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Abstract

The slicing problem can be reduced to the study of isotropic convex
bodies K with diam(K) ≤ c

√
nLK , where LK is the isotropic constant. We

study the ψ2-behavior of linear functionals on this class of bodies. It is
proved that ‖〈·, θ〉‖ψ2

≤ CLK for all θ in a subset U of Sn−1 with measure
σ(U) ≥ 1 − exp(−c

√
n). However, there exist isotropic convex bodies K

with uniformly bounded geometric distance from the Euclidean ball, such
that maxθ∈Sn−1 ‖〈·, θ〉‖ψ2

≥ c 4
√

nLK . In a different direction, we show that
good average ψ2-behavior of linear functionals on an isotropic convex body
implies very strong dimension-dependent concentration of volume inside a
ball of radius r ≃ √

nLK .

1 Introduction

Let K be a convex body in R
n with volume |K| = 1 and center of mass at the

origin. Let α ∈ [1, 2]. For every bounded measurable function f : K → R, the
α-Orlicz norm of f is defined by

(1.1) ‖f‖ψα
= inf

{
t > 0 :

∫

K

e|f/t|αdx ≤ 2

}
.

It is not hard to check that ‖f‖ψα
≃ sup{q−1/α‖f‖q : q ≥ α}. For every x ∈ R

n we
consider the linear functional fx(y) = 〈y, x〉. We say that x defines a ψα-direction
for K with a constant b > 0 if

(1.2) ‖fx‖ψα
≤ b‖fx‖α.

Equivalently, if ‖fx‖q ≤ cbq1/α‖fx‖α for every q ≥ α, where c > 0 is an absolute
constant. We say that K is a ψα-body with constant b if (1.2) holds for every x.

It is clear that if x defines a ψα-direction for K and if T ∈ SL(n), then T ∗x
defines a ψα-direction (with the same constant) for T (K). It follows that T (K) is
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a ψα-body if K is a ψα-body. By Borell’s lemma (see [17], Appendix III), there
exists an absolute constant C > 0 with the following property: every convex body
K is a ψ1-body with constant C.

The study of ψ2-directions for linear functionals on convex bodies is motivated
by the well-known problem of the isotropic constant (see [13]). A convex body K
in R

n is said to be isotropic if it has volume |K| = 1, center of mass at the origin,
and there exists a constant LK > 0 such that

(1.3)

∫

K

〈y, θ〉2dy = L2
K

for every θ ∈ Sn−1. Every convex body with center of mass at the origin has a
linear image which is isotropic. Moreover, this image is unique up to orthogonal
transformations; this shows that the isotropic constant LK is well-defined for the
linear class of K.

The isotropic constant is closely related to the slicing problem which asks if
there exists an absolute constant c > 0 such that maxθ∈Sn−1 |K ∩ θ⊥| ≥ c for every
convex body K of volume 1 in R

n with center of mass at the origin. Indeed, by
Brunn’s principle, for any convex body K in R

n and any θ ∈ Sn−1 the function
t 7→ |K ∩ (θ⊥ + tθ)| is log-concave on its support, and this implies that

(1.4)

∫

K

〈y, θ〉2dy ≃ |K ∩ θ⊥|−2.

Using this relation one can check (see [13]) that an affirmative answer to the slicing
problem is equivalent to the following statement: There exists an absolute constant
C > 0 such that LK ≤ C for every convex body K of volume 1 with center of mass
at the origin.

One can easily see that LK = O(
√

n) for every K. Uniform boundedness of
LK is known for some classes of bodies: unit balls of spaces with 1-unconditional
basis, zonoids and their polars, etc. The best known general upper estimate is due
to Bourgain [3] (see [15] for the not necessarily symmetric case): LK ≤ c 4

√
n log n,

where c > 0 is an absolute constant. Bourgain’s argument reduces the problem to
the class of isotropic convex bodies K with circumradius R(K) ≤ c

√
nLK , where

c > 0 is an absolute constant. The other main ingredient of the argument is the
fact that every convex body is a ψ1-body with a uniform constant. One can see
from the proof that stronger information on the ψ2-behavior of linear functionals
on K, combined with Talagrand’s majorizing measure theorem and Pisier’s MM∗-
estimate, would result in an O(log n) estimate for LK . In fact, Bourgain [4] has
recently shown that the isotropic constant of a ψ2-body with constant b is bounded
by cb log b. In view of these observations, V. Milman asked the following question.

