoted by | - |, the Euclidean unit ball by B%, and the Euclidean unit sphere by S™~1. Volume in R" is
denoted by vol,,, and we write w,, = vol,, (B%) for the volume of the unit ball. We denote by o the rotationally
invariant probability measure on S™~1.

Throughout the text, the symbols ¢, ¢/, c1,ca,... denote absolute positive constants whose values may
change from line to line. Whenever we write a =~ b, we mean that there exist absolute constants c1,co > 0
such that cija < b < coa. Similarly, for subsets K, T C R”, we write K =~ T if oK C T C ¢ K for some
absolute constants ¢, co > 0.

2.1. Convex bodies. A convex body in R" is a compact convex set K with nonempty interior. It
is called symmetric if K = —K, and centered if its barycenter bar(K) = #(K) fK;vdx is at the origin.
If K and T are two convex bodies in R™ that contain the origin in their interior, their geometric distance
de(K,T) is defined by

de(K,T) =inf{ab:a,b>0,K CbT and T C aK}.

The radial function of a convex body K with 0 € int(K) is defined by px (z) = max{t > 0: tx € K} for

x # 0, and the support function of K is given by hi (y) = max{(z,y) : z € K}, y € R". The volume radius

of K is
vol,, (K) ) L/

vrad(K) =rg = (Voln(Bg)
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The polar body of a convex body K with 0 € int(K) is defined as
K°={zxeR":(z,y) <1lforally € K}.

The Blaschke—Santalé inequality states that if K is a convex body in R™ such that either bar(K) =0 or
bar(K°) = 0, then
vol,, (K) vol, (K°) < w?.
In the opposite direction, the Bourgain—Milman inequality guarantees that if K is a convex body in R™ with
0 € int(K), then
vol,, (K) vol,, (K°) > c"w?,

where ¢ > 0 is an absolute constant. These classical results can be found, for example, in [5].

2.2. Log-concave functions. A function f : R™ — [0,00) is called log-concave if it can be written
in the form f = e~ %, where ¢ : R™ — (—o00, 0] is a proper, lower semi-continuous (l.s.c.) convex function.
Properness means that dom(y) := {x € R : p(z) < oo} # &, and l.s.c. convexity ensures that f is upper
semi-continuous and satisfies the classical log-concavity inequality f((1 — Xz + Ay) > f(z)* = f(y)* for all
z,y € R", XA e (0,1).

We call f =e™% a geometric log-concave function if it also satisfies the normalization

fO) =1lfllee =1,
which is equivalent to requiring that the associated convex function ¢ satisfies
v :R" = [0, 00], »(0) =0,

together with properness, convexity, and lower semi-continuity (these are the geometric convex functions).
We denote by LC,(R™) the class of all such geometric log-concave functions.

For any convex body K C R”, the indicator function 1g is a geometric log-concave function. Indeed,
let 1% be the convex indicator of K,

0, zekK,

n?@c):{oo Lok

which is a proper l.s.c. convex function with 1%(0) = 0 whenever 0 € K. Then 1x = exp(—1%).

For ¢t > 0 and a log-concave function f, the functional homothety is defined by

(to @)= f(z/t),

which corresponds to replacing ¢ by ¢.(xz) = ¢(x/t). This transformation respects log-concavity and is a
natural functional counterpart of geometric dilation.

Let ¢ : R™ — [0, 00] be a geometric convex function. The Legendre transform of ¢ is

Lo(z) = yngg{<x7y> —p(y)}

It is always a convex, l.s.c. function, and satisfies the involution property £(Lp) = ¢ if ¢ is proper, ls.c.,
convex. The Legendre dual of f = e™% is then defined as

() =exp (— Lo(x)).

The fundamental example of a self-dual log-concave function is the Gaussian

g(z) = exp(—3lz[*),



which satisfies

/ g(x)dx = (27r)"/27 g =g

Given two log-concave functions f = e~ % and g = e~ %, we define the sup-convolution or Asplund product
of f and g by
(f xg)(x) = sup f(y) g(z —y) = exp( — (¢0¥)(z)),

yERR

where the inf-convolution of two convex functions ¢ and 1 is

(eOy)(x) = inf {o(y)+v(z—y)}.

yER

In view of the identity L(p) = Lo+ L), the operation f*g allows us to define the analogue of Minkowski
addition of log-concave functions.

