
	2-estimates for linear fun
tionals onzonoidsG. Paouris
Abstra
tLet K be a 
onvex body in Rn with 
entre of mass at the origin andvolume jKj = 1. We prove that if K � �pnBn2 where Bn2 is the Eu
lideanunit ball, then there exists � 2 Sn�1 su
h that(�) kh�; �ikL 2 (K) � 
�kh�; �ikL1(K)where 
 > 0 is an absolute 
onstant. In other words, \every body with smalldiameter has  2-dire
tions". This 
riterion applies to the 
lass of zonoids. Inthe opposite dire
tion, we show that if an isotropi
 
onvex body K of volume1 satis�es (�) for every dire
tion � 2 Sn�1, thenK � C�2pn log nBn2 , whereC > 0 is an absolute 
onstant.1 Introdu
tionWe shall work in Rn whi
h is equipped with a Eu
lidean stru
ture h�; �i. TheEu
lidean norm hx; xi1=2 is denoted by j � j. We write Bn2 for the Eu
lidean unit ball,Sn�1 for the unit sphere, and � for the rotationally invariant probability measureon Sn�1.Throughout this note we assume that K is a 
onvex body in Rn with volumejKj = 1 and 
entre of mass at the origin. Given � 2 [1; 2℄, the Orli
z norm kfk �of a bounded measurable fun
tion f : K ! R is de�ned by(1:1) kfk � = inf �t > 0 : ZK exp�� jf(x)jt ��� dx � 2�:It is not hard to 
he
k that(1:2) kfk � ' sup�kfkpp1=� : p � 1�:1



Let y 6= 0 in Rn . We say that K satis�es a  �-estimate with 
onstant b� inthe dire
tion of y if(1:3) kh�; yik � � b�kh�; yik1:We say that K is a  �-body with 
onstant b� if (1:3) holds for every y 6= 0.It is easy to see that if K satis�es a  �-estimate in the dire
tion of y andif T 2 SL(n), then T (K) satis�es a  �-estimate (with the same 
onstant) in thedire
tion of T �(y). It follows that T (K) is a  �-body if K is a  �-body. By Borell'slemma (see [17℄, Appendix III), every 
onvex body K is a  1-body with 
onstantb1 = 
, where 
 > 0 is an absolute 
onstant.Estimates of this form are related to the hyperplane problem for 
onvex bodies.Re
all that a 
onvex body K of volume 1 with 
entre of mass at the origin is 
alledisotropi
 if there exists a 
onstant LK > 0 su
h that(1:4) ZKhx; �i2dx = L2Kfor all � 2 Sn�1. Every 
onvex body K with 
entre of mass at the origin hasan isotropi
 image under GL(n) whi
h is uniquely determined up to orthogonaltransformations (for more information on the isotropi
 position, see [16℄). It followsthat the isotropi
 
onstant LK is an invariant for the 
lass fT (K) : T 2 GL(n)g.The hyperplane problem asks if every 
onvex body of volume 1 has a hyperplanese
tion through its 
entre of mass with \area" greater than an absolute 
onstant.An aÆrmative answer to this question is equivalent to the following statement:there exists an absolute 
onstant C > 0 su
h that LK � C for every isotropi

onvex body K.Bourgain [4℄ has proved that LK � 
 4pn logn for every origin symmetri
isotropi
 
onvex body K in Rn (the same estimate holds true for non-symmetri

onvex bodies as well; see [8℄ and [18℄). Bourgain's argument shows that if K is a 2-body with 
onstant b2, then LK � 
b2 logn where 
 > 0 is an absolute 
onstant.Examples of  2-bodies are given by the ball and the 
ube in Rn .Alesker [1℄ has proved that the Eu
lidean norm satis�es a  2-estimate: thereexists an absolute 
onstant C > 0 su
h that(1:5) ZK exp� jxj2C2I22 � dx � 2for every isotropi
 
onvex body K in Rn , where I22 = RK jxj2dx.It is not 
lear if every isotropi
 
onvex body satis�es a good  2-estimate formost dire
tions � 2 Sn�1; for a related 
onje
ture, see [2℄. On the other hand, tothe best of our knowledge, even the existen
e of some good  2-dire
tion has notbeen veri�ed in full generality. This would 
orrespond to a sharpening of Alesker'sresult.Bobkov and Nazarov [6℄ have re
ently proved that every 1-un
onditional andisotropi
 
onvex body satis�es a  2-estimate with 
onstant 
 in the dire
tion y =(1; 1; : : : ; 1), where 
 > 0 is an absolute 
onstant. The purpose of this note is toestablish an analogous fa
t for zonoids. 2



