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ABSTRACT

Suppose F := (f1, . . . , fn ) is a system of random n-variate polyno-

mials with fi having degree ≤di and the coefficient of xa11 · · · xann
in fi being an independent complex Gaussian of mean 0 and vari-

ance di !

a1!· · ·an !
(

di−
∑n
j=1 aj

)

!
. Recent progress on Smale’s 17th Prob-

lem by Lairez — building upon seminal work of Shub, Beltran, Pardo,

Bürgisser, and Cucker — has resulted in a deterministic algorithm

that finds a single (complex) approximate root of F using justNO (1)

arithmetic operations on average, where N :=
∑n
i=1

(n+di )!
n!di !

(= n(n + maxi di )O (min{n,maxi di )}) is the maximum possible to-

tal number of monomial terms for such an F . However, can one go

faster when the number of terms is smaller, and we restrict to real

coefficient and real roots? And can one still maintain average-case

polynomial-time with more general probability measures?

We show the answer is yes when F is instead a binomial system

— a case whose numerical solution is a key step in polyhedral ho-

motopy algorithms for solving arbitrary polynomial systems. We

give a deterministic algorithm that finds a real approximate root (or

correctly decides there are none) using justO(n2(log(n)+logmaxi di ))
arithmetic operations on average. Furthermore, our approach al-

lows Gaussians with arbitrary variance. We also discuss briefly

the obstructions to maintaining average-case time polynomial in

n logmaxi di when F has more terms.
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1 INTRODUCTION

Polynomial system solving has occupied a goodportion of research

in algebraic geometry for centuries, and inspired numerous algo-

rithms in engineering and optimization. In recent years, homotopy
continuation (see, e.g., [MS87, LW91, Li97, SW05, BHSW13]) has

emerged as one of the most practical and efficient approaches to

leverage high performance computing for the approximation of

roots of large polynomial systems. A refinement particularly use-

ful for sparse systems is polyhedral homotopy [HS95, Ver10, LL11].
To be brutally concise, polyhedral homotopy reduces the solution

of an arbitrary polynomial system to (a) solving a finite collection

of binomial systems to high precision and then (b) iterating a finite

collection of rational functions.

It is thus important to have rigorous and, ideally, optimal com-

plexity estimates for solving binomial systems. Since solving arbi-

trary polynomial systems is a numerical problem involving solu-

tions of unknown minimal spacing, we will need to incorporate

the cost of approximating well enough to distinguish distinct solu-

tions. A recent and elegant way to handle this is via the notion of

approximate root in the sense of Smale. In what follows, we use | · |
for the standard ℓ2-norm on Cn .

Definition 1.1. [Sma86, BCSS98] Given any analytic function
F : Cn −→ Cn , we define the Newton endomorphism of F to be
NF (z) :=z − F ′(z)−1F (z), where we think of F (z) as a column vector
and we identify the derivative F ′(z)with thematrix of partial deriva-

tives
[

∂fi
∂x j

] �

�

�

x=z
. We call ζ ∈ Cn a non-degenerate root of F if and

only if F ′(ζ ) is invertible. Given z0 ∈Cn , we then define its sequence
of Newton iterates (zn)n∈N∪{0} via the recurrence zn+1 :=NF (zn)
(for all n≥ 0). We then call z0 an approximate root of F in the sense

of Smale (with associated true root ζ ) if and only if F has a non-

degenerate root ζ ∈Cn satisfying |zn − ζ | ≤
(

1
2

)2n−1

|z0 − ζ | for all
n≥ 1. ⋄

In essence, once one has an approximate root in the sense above,

one can easily compute coordinates within any desired ε > 0 of

the coordinates of a true root, simply by computing O
(

log log 1
ε

)

Newton iterates. The special case F (z1) := z21 − 2 already shows

that one needs Ω
(

log log 1
ε

)

arithmetic operations to compute
√
2

http://arxiv.org/abs/1901.09739v1
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within ε [BMST97]. So one can arguably consider an approximate

root to be the gold standard for specifying a true root. In particular,

one no longer has to worry about finding the minimal root spac-

ing of F (to get the right ε for approximations within ε), since an

approximate root in the sense of Smale is guaranteed to converge

optimally fast to a unique true root.

Of course, this begs the question of how one can possibly find

an approximate root. This is the crux of Smale’s 17th Problem (see

[Sma98, Sma00] and Section 1.1 below), which was recently posi-

tively solved by Lairez [Lai17]. (See also the seminal work of Bel-

tran and Shub [Shu09, BS09], Beltran and Pardo [BP08, BP09, BP11]

and Bürgisser and Cucker [BC12].) Roughly, Lairez’s discoverywas

an algorithm that, for a certain class of random polynomial sys-

tems, finds a single (complex) approximate root in polynomial-time

on average. We now introduce some more terminology to be pre-

cise:

Definition 1.2. Suppose A1, . . . ,An ⊂ Zn are finite subsets
and {ci,a | i ∈ {1, . . . ,n} and a ∈ Ai for all i} is a collection of
independent complex Gaussians with mean 0 and the variance of
ci,a equal to vi,a . Letting a := (a1, . . . ,an), xa := xa11 · · ·xann , and
fi (x) :=