The polar (or A-transform) of ¢ is defined by
o <:L‘, y> -1
x) = (Ap)(x) = sup ————.
¢ (@) = (Ap)(e) = sup 0

This transform is a functional analogue of the classical polarity of convex bodies. If ¢ = 1%, then ¢° = 1%,
and
e ?=1r — e ¥ =1ko.

The polar transform plays an essential role in functional analogues of the Blaschke—Santalé inequality. We
refer to [6, Chapter 9] for more information and references.
We shall work with the scaled version

pal(w) = (50n)% ¢°(x/n)
and define the polar log-concave function of f = exp(—¢) by
fa(z) = exp (= pa()).

We would like to mention here that Gilboa, Segal and Slomka [I8] have also used some scaled version
of the polarity transform to study the Mahler product of geometric log-concave functions. More precisely,
they showed that if ¢ = n? then

1/n 1/n 1
(/ e“”(I)dx) (/ e—qu(w)daC) ~
n n n

for every centered geometric log-concave function f = e~ ¥ with finite positive integral. They also obtained
an analogous result for the J-transform, defined as J = LA = AL.

2.3. Isotropic geometric log-concave functions. Let f : R™ — [0,00) be a log-concave function
with finite positive integral. The barycenter of f is defined by

d
Jon f(2) dz
and its isotropic constant is the affine-invariant quantity
(21) Lyi= (”f”m)/ det(Cov ()™,
Jan f(2) dx



where
1
Cov(f) := m / @ x f(z) dx — bar(f) @ bar(f)

is the covariance matrix of f. A log-concave function f is called isotropic if
bar(f) =0 - f@)de =1 and Cov(f) = A},

for some Ay > 0.
A convex body K in R™ is called isotropic if vol, (K) = 1, bar(K) = 0, and Cov(ug) = L2, I, where g
is the uniform measure on K. Note that K is isotropic if and only if its indicator function 1 g is isotropic.

It is straightforward to check that any centered log-concave function f admits an invertible linear map
T € GL,, such that f; := f oT is isotropic; moreover, Ly, = L¢. Since f1(0) = || f1l/oo, dividing f1 by f1(0)
yields a function in LCG(R™). From (2.1]) we obtain

fi(x)dr = a", a:= Ay, /Ly.
RTI,
Define fa(x) := fi(ax). Then

RO=Ifl =1 [ fldi=1 Conlf) = L3,

A log-concave function satisfying these properties is called an isotropic geometric log-concave function. Thus

every centered log-concave f with finite positive integral admits an isotropic position f = f o T for some
T e GL,.

Bourgain’s slicing problem [I0] asked if there exists an absolute constant C' > 0 such that
(2.2) L, = max{Lg : K is an isotropic convex body in R"} < C.

K. Ball [7] proved that for every n,
supLy < CiLy,
f

where the supremum is taken over isotropic log-concave functions f on R™. Bourgain [I1] showed that
L,, < cn'/*1Inn, improved by Klartag [20] to L, < cn'/%. These were the best known bounds until 2020. In
a breakthrough, Chen [I3] proved that for every ¢ > 0,

L, <n° for all sufficiently large n.

This initiated a series of developments culminating in the complete resolution of Bourgain’s problem by
Klartag and Lehec [2I], who proved that L, < C, building on an important contribution of Guan [19].
Shortly thereafter, Bizeul [8] provided an alternative proof.

2.4. Covering numbers of isotropic convex bodies. Let K be a convex body in R™ with 0 € int(K).
Define its Minkowski functional ||z| x := inf{t > 0: 2 € tK} and its support function hy (z) := max{{z,y) :
y € K}. Set

ME)i= [ elcdote) MUK = [ hiela) doo),
Sn—1 Sn—1
where o is the rotationally invariant probability measure on S™~1.

