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Abstract

Let K be a convex body in R" with centre of mass at the origin and
volume |K| = 1. We prove that if K C ay/nBjy where By is the Euclidean
unit ball, then there exists # € S™~! such that
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where ¢ > 0 is an absolute constant. In other words, “every body with small
diameter has »-directions”. This criterion applies to the class of zonoids. In
the opposite direction, we show that if an isotropic convex body K of volume
1 satisfies (%) for every direction § € S"~', then K C Ca’/nlognB%, where
C > 0 is an absolute constant.

1 Introduction

We shall work in R which is equipped with a Euclidean structure (-,-}. The
Euclidean norm (z, z)'/? is denoted by |-|. We write BY for the Euclidean unit ball,
S™~1 for the unit sphere, and o for the rotationally invariant probability measure
on S" L,

Throughout this note we assume that K is a convex body in R® with volume
|K| =1 and centre of mass at the origin. Given « € [1, 2], the Orlicz norm || f||y,
of a bounded measurable function f : K — R is defined by

w0 =i feo0: [ ((L2))arso)

It is not hard to check that

/
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Let y # 0 in R*. We say that K satisfies a ¢,-estimate with constant b, in
the direction of y if

(1.3) 1€ 9 lwa < BallC -

We say that K is a ¢,-body with constant b, if (1.3) holds for every y # 0.

It is easy to see that if K satisfies a i,-estimate in the direction of y and
if T € SL(n), then T(K) satisfies a ¢,-estimate (with the same constant) in the
direction of T*(y). It follows that T'(K) is a ¢,-body if K is a ¢,-body. By Borell’s
lemma (see [17], Appendix III), every convex body K is a ;-body with constant
b1 = ¢, where ¢ > 0 is an absolute constant.

Estimates of this form are related to the hyperplane problem for convex bodies.
Recall that a convex body K of volume 1 with centre of mass at the origin is called
isotropic if there exists a constant Lx > 0 such that

(14) /K(:U,9)2da: = L3

for all 8 € S™'. Every convex body K with centre of mass at the origin has
an isotropic image under GL(n) which is uniquely determined up to orthogonal
transformations (for more information on the isotropic position, see [16]). It follows
that the isotropic constant Ly is an invariant for the class {T'(K) : T € GL(n)}.
The hyperplane problem asks if every convex body of volume 1 has a hyperplane
section through its centre of mass with “area” greater than an absolute constant.
An affirmative answer to this question is equivalent to the following statement:
there exists an absolute constant C' > 0 such that Lx < C for every isotropic
convex body K.

Bourgain [4] has proved that Lx < c/nlogn for every origin symmetric
isotropic convex body K in R™ (the same estimate holds true for non-symmetric
convex bodies as well; see [8] and [18]). Bourgain’s argument shows that if K is a
o-body with constant b2, then Li < cbs logn where ¢ > 0 is an absolute constant.
Examples of 12-bodies are given by the ball and the cube in R™.

Alesker [1] has proved that the Euclidean norm satisfies a ts-estimate: there
exists an absolute constant C' > 0 such that
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for every isotropic convex body K in R", where I3 = [, |z|*dz.

It is not clear if every isotropic convex body satisfies a good ts-estimate for
most directions § € S"1; for a related conjecture, see [2]. On the other hand, to
the best of our knowledge, even the existence of some good ts-direction has not
been verified in full generality. This would correspond to a sharpening of Alesker’s
result.

Bobkov and Nazarov [6] have recently proved that every l-unconditional and
isotropic convex body satisfies a ¥y-estimate with constant ¢ in the direction y =
(1,1,...,1), where ¢ > 0 is an absolute constant. The purpose of this note is to
establish an analogous fact for zonoids.



Theorem 1.1 There exists an absolute constant C' > 0 with the following property:
For every zonoid Z in R™ with volume |Z| = 1, there exists 0 € S™~! such that
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The proof of Theorem 1.1 is presented in Section 2. The argument shows that
the same is true for every convex body in R™ which has a linear image of volume 1
with diameter of the order of \/n (we call these “bodies with small diameter”). In
Section 3 we show that zonoids belong to this class.

In the opposite direction, we show that every ts-isotropic convex body has
small diameter. More precisely, in Section 4 we prove the following.

for every p > 1.