∑

a∈Ai
ci,ax

a , we call F := (f1, . . . , fn ) an n × n random

polynomial system with support (A1, . . . ,An). ⋄

Lairez’s Theorem. [Lai17, Thm. 23]1 Following the notation above,
let d1, . . . ,dn ∈N, Ai := {(a1, . . . ,an) ∈ (N ∪ {0})n | ∑n

j=1 aj ≤di }
for all i , and vi,a :=

di !

a1!· · ·an !
(

di−
∑n
j=1 aj

)

!
. Then one can find a (com-

plex) approximate root of F using justO(nd3/2N (N +n3)) arithmetic

operations on average, where N :=
∑n
i=1

(di+n)!
di !n!

and d :=maxi di . �

Note that restricting the support (A1, . . . ,An) is a way to consider
sparsity for one’s polynomial system. In particular, one can think

of Lairez’s Theorem as solving Smale’s 17th Problem in the “dense”

case, since Lairez assumes that all monomial terms up to a given

degree appear (with probability 1) in each polynomial fi . Indeed,

one should note that Smale never specified what kind of probabil-

ity measure one should use in his 17th Problem [Sma98, Sma00]. So

Smale’s 17th Problem actually includes sparse systems if some of

the random coefficients have mean, and all higher moments, equal

to 0. Smale also observed that one can pose a more difficult ana-

logue of his 17th problem over the real numbers.

Observe that
∑n
i=1

(di+n)!
di !n!

is exactly the maximal possible to-

tal number of monomial terms in an n × n polynomial system

where fi has degree di . Note also that just evaluating a monomial

of degree d takes Ω(logd) arithmetic operations: Simply consider

the straight-line program complexity of the integer 2d (see, e.g.,

[Bra39, dMS96, Mor97]). One should pay attention to the evalu-

ation complexity of F since Lairez’s algorithm uses Newton iter-

ation, which in turn requires evaluating F (and F ′) many times.

So one can then naturally ask, in the spirit of real fewnomial the-

ory [Kho91]: Can one find a real approximate root of F (or decide

whether there is no real root) using, say, (t logd)O (1) arithmetic op-

erations on average, when t is the total number of monomial terms

1We have paraphrased a bit: Lairez’smain theorem is stated in terms of homogeneous
polynomials, and he counts square roots as arithmetic operations as well. Via the
techniques of, say, [BP09], one can easily derive our affine statement.

of F and d :=maxi di? This would be a significant new speed-up.

For instance, the special case t =O(n) is already quite non-trivial

since there are standard algebraic tricks (e.g., the bottom of the

first page of [ES96]) to reduce arbitrary polynomial systems to tri-

nomial systems.

Our first main theorem thus solves a special case of a refined

version of Smale’s 17th Problem, and serves as a starting point for

a deeper study of the randomized complexity of solving arbitrary

real sparse polynomial systems.

Theorem 1.3. Suppose A = [ai, j ] ∈ Zn×n has nonzero determi-
nant, and all the entries of A have absolute value at most d . Suppose
also that ci, j is an independent real Gaussian with mean 0 and fixed
(but otherwise arbitrary) variance, for each (i, j)∈ {1, . . . ,n}× {0,1}.
Let F := (f1, . . . , fn ) with fi (x) :=ci,0 + ci,1 · xa1,11 · · ·xa1,nn . Then, on
average, one can find a real approximate root of F (or correctly de-
termine there are no real roots) using just O(n2 log(nd)) arithmetic
operations and O(nω+1 log2(dn)) bit operations, where ω is any up-
per bound on the matrix multiplication exponent.

We prove Theorem 1.3 in Section 4. The best current upper bound

on ω, as of January 2019, is 2.372873 [Vas14]. A fundamental in-

gredient behind our proof of Theorem 1.3 is a hybrid algorithm of

Ye enabling the quick approximation of rational powers of a real

number [Ye94], combined with some classic results on fast linear

algebra over Z [Smi61, Sto00]. A final key ingredient is estimating

the expected value of linear combinations of logarithms of abso-

lute values of standard real Gaussians (Proposition 3.9 in Section

3.3 below). We were unable to find any explicit asymptotics for

such expectations, so we derive these from scratch in the latter

half of Section 2 and Section 3.

We will explain some of the subtleties behind extending The-

orem 1.3 to systems with arbitrary supports in Section 1.2 below.

First, however, let us briefly review the original statement of Smale’s

17th Problem.

1.1 Quick Review of Smale’s 17th Problem

Smale’s 17th Problem [Sma98, Sma00] elegantly summarizes the

subtleties behind polynomial system solving:

Can a zero of n complex polynomial equations in n

unknowns be found approximately, on the aver-

age, in polynomial-time with a uniform algorithm?

[Emphases added.]