When K is symmetric, the classical Sudakov and dual Sudakov inequalities [B, Chapter 4] provide upper
bounds on covering numbers in terms of M(K) and M*(K):

M*(K)? M(K)2
(23) N(K’ th) S exp<cnt(2)> ’ N(Bgv tK) < exp(cn 552 ) > ,
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for every t > 0, where ¢ > 0 is an absolute constant.
E. Milman [22] proved that if K is isotropic then

(2.4) M*(K) < Cyn(lnn)?>Lg < c1v/n(lnn)?,

the second inequality following from the boundedness of L,,. This dependence on n is optimal up to loga-
rithmic factors.
The dual estimate was recently obtained by Bizeul and Klartag [9]:

logn
2 N

Let rx denote the radius of the Euclidean ball with the same volume as K, i.e. vol,, (K) = vol, (rxBY). For

(2.5) M(K) < c

isotropic bodies we have vol,, (K) = 1 and hence this radius depends only on the dimension: rx = r, = w, ' ",

and r,, ~ /n.
Combining the bounds (2.4) and (2.5) with (2.3), the second named author [28] showed that every
isotropic convex body is essentially in a 2-regular M-position.

Proposition 2.1. Let K be an isotropic convex body in R™. Then for every t > 1,

2
n n [e] Py'ﬂ n
(2.6) max{N (K, tr,By), N(B%, tr,K°)} < exp< 2 ),
n o n 6721 n
(2.7) max{N (r, By, tK), N(r,K°, tB})} < exp 2 )

where 7, < c1(Inn)? and 6, < caInn.

These estimates provide a quantitative control of covering numbers for isotropic bodies and their polars,
which is crucial in applications. In particular, they will play an essential role in the proof of Theorem

2.5. Functional covering numbers. Recall that for any pair of functions f, g € LCy(R™), the covering
number of f by ¢ is defined by

N(f,g) =inf{uR") : p*g > f},

where the infimum is taken over all non-negative Borel measures p on R™ satisfying

/ gle —t)du(t) > f(z), zE€R™

Intuitively, N(f, g) measures the minimal “weight” of translates of g needed to dominate f. This generalizes
the classical notion of covering numbers for convex bodies: it is useful to note that if K and T are convex
bodies in R™, then

(2.8) N(1g,17) < N(K,T).

For the proof of (2.8), let N = N(K,T) and choose points z1,...,zy € R™ such that K C U;'Vzl(xj + 7).
Let p be the counting measure on {z1,...,zx}. Then

/ Tr(x —1t)du(t) Z]IT r —xj) Z]]-:EJ+T (I]+T)( z) 2 1k (),

which shows that px 17 > 1, and p(R™) = N. Thus N(1g,1r) < N(K,T).

Functional covering numbers satisfy several properties analogous to classical covering numbers. In the
next lemma we collect the ones that will be used later in the proof of Theorem A detailed proof of
these properties can be found in [4, Section 2], and they hold more generally for non-negative measurable
functions.



Lemma 2.2. Let f,g,h,w, f;, gi € LCy(R™). Then, for any a,b >0 and T € GL,,
(i) N(af, bg) = N(f, 9)-

)
i) N(foT, QOT) N(f,9)-
(iii) N(f1+ f2,9) < N(f1,9) + N(f2,9).
iv) If fi < f2 and g1 > ga, then N(f1,91) < N(f2,g2).
) N(f,9) < N(f,h)N(h,g).

Artstein-Avidan and Slomka [4] also defined the separation number of f by g:

M(f,g)=sup{/fdp:p*g<1}7

where the supremum is over all non-negative Borel measures p on R™ that satisfy

/g(m —t)dp(t) <1 for all x € R™.

Any such measure p is called a separation measure of g. Recall that the separation number M (K, T) of two
convex bodies K and T in R™ is the maximal cardinality of a T-separated subset of K, i.e.

M(K,T) :maX{M €N:3zq,...,2pm € K such that (x; +T)N (z; +T) ZQVZ';&]}.
It is useful to note that
(2.9) M(K,T) < M(1, 17),

For the proof of (2.9), let M = M(K,T) and choose z1,...,zy € K such that (z; +T) N (z; +T) = @ for
all 1 <i# j < M. Let p be the counting measure on {z1,...,za}. Then

[ tr—vduto) Zﬂw )= 1o oy emy@) < L.

which shows that p* 17 < 1, and pu(R™) = M. Thus M(K,T) < M(1g,1r).