Question. Let K be an isotropic convex body in R
n. Is it true that most θ ∈ Sn−1

define a ψ2-direction for K with a “good” constant (say, logarithmic in n)?

In fact, it is not known if there exists an absolute constant C > 0 such that
every isotropic convex body has at least one ψ2-direction with constant C. Bobkov
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and Nazarov (see [6] and [7]) have recently proved that if K is an isotropic 1-
unconditional convex body, then ‖fθ‖ψ2

≤ c
√

n‖θ‖∞ for every θ ∈ Sn−1. In partic-
ular, the diagonal direction is a ψ2-direction. Zonoids form a second class of convex
bodies for which the existence of good ψ2-directions can be established (see [16]).
As for ψ2-bodies, it is presently known that the unit balls of ℓn

q , 2 ≤ q ≤ ∞ are
ψ2-bodies with a uniformly bounded constant C (see [5] and [8]).

The aim of this paper is to study the ψ2-behavior of linear functionals on
isotropic convex bodies K with R(K) ≤ γ

√
nLK in terms of the parameter γ > 0.

We call these “isotropic bodies with small diameter”. Our general positive results
are summarized in the following theorem.

Theorem A Let K be an isotropic convex body in R
n. If K ⊆ (γ

√
nLK)Bn

2 for

some γ > 0, then

(1.5) σ
(
θ ∈ Sn−1 : ‖fθ‖ψ2

≥ c1γtLK

)
≤ exp(−c2

√
nt2/γ)

for every t ≥ 1, where c1, c2 > 0 are absolute constants.

In other words, for a random direction θ ∈ Sn−1, an isotropic convex body with
small diameter satisfies

(1.6) ‖〈·, θ〉‖ψ2
≤ CγLK .

However, the concentration estimate is rather weak (observe the
√

n-dependence in
Theorem A) to be directly applicable to the slicing problem. It turns out that the
positive result of Theorem A is optimal. One can construct an isotropic convex body
K with small diameter, for which maxθ ‖fθ‖ψ2

≃ 4
√

nLK . Surprisingly enough, the
example may be given by a body whose geometric distance to the Euclidean ball is
uniformly bounded.

Theorem B There exists an isotropic convex body of revolution K in R
n with the

following properties:

(1.7) c1

√
nBn

2 ⊆ K ⊆ c2

√
nBn

2

and

(1.8) ‖〈·, en〉‖ψ2
≥ c3

4
√

n

where c1, c2, c3 > 0 are absolute constants.

Theorems A and B are proved in Sections 2 and 3 respectively. In Section 4 we
discuss the relation of the ψ2-behavior of linear functionals to a different question
about the concentration of mass on isotropic convex bodies. Alesker [1] has proved
that if K is isotropic, then the Euclidean norm f(y) = ‖y‖2 satisfies the ψ2-estimate
‖f‖ψ2

≤ c‖f‖1 ≤ c
√

nLK where c > 0 is an absolute constant. This leads to the
tail estimate

(1.9) Prob
({

y ∈ K : ‖y‖2 ≥ c1t
√

nLK

})
≤ 2 exp(−t2)
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for every t > 0. Bobkov and Nazarov [6] have obtained a striking dimension-
dependent result in the 1-unconditional case: There exists an absolute constant
c > 0 such that if K is an isotropic 1-unconditional convex body in R

n, then

(1.10) Prob
({

y ∈ K : ‖y‖2 ≥ ct
√

n
})

≤ exp
(
−t

√
n
)

for every t ≥ 1. This estimate is stronger than (1.9) for all t ≥ 1. A question which
arises naturally and was actually stated in [6] is whether such an inequality may
hold in full generality. This question is studied in [17] where equivalent conditions
are provided. The results of [17] were recently used in [10] to establish a positive
answer for a non-unconditional case: the unit balls of the Schatten trace classes
Sn

p , 1 ≤ p ≤ ∞, of matrices on R
n or C

n. Here we show that, in general, good
average ψ2-behavior of linear functionals implies a very strong dimension-dependent
concentration.