We clarify the notion of “polynomial-time” below. As motiva-

tion, let us first see how the emphasized terms highlight funda-

mental difficulties in polynomial system solving:

“a zero”:We can not expect a fast algorithm approximating all the
roots since, for n≥ 2, there may be infinitely many. In which

case, for d1 ≥ 3 (e.g., the case of elliptic curves [ST94]), the

roots will likely not admit a rational parametrization. When

there are only finitely many roots, systems like

(x21 − 1, . . . ,x2n − 1) show that the number of roots can be

exponential in n.

“found approximately”: Even restricting to integer coefficients,

the number of digits of accuracy needed to separate distinct

roots can be exponential in n, e.g.,

((2x1 − 1)(3x1 − 1),x2 − x21 , . . . , xn − x2n−1)
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has rootswithnth coordinates 1

22
n−1 and

1

32
n−1 . So, especially

for irrational coefficients, we need a more robust notion of

approximation than digits of accuracy. (Hence’s Smale’s def-

inition of approximate root from [Sma86].)

“on the average”:Restricting to integer coefficients, distinguishing

between a system having finitely many or infinitely many

roots is NP-hard (see, e.g., [Pla84, Koi97]). Furthermore, as

already long known in the numerical linear algebra commu-

nity (e.g., results on the distribution of eigenvalues of ran-

dom matrices [Ede88, TV09]), even if the number of roots

is finite, the accuracy needed to separate distinct roots can

vary wildly as a function of the coefficients. So averaging

over all inputs allows us to amortize the complexity of po-

tentially intractable instances.

The original statement of Smale’s 17th Problem measures time
(or complexity) as the total number of (a) (exact) field operations

over R, (b) comparisons over R, and (c) bit operations [Sma98].

(The underlying computationalmodel is aBSSmachine overR [BCSS98],
which is essentially a classical Turingmachine [Pap95, AB09, Sip12],

augmented so that it can perform any field operation or compar-

ison over R in one time step.) Polynomial-time was then meant

as polynomial in the number of (nonzero) coefficients of F . Smale

interpreted the number of coefficients (which can be as high as
∑n
i=1

(di+n
n

)

for F as specified above) as the input size.

Remark 1.4. The precise probability distribution over which one
averages was never specified in Smale’s original statement [Sma98,
Sma00]. In all the literature so far on the problem (see, e.g., [Sma98,
Sma00, BP08, BP09, Shu09, BS09, BP11, BC12, Lai17]), the Bombieri-

Weyl measure was used: This is the choice of variances involving
multinomial coefficients written earlier. ⋄

While the Bombieri-Weyl measure satisfies some very nice group

invariance properties (see, e.g., [Kos93, SS92b, BSZ00, FLL14]), there

is currently no widely-accepted notion of a “natural” probability

distribution for a random polynomial. For instance, there are sev-

eral different distributions of interest already for the matrix eigen-

value problem (see, e.g., [Ede88, Roj96, ABF11]). More to the point,

much work has gone into finding useful properties of the roots

of random polynomials that are distribution independent (see, e.g.,

[B-RS86, TV13]).

The meaning of uniform algorithm is more technical and is for-

malized in [BCSS98] (see also [Pap95, AB09, Sip12] for the classical

Turing case). Roughy, uniformity refers to having an implementa-

tion that can handle all input sizes, as opposed to having a different

implementation for each input size.

1.2 Current Obstructions to Fully
Incorporating Sparsity

As we’ll see from the proof of our main theorem, solving an n × n

system of Gaussian random binomials of degree d can be reduced

to solving n univariate binomials of degree (nd)O (n), where the un-
derlying coefficients are no longer Gaussian but have reasonably

estimable means. Algebraically, this will imply that the underlying

field extension (where one adjoins the coordinates of the solutions

to the field generated by the coefficients) is always a radical exten-

sion.

A natural next step then is to consider n × n unmixed (n + 1)-
nomial systems:
(c1,0 + c1,1xa1 + · · · + c1,nxan , . . . , cn,0 + cn,1xa1 + · · · + cn,nxan ),
where ai := (a1,i , . . . ,an,i ) for all i . Via Gauss-Jordan Elimination,

one can reduce such a system to a binomial system without af-

fecting the roots. Unfortunately, if one starts with a system of the

form above, with Gaussian ci, j , the resulting binomial system no

longer has Gaussian coefficients. So one needs to consider binomial

systems with coefficient distributions more general than Gaussian,

and we do this in a sequel to this paper.

Going a bit farther, n × n unmixed (n + 2)-nomial systems yield

an interesting complication: The underlying field extensions need

no longer be radical, even if n=1. A simple example is x51 −2x1+10,
which has Galois group S5 over Q. However, earlier results from

[RY05] indicate that it should be possible to find real approximate

roots quickly on average, at least for univariate trinomials. (One

should also observe Sagraloff’s recent dramatic speed-ups for the

worst-case arithmetic complexity of approximating real roots of

univariate sparse polynomials [Sag14].)We conjecture that finding

a real approximate root (or determining that there are no real roots)

for a real Gaussian n × n unmixed (n + 2)-nomial system is still

possible in time (n logd)O (1) on average, and hope to address this

problem in the future.

