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Abstract

Let K be an isotropic 1-unconditional convex body in R". For every N >
n consider NV independent random points x1, ...,z N uniformly distributed
in K. We prove that, with probability greater than 1 — C;exp(—cn) if
N > cin and greater than 1—C1 exp(—cn/logn) if n < N < ¢in, the random
polytopes Ky := conv{ £ x1,...,+azx} and Sy := conv{z1,...,zn} have
isotropic constant bounded by an absolute constant C' > 0.

1 Introduction

A convex body K in R™ is called isotropic if it has volume | K| = 1, center of mass
at the origin, and there is a constant Ly > 0 such that

(1.1) /K<x, 0)2dx = L%

for every 6 in the Euclidean unit sphere S7~'. Tt is not hard to see that for
every convex body K in R"™ there exists an affine transformation 7" of R™ such
that T'(K) is isotropic. Moreover, this isotropic image is unique up to orthogonal
transformations; consequently, one may define the isotropic constant Ly as an
invariant of the affine class of K. One can check that the isotropic position of K
minimizes the quantity

1
(1.2) . / |3z
|T(K)|* = Jrx)

over all non-degenerate affine transformations T" of R™. In particular,

1
1.3 nL? < 72/ z||2dz.
(1.3) k< e el
It is conjectured that there exists an absolute constant C' > 0 such that Ly < C
for every n € N and every convex body K in R™. The best known general estimate
is currently due to Klartag [13] who proved that Lk < c/n; Bourgain had proved



in [6] that Lx < c¢/nlogn. The conjecture is related to the slicing problem, which
asks if there exists an absolute constant ¢ > 0 such that every convex body with
volume 1 has a hyperplane section whose volume exceeds c. The connection comes
from the fact that

(1.4) c1 < Lg-|KNot| < e

for every # € S™~! and every isotropic convex body K, where c;,co > 0 are
absolute constants. We refer to the article [15] of Milman and Pajor for background
information about isotropic convex bodies.

The purpose of this note is to establish a positive answer to the problem for
some classes of random convex bodies. The study of this question was initiated
by Klartag and Kozma in [14] with the case of Gaussian random polytopes. They
proved that if N > n and if G1, ..., Gy are independent standard Gaussian random
vectors in R™, then the isotropic constant of the random polytopes

(1.5) Ky :=conv{xGy,...,=Gn} and Sy :=conv{Gy,...,Gn}

is bounded by an absolute constant C' > 0 with probability greater than 1 —Ce™°".
The argument of [14] works for other classes of random polytopes with vertices
which have independent coordinates (for example, if the vertices are uniformly
distributed in the cube @,, := [—1/2,1/2]"™ or in the discrete cube Ef := {—1,1}").
Alonso—Gutiérrez (see [1]) has recently obtained a positive answer in the situation
where K or Sy is spanned by N random points uniformly distributed on the
Euclidean sphere S5~*. We study the following problem:

Question 1.1 Let K be a convex body in R™. For every N > n consider N inde-
pendent random points x1, ..., x N uniformly distributed in K and define the random
polytopes

(1.6) Ky :=conv{xzy,...,2xny} and Sy :=conv{zy,...,zn}.

Is it true that, with probability tending to 1 as n — oo, one has Lix, < CLk and
Ls, < CLgk where C >0 is a constant independent from K, n and N ?

We give an affirmative answer in the case of l-unconditional convex bodies.
That is, we make the additional assumptions that K is centrally symmetric and
that, after a linear transformation, the standard orthonormal basis {ej,...,e,} of
R™ is a 1-unconditional basis for || - || x: for every choice of real numbers ¢1,...,t,
and every choice of signs €; = £1,

(1.7) Hsltlel 4t €ntnenHK = Htlel 4+ tnenHK.

Then, it is easily checked that one can bring K to the isotropic position by a
diagonal operator. It is also not hard to prove that the isotropic constant of K
satisfies Lx ~ 1. The upper bound follows from the Loomis—Whitney inequality;
see also [4] where the inequality 2L% < 1 is proved. On the other hand, recall that
for every convex body K in R™ one has Ly > L By = ¢, where ¢ > 0 is an absolute
constant (see [15]). The precise formulation of our result is the following.



Theorem 1.2 Let K be an isotropic 1-unconditional conver body in R™. For
every N > n consider N independent random points x1,...,zN uniformly dis-
tributed in K. Then, with probability greater than 1 — Cyexp(—cn) if N > c¢in
and greater than 1 — Cqexp(—cn/logn) if n < N < cin, the random polytopes
Ky = conv{iml, el imN} and Sy = conv{xl, ... ,scN} have isotropic constant
bounded by an absolute constant C' > 0.