Theorem 1.2 Let K be an isotropic conver body in R™. Assume that K is a
1o -body with constant by. Then,

K C Cb3v/nlognBY,
where C > 0 is an absolute constant.

The letters ¢, c1, ca, ¢’ etc. denote absolute positive constants, which may change
from line to line. Wherever we write a ~ b, this means that there exist absolute
constants c1, co > 0 such that c;a < b < coa. We refer the reader to the books [17],
[20] and [22] for standard facts that we use in the sequel. We thank the referee for
suggestions that improved the presentation and some estimates.

2 Bodies with small diameter

We say that a convex body K in R"™ with centre of mass at the origin has “small
diameter” if |K| = 1 and K C ay/nBY, where a is “well bounded”. Note that a
convex body has a linear image with small diameter if and only if its polar body
has bounded volume ratio. Our purpose is to show that bodies with small diameter
have “good” t-directions.

Our first lemma follows by a simple computation.

Lemma 2.1 For every p > 1 and every x € R™,

21) (). |<w,0>|pa<d9>)1/p =,

Proof: Observe that

/ (e, y) Py = | B2
B3

n

== [ oo,



On the other hand,
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Since |BY| = 7%/2 /T (££2), we get
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The result follows from Stirling’s formula. O

/ (&, 6)Po(d6) =
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Lemma 2.2 Let K be a convex body in R" with volume |K| = 1 and centre of
mass at the origin. Then,

o <0 e gnt :/ [{z,0)| dz > cl> >1-27"
K

where ¢1 > 0 is an absolute constant.

Proof: The Binet ellipsoid E of K is defined by
1616, = | (e,6%ds = (16,0,
K

where Mg = ( [ zizjdr) is the matrix of inertia of K (see [16]). It is easily
checked that det My = det My g for every T € SL(n), and this implies that

[ ezt = L2 = et a2 = g
ot B3]

Then, Markov’s inequality shows that

1
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Since L > ¢ and ||(-,8)]|1 =~ [|{:, #)||]> (see [16]), the result follows. |
Lemma 2.3 Let K be a convex body in R" with volume |K| = 1 and centre of

mass at the origin. Assume that K C a\/nBY. Then,

/Sn 1/ ( s >2d$0(d9) <2

where co > 0 is an absolute constant.



Proof: For every s > 0 we have

/57.71 /Kexp <@)2d:w(d0) =1+ g k's% /K/gnﬂ |z, 6)[** & (dB) d.

From Lemma 2.1 we see that this is bounded by
= 1 c- 2k \* 2 o\
1 —_— | —— dr <1 —
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where ¢, ¢’ > 0 are absolute constants. We conclude the proof taking s = caa where
co = 2¢. O
An application of Markov’s inequality gives the following.

Corollary 2.1 Let K be a convex body in R™ with volume |K| =1 and centre of
mass at the origin. Assume that K C a/nBY. Then, for every A > 2 we have

2
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where ¢y > 0 is the constant from Lemma 2.3. O

Theorem 2.1 Let K be a convex body in R® with volume |K| = 1 and centre of
mass at the origin. Assume that K C a/nBY. There exists 8 € S~ such that

< /K |<x,e>|de>1/p < Cav/p /K \(z, 0)|dz

for every p > 1, where C' > 0 is an absolute constant.

Proof: Choose A = 4. Using the inequality e* > 2*/k! (z > 0), Lemma 2.2 and
Corollary 2.1 we see that with probability greater than 1 — 5 a direction § € S™!

satisfies
(,0)]\*
/ [{(z,0)|dz > c¢; and / exp (’—) dr < 4.
K K Cox

It follows that
/ (2, ) da < 4K!(c20)?"
K

for every k > 1, and hence

</K |(w,0>|2kdaz>21’° < caV2k < éa\/ﬁ/K \(z, )|

This is the statement of the theorem for p = 2k. The general case follows easily. O



Remarks: (a) Bourgain’s argument in [4] shows that Lk is bounded by a power
of logn for every convex body K in R" if the following statement holds true: If W
is an isotropic convex body in R* and W C (ay/nLw)BY, then W is a 1»-body
with constant O(a?®). Lemma 2.3 shows that, under the same assumptions, “half”
of the directions are to-directions for W, with constant ca.