2 BACKGROUND

In what follows, for any n ×n matrix A∈Zn×n , we define xA to be

the vector of monomials
(

x
a1,1
1 · · · xan,1n , . . . ,x

a1,n
1 · · ·xan,nn

)

. We

call the substitution x = zA a monomial change of variables. The
following proposition is elementary.

Proposition 2.1. We have that xAB = (xA)B for anyA,B ∈Zn×n .
Also, for any field K , the map defined bym(x)=xU , for any unimod-
ular matrixU ∈Zn×n , is an automorphism of (K∗)n . �

Our main approach to solving binomial systems is to reduce

them to systems of the form (xd11 −c1, . . . ,xdnn −cn) via a monomial

change of variables, and then prove that the distortion of the ci
resulting from perturbing the original coefficients is controllable.

Later on, we will also detail how a Gaussian distribution on the

original coefficients implies that the ci still have well-behaved dis-

tributions. But now we will focus on quantifying our monomial

changes of variables.

2.1 Linear Algebra Over Z

Definition 2.2. LetGLn(Z) denote the set of all matrices inZn×n

with determinant ±1 (the set of unimodular matrices). Given any
M ∈ Zn×n , we call any identity of the form UMV = S with U ,V ∈
GLn(Z) and S diagonal a Smith factorization. In particular, if S =
[si, j ] and we require additionally that si,i ≥ 0 and si,i |si+1,i+1 for all
i ∈ {1, . . . ,n} (setting sn+1,n+1 := 0), then S is uniquely determined
and is called the Smith normal form of M . ⋄

Theorem 2.3. [Sto00, Ch. 6 & 8, pg. 128] For anyA= [ai, j ]∈Zn×n ,
a Smith factorization of A yielding the Smith normal form of A can
be computed within

O
(

nω+1 log2(nmaxi, j |ai, j |)
)
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bit operations. Furthermore, the entries of all matrices in the under-
lying factorization have bit size O(n log(nmaxi, j |ai, j |)). �

2.2 From Approximate Roots of Univariate
Binomials to Systems

We begin with an important observation from the middle author’s

doctoral dissertation, building upon earlier work of Smale [Sma86]

and Ye [Ye94].

Lemma 2.4. [Phi16, Thm. 4.10] Let d ∈N satisfy d ≥ 2, c > 0, and
f (x1) := xd1 − c . Then we can find an approximate root of f using

O
(

log(d) + log logmax{c, c−1}
)

field operations over R. �

Since amonomial change of variables enables us to replace an ar-

bitrary binomial system by a simpler, diagonal system of univariate

binomials, it’s enough to bound how the coefficients are distorted

under such a change of variables. The following lemma gives us

the bounds we need.

Lemma 2.5. Suppose c1, . . . , cn ∈ C∗ and A ∈ Zn×n has columns
a1, . . . , an and entries of absolute value at most d . Also let σ :=

maxi {| log |ci | |}, let UAV = S be the Smith Factorization of A, and
let (γ1, . . . ,γn) := (c1, . . . , cn )V . Then the following bounds hold:

1. maxi | log |γi | | ≤n4+3n/2d3nσ .
2. If ζ = (ζ1, . . . , ζn)∈ (C∗)n is a true root of F then
maxi | log |ζi | | ≤nO (n)dO (n)σ . �

2.3 Logs of Absolute Values of Gaussians

We now finally address the change in probability distribution re-

sulting from replacing a Gaussian coefficient by a monomial in

several other Gaussians. Our derivation is, necessarily, a bit long.

So the hurried reader can jump to Propositions 3.3 and 3.9, respec-

tively in Sections 3 and 3.3 below.

Let Θ,Θ1,Θ2, . . . be independent exponential random variables,

i.e., FΘ(t) := P(Θ ≤ t) = 1 − e−t . Let L,L1,L2, . . . be independent
symmetric exponential random variables, i.e., the density of L is

given by ρL(t) = 1
2e

−|t | , −∞ < t < ∞, and similarly for the Li .

LetZ ,Z1,Z2, . . . be independent standard real Gaussian random

variables, i.e.,

Φ(t) := P(Z ≤ t) := 1
√
2π

∫ t

−∞
e−

s2

2 ds =:

∫ t

−∞
ϕ(s)ds . (1)

Let Y ,Y1,Y2, . . . be independent random variables such that Yi :=

log |Zi |. We have that

FY (t) := P(Y ≤ t) = P(|Z | ≤ et ) = P(−e−t ≤ Z ≤ et ) = 1−2Φ(−et ).
Taking derivatives we get F ′

Y
(t) := 2etϕ(et ), which implies that

the density of Y , ρY , is

ρY (t) :=
√

2

π
ete−

e2t

2 , −∞ < t < ∞. (2)

We use E to denote expectation, P to denote probability, and define

a := EY :=

√

2

π

∫ ∞

−∞
tete−

e2t

2 dt . (3)

Note that

0 < a < e

√

2

π
+ 2 < 5. (4)

Indeed, a =
√

2
π

(

∫ ∞
0

te−te−
e−2t
2 dt +

∫ ∞
0

tete−
e2t

2 dt

)

. So clearly

a > 0 and also
√

π

2
a ≤

∫ ∞

0
te−tdt +

∫ 1

0
tetdt +

∫ ∞

1
tete−

e2t

2 dt

≤ 1+ (e−1)+
∫ ∞

e
log se−

s2

2 ds ≤ e+
√
2π

∫ ∞

e
s2ϕ(s)ds ≤ e+

√
2π .