Theorem C Let K be an isotropic convex body in R
n. Assume that

(1.11)

∫

Sn−1

‖fθ‖ψ2
σ(dθ) ≤ γLK

for some γ > 0. Then,

(1.12) Prob
({

y ∈ K : ‖y‖2 ≥ c1γt
√

nLK

})
≤ exp

(
− c2t

√
n
)

for every t ≥ 1, where c1, c2 > 0 are absolute constants.

For the proof of Theorem C we study from an asymptotic point of view the
family of Lq-centroid bodies of an isotropic convex body. In fact, this study was at
the basis of our original proof of Theorem A. The possibility of giving the simpler
proof in Section 2 was kindly pointed out to the author by G. Schechtman and B.
Klartag. Nevertheless, the proof of Theorem C indicates that this line of thought
has some interesting consequences.

Notation. We work in R
n, which is equipped with a Euclidean structure 〈·, ·〉. We

denote by ‖ · ‖2 the corresponding Euclidean norm, and write Bn
2 for the Euclidean

unit ball and Sn−1 for the unit sphere. Volume is denoted by | · |. We write σ for
the rotationally invariant probability measure on Sn−1 and ωn for the volume of
Bn

2 .
A convex body is a compact convex subset K of R

n with non-empty interior.
We say that K is symmetric (or centered) if x ∈ K ⇒ −x ∈ K. We say that K has
centre of mass at the origin if

∫
K
〈x, θ〉dx = 0 for every θ ∈ Sn−1.

The circumradius of K is the quantity R(K) = max{‖x‖2 : x ∈ K}, and the
polar body K◦ of K is

(1.13) K◦ := {y ∈ R
n : 〈x, y〉 ≤ 1 for all x ∈ K}.

Let V be a symmetric convex body in R
n. The function ‖x‖V = inf{λ > 0 : x ∈

λV } is a norm on R
n, and the space (Rn, ‖ · ‖V ) will be denoted by XV . The dual

space of XV is XV ◦ .
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Whenever we write a ≃ b, we mean that there exist absolute constants c1, c2 > 0
such that c1a ≤ b ≤ c2a. The letters c, c′, C, c1, c2 etc. denote absolute positive
constants which may change from line to line. We refer to the books of Schneider
[18] and Milman-Schechtman [14] for basic facts from the Brunn-Minkowski theory
and the asymptotic theory of finite dimensional normed spaces. A classical reference
for isotropic convex bodies and the slicing problem is the paper [13] of Milman and
Pajor.

Acknowledgement. The author is indebted to B. Klartag, R. Latala and G.
Schechtman for suggestions and ideas which simplified and improved the original
proofs of some results of this paper.

2 Isotropic convex bodies with small diameter

Let K be an isotropic convex body in R
n. In this Section we assume that K ⊆

(γ
√

nLK)Bn
2 (one can easily check that γ must exceed an absolute constant c > 0).

If γ ≃ 1 we say that K is “an isotropic convex body with small diameter”. Our
aim is to show that a random θ ∈ Sn−1 defines a ψ2-direction with constant C(γ).
The precise statement is the following.

Theorem 2.1 Let K be an isotropic convex body in R
n. Assume that for some

γ > 0 we have K ⊆ (γ
√

nLK)Bn
2 . Then,

(2.1) σ(θ ∈ Sn−1 : ‖fθ‖ψ2
≥ c1γtLK) ≤ exp(−c2

√
nt2/γ)

for every t ≥ 1, where c1, c2 > 0 are absolute constants.