A remarkable result of Artstein-Avidan and Slomka [4] shows that for log-concave functions, the notions
of covering and separation essentially coincide (up to reflection):

Theorem 2.3 (Artstein-Slomka). Let f,g € LCy((R™). Then, M(f,g) = N(f,g), where g(z) = g(—x).

In the same work, Artstein-Avidan and Slomka obtained the following general bounds. If f, g are
geometric log-concave functions, then

J f(z) dz < N(fg) < onJ () da

1/ *Glloc If*gllos
If, in addition, f and g are even functions, then
[P _ W @) ds
Ti@awdr < M09 < 2Ty de

Moreover, for every p > 1,




Using these inequalities, Artstein-Avidan and Slomka showed in [4] that if f, g € LC,(R™) are centered, then
C™"N(g", f*) < N(f,9) <C"N(g", [").

where C' > 0 is an absolute constant. Later, Gilboa, Segal, and Slomka proved in [I8] that if ¢ ~ n? and ¢, ¢
are convex geometric functions such that either bar(¢) = 0 or bar(Ag) = 0, and likewise either bar(y) = 0
or bar(Ay) = 0, then

C—nN(e—qu, e—qAaﬁ) < N(e™¥, e—w) < C"N(e_q“‘w, e—quﬁ).
These results may be viewed as functional analogues of the well-known inequality
C™"N(T°,K°) < N(K,T)< C"N(T°,K°)

due to Konig and Milman (see [5, Theorem 8.2.3]), which holds for every pair of symmetric convex bodies
K and T in R"™.

3 Regular functional covering numbers

In this section we prove that every centered geometric log-concave function admits a regular covering M-
position. Our approach relies on the existence of an almost 2-regular M-position for convex bodies (Propo-
sition . In fact, in Theorem we show that every isotropic geometric log-concave function is in an
almost 1-regular M-position.

Let f: R™ — [0,00) be a centered log-concave function with f(0) > 0. We associate to f two classical
families of convex bodies, denoted by {R.(f)}i>1 and {K,(f)}i>1. First, for every ¢ > 1, define

Ri(f) ={z € R": f(z) > e™"f(0)}.
Since f is log-concave, the sets R:(f) are convex, and clearly 0 € int(R;(f)). To show that R.(f) is bounded,
recall that every log-concave function with finite positive integral satisfies (see [12, Lemma 2.2.1]) the estimate

(3.1) f(z) < Ae~Blel for all x € R",

for some constants A, B > 0. Thus, if € R:(f) then

o] < (n(A/£(0)) +1).

The second family of convex bodies K;(f) was introduced by K. Ball, who also proved their convexity
in [7]. For every t > 1, define

Ki(f) = {zer": / 1 f () dr > 1O 3
0 t
Its radial function is given by

(3.2) 0K, (f) () = (f(l()) /000 tri=l f(rx) dr) . ) x #£0.

For 0 < t < s one has the inclusions (see [12, Prop. 2.5.7])
1

L(t+ 1) i
rem s crme (Ys=) ww

Moreover, since f is assumed centered and log-concave, we have that || f||./f(0) < e™; this inequality is due
to Fradelizi [14].

The next relation between the bodies Ky (f) and R;(f) follows directly from the definitions (see [16],
Proposition 2.3]).

(3.3)
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Proposition 3.1. Let f : R™ — [0,00) be a centered log-concave function with f(0) > 0. For every s >t
we have

Ri(f) € e/ Ko (f).
In the opposite direction we use the following estimate (see [I6l Proposition 2.4]).
Proposition 3.2. Let f: R™ — [0,00) be a centered log-concave function with f(0) > 0. For every t > 2n,

RMﬂgO?)mU»

If in addition f is even, then
Rse(f) 2 (1— ") Ke(f).

We now introduce the convex body

Rf = R50n(f)

Lemma 3.3. Let f: R™ — [0,00) be a centered log-concave function with f(0) > 0. There exists a centered
convez body K C R™ such that
dG (Rf7 K) < 07

where C > 0 is an absolute constant. In fact, we may choose K = K, 1(f).
Proof. Using Proposition and (3.3) we obtain
(3.4) Ry = Rson(f) C e Kson(f) € a1 Knt1(f),

for some absolute constant a; > 0. Using Proposition and (3.3), and taking into account Fradelizi’s
inequality,

(3.5) 54—€Kn+1(f) C ngn(f) = (1 - fg;) Kion(f) € Rson(f) = Ry.