The main result is proved in Section 2. Our method is based on the approach of
[14] and on precise results of Bobkov and Nazarov from [5] about the 9-behavior
of linear functionals on isotropic 1-unconditional convex bodies. We conclude with
remarks and comments in Section 3.

Notation. We work in R”, which is equipped with a Euclidean structure (-, ). We
denote by || - ||, the norm of £, 1 < p < oo, and write B} for the unit ball and
Sz’}’l for the unit sphere of /. Volume is denoted by |- [. The homothet of B} of

volume 1 is denoted by EZ. The letters ¢, ', C, c1, c2 ete. denote absolute positive
constants which may change from line to line.

2 Proof of the theorem

It was mentioned in the Introduction that if D is a convex body in R™ then
|DI>/"nL% < ‘%‘ [p lzll3dz. Our starting point will be a stronger estimate for

Lp in terms of the ¢7-norm (see [15, Paragraph 3.6]):

Lemma 2.1 Let D be a convex body in R™. Then,

1
(2.1) DMLy < e [ el
DI /o

where ¢ > 0 is an absolute constant.

In view of Lemma 2.1, in order to prove that Ky := conv{£zy,...,tzy} (or
Sy = conv{zy,...,xy}) has bounded isotropic constant with probability close
to 1, it suffices to give a lower bound for the volume radius |Ky|"/™ (or |Sy|*/™
respectively) and an upper bound for the expected value of || - ||; on Kn (or Sy
respectively). Observe that the problem is affinely invariant, and hence, we may
assume that K is an isotropic convex body.

2.1 Lower bound for the volume radius

Since Ky 2 Sy for every choice of points z1,...,zxy € K, it is enough to give a
lower bound for |Sy|'/™. This is a consequence of the following observations:

Fact 1. It was proved in [10, Lemma 3.3] (see also [12, Lemma 2.5]) that if K is a
convex body in R™ with volume 1 and if B; is a ball in R™ with volume 1, then

(2:2) Prob(|Sn| > p) > Prob(|[Bj]n| > p)



for every p > 0. This reduces the problem to the case K = E;.

Fact 2. Tt was proved in [11] that there exist ¢; > 1 and ¢p > 0 such that if N > ¢1n
. . . . . _n
and x1,...,2y are independent random points uniformly distributed in B, then

log\(/2ﬁN/n) 7 1}B;

with probability greater than 1 —exp(—n). Actually, the argument from [11] shows
that, for every § > 0, if N > (14 0)n then (2.3) holds true with for a random K
with ¢g = ¢3(d); see [1, Lemma 3.1].

Combining the above we have the first part of the next Proposition:

(2.3) Sy :=conv{zxy,...,zn} D czmin{

Proposition 2.2 Let K be a conver body in R™ with volume |K| = 1 and let

T1,...,oN be independent random points uniformly distributed in K.
(i) If N > cin then, with probability greater than 1 — exp(—n) we have
log(2N
(24) ‘KN|1/nZ |SN|1/WZCQHTLHI{Og\(/ﬁ/n),l}7

where ¢1 > 1 and co > 0 are absolute constants.
(i) If n < N < cin then (2.4) holds true with probability greater than 1 —
exp(—cn/logn), where ¢ > 0 is an absolute constant.

Part (ii) (the case n < N < cyn) has to be treated separately. We first consider
the symmetric random polytope Ky. Because of Fact 1, we may assume that
K= B; and, by monotonicity, it is enough to prove that with probability close to

one K,, = conv{+zy,...,+x,} has the appropriate volume. We write
on n
(2.5) | K| = o Hd(xk,span{ml,...,xk_l}),
k=1

where span(f)) = {0} and d(z,A) is the Euclidean distance from z to A. As in
[14], we observe that the random variables Y; := d(zy,span{zy,...,xx_1}) are
independent. Using the fact that the radius of EZ is of the order of v/n and taking
into account rotational invariance, we see that there exists an absolute constant
co > 0 such that

(2.6) Prob(Yy < caty/n) < Prob(d(z, Ex—1) < t)

for every t > 0, where z is uniformly distributed in B} and Ej = span{ey,...,ex}.