Theorem 1.1 There exists an absolute 
onstant C > 0 with the following property:For every zonoid Z in Rn with volume jZj = 1, there exists � 2 Sn�1 su
h that�ZZ jhx; �ijpdx�1=p � CppZZ jhx; �ijdxfor every p � 1.The proof of Theorem 1.1 is presented in Se
tion 2. The argument shows thatthe same is true for every 
onvex body in Rn whi
h has a linear image of volume 1with diameter of the order of pn (we 
all these \bodies with small diameter"). InSe
tion 3 we show that zonoids belong to this 
lass.In the opposite dire
tion, we show that every  2-isotropi
 
onvex body hassmall diameter. More pre
isely, in Se
tion 4 we prove the following.Theorem 1.2 Let K be an isotropi
 
onvex body in Rn . Assume that K is a 2-body with 
onstant b2. Then,K � Cb22pn lognBn2 ;where C > 0 is an absolute 
onstant.The letters 
; 
1; 
2; 
0 et
. denote absolute positive 
onstants, whi
h may 
hangefrom line to line. Wherever we write a ' b, this means that there exist absolute
onstants 
1; 
2 > 0 su
h that 
1a � b � 
2a. We refer the reader to the books [17℄,[20℄ and [22℄ for standard fa
ts that we use in the sequel. We thank the referee forsuggestions that improved the presentation and some estimates.2 Bodies with small diameterWe say that a 
onvex body K in Rn with 
entre of mass at the origin has \smalldiameter" if jKj = 1 and K � �pnBn2 , where � is \well bounded". Note that a
onvex body has a linear image with small diameter if and only if its polar bodyhas bounded volume ratio. Our purpose is to show that bodies with small diameterhave \good"  2-dire
tions.Our �rst lemma follows by a simple 
omputation.Lemma 2.1 For every p � 1 and every x 2 Rn ,(2:1) �ZSn�1 jhx; �ijp�(d�)�1=p ' pppp+ n jxj:Proof: Observe thatZBn2 jhx; yijpdy = jBn2 j nn+ p ZSn�1 jhx; �ijp�(d�):3



On the other hand,ZBn2 jhx; yijpdy = jxjp ZBn2 jhe1; yijpdy= 2jBn�12 j � jxjp Z 10 tp(1� t2)(n�1)=2dt= jBn�12 j � jxjp� �p+12 �� �n+12 �� �p+n+22 � :Sin
e jBk2 j = �k=2=��k+22 �, we getZSn�1 jhx; �ijp�(d�) = 1p� n+ pn ��p+12 ���n+22 ���p+n+22 � jxjp:The result follows from Stirling's formula. 2Lemma 2.2 Let K be a 
onvex body in Rn with volume jKj = 1 and 
entre ofmass at the origin. Then,��� 2 Sn�1 : ZK jhx; �ij dx � 
1� � 1� 2�n;where 
1 > 0 is an absolute 
onstant.Proof: The Binet ellipsoid E of K is de�ned byk�k2E = ZKhx; �i2dx = hMK�; �i;where MK = � RK xixjdx� is the matrix of inertia of K (see [16℄). It is easily
he
ked that detMK = detMTK for every T 2 SL(n), and this implies thatZSn�1 k�k�nE �(d�) = jEjjBn2 j = (detMK)�1=2 = L�nK :Then, Markov's inequality shows that� �� 2 Sn�1 : k�kE � LK=2� � 1� 12n :Sin
e LK � 
 and kh�; �ik1 ' kh�; �ik2 (see [16℄), the result follows. 2Lemma 2.3 Let K be a 
onvex body in Rn with volume jKj = 1 and 
entre ofmass at the origin. Assume that K � �pnBn2 . Then,ZSn�1 ZK exp� jhx; �ij
2� �2 dx�(d�) � 2;where 
2 > 0 is an absolute 
onstant. 4