Thus,

(3.6) a2Kni1(f) € Ry C nKpia(f),  az= 5.

Since K,4+1(f) is centered (see [I2, Proposition 2.5.3]), the lemma is proved. O
In what follows, we also set

(3.7) ry = (volu(Ry)) /wn)/™.

We need three intermediate results.

Proposition 3.4. Let f : R™ — [0,00) be a geometric log-concave function. If VOln(Rf)l/" ~ 1 and Ry
satisfies

2“/
(3.8) mac{ N(Ry, tryBY), N(Bf, trs(Ry)°)} < exp (252)

for some v, = 1 and every t > 1, then

Tan
N(f,t@g)<exp<7tl> for allt > 1.

11



Proof. We first claim that
(3.9 f(@) < L, (z) + exp(—50n ||z||r,) , x € R"™.

If x € Ry, then f(z) < 1=1g,(x). If x ¢ Ry, then ||z|g, > 1 and by definition f(z/|z|r,) = exp(—50n).
Log-concavity yields
f(@) < exp(—50n |z g, ) -

Next, decompose exp(—50n|z||r,) as
(3.10) exp(—50nz||gr,) = Z e~ P0nllzllry ]1{k550n\|m|\3f<k+1}(x) < Ze_k ]lﬁRf ().
k=0 k=0
Combining , 7 and Lemma(iii)7
o0
(3.11) N(f,t@g)gN(]lRf,t@g)jLZe*kN(n%Rf,t@g).
k=0

We begin with N(1g,,t® g). By submultiplicativity,

(312) N(IlRf,tQQ) g N(I[Rf, IL\/ZTfB;L)N(Il\/ZTfBQ’ t@g)
By (2:8) and (33),
2
cy,n
(3.13) N(]lRf, ]l\/frfBg) < exp(?) .

Since vol(Ry)Y/™ ~ 1, we have 7 ~ \/n, and for @ € v/tr;BY,

|z i
exp| — 55 > exp ~5¢ > exp(—cn/t),

where ¢ > 0 is an absolute constant. Thus

1 ey, 5y (£) < (@ g)(a),
and hence (by Lemma [2.2)(i))
(3.14) N(L g, 5y,t©g) < e/t

Combining (3.13)—(3.14) gives

cyyfm)

(3.15) N(]lRf,t®g)<exp< "

Next, we give an upper bound for the sum in (3.11). For k > 0, using (3.14) and submultiplicativity, we

write
N(H%Rfat ©g) < N(]]'%Rf7]]'\/g’rf33) N s, pp:t©g)

< "N (Ry, VirgBy) N By, 25 By ) |

Using (3.8) and the bound N(BZ,ABY) < (1+2/\)™,

cyyﬁn) e

N(]lx;otin,t(Dg)gexp< P %

12



It follows that

00 2
k Y
kze N(]lme,tQQ)gCleXp<t>’
=0

and together with (3.11) and (3.15)),
2 2
Nt <o) 4 o220,

t t

which gives the required bound. O

Proposition 3.5. Let f : R" — [0,00) be a geometric log-concave function. If voln(Rf)l/" ~ 1 and Ry
satisfies

(3.16) maX{N(rfBS, tRy), N(rs R}, th)} exp(cl(s n)

for some 6, = 1 and every t > 1, then

5,2171
N(g,t® f) < exp . forallt > 1
Proof. Let t > 1. If x € Ry, then by definition f(x) > exp(—50n), and log-concavity gives

fla/t) = f@)" = exp(=50n/t).

Hence
exp(=50n/t) 1r,(z) < (t© f)(x),
and Lemma [2.2)(i) yields

(3.17) N(g,t® f) < e /' N(g,1,).