The proof will be based on a well-known consequence of the spherical isoperi-
metric inequality (see [14]): Let n ≥ 4. If F : Sn−1 → R is a Lipschitz continuous
function with constant bF , then

(2.2) σ(θ ∈ Sn−1 : F (θ) ≥ mF + s) ≤ exp

(
−ns2

4b2
F

)

for every s > 0, where mF is the Lévy mean of F (the unique m > 0 for which
σ({F (θ) ≥ m}) ≥ 1/2 and σ({F (θ) ≤ m}) ≥ 1/2).

Consider the function F (θ) = ‖fθ‖ψ2
on Sn−1. In the next two Claims we

estimate the parameters bF and mF .

Claim 2.2 We have bF ≤ c3
√

γ 4
√

nLK , where c3 > 0 is an absolute constant.

Proof. Let θ ∈ Sn−1. From the definition of ‖ · ‖ψα
we check that

(2.3) ‖fθ‖2
ψ2

≤ ‖fθ‖ψ1
‖fθ‖∞.
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Since every θ ∈ Sn−1 defines a ψ1-direction with constant C and ‖fθ‖∞ ≤ R(K) ≤
γ
√

nLK , we get

(2.4) ‖fθ‖2
ψ2

≤ (CLK)(γ
√

nLK).

Then, the claim follows from the triangle inequality for ‖ · ‖ψ2
. 2

The next lemma will allow us to estimate mF (a similar argument appears in [16]).

Lemma 2.3 Let K be an isotropic convex body in R
n with K ⊆ (γ

√
nLK)Bn

2 .

Then,

(2.5)

∫

Sn−1

∫

K

exp

( |〈y, θ〉|
c4γLK

)2

dyσ(dθ) ≤ 2,

where c4 > 0 is an absolute constant.

Proof. A direct computation shows that for every p ≥ 1 and every x ∈ R
n,

(2.6)

(∫

Sn−1

|〈y, θ〉|pσ(dθ)

)1/p

≃
(

p

p + n

)1/2

‖y‖2.

Let c4 > 0 be a constant to be determined. We have
(2.7)∫

Sn−1

∫

K

exp

( |〈y, θ〉|
c4γLK

)2

dyσ(dθ) = 1+

∞∑

k=1

1

k!c2k
4 γ2kL2k

K

∫

K

∫

Sn−1

|〈y, θ〉|2kσ(dθ)dy.

Using (2.6) we see that the right hand side of (2.7) is bounded by

(2.8) 1 +

∞∑

k=1

1

k!c2k
4 γ2kL2k

K

(
2c5k

2k + n

)k ∫

K

‖y‖2k
2 dy

where c5 > 0 is an absolute constant. Since ‖y‖2 ≤ γ
√

nLK for every y ∈ K, we
get

(2.9)

∫

Sn−1

∫

K

exp

( |〈y, θ〉|
c4γLK

)2

dyσ(dθ) ≤ 1 +

∞∑

k=1

(
2ec2

5n

c2
4(2k + n)

)k

≤ 2

if we choose c4 = 2
√

ec5. 2

An application of Markov’s inequality shows that, with probability greater than or
equal to 1/2, a vector θ ∈ Sn−1 satisfies

(2.10)
1

(c4γLK)2k

∫

K

|fθ(y)|2kdx ≤ k!

∫

K

exp

( |fθ(y)|
c4γLK

)2

dx ≤ 4k!.

Since ‖fθ‖ψ2
≃ sup

{
‖fθ‖2k√

k
: k ∈ N

}
, we have

(2.11) σ
(
{θ ∈ Sn−1 : ‖fθ‖ψ2

≤ c6γLK}
)
≥ 1/2

for some absolute constant c6 > 0. This proves our second Claim.