Proof: For every s > 0 we haveZSn�1 ZK exp� jhx; �ijs �2 dx�(d�) = 1 + 1Xk=1 1k!s2k ZK ZSn�1 jhx; �ij2k�(d�)dx:From Lemma 2.1 we see that this is bounded by1 + 1Xk=1 1k!s2k � 
 � 2k2k + n�k ZK jxj2kdx � 1 + 1Xk=1�
0�s �2kwhere 
; 
0 > 0 are absolute 
onstants. We 
on
lude the proof taking s = 
2� where
2 = 2
0. 2An appli
ation of Markov's inequality gives the following.Corollary 2.1 Let K be a 
onvex body in Rn with volume jKj = 1 and 
entre ofmass at the origin. Assume that K � �pnBn2 . Then, for every A > 2 we have� � 2 Sn�1 : ZK exp� jhx; �ij
2� �2 dx < A! > 1� 2Awhere 
2 > 0 is the 
onstant from Lemma 2.3. 2Theorem 2.1 Let K be a 
onvex body in Rn with volume jKj = 1 and 
entre ofmass at the origin. Assume that K � �pnBn2 . There exists � 2 Sn�1 su
h that�ZK jhx; �ijpdx�1=p � C�pp ZK jhx; �ijdxfor every p > 1, where C > 0 is an absolute 
onstant.Proof: Choose A = 4. Using the inequality ez > zk=k! (z > 0), Lemma 2.2 andCorollary 2.1 we see that with probability greater than 12 � 12n a dire
tion � 2 Sn�1satis�es ZK jhx; �ijdx � 
1 and ZK exp� jhx; �ij
2� �2 dx < 4:It follows that ZK jhx; �ij2kdx � 4k!(
2�)2kfor every k � 1, and hen
e�ZK jhx; �ij2kdx� 12k � 
�p2k � 

1�p2k ZK jhx; �ijdx:This is the statement of the theorem for p = 2k. The general 
ase follows easily. 25



Remarks: (a) Bourgain's argument in [4℄ shows that LK is bounded by a powerof logn for every 
onvex body K in Rn if the following statement holds true: If Wis an isotropi
 
onvex body in Rn and W � ��pnLW �Bn2 , then W is a  2-bodywith 
onstant O(�s). Lemma 2.3 shows that, under the same assumptions, \half"of the dire
tions are  2-dire
tions for W , with 
onstant 
�.(b) It 
an be also easily proved that 
onvex bodies with small diameter havelarge hyperplane se
tions (this 
an be veri�ed in several other ways, but the argu-ment below gives some estimate on the distribution of the volume of their (n� 1)-dimensional se
tions).Proposition 2.1 Let K be a 
onvex body in Rn with volume jKj = 1 and 
entreof mass at the origin. Assume that K � �pnBn2 . Then, for every t > 0 we have� �� 2 Sn�1 : jK \ �?j � 
3t�� � 1� 2e�t2 :where 
3 > 0 is an absolute 
onstant.Proof: Applying Jensen's inequality to Lemma 2.3, we getZSn�1 exp��RK jhx; �ij dx
2� �2��(d�) � 2:Markov's inequality shows that��� 2 Sn�1 : ZK jhx; �ij dx � 
2�t� � 2e�t2for every t > 0. On the other hand, it is a well-known fa
t (see [16℄ for the symmetri

ase) that if K has volume 1 and 
entre of mass at the origin, then(2:2) ZK jhx; �ij dx ' 1jK \ �?jfor every � 2 Sn�1. This 
ompletes the proof. 23 Positions of zonoidsWe �rst introdu
e some notation and re
all basi
 fa
ts about zonoids. Thesupport fun
tion of a 
onvex body K is de�ned by hK(y) = maxx2Khx; yi for ally 6= 0. The mean width of K is given byw(K) = 2 ZSn�1 hK(u)�(du):We say that K has minimal mean width if w(K) � w(TK) for every T 2 SL(n).6