(b) It can be also easily proved that convex bodies with small diameter have
large hyperplane sections (this can be verified in several other ways, but the argu-
ment below gives some estimate on the distribution of the volume of their (n — 1)-
dimensional sections).

Proposition 2.1 Let K be a convex body in R™ with volume |K| =1 and centre
of mass at the origin. Assume that K C ay/nBY. Then, for every t > 0 we have

c
o (0 €Sl K Nngt| > —3) >1-2t,
ta
where ¢z > 0 is an absolute constant.

Proof: Applying Jensen’s inequality to Lemma 2.3, we get

/Sn_l exp <(M)2> o(df) < 2.

Cox

Markov’s inequality shows that

o <0 e st / [{z,0)| dz > CQat> <2t
K

for every t > 0. On the other hand, it is a well-known fact (see [16] for the symmetric
case) that if K has volume 1 and centre of mass at the origin, then

(2.2) /K (z, )| dz ~ ﬁ

for every § € S®~1. This completes the proof. O

3 Positions of zonoids

We first introduce some notation and recall basic facts about zonoids. The
support function of a convex body K is defined by hx(y) = maxgzecx(z,y) for all
y # 0. The mean width of K is given by

w(K) = 2/5 hic (w)or (du).

We say that K has minimal mean width if w(K) < w(TK) for every T € SL(n).



Recall also the definition of the area measure ok of a convex body K: for every
Borel V C S™! we have

ok (V) =v({z € bd(K) : the outer normal to K at zisin V'}),

where v is the (n—1)-dimensional surface measure on K. It is clear that oy (S"7!) =
A(K), the surface area of K. We say that K has minimal surface area if A(K) <
A(TK) for every T € SL(n).

A zonoid is a limit of Minkowski sums of line segments in the Hausdorff metric.
Equivalently, a symmetric convex body Z is a zonoid if and only if its polar body
is the unit ball of an n-dimensional subspace of an L; space; i.e. if there exists a
positive measure p (the supporting measure of Z) on S"~! such that

=3 [ e,

The class of zonoids coincides with the class of projection bodies. Recall that the
projection body IIK of a convex body K is the symmetric convex body whose
support function is defined by

(3.2) huk(0) = |Py(K)|, @€ S !

(3.1) ]

where Py(K) is the orthogonal projection of K onto §+. From the integral repre-
sentation

(33) ) =5 [ w6 dokw
Sn—1

which is easily verified in the case of a polytope and extends to any convex body
K by approximation, it follows that the projection body of K is a zonoid whose
supporting measure is og. Moreover, if we denote by C,, the class of symmetric
convex bodies and by Z the class of zonoids, Aleksandrov’s uniqueness theorem
shows that the Minkowski map II : C,, — Z with K — IIK, is injective. Note
also that Z is invariant under invertible linear transformations (in fact, II(TK) =
(I'—YH*(IIK) for every T' € SL(n)) and closed in the Hausdorff metric. For more
information on zonoids, see [22] and [5].

We shall see that three natural positions of a zonoid have small diameter in
the sense of Section 2. The proof makes use of the isotropic description of such
positions which allows the use of the Brascamp-Lieb inequality.

1. Lewis position: A result of Lewis [14] (see also [3]) shows that every zonotope
Z has a linear image Z; (the “Lewis position” of Z) with the following property:

there exist unit vectors uq,...,u,, and positive real numbers cy, ..., ¢, such that
m
th (;U) = E :cj|<$7uj>|
Jj=1
and

m
I= E Cjuj & uj
j=1
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where I denotes the identity operator in R™. Using the Brascamp-Lieb inequality,
Ball proved in [3] that, under these conditions,

n

izl <2 ad By CVaZ
The reverse Santal6 inequality for zonoids (see [21] and [13]) implies that
(3.4) |Z1] > 2" and Z; C /nBf.
This shows that
(A) diam(Z,) < v/n|Zy|M".