We define a new, centered (i.e., mean 0) random variable via

W := Y − a. (5)

We writeA ≃ B to indicate that there exist positive constants c1, c2
with c1A ≤ B ≤ c2A. Let a := (a1, . . . ,ak )∈Rk and define

Wa :=

k
∑

i=1

aiYi , Va := e
Wa and Xa := max{Va,V−1

a } (6)

Using the notation ‖R‖p := E(Rp )1/p , we will prove the follow-
ing fact:

Lemma 2.6. LetW be the centered random variable defined in (6)

and let p ≥ 2. Then

‖W ‖p ≃ ‖Θ‖p ≃ ‖L‖p . (7)

Proof. We have that

‖W ‖pp =
√

2

π

∫ ∞

−∞
|t − a |pete−

e2t

2 dt =

√

2

π

∫ ∞

0
|t+a |pe−te−

e−2t
2 dt+

√

2

π

∫ ∞

0
|t−a |pete−

e2t

2 dt =:

√

2

π
I1+

√

2

π
I2.

Note that for t ≥ 1, e−
e−2t
2 ≥ e−

t
2 . So using the above we have that

I1 ≥
∫ ∞

1
|t+a |pe−te−

e−2t
2 dt ≥

∫ ∞

1
tpe−

3t
2 dt =

(

2

3

)p+1 ∫ ∞

3/2
spe−sds =

(

2

3

)p+1
(

(p + 1)! −
∫ 3/2

0
spe−sds

)

≥
‖Θ‖pp
4p
,

since ‖Θ‖pp = (p + 1)!. Moreover

I1 ≤
∫ ∞

0
|t + a |pe−tdt = ‖Θ + a‖pp ≤ 2‖Θ‖pp ,

by Minkowski inequality the fact that p ≥ 2 and (4). So we have

shown that
‖Θ‖pp
4p

≤ I1 ≤ ‖Θ‖pp . (8)

Moreover, using again (4),

I2 ≤
∫ 1

0
|t − a |pete−

e2t

2 dt +

∫ ∞

1
|t − a |pete−

e2t

2 dt

≤ e5p +
√
2π

∫ ∞

e
| log s − a |pϕ(s)ds ≤ 5p

(

e + ‖Z ‖pp
)

≤ 5p ‖Θ‖pp .

So we have shown that

0 ≤ I2 ≤ 5p ‖Θ‖pp . (9)

Combining (8) and (9) we get that
‖Θ ‖p
4 ≤ ‖W ‖p ≤ 6‖Θ‖p . Finally,

it is straightforward to check that ‖Θ‖p ≃ ‖L‖p for all p > 0. �



Faster Solution to Smale’s 17th Problem I ISSAC ’19, July 15–18, 2019, Beijing, China

2.4 A Tool for Linear Combinations of Logs of
Absolute Values of Gaussians

We are going to use the following fundamental result of Latala:

Theorem 2.7. [Lat97, Thm. 2 & Rem. 2] Let X1, . . . ,Xn be cen-
tered independent random variables and p ≥ 2. Then











n
∑

i=1

Xi











p

≃ ‖|(X1, . . . ,Xn)‖ |p , (10)

where ‖ |(X1, . . . ,Xn)‖ |p is defined to be

inf

{

t > 0 :
∑n
i=1 log

(

E

�

�

�

Xi
t +1

�

�

�

p
+

�

�

�

−Xi
t +1

�

�

�

p

2

)

≤ p

}

. �

We will also need the following fact:

Lemma 2.8. LetX1, . . . ,Xn be independent random variables and
let X̃1, . . . , X̃n be another sequence of independent random variables.
Fix p ≥ 2 be an even integer and assume that there are a,b > 0 such
that

a‖Xi ‖q ≤ ‖X̃i ‖q ≤ b ‖Xi ‖q (11)

for all 1 ≤ q ≤ p and for all 1 ≤ i ≤ n. Then we have that

a‖ |(X1, . . . ,Xn)‖ |p ≤ ‖|(X̃1, . . . , X̃n)‖ |p ≤ b ‖ |(X1, . . . ,Xn)‖ |p .
(12)

Proof. We will first prove the following

Claim: Under the assumptions of the Lemmawe have that for every

t > 0

Eη(aXi/t) ≤ Eη
(

X̃i /t
)

≤ Eη (bXi/t) , 1 ≤ i ≤ n, (13)

where η(x) := 1
2

(

|x + 1|p + |1 − x |p
)

.