6



Claim 2.4 We have mF ≤ c6γLK , where c6 > 0 is an absolute constant. 2

Proof of Theorem 2.1. We first observe that ‖fθ‖ψ2
≥ c7‖fθ‖2 = c7LK for every

θ ∈ Sn−1, and hence,

(2.12) mF ≥ c7LK ,

where c7 > 0 is an absolute constant. Let t ≥ 1. We apply (2.2) with s = tmF ,
and using (2.12), Claim 2.2 and Claim 2.4 we get

σ(θ ∈ Sn−1 : ‖fθ‖ψ2
≥ c6γ(1 + t)LK) ≤ σ(θ ∈ Sn−1 : ‖fθ‖ψ2

≥ (1 + t)mF )

≤ exp

(
−nt2m2

F

4b2
F

)

≤ exp

(
− c2

7nt2L2
K

4c2
3γ

√
nL2

K

)

= exp(−c2

√
nt2/γ),

where c2 = c2
7/(4c2

3). Since c6(1 + t) ≤ 2c6t, the result follows with c1 = 2c6. 2

3 An example

In this Section we exhibit an example of an isotropic convex body K in R
n which

has bounded geometric distance from the Euclidean unit ball but has the worst
possible ψ2-behavior. One can build such an example inside the class of bodies of
revolution.

Lemma 3.1 There exist a ≃ √
n and b ≃ 1/

√
n such that the symmetric convex

body

(3.1) C = {y = (x, t) : |t| ≤ a, ‖x‖2 ≤ a − b|t|}

has volume 1 and satisfies

(3.2) c1 ≤
∫

C

〈y, θ〉2dy ≤ c2

for every θ ∈ Sn−1, where c1, c2 > 0 are absolute constants.

Proof. Let rn−1 be the solution of the equation ωn−1r
n−1 = 1, and consider the

body

(3.3) C1 = {(x, t) : |t| ≤ rn−1, ‖x‖2 ≤ rn−1 − |t|/
√

n}.

Since rn−1 ≃ √
n, we easily check that

(3.4)

|C1| = 2ωn−1

∫ rn−1

0

(
rn−1 −

t√
n

)n−1

dt = 2ωn−1r
n
n−1

√
n

1 −
(
1 − 1√

n

)n

n
≃ 1.
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Therefore, we may find s > 0 with sn ≃ 1 such that C := sC1 has volume 1. It is
clear that C can be written in the form (3.1), with a = srn−1 ≃ √

n and b = 1/
√

n.
Also, C is symmetric with respect to the coordinate subspaces, and hence, (3.2)
will hold for every θ ∈ Sn−1 provided that

(3.5) c1 ≤
∫

C

〈y, ej〉2dy ≤ c2.

From (1.4) it is enough to check that

(3.6) c3 ≤ |C ∩ e⊥j | ≤ c4

for every j = 1, . . . , n. Let j ≤ n − 1. Then,

|C1 ∩ e⊥j | = 2ωn−2

∫ rn−1

0

(
rn−1 −

t√
n

)n−2

dt

≤ 2ωn−2

(∫ rn−1

0

(
rn−1 −

t√
n

)n−1

dt

)n−2

n−1

n−1
√

rn−1

= 2ωn−2

( |C1|
ωn−1

)n−2

n−1

n−1
√

rn−1 ≤ c5
n−1
√

rn−1 ≃ 1.

For the lower bound we observe that

|C1 ∩ e⊥j | = 2ωn−2

∫ rn−1

0

(
rn−1 −

t√
n

)n−2

dt

≥ ωn−2

rn−1ωn−1
2ωn−1

∫ rn−1

0

(
rn−1 −

t√
n

)n−1

dt

=
ωn−2

rn−1ωn−1
≃ 1.

Finally,

(3.7) |C1 ∩ e⊥n | = ωn−1r
n−1
n−1 = 1.

Since |C ∩ e⊥j | = sn−1|C1 ∩ e⊥j | ≃ |C1 ∩ e⊥j | for all j ≤ n, the lemma is proved. 2

Starting with C, we easily pass to a “similar” isotropic body.

Lemma 3.2 There exist a1, R1 ≃ √
n and b1 ≃ 1/

√
n such that the symmetric

convex body

(3.8) K = {y = (x, t) : |t| ≤ R1, ‖x‖2 ≤ a1 − b1|t|}

is isotropic.
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Proof. Consider the body C of the previous Lemma. We first observe (see [13], p.
71) that

(3.9) L2n
C =

n∏

j=1

∫

C

〈y, ej〉2dy.