2. Lowner position: Assume that B} is the ellipsoid of minimal volume contain-
ing a zonoid Z,. Let Z; be the Lewis position of Z>. Then,

|B3| _ |vVnB3|
3.5 < |
&) |Z2] = |Zi]
Now, (3.5) and (3.4) show that
(B) diam(Z,) <2 < |Z1|1/” < \/E|Zz|l/n‘

3. Minimal mean width position: Assume that Z3 = I1K is a zonoid of volume
1 which has minimal mean width. The results of [9] and [12] show that the area
measure oy is isotropic, i.e.
A(K)

n

(3.6) /Sn_l(u,0>2dch(u) =

for every § € S™ 1, where A(K) is the surface area of K. Moreover, a result of
Petty [19] shows that K has minimal surface area. Now, an application of the
Cauchy-Schwarz inequality and (3.6) show that

1

ha®)= 5 [ H0.wldo() <

A(K)
2vn

for every § € S"~!. We will use the following fact from [11]:

Lemma 3.1 If K has minimal surface area, then

A(K) < n|IK Y™
It follows that hz,(0) < /n/2 for every § € S"~!. In other words,
(©) diam(Z3) < v/n|Zs|'/".

The preceding discussion shows that zonoids have positions with small diameter.
More precisely, we have the following statement.



Theorem 3.1 Let Z be a zonoid in Lewis or Lowner or minimal mean width po-

sition. Then,
diam(Z) < Vn|Z|V/". O

It follows that the results of Section 2 apply to the class of zonoids: every zonoid
has -directions in the sense of Theorem 1.1.

Remark: We do not know if isotropic zonoids have small diameter. One can check
that their mean width is bounded by cy/n (it is of the smallest possible order).

4 Isotropic Ys-bodies have small diameter

The purpose of this last section is to show that a convex body is a 12-body only
if its isotropic position has small diameter. More precisely, we prove the following.

Theorem 4.1 Let K be an isotropic convex body in R™. Assume that K is a
o -body with constant bs. Then,

K C Cbsy/nlognBY,
where C > 0 is an absolute constant.

The proof will follow from two simple lemmas. The idea for the first one comes
from [10].

Lemma 4.1 Let K be a convex body in R with volume 1 and centre of mass at
the origin. Then, for every § € S™~1,

)p T+1)I(n) » »
/ (e, 0)Pdr > 52 max { h% (6), hb, (—6) }.

Proof: Consider the function fy(t) = |K N (#+ + t6)|. Brunn’s principle implies
that f,/""" is concave. It follows that

folt) 2 (1 - #@) A(0)

for all ¢t € [0, h (6)]. Therefore,

hx (0) hx (—0)
[wopa = [T enma [T oo

/OW) " (1 _ ﬁ) "

hg(—0) ) ¢ n—1
+/0 t (1 — 7}”((_0)) fo(0)dt
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= fol0) (W 0) + 13 () / (18 ds

I'(p+DT(n) 1 Pt
= Tornsn O (W 0) + i ()

I'(p+1I(n)
2l(p+n+1)

v

f6(0) (hx (0) + b (—0)) - max { % (8), hi (—6)}.

Since K has its centre of mass at the origin, we have ||fy|lcc < efp(0) (see [15]),
and hence

hx(0)

L=l = [ 0 < e o) + hacl=) ul0)
—hx (=0

This completes the proof. O

Lemma 4.2 Let K be a convexr body in R with volume 1 and centre of mass at
the origin. For every § € S™1,

cmax{hg(8),hx(—0)}

1€ O, = Jn

where ¢ > 0 is an absolute constant.

Proof: Let € S*! and define

-(/ |<x,e>|"dx)l/p

for every p > 1. Then, (1.2) shows that

cl,(0)
-0 > .
1€ Ml > T
From Lemma 4.1 we easily see that I,,(f) ~ max{hx(0), hx(—6)} and the result
follows. o

Proof of Theorem 4.1: Since K is a 1»-body with constant by, Lemma 4.2 shows
that i (6)
chi
<|{-,0 < bs|{-, 0
Jn <G O g < b2l 0) 1

for every § € S*~!. Since K is isotropic, we have

1,0l < L

for every 6§ € S™!. Bourgain’s argument in [4] (see also [7]) together with the
1o-assumption show that
Ly < cd'bylogn.
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This implies that
K C Cbsy/nlognBy. O

Theorem 4.1 shows that 1s-bodies belong to a rather restricted class (their
polars have at most logarithmic volume ratio). It would be interesting to decide if
zonoids are ¥»-bodies or not.
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