Indeed, Eη
(

X̃i/t
)

=
1
2

∑p

k=0

(p
k

)

E

(

(X̃i /t)k ) + (−X̃i/t)k )
)

=

1

2

p
∑

k=0,k even

(

p

k

)

E

(

(X̃i/t)k ) + (X̃i/t)k )
)

≤ 1

2

p
∑

k=0,k even

(

p

k

)

E

(

(bXi/t)k ) + (bXi/t)k )
)

=

1

2

p
∑

k=0

(

p

k

)

E

(

(bXi/t)k ) + (−bXi/t)k )
)

= Eη(bXi/t) .

The proof of the other side inequality in (13) is identical. Equation

(12) then follows immediately from the claim and the definition of

‖ |(X1, . . . ,Xn)‖ |p . �

Our preceding lemma leads to the following:

Corollary 2.9. Let X := (X1, . . . ,Xn), X̃ := (X̃1, . . . , X̃2) be
two centered random vectors with independent coordinates and let
θ = (θ1, . . . , θn ) ∈ Rn . We assume that (11) holds true. Then for
every 1 ≤ r ≤ p,

c1a‖〈X,θ〉‖r ≤ ‖〈X̃,θ〉‖r ≤ c2b ‖〈X,θ〉‖r , (14)

where c1, c2 > 0 are universal constants.

Proof. The result follows from Theorem 2.7 and Lemma 2.8 ap-

plied to the random variables θiXi and θi X̃i . �

3 ADDITIONAL PROBABILISTIC ESTIMATES

Let W := (W1, . . . ,Wn ) be the centered random vector with inde-

pendent entries that are logs of absolute values of real standard

Gaussians. Let L := (L1, . . . , Ln). Let θ ∈ Sn−1 (Here Sn−1 is the

unit sphere in dimension n.) The next theorem below is a special

case of a more general result of Gluskin and Kwapien [GK95]. Let

us introduce some notation. Let x ∈ Rn . We write x∗ for the non-
increasing rearrangement of the vector (|x1 |, . . . , |xn |). Given any

1 ≤ s ≤ n and a vector x we denote xs the vector with entries x∗i
for i ≤ s and 0 otherwise and by xs the vector with entries 0 for

i ≤ s and entries x∗ for i > s .

Theorem3.1. (Special case of [GK95]) There are constantsC1,C2 >

0 such that for every n ≥ 1, p ≥ 1, and every θ ∈ Sn−1, one has that

C1p‖θp ‖∞+C1
√
p‖θp ‖2 ≤ ‖〈L,θ〉‖p ≤ C2p‖θp ‖∞+C2

√
p‖θp ‖2. �

(15)

Lemma 2.6, Theorem 3.1, and Corollary 2.9 together imply the fol-

lowing

Proposition 3.2. There exists two constantsC1,C2 > 0 such that
for every n ≥ 1, p ≥ 1 and every θ ∈ Sn−1, one has that

C1p‖θp ‖∞ +C1
√
p‖θp ‖2 ≤ ‖〈W , θ〉‖p ≤ C2p‖θp ‖∞ +C2

√
p‖θp ‖2.

(16)

The above result gives very precise estimates about the concentra-

tion of the function

P

(�

�

�

�

�

n
∑

i=1

θi log |Zi | −
n

∑

i=1

θia

�

�

�

�

�

≥ t

)

for all t . A less precise but simpler to use statement than Theorem

3.1 is the following estimate: For every θ ∈ Sn−1

P

(�

�

�

�

�

n
∑

i=1

θiLi

�

�

�

�

�

≥ t

)

≤ exp

{

−Cmin

{

t

‖θ ‖∞
, t2

}}

, t > 0 (17)

Using the above we arrive at the following

Proposition 3.3. Let Z1, . . . ,Zn be independent standard real
Gaussian random variables, θ ∈ Sn−1, and a as defined in (3). Then
the following holds:

P

(�

�

�

�

�

n
∑

i=1

θi log |Zi | −
n

∑

i=1

θia

�

�

�

�

�

≥ t

)

≤ C ′ exp
{

−Cmin

{

t

‖θ ‖∞
, t2

}}

,

(18)

for t > 0, where C,C ′ > 0 are absolute constants.

Proof. By (16) we have that ‖〈W , θ〉‖p ≤ C2
√
p if p ≤ ‖θ ‖−2∞

and ‖〈W ,θ〉‖p ≤ C2p‖θ ‖∞ otherwise. Using Markov’s Inequality

we get that P
(

|〈W ,θ〉| ≥ eC2
√
p
)

≤ e−p , if p ≤ ‖θ ‖−2∞ , or (if we

will set eC2
√
p = t ), for t ≥ C3,

P(|〈W ,θ〉| ≥ t) ≤ e−C4t , if t ≤ ‖θ ‖−1∞ (19)

and P(|〈W ,θ〉| ≥ eC2p‖θ ‖∞) ≤ e−p , if p ≥ ‖θ ‖−2∞ or (if we will set

eC2p‖θ ‖∞ = t ), for t ≥ C4

‖θ ‖∞ ,

P(|〈W , θ〉| ≥ t) ≤ e−C5t . (20)

Combining (19) and (20) and adjusting the constants properly we

get (17). �
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3.1 On the Expectation of log log

Let Z ,Zi be independent real standard Gaussian random variables

and let d be a positive integer.