Because of (3.2), this implies that LC ≃ 1. By the symmetries of C there exists a
diagonal operator T = diag(u, . . . , u, v) such that K = T (C) is isotropic. For every
θ ∈ Sn−1 we have

(3.10) 1 ≃ L2
C = L2

K =

∫

K

〈x, θ〉2dx =

∫

C

〈x, Tθ〉2dx ≃ ‖Tθ‖2
2.

This shows that u ≃ 1 and v ≃ 1. Finally, K can be written in the form (3.8) with
R1 = av, a1 = au and b1 = bu/v. This completes the proof. 2

Lemma 3.3 Let K be the body in Lemma 3.2. If 0 < s ≤ c1
√

n, then

(3.11) Prob
(
{(x, t) : |t| ≥ s}

)
≥ c2 exp(−c3s),

where c1, c2, c3 > 0 are absolute constants.

Proof. Direct computation shows that

Prob
(
{(x, t) : |t| ≥ s}

)
= 2ωn−1

∫ R1

s

(a1 − b1t)
n−1dt

= 2ωn−1
an
1

nb1

((
1 − b1s

a1

)n

−
(

1 − b1R1

a1

)n)
.

Since ωn−1a
n−1
1 = |K ∩ e⊥n | ≃ 1 and a1/(nb1) ≃ 1, we see that

(3.12) 2ωn−1
an
1

nb1
≥ c4

for some absolute constant c4 > 0. If s ≤ a1/(2b1) ≃ n, using the numerical
inequality 1 − x ≥ e−2x for x ∈ [0, 1/2], we obtain

(3.13)

(
1 − b1s

a1

)n

≥ exp(−2b1ns/a1) ≥ exp(−c3s).

On the other hand,

(3.14)

(
1 − b1R1

a1

)n

≤ exp(−b1R1n/a1) ≤ exp(−c5

√
n).

If s ≤ c1
√

n for a suitable absolute constant c1 > 0, then

(3.15) exp(−c5

√
n) ≤ 1

2
exp(−c3s).
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It follows that if s ≤ c1
√

n, then

(3.16) Prob
(
{(x, t) : |t| ≥ s}

)
≥ (c4/2) exp(−c3s).

This gives the result, with c2 = c4/2. 2

Lemma 3.4 Let K be a convex body of volume 1 in R
n. If q ≥ 1, then

(3.17) Prob (y ∈ K : |〈y, θ〉| ≥ α‖fθ‖qs) ≤ e−qs

for all θ ∈ Sn−1 and s ≥ 1, where α > 0 is an absolute constant.

Proof. Let q ≥ 1 and θ ∈ Sn−1. Markov’s inequality shows that

(3.18) Prob
(
y ∈ K : |〈y, θ〉| ≥ e3‖fθ‖q

)
≤ e−3q

Since y 7→ |〈y, θ〉| is a seminorm, from Borell’s lemma (see [14], Appendix III) we
get

(3.19) Prob
(
y ∈ K : |〈y, θ〉| ≥ e3‖fθ‖qs

)
≤ (1 − e−3q)

(
e−3q

1 − e−3q

) s+1

2

≤ e−qs

for every s ≥ 1. This proves the lemma with α = e3. 2

Remark 3.5 The same lemma is proved in [17] as a consequence of a much more
general optimal Lq-norm inequality of Carbery and Wright (see [9]) for polynomi-
als over convex bodies. The simple argument which is presented here was kindly
communicated to the author by R. Latala.

Let K be the body from Lemma 3.2. The next two claims describe two “contradic-
tory” properties of K.

Claim 3.6 We have c1
√

nBn
2 ⊆ K ⊆ c2

√
nBn

2 , where c1, c2 > 0 are absolute

constants.