Re
all also the de�nition of the area measure �K of a 
onvex body K: for everyBorel V � Sn�1 we have�K(V ) = � (fx 2 bd(K) : the outer normal to K at x is in V g) ;where � is the (n�1)-dimensional surfa
e measure onK. It is 
lear that �K(Sn�1) =A(K), the surfa
e area of K. We say that K has minimal surfa
e area if A(K) �A(TK) for every T 2 SL(n).A zonoid is a limit of Minkowski sums of line segments in the Hausdor� metri
.Equivalently, a symmetri
 
onvex body Z is a zonoid if and only if its polar bodyis the unit ball of an n-dimensional subspa
e of an L1 spa
e; i.e. if there exists apositive measure � (the supporting measure of Z) on Sn�1 su
h that(3:1) kxkZÆ = 12 ZSn�1 jhx; yij�(dy):The 
lass of zonoids 
oin
ides with the 
lass of proje
tion bodies. Re
all that theproje
tion body �K of a 
onvex body K is the symmetri
 
onvex body whosesupport fun
tion is de�ned by(3:2) h�K(�) = jP�(K)j; � 2 Sn�1where P�(K) is the orthogonal proje
tion of K onto �?. From the integral repre-sentation(3:3) jP�(K)j = 12 ZSn�1 jhu; �ij d�K(u)whi
h is easily veri�ed in the 
ase of a polytope and extends to any 
onvex bodyK by approximation, it follows that the proje
tion body of K is a zonoid whosesupporting measure is �K . Moreover, if we denote by Cn the 
lass of symmetri

onvex bodies and by Z the 
lass of zonoids, Aleksandrov's uniqueness theoremshows that the Minkowski map � : Cn ! Z with K 7! �K, is inje
tive. Notealso that Z is invariant under invertible linear transformations (in fa
t, �(TK) =(T�1)�(�K) for every T 2 SL(n)) and 
losed in the Hausdor� metri
. For moreinformation on zonoids, see [22℄ and [5℄.We shall see that three natural positions of a zonoid have small diameter inthe sense of Se
tion 2. The proof makes use of the isotropi
 des
ription of su
hpositions whi
h allows the use of the Bras
amp-Lieb inequality.1. Lewis position: A result of Lewis [14℄ (see also [3℄) shows that every zonotopeZ has a linear image Z1 (the \Lewis position" of Z) with the following property:there exist unit ve
tors u1; : : : ; um and positive real numbers 
1; : : : ; 
m su
h thathZ1(x) = mXj=1 
j jhx; ujijand I = mXj=1 
juj 
 uj7



where I denotes the identity operator in Rn . Using the Bras
amp-Lieb inequality,Ball proved in [3℄ that, under these 
onditions,jZÆ1 j � 2nn! and Bn2 � pnZÆ1 :The reverse Santal�o inequality for zonoids (see [21℄ and [13℄) implies that(3:4) jZ1j � 2n and Z1 � pnBn2 :This shows that(A) diam(Z1) � pnjZ1j1=n:2. Lowner position: Assume that Bn2 is the ellipsoid of minimal volume 
ontain-ing a zonoid Z2. Let Z1 be the Lewis position of Z2. Then,(3:5) jBn2 jjZ2j � jpnBn2 jjZ1j :Now, (3.5) and (3.4) show that(B) diam(Z2) � 2 � jZ1j1=n � pnjZ2j1=n:3. Minimal mean width position: Assume that Z3 = �K is a zonoid of volume1 whi
h has minimal mean width. The results of [9℄ and [12℄ show that the areameasure �K is isotropi
, i.e.(3:6) ZSn�1hu; �i2d�K(u) = A(K)nfor every � 2 Sn�1, where A(K) is the surfa
e area of K. Moreover, a result ofPetty [19℄ shows that K has minimal surfa
e area. Now, an appli
ation of theCau
hy-S
hwarz inequality and (3.6) show thathZ3(�) = 12 ZSn�1 jh�; uijd�K(u) � A(K)2pnfor every � 2 Sn�1. We will use the following fa
t from [11℄:Lemma 3.1 If K has minimal surfa
e area, thenA(K) � nj�Kj1=n:It follows that hZ3(�) � pn=2 for every � 2 Sn�1. In other words,(C) diam(Z3) � pnjZ3j1=n:The pre
eding dis
ussion shows that zonoids have positions with small diameter.More pre
isely, we have the following statement.8