A similar question is studied in [2] (where z is uniformly distributed on S™~1,
but the proof and the estimates for x € BY are similar). We will use [2, Theorem
4.3]: assume that 3 < k < n— 3 and set A = k/n. If % < % < n and
L < co®e <y then
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Vv

—anu
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(2.7) ¢ < Prob(p(z, Ex) <€) < ¢y



where p is the geodesic distance, an >0 and an, — 1, ¢1,c50 > 0 are absolute
constants and u = 2 [(1 — \)log 22 + Alog —2—].
We apply this fact as follows: assume that A = % <1-

We define ¢, by

logn
the equation sin® e = (1 — \)/4. Then,

n 4N n A

2. =—[(1—=X)log4d+ Al = — |log4 + Al

@8 w=" [0 Ngat oggﬂ} 2[og P

Consider the function H : [0,1] — R defined by H(\) = log4+ Alog 3_%\ —46(1=2X),
where 6 =log2 —3/8 > 0. Then, H'(\) < 0 on [0,1] and H(1) = 0. Therefore,

5(1—)\)n> on
2 ~ 2logn’

(2.9) ug >

Since p and d are comparable, it follows that
(2.10) Prob(Y; < esvn — k) < exp(—cn/logn)

for all k < ko := |
(1 — A)/n; then, it is easy to check that ur > cnlogn.

With this choice of € it is clear that, with probability greater than 1 —
exp(—cn/logn), we have

on o e c \"
(2.11) ol 2 5 L= = ] ﬁz<ﬁ> .

k=ko+1

This extends the estimate (2.4) of Proposition 2.2 to the range n < N < ¢in (in
the symmetric case) with a slightly worse probability estimate.

For the random polytope Sy we follow [14]: we may assume that N = n+1. We
define y; = x; —x1,i=1,...,n+ 1 and consider the symmetric random polytope

K} 1 = conv{zys,...,Eyns+1}. By the Rogers-Shephard inequality we have

(212) ‘Sn+1| = |COHV{0ay27-~~,yn+1}| Z 4~ | +1|7

and hence, it remains to estimate |K7 | from below. Consider the linear map F
defined by F(z;) = x; — x1, 2 < ¢ < n+ 1. With probability one, x3,...,Zn41
are linearly independent, and K, | = F(D,,), where D,, = conv{:l:gcg7 ce :I:xn+1}.
Therefore,

(2.13) K1l = [det |- [Dy].

Let v € R™ be such that (v,a;) = 1, 2 < i < n+ 1. Since ||z;]|2 < ey/n for
all 4, we have |[v||2 > ¢1/4/n by the Cauchy-Schwarz inequality. Observe that
F(z) = x — (x,v)z; for every x € R™; therefore, det F = 1 — (v, x1). This implies
that

(2.14)

1
Prob(| det F| < 27") = E, [Prob(|(v,z) — 1| <27")] < [{z: [(z,6,)] <

[o]]2 7|




where 6, = v/||v||2, because the centered strip has maximal volume among all strips
of width 27" which are perpendicular to 6,. Since ||v||2 > ¢/y/n, we easily check
that the last quantity in (2.14) is bounded by /nexp(—cn). We have already seen
that, with probability greater than 1 — exp(—cn/logn), the volume of D, is larger
than (¢/v/n)™. Since we also have |det F'| > 27", the proof is complete.

2.2 Upper bound for the expectation of || - ||

Let (92, 1) be a probability space and let ¢ : Rt — RT be a strictly increasing
convex function with ¢(0) = 0 and limy_, ¢(t) = co. The Orlicz space Ly(p) is
the space of all measurable functions f on Q for which [, ¢(|f|/t)dp < oo for some
t > 0, equipped with the norm || f|ly = inf{t > 0 : [, ¢(|f|/t)dp < 1}. We will

only need the functions v, (t) = e!” — 1. In particular,

(2.15) | fllp, = inf {t >0: /e(f(”)/t)zdu(x) < 2} )

We will make use of the following Bernstein type inequality (see [8]):

Lemma 2.3 Let g1,..., gm be independent random variables with E g; = 0 on some
probability space (2, p). Assume that ||g;|ly, < A for all j < m and some constant
A > 0. Then,

(2.16) Prob Zgj > am p < 2exp(—a’m/8A%)
j=1

for every a > 0.

Let K be an isotropic 1-unconditional convex body in R™. The v behavior of
linear functionals x — (z,0) on K is described by the following result of Bobkov
and Nazarov from [5].

Lemma 2.4 Let K be an isotropic 1-unconditional convex body in R™. For every
9 c Rn;

(2'17) H<76‘>H¢2 < C\/EH@HOO,

where ¢ > 0 is an absolute constant.