Proof. The problem is two-dimensional. For every y = (x, t) ∈ K we have

(3.20) ‖y‖2
2 = ‖x‖2

2 + t2 ≤ a2
1 + R2

1 ≤ c2
2n,

where c2 > 0 is an absolute constant, because a1, R1 ≃ √
n. This shows that

K ⊆ c2
√

nBn
2 . For the other inclusion, we observe that the inradius of K is equal

to min{R1, d}, where d is the distance from (0, 0) to the line y = a1 − b1t in R
2.

We have

(3.21) d =
a1√
1 + b2

1

≃
√

n,

and hence K ⊇ c1
√

nBn
2 for some absolute constant c1 > 0. 2
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Claim 3.7 We have ‖〈·, en〉‖Lψ2 (K) ≥ c 4
√

n, where c > 0 is an absolute constant.

Proof. Let q ≥ 1. If α‖〈·, en〉‖q ≤ c1
√

n, Lemmas 3.3 and 3.4 show that

(3.22) c2 exp(−c3α‖〈·, en〉‖q) ≤ Prob
(
{y ∈ K : |〈y, en〉| ≥ α‖〈·, en〉‖q}

)
≤ e−q.

For these values of q it follows that

(3.23) c3α‖〈·, en〉‖q ≥ q + log c2.

Since en defines a ψ1-direction for K, we have

(3.24) ‖〈·, en〉‖q ≤ c4q‖〈·, en〉‖1 ≤ c5q.

Therefore, we can find q∗ ≃ √
n such that α‖〈·, en〉‖q∗ ≤ c1

√
n. Going back to

(3.23) we see that

(3.25) ‖〈·, en〉‖ψ2
≥ c6

‖〈·, en〉‖q∗√
q∗

≥ c 4
√

n

for some absolute constant c > 0. 2

Lemma 3.2 and the Claims 3.6 and 3.7 are summarized in the next theorem.

Theorem 3.8 There exists an isotropic convex body of revolution K in R
n with

the following properties:

(3.26) c1

√
nBn

2 ⊆ K ⊆ c2

√
nBn

2

and

(3.27) ‖〈·, en〉‖ψ2
≥ c3

4
√

n

where c1, c2, c3 > 0 are absolute constants. 2

4 Lq-centroid bodies

Let K be a convex body of volume 1 in R
n and let q ≥ 1. The Lq-centroid body

Zq(K) of K is the symmetric convex body whose support function is given by

(4.1) Nq(K,x) := ‖fx‖q =

(∫

K

|〈y, x〉|qdy

)1/q

.

It is easy to check that Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for every 1 ≤ p ≤ q ≤ ∞,

where Z∞(K) = K̂ := co{K,−K}. If K has its centre of mass at the origin, then

Zq(K) ≃ K̂ for all q ≥ n. This is a consequence of the Brunn-Minkowski inequality
(for a proof, see [16]). Lq-centroid bodies were introduced in [12] under a different
normalization.
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For every p, q ≥ 1 we define

(4.2) Aq(K) =

∫

Sn−1

Nq(K, θ)σ(dθ)

and

(4.3) Aq,p(K) =

(∫

Sn−1

Np
q (K, θ)σ(dθ)

)1/p

.

The next proposition describes the behavior of p 7→ Aq,p(K) for a fixed value of q.

Proposition 4.1 Let K be a convex body of volume 1 in R
n with centre of mass

at the origin. For every p, q ∈ [1, n] we have

(4.4) Aq,p(K) ≃ max

{
Aq(K),

R(Zq(K))
√

p√
n

}
.

If p ≥ n, then Aq,p(K) ≃ R(Zq(K)).

Proof. Let V be a symmetric convex body in R
n, and let ‖ · ‖ be the norm induced

by V to R
n. For every p ≥ 1, let

(4.5) Mp := Mp(V ) =

(∫

Sn−1

‖θ‖pσ(dθ)

)1/p

.