Let X := max{|Z |, |Z |−1}. We have that

P(log log{eX } ≥ t) ≤
√

8

π
e−(e

t−1), t ≥ 0. (21)

Indeed, for t ≥ 0, we have

P(log log{eX } ≥ t) = P
(

X ≥ ee
t−1

)

= P

(

|Z | ≥ ee
t−1 or |Z | ≤ e−(e

t−1)
)

≤ P
(

|Z | ≥ ee
t−1

)

+ P

(

|Z | ≤ e−(e
t−1)

)

≤ 2P
(

|Z | ≤ e−(e
t−1)

)

≤ 4 1√
2π

e−(e
t−1). So, we get that

E[log log{eX }] ≤
√

8

π
. (22)

Indeed, since log log{eX } ≥ 0, using (21),

E[log log{eX }] =
∫ ∞

0
P(log log{eX } ≥ t)dt

≤
√

8

π

∫ ∞

0
e−(e

t−1)dt =

√

8

π

∫ ∞

0

1

s + 1
e−sds ≤

√

8

π
.

In what follows we assume that

d ≥ e2. (23)

We will use the following elementary inequality:

a + b ≤ 2ab, a,b ≥ 1. (24)

Since eX ≥ e and d/e ≥ e , using (24) and (22) we get

E log log{dX } = E log{log(d/e) + log{eX }}

≤ E log{2(log(d/e))(log{eX })}

= log 2+log log(d/e)+E[log log{eX }] ≤ log 2+log log(d/e)+
√

8

π
.

Moreover, since X ≥ 1, log log{dX } ≥ log logd and we conclude

that

log logd ≤ E log log{dX } ≤ log 2 + log log(d/e) +
√

8

π
. (25)

3.2 Log-Concavity

A Borel measure µ in Rn is called log-concave if for every compact

sets A,B and λ ∈ (0, 1) one has

µ(λA+ (1 − λ)B) ≥ µ(A)λµ(B)1−λ . (26)

Theorem 3.4 (Borell [Bor75]). Let µ be a Borel measure in Rn

that gives positive mass to some open ball. Then µ is loд-concave if
and only if has a density ρµ that is a loд-concave function i.e. ρµ is
non-negative, supported on a convex set and

ρµ (λx + (1 − λ)y) ≥ ρλµ (x)ρ1−λµ (y), x,y ∈ Rn λ ∈ (0, 1).

Theorem 3.5 (Prékopa). Sum of independent loд-concave ran-
dom variables is loд-concave.

Proposition 3.6. Let µ be a loд-concave probability measure and
let K be a symmetric closed convex set in Rn . Then if δ := µ(K) ≥ 1

2
for every t > 1 we have that

µ
(

(tA)c
)

≤ δ

(

1 − δ

δ

)
t+1
2

.

Corollary 3.7. Let X be a loд-concave random variable with
mean 0 and variance γ 2. Then

P(|X | ≥ s) ≤ e
− s

2γ , s ≥ γ . (27)

Proof. Let A := {|x | ≤ 2γ }. Then, by Chebychev’s inequality

we have that P(A) = δ ≥ 3
4 . By Proposition 3.6 we get that

P (|X | ≥ tγ ) = P
(

(tA)c
)

≤ δ

(

1 − δ

δ

)
t+1
2

≤
(

1

3

)
t+1
2

≤ e−
t
2 , t ≥ 1.

�

3.3 Final Estimates

Recall that ifZ is a standard Gaussian then Y := log |Z | has density

ρY (t) :=
√

2

π
ete−

e2t

t =:

√

2

π
e−v(t ), −∞ < t < ∞. (28)

Let a := E[Y ] and τ 2 be the variance of Y .
We have the following

Proposition 3.8. Let a ∈ Rk and assume that
∑k
i=1 ai = 0. Then

Wa is a loд-concave random variable with expectation 0 and variance
γ 2 := ‖a‖22τ

2. Then we have

P(log log {eXa} ≥ t) ≤ e
− et−1

2γ , t ≥ log{1 + γ }. (29)

Moreover,
E[log log {eXa}] ≤ 2 + log{1 + γ }. (30)

Proof. Note thatv(t) : e
2t
2 −t is a convex function so by Borell’s

theorem Y is a log-concave random variable. We have that

E[Wa] =
k

∑

i=1

aiE[Yi ] = a

k
∑

i=1

ai = 0

and since Yi are independent

var(Wa) =
k

∑

i=1

a2i var(Yi ) = γ
2

k
∑

i=1

a2i = γ
2‖a‖22 .