Now, let y1,...,y, be independent random points uniformly distributed in K.
We fix 6 € R™ with ||6|| = 1 and a choice of signs ¢; = £1, and apply Lemma 2.3
to the random variables g;(y1,...,yn) = (€;y;,6) on @ = K™. From Lemma 2.4
(with m = n) we see that

(2.18) Prob {|{e1y1 + -+ + €n¥n, 0)| > an} < 2exp(—ca?)



for every ae > 0. Consider a 1/2-net N for S” with cardinality |[N/| < 5". Choosing
a = Cy/ny/log(2N/n) where C' > 0 is a large enough absolute constant, we see
that, with probability greater than 1 — exp(—cinlog(2N/n)) we have

(2.19) e1yr + - + entn, 0)] < C03/2\/log(2N /n)

for every 6 € N and every choice of signs ¢; = £1. Using a standard successive
approximation argument, and taking into account all 2" possible choices of signs
gj = %1, we get that, with probability greater than 1 — exp(—caonlog(2N/n)),

(2.20) max, lewys + - + enynllr < Cn3/2\/1og(2N/n).
Now, let N > n and let x1,...,zx be independent random points uniformly dis-

tributed in K. Since the number of subsets {y1,...,yn} of {£x1,...,LzN} is
bounded by (2eN/n)"™, we immediately get the following.

Proposition 2.5 Let K be an isotropic 1-unconditional convex body in R™. Fix
N > n and let z1,...,zN be independent random points uniformly distributed in
K. Then, with probability greater than 1 — exp(—cnlog(2N/n)) we have

(2.21) max ez, + o+ ey, 1 < Cn??\/log(2N/n)
for all {i1,...,in} C{1,...,N}.

Observe that, with probability equal to 1, all the facets of Ky or Sy are
simplices. Also, if F = conv{yi,...,yn} is a facet of Ky then we must have
yj = €5z, and ij # ig for all 1 < j # s < n. In other words, x; and —z; cannot
belong to the same facet of Ky .

We first consider the case of the symmetric random polytope K. The next
lemma reduces the computation of the expectation of ||z||; on Kx to a similar
problem on the facets of Ky (the idea comes from [14]).

Lemma 2.6 Let Fy,..., F,, be the facets of Kn. Then,

1 1
(2.22) 7/ lz|l1dz < max —/ ||we||1 du.
KN Ky 1<s<m |Fy| Jp,
Proof. Following [14, Lemma 2.5], one can check that
1 1 <& d(0,Fy) /
2.23 —_— z||1dx = ul|1du,

where d(0, F) is the Euclidean distance from 0 to the affine subspace determined
by Fs. Since

1 m
2.24 Ky|l=— Fy)|Fs
(224) il = 5 A0, FOIF,

7



the result follows. O

Let 41,...,y, € R™ and define F = conv{yi,...,yn}. Then, F = T(A""1)
where A"~ = conv{ey,...,e,} and Tj; = (y;,e;) =: y;;. Assume that det T # 0.
It follows that

1 1
— du = ——— Tu||1d
|F|/F”“”1 ¢ |AH\/W [Tl

1 n n
= |An_1‘/AHZ Zyﬂui du
i=1 |j=1

= ZW/ATHI Zyjiuj du
i=1 j=1

) 1/2
n
< i d
< 5wl (Som)
Using the fact that
1 1464,
2.95 X R J1,J2
(2.25) |An—1|/m_1“ﬂ“ﬂ2 nn+ 1)
we see that
o\ 1/2
1 / 1 n n ) n
o [ lufde £ ———= Yt Yji
71 J; TNl Pk Al P>
1/2
<

1 n n n
Sl () +w
i=1 j=1 j=1

It now follows from the classical Khintchine inequality (see [17] for the best constant

V/2) that
f 2+1

(2.26) / lull1du <
|F]

Now, Proposition 2.5 and Lemma 2.6 immediately imply our upper bound:

Jnax lewys + -+ ntnll; -

Proposition 2.7 Let K be an isotropic 1-unconditional convex body in R™. Fiz
N > n and let x1,...,xN be independent random points uniformly distributed in
K. Then, with probability greater than 1 — exp(—cnlog(2N/n)) we have

(2.27) L / lzlhdz < Cy/in/Tog(2N/n)
IKN| Jry

where C > 0 is an absolute constant.