Theorem 3.1 Let Z be a zonoid in Lewis or Lowner or minimal mean width po-sition. Then, diam(Z) � pnjZj1=n: 2It follows that the results of Se
tion 2 apply to the 
lass of zonoids: every zonoidhas  2-dire
tions in the sense of Theorem 1.1.Remark: We do not know if isotropi
 zonoids have small diameter. One 
an 
he
kthat their mean width is bounded by 
pn (it is of the smallest possible order).4 Isotropi
  2-bodies have small diameterThe purpose of this last se
tion is to show that a 
onvex body is a  2-body onlyif its isotropi
 position has small diameter. More pre
isely, we prove the following.Theorem 4.1 Let K be an isotropi
 
onvex body in Rn . Assume that K is a 2-body with 
onstant b2. Then,K � Cb22pn lognBn2 ;where C > 0 is an absolute 
onstant.The proof will follow from two simple lemmas. The idea for the �rst one 
omesfrom [10℄.Lemma 4.1 Let K be a 
onvex body in Rn with volume 1 and 
entre of mass atthe origin. Then, for every � 2 Sn�1,ZK jhx; �ijpdx � �(p+ 1)�(n)2e�(p+ n+ 1) max�hpK(�); hpK(��)	:Proof: Consider the fun
tion f�(t) = jK \ (�? + t�)j. Brunn's prin
iple impliesthat f1=(n�1)� is 
on
ave. It follows thatf�(t) � �1� thK(�)�n�1 f�(0)for all t 2 [0; hK(�)℄. Therefore,ZK jhx; �ijpdx = Z hK(�)0 tpf�(t)dt+ Z hK(��)0 tpf��(t)dt� Z hK(�)0 tp�1� thK(�)�n�1 f�(0)dt+ Z hK(��)0 tp�1� thK(��)�n�1 f�(0)dt9



= f�(0)�hp+1K (�) + hp+1K (��)�Z 10 sp(1� s)n�1ds= �(p+ 1)�(n)�(p+ n+ 1) f�(0)�hp+1K (�) + hp+1K (��)�� �(p+ 1)�(n)2�(p+ n+ 1)f�(0) (hK(�) + hK(��)) �max�hpK(�); hpK(��)	:Sin
e K has its 
entre of mass at the origin, we have kf�k1 � ef�(0) (see [15℄),and hen
e 1 = jKj = Z hK(�)�hK(��) f�(t)dt � e (hK(�) + hK(��)) f�(0):This 
ompletes the proof. 2Lemma 4.2 Let K be a 
onvex body in Rn with volume 1 and 
entre of mass atthe origin. For every � 2 Sn�1,kh�; �ik 2 � 
maxfhK(�); hK(��)gpnwhere 
 > 0 is an absolute 
onstant.Proof: Let � 2 Sn�1 and de�neIp(�) := �ZK jhx; �ijpdx�1=pfor every p � 1. Then, (1.2) shows thatkh�; �ik 2 � 
In(�)pn :From Lemma 4.1 we easily see that In(�) ' maxfhK(�); hK(��)g and the resultfollows. 2Proof of Theorem 4.1: Sin
e K is a  2-body with 
onstant b2, Lemma 4.2 showsthat 
hK(�)pn � kh�; �ik 2 � b2kh�; �ik1for every � 2 Sn�1. Sin
e K is isotropi
, we havekh�; �ik1 � LKfor every � 2 Sn�1. Bourgain's argument in [4℄ (see also [7℄) together with the 2-assumption show that LK � 
0b2 logn:10



This implies that K � Cb22pn lognBn2 : 2Theorem 4.1 shows that  2-bodies belong to a rather restri
ted 
lass (theirpolars have at most logarithmi
 volume ratio). It would be interesting to de
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