The behavior of p 7→ Mp was clarified by Litvak, Milman and Schechtman in [11]:
If R = max{‖x‖2 : x ∈ V } then

(4.6) Mp ≃ max

{
M1,

R
√

p√
n

}

for all p ∈ [1, n], and Mp ≃ R if p ≥ n. A direct application to the polar body of
Zq(K) gives the result. 2

Proposition 4.2 There exist c1, c2 > 0 and n0 ∈ N with the following property: if

n ≥ n0 and K is an isotropic convex body in R
n then, for every 2 ≤ q ≤ c1

√
n,

(4.7) Iq(K) :=

(∫

K

‖y‖q
2dy

)1/q

≤ c2

√
n

Aq(K)√
q

.

For the proof we will need two simple observations.

Claim 4.3 Let K be an isotropic convex body in R
n. For every 2 ≤ q ≤ n we have

(4.8) R(Zq(K)) ≤ c3qLK

and

(4.9) Aq,q(K) ≃
√

q/nIq(K) ≥ c4
√

qLK

where c3, c4 > 0 are absolute constants.

12



Proof of the Claim. The first assertion follows from the fact that K is a ψ1-body.
For the second we use (2.6) and integration over K. The last inequality is a direct
consequence of Hölder’s inequality: we have Iq(K) ≥ I2(K) =

√
nLK . 2

Proof of Proposition 4.2. Observe that Z2(K) = LKBn
2 , which implies R(Z2(K)) =

A2(K) = LK . Also, when q → ∞, both R(Zq(K)) and Aq(K) tend to R(K). So,
if we define

(4.10) N(K) := {q ≥ 2 : R(Zq(K))
√

q <
√

nAq(K)},

we immediately see that 2 ∈ N(K) and N(K) is bounded.
We set q∗ := sup{q ≥ 2 : [2, q] ⊆ N(K)}. Then, q∗ is well-defined and the

continuity of R(Zq(K) and Aq(K) with respect to q shows that

(4.11) R(Zq∗(K))
√

q∗ =
√

nAq∗(K).

From Proposition 4.1, this last equation shows that

(4.12) Aq∗,q∗(K) ≃ Aq∗(K).

Going back to (4.11) and using Claim 4.3 we get

(4.13) q∗ ≥ c1

√
n.

Finally, since [2, c1
√

n] ⊆ N(K), for every 2 ≤ q ≤ c1
√

n we have Aq,q(K) ≃ Aq(K)
and this implies that

(4.14) Iq(K) ≃
√

n/qAq,q(K) ≤ c2

√
n

Aq(K)√
q

for some absolute constant c2 > 0. 2

We can now give a proof of Theorem C based on the following criterion from [17].

Lemma 4.4 Let δ ≥ 1 and let 1 ≪ φ(n) ≪ n be a positive constant. For every

isotropic convex body K in R
n, the following statements are equivalent:

(a) For every t ≥ 1,

(4.15) Prob
({

y ∈ K : ‖y‖2 ≥ δt
√

nLK

})
≤ exp

(
− φ(n)t

)
.

(b) For every 2 ≤ q ≤ cφ(n),

(4.16) Iq(K) =

(∫

K

‖y‖q
2dy

)1/q

≤ c(δ)
√

nLK ,

where c(δ) ≃ δ. 2
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Proof of Theorem C. We assume that K is an isotropic convex body in R
n which

satisfies

(4.17)

∫

Sn−1

‖fθ‖ψ2
σ(dθ) ≤ γLK

for some γ > 0. Since ‖fθ‖q ≤ c3
√

q‖fθ‖ψ2
for every q ≥ 2, we get

(4.18) Aq(K) =

∫

Sn−1

‖fθ‖qσ(dθ) ≤ c4γ
√

qLK

for every q ≥ 2, where c4 > 0 is an absolute constant. Now, Proposition 4.2 shows
that

(4.19) Iq(K) ≤ c5γ
√

nLK

for every 2 ≤ q ≤ c6
√

n, where c5, c6 > 0 are absolute constants. Then, we can
apply Proposition 4.4 with δ ≃ γ and φ(n) ≃ √

n to get

(4.20) Prob
({

y ∈ K : ‖y‖2 ≥ c1γt
√

nLK

})
≤ exp

(
− c2t

√
n
)

for every t ≥ 1, where c1, c2 > 0 are absolute constants. 2
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