The case of Sy requires some minor modifications. First of all, the role of 0 is
played by the vector w = & (214 - -+ ) which belongs to Sy := conv{z1,...,zn}.
The substitute for (2.23) is

1 1 & d(0,Fy)
2.28) — z||1dx = / u — wl|1du,
( Sl /s ] wm; w1 o I |

where Fi,..., F,, are the facets of Sy (see [14, Lemma 2.5]). As in Lemma 2.6
(and since ||ju — wlj1 < [Jw||1 + |lulj1 for every s < m and for every u € Fy) we see
that

1 1
- < = _
1Sy /SN lelde < max o /F lu = wldu

ol + Ll
wil1 11’§I1;iéxm |Fé| - u||rau.

From (2.26) and Proposition 2.5 we get

(2.29) max ﬁ/ |lull1du < Cv/nr/log(2N/n)
<s<m s| JF,

IN

It remains to estimate ||w|;. But, applying Lemma 2.3 (with m = N) to the
random variables g;(z1,...,zn) = (z;,0), where § € S™"1, we see that
(2.30)

Prob {|<x1 +-- 4N, 0) > C\/ﬁ\/log(QN/n)N} < 2exp(—cNlog(2N/n))
and continuing as in §2.2 we can check that

1
(2.31) lwll = S ller+ -+ +@nly < Ovny/log(2N/n)

with probability greater than 1—C exp(—cN log(2/N/n)). This leads to the analogue
of Proposition 2.7 for Sy.

2.3 Proof of the main result

Lemma 2.1 tells us that

(2.32) |Kn|Y"nLg, <c

|1 da
KN Sk ’

where ¢ > 0 is an absolute constant. Assume first that N < exp(cn). Propositions
2.2 and 2.7 show that, with probability greater than 1 — C exp(—cn) if N > ¢1n
and greater than 1 — Cy exp(—cn/logn) if n < N < ¢1n, Ky satisfies

(2.33) log\(/ZﬁN/n) ‘nLgy < c-Cy/ny/log(2N/n).



It follows that L, < C;:=c-C.
It is proved in [9, Section 5] that if N > exp(cn) then, with probability greater
than 1 — exp(—cn), one has

(2.34) aK CSy CKyCKCceB;.

The last inclusion is established in [4] for isotropic 1-unconditional convex bodies.
Then, |Kx|'/" > |Sx|'/" > ¢; and

1

2.35 —_
(2:35) I

1
lz|lx dz < m/ csn||z||ky dx < can.
Kn

Therefore, (2.32) gives Lk, < ¢4 := c3/c; in this case as well.
Similar arguments work for Sy . ]

3 Remarks

§3.1. Let K be an isotropic convex body in R" with the property ||(-,6)|y, <
C||(-,8)]]2 for every § € R™, where C > 0 is an absolute constant. This class of
1o-bodies includes the balls EZ of £, 2 < q < oo (see [3]). It is also known
that ¥s—bodies have bounded isotropic constant; this was proved by Bourgain in
[7]. Starting with (1.3) instead of Lemma 2.1 and using the method of Section
2 one can prove that, with probability greater than 1 — exp(—cn), the isotropic
constants of Ky and Sy are bounded by an absolute constant. Actually, the
argument is completely parallel to the one of Alonso-Gutiérrez in [1] for the case of
random points from S;L*l. Note that 1-unconditional isotropic convex bodies are

not necessarily 1o—bodies.

§3.2. If x1, ...,z N are independent random points uniformly distributed in a convex
body K of volume 1 in R", we define

. 5 = N = convyTi,y..., N .
3.1 E(K,N)=E|Sy|"/" =E 1/n

In [11] it was proved that if K is an isotropic 1-unconditional convex body in R,
then, for every N > n + 1,

log(2N/n)
BV

where C' > 0 is an absolute constant. Observe that this is a direct consequence of
Proposition 2.7. We have

(3.3) |Kn|""nLi, < Cyny/log(2N/n)

with probability greater than 1 —exp(—cn), so the result follows from the fact that
Lk, > c1, where ¢; > 0 is an absolute constant. This was observed by A. Pajor.
In [10] it was proved that if K is any convex body in R", then E(K,N) <

CLgk w. Using the methods of [10], [11] and the concentration result of G.

(3.2) E(K,N)<C

10



Paouris (see [16]) one can prove that for any convex body K in R",if n4+1< N <
nevV™ then

log(N/n)
\/ﬁ )

where C' > 0 is an absolute constant. This would be a consequence (for the full
range of values of the parameter V) of an affirmative answer to Question 1.1.

(3.4) E(K,N) < CLg
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