Next decompose ¢ into spherical annuli:
> i 272 2
g(it) = Zg(ﬂf) ]l{akrf \;c|<a(k+1)7"f} Ze ARy /2 ]la(k—&-l)rfB;L (x),
k=0 k=0

for some a > 0 to be determined. By Lemma [2.2](iii),

oo

2,2 2
(318) g7 ]lRf Z e " k Tf/z a(k-&-l)m«B;’; ]lRf)'
For each k£ > 0,
(319) N(]la(k+1)7‘fBga]lRf) g N(a(k-i—l)TfBg,Rf)

N (alk+ 1)y By, 5r¢By) NirsBg, ViRy).
Volumetric covering bounds give
N (alk+1)rp By, rsBE) < (2Valk+1)+1)",
and by ,

52
N(r;By,VtRy) < exp<cltnn>.

13



Inserting the above into (3.19) we conclude that

n c62n
N(ﬂa(k-‘rl)rfBg’a ]lRf) < (2\/1?(1(]{3 + 1) + 1) exp< p ) y

Recall that vol,(R;)"/"™ ~ 1, which implies 7 ~ y/n. Substituting into (3.18) gives

2N\ o= _ea?i? . .
N(g,1r,) <exp< ; )Z(e 0o’k 42vTa(k 1)),
k=0

Choosing a = cpv/t (for an absolute constant c; > 0 sufficiently large) makes the series bounded by an
absolute constant. Hence

52
N(g,1r,) < CeXP(C ;n> :
Inserting into (3.17)) yields the desired estimate. O

Proposition 3.6. Let f : R™ — [0,00) be a centered geometric log-concave function such that Voln(Rf)l/” ~
1 and Ry satisfies

2

o o n 6’1’7,” (e} n (e} 7”27/”
(3.20) N((Ryf)°, tr°By) < exp “ and N(r°Bj3, (Rf)°) < exp o

for some v, 8, > 1 and every t > 1, where r°BY is the Euclidean ball having the same volume as (Ry)°.
Define

Ry i={z € R": f*(x) > e """},
where f* is the Legendre dual of f. Then vol,(Rs<)/" =~ 1 and Ry~ satisfies

2

0 2
(3.21) N(Ry-, tr*By) < exp(ct2”> and N(BE, tR;.) < exp<c'§g”)

for every t > 1, where r* B3 is the ball having the same volume as Ry~ and c > 0 is an absolute constant.

Proof. Write f = e~%, where ¢ is convex. Then f* = e %%, where Ly is the Legendre transform. By [I5]
Lemma 8], for all s,¢ > 0,

(3.22) Hro(x) <t}° C {y: Lo(y) <t} C (t+s){z:p(x) <s}°
Setting s =t = 50n in (3.22) gives
(3.23) 50n (R;)° C Ry C 100n (Ry)°,

which implies
50nr° < r* < 100nr°.
Using (3.20) for (Ry)°, we obtain

2

N(Ry-, tr*BE) < N(100n (R;)°, 50nt r°BE) < exp(czgn> :

and similarly,

12
From Lemma we know that Ry has bounded geometric distance from a centered convex body.

Therefore, we may apply the Blaschke-Santalé and Bourgain-Milman inequalities (up to an absolute constant)
to Ry. Combining with (3.23) yields

vol, (Rp-)/™ ~ nvol, ((Ry)°)Y/™ ~ l/voln(Rf)_l/" ~ 1,

2
N(r*By, tR¢) < N(100nr° By, 50nt (Rf)°) < exp(c,y”n> .

completing the proof. O

14



We are now ready for the proof of the main theorem.

Proof of Theorem[1.3] Let f:R"™ — [0,00) be an isotropic geometric log-concave function. Then

f0) = flls =1, /R fla)ds = 1.

The convex body K,1(f) is isotropic, and therefore, by Proposition

Van
(3.24) max{ N(Kp1(f), traB3), N(BS, tra(Kos1(1)°)} < exp( 2 > ’
(3.25) max{ N (r By, tK1 (), N(ra(Kus1 ()°, tB)} < exp(‘S;”) 7

for all t > 1, where 7,, < ¢(Inn)? and §, < clnn.

Combining (3.6 with (3.24) and (3.25)), we deduce that Ry satisfies (3.8)) and (3.16). Moreover,
voly (Ry) /™ m voly (K1 ()" = 1.

Applying Propositions [3.4] and we obtain

2
corn

2
N(f,t@g)éexp(@) andN(g,t@f)éexp( ) for all t > 1.

Next, Proposition shows that Ry~ satisfies (3.20), and moreover
vol, (R« )™ ~ 1.