So, we can estimate as follows:

P(log log {eXa} ≥ t) = P
(

Xa ≥ ee
t−1

)

= P

(

{Va ≥ ee
t−1} ∪ {Va ≤ e−(e

t−1)}
)

=

P

(

Va ≥ ee
t−1

)

+P

(

Va ≤ e−(e
t−1)

)

= P
(

Wa ≥ et − 1
)

+P
(

Wa ≤ −(et − 1)
)

= P
(

|Wa | ≥ et − 1
)

≤ e
− et−1

2γ ,

as long et − 1 ≥ γ , where we have also used Corollary 3.7. Finally,

since eXa ≥ e , log log{Xa} ≥ 0, we have that

E[log log {eXa}] ≤
∫ ∞

0
P (log log {eXa} ≥ t)dt

≤
∫ log{1+γ }

0
dt+

∫ ∞

log{1+γ }
e
− et −1

2γ dt ≤ log{1+γ }+
∫ ∞

γ

1

1 + s
e
− s

2γ ds
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= log{1 + γ } +
∫ ∞

1
2

2γ

1 + 2γx
e−xdx

≤ log{1 + γ } + 2γ

1 + γ

∫ ∞

0
e−xdx ≤ 2 + log{1 + γ }.

�

Working as in Subsection 3.1 we arrive at the following key re-

sult:

Proposition 3.9. Let a ∈ Rk and assume that
∑k
i=1 ai = 0. We

have that

log logd ≤ E log log{dXa} ≤ log log(d/e)+2+log2+log{1+τ ‖a‖2}.
(31)

Proof. Since eX ≥ e and d/e ≥ e , using (24), (30) we get

E log log{dXa} = E log{log(d/e) + log{eXa}}
≤ E log{2(log(d/e))(log{eXa})} = log 2+log log(d/e)+E[log log{eXa}]

≤ log 2 + log log(d/e) + 2 + log{1 + τ ‖a‖2}.
Moreover, since Xa ≥ 1, log log{dXa} ≥ log logd we get (31). �

4 THE PROOF OF THEOREM 1.3

First note that the ci, j are all nonzero with probability 1, so wemay

assume (since we are considering average-case complexity) that all

the ci, j are nonzero. In which case, we can focus solely on roots in

(R∗)n .
Now note that by Proposition 2.1, we can easily decide whether

our input binomial system F has a real root: If F is diagonal, i.e.,

if F = (c1,0 + c1,1xd11 , . . . , cn,0 + cn,1x
dn ), then F has a real root if

and only if ci,0ci,1 < 0 for all i with di even. (In which case, each

orthant ofRn contains at most 1 root of F .) If F is not diagonal, then

after computing a Smith factorizationUAV =S (which accounts for

our stated bit complexity bound, thanks to Theorem 2.3), we can

reduce to the diagonal case and simply checkn inequalities. If there

are no real roots, no further work needs to be done.

So let us now assume that there are real roots. Without loss of

generality, we may assume there is a root in the positive orthant

Rn
+
. This will be the root we will try to approximate. So we may

now assume that we are trying to approximate the roots of G :=

(zs1,11 − γ1, . . . ,z
sn,n
n − γn ) where

(γ1, . . . ,γn) := (−c1,0/c1,1, . . . ,−cn,0/cn,1)V
lies in Rn

+
, and the si,i are the diagonal entries of the Smith normal

form S ofA. In particular, we need to approximate the unique root

µ ofG in Rn
+
well enough so that ζ :=µU is an approximate root of

F .

Thanks to Lemmata 2.4 and 2.5, a quick derivative calculation

tells us that it suffices to find an approximate root ofG. (One needs

some extra precision to ensure that ζ is an approximate root of F

but the bounds from Lemma 2.5 easily imply that the necessary

extra work is negligible compared to our stated arithmetic com-

plexity bound.) So it suffices to compute an upper bound on the ex-

pectation of
∑n
i=1

[

log(|si,i |) + log log(e max{|γi |, |γ−1i |})
]

. We are

almost done, save for the fact that the γi are monomials in real

Gaussians that need not have variance 1.
However, we can precede our construction of G with another

renormalization to reduce to the variance 1 case: Observe that xA=

c if and only if (rx)A = rAc , for any r ∈ (R∗)n . So if we take r

to be a suitable matrix power of a vector of ratios of variances,

we can replace our original binomial system F by a new binomial

system F̃ with all coefficients being standard real Gaussians (and

new root a rescaling of our old root). In particular, we merely take

r := (v1,1/v1,0, . . . ,vn,1/vn,0)A
−1
. Lemmata 2.4 and 2.5 once again

imply that the cost of the necessary increase in precision to convert

an approximate root of F̃ to an approximate root of F is negligible.

We now conclude via Proposition 3.9 and Theorem 2.3: Our de-

sired expectation is at most
∑n
i=1

[

n log(nd)+ 0 + 2 + log(2) + log
(

1 + τ
√
neO (n log(nd ))

)]

.

The last quantity is clearly O(n2 log(nd) + n log(√nn log(nd))) or,
more simply, O(n2 log(nd)).�
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