Applying Propositions [3.4] and [3.5] to f* yields

2

%) 2
N(f*,tog) < exp(C :n) and N(g,to f*) < exp(mgn> for all t > 1.

This completes the proof.
For the proof of Theorem we shall use the next lemma from [24].
Lemma 3.7. Let ¢ : R™ — [0,00) be a geometric convex function. For everyt > 0,
({z:o(z) <1/t})° C{a: ¢%(2) <t} C2({z: p(z) <1/})°.
Consider the geometric log-concave function f = e~%. Applying Lemma with t = ﬁ we get
(3.26) (Rp)° € {a: ¢°(x) < 1/(500)} € 2(Ry)°.
We define the scaled polar ¢ 4 of ¢ by
pa(x) = (50n)%¢° (x/n).
Note that ¢ 4(z) < 50n if and only if ¢°(z/n) < 1/(50n). This shows that
(3.27) n(Ry)° C {x: pa(@) < 500} C 2n(Ry)°,
and hence, if we define f4 = e~ %4 we get

(3.28) n(Rf)O - RfA - 2n(Rf)°.

15



Proof of Theorem[L.5] We start as in the proof of Theorem Recall that
vol, (Rp)Y™ = vol,, (K1 (f)Y/" =1

and R satisfies (3.8) and (3.16).
Combining ([3.28) with the Blaschke-Santalé and Bourgain-Milman inequalities we get

vol,, (R, )™ ~ nvol,((Ry)°)Y™ ~ 1 /vol,(Ry)/™ ~ 1.

In particular, if 7 4 denotes the radius of the ball that has volume vol,,(Ry,), we see that r4 ~ /n.

Using ([3.20) for (Ry)°, we obtain

cy2n
N(Rj,, traB3) < N(2n (Ry)°, tnr°B3) < exp tg ,

and similarly,
n o n o 67727/77/
N(raB3,tRs,) < N2nr°By, tn(R;)°) < exp 2 )

Since Ry, satisfies (3.20]), and moreover
vol, (Ry )Y/ ~ 1,
applying Propositions and to f4 yields

c62n
NP

2
) and N(g,t® fa) < exp<07:n> for all t > 1.

This completes the proof. O

We now turn to the proofs of Theorems[I.4] and We shall use the fact that if K is an isotropic convex
body in R™, then

(3.29) max {N(K, rnBY), N(r,By, K), N(r,K°, BY), N(B;L,rnKO)} <Len

for some absolute constant C > 0. This is a well-known consequence of the fact that L, < C; see, for
example, [I7, Theorem 3.3].

Proof of Theorem[1.4, We begin as in the proof of Theorem Recall that K,,1+1(f) is isotropic, and
hence satisfies (3.29). Since Ry is at bounded geometric distance from K, y1(f), we obtain ry ~ y/n, or

equivalently,
vol (Rp)M™ & vol, (K41 ()™ = 1,

and Ry satisfies
(3.30) max {N(Ry,r;B3), N(ryBy, R), N(ro(Ry)°, By ), N(By,rs(Ry)°)} < C"

for some absolute constant C' > 0. Following the proof of Proposition with t = 1 and (3.8) replaced by
(3.30), we deduce that

(3.31) N(f,g) <Ct

for some absolute constant C7 > 0.
Similarly, applying the proof of Proposition with ¢ = 1 and again replacing (3.8)) by (3.30]), we find

(3.32) N(g,f) < C3

for some absolute constant Cs > 0.
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Next, recall from the proof of Proposition [3.6] that
Ry = n(Ry)°,

and hence r* ~ nr°, where r* denotes the volume radius of Rs-. In particular, voln(Rf*)l/” ~ 1. Since

(Ry)° satisfies ([3.30)), it follows that
N(Ry-, r*By) < N(ein (Ry)°, conr°By) < CY,
and similarly,
N(r*By, Ry+) < N(canr®By, cin (Ry)°) < CY.
Repeating the proofs of and with f* in place of f now yields
(3.33) N(f*, 9)<C¥ and N(g, f*) < Cg.
This completes the proof. [
Proof of Theorem[1.6] We only need to prove that
(3.34) N(fa,9)<CF and N(g, fa) < C3.
The proof is similar to the second part of the proof of Theorem [I.4] once we recall that
Ry, ~n(Ry)°

by (3-29). O
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