
	2-estimates for linear funtionals onzonoidsG. Paouris
AbstratLet K be a onvex body in Rn with entre of mass at the origin andvolume jKj = 1. We prove that if K � �pnBn2 where Bn2 is the Eulideanunit ball, then there exists � 2 Sn�1 suh that(�) kh�; �ikL 2 (K) � �kh�; �ikL1(K)where  > 0 is an absolute onstant. In other words, \every body with smalldiameter has  2-diretions". This riterion applies to the lass of zonoids. Inthe opposite diretion, we show that if an isotropi onvex body K of volume1 satis�es (�) for every diretion � 2 Sn�1, thenK � C�2pn log nBn2 , whereC > 0 is an absolute onstant.1 IntrodutionWe shall work in Rn whih is equipped with a Eulidean struture h�; �i. TheEulidean norm hx; xi1=2 is denoted by j � j. We write Bn2 for the Eulidean unit ball,Sn�1 for the unit sphere, and � for the rotationally invariant probability measureon Sn�1.Throughout this note we assume that K is a onvex body in Rn with volumejKj = 1 and entre of mass at the origin. Given � 2 [1; 2℄, the Orliz norm kfk �of a bounded measurable funtion f : K ! R is de�ned by(1:1) kfk � = inf �t > 0 : ZK exp�� jf(x)jt ��� dx � 2�:It is not hard to hek that(1:2) kfk � ' sup�kfkpp1=� : p � 1�:1



Let y 6= 0 in Rn . We say that K satis�es a  �-estimate with onstant b� inthe diretion of y if(1:3) kh�; yik � � b�kh�; yik1:We say that K is a  �-body with onstant b� if (1:3) holds for every y 6= 0.It is easy to see that if K satis�es a  �-estimate in the diretion of y andif T 2 SL(n), then T (K) satis�es a  �-estimate (with the same onstant) in thediretion of T �(y). It follows that T (K) is a  �-body if K is a  �-body. By Borell'slemma (see [17℄, Appendix III), every onvex body K is a  1-body with onstantb1 = , where  > 0 is an absolute onstant.Estimates of this form are related to the hyperplane problem for onvex bodies.Reall that a onvex body K of volume 1 with entre of mass at the origin is alledisotropi if there exists a onstant LK > 0 suh that(1:4) ZKhx; �i2dx = L2Kfor all � 2 Sn�1. Every onvex body K with entre of mass at the origin hasan isotropi image under GL(n) whih is uniquely determined up to orthogonaltransformations (for more information on the isotropi position, see [16℄). It followsthat the isotropi onstant LK is an invariant for the lass fT (K) : T 2 GL(n)g.The hyperplane problem asks if every onvex body of volume 1 has a hyperplanesetion through its entre of mass with \area" greater than an absolute onstant.An aÆrmative answer to this question is equivalent to the following statement:there exists an absolute onstant C > 0 suh that LK � C for every isotropionvex body K.Bourgain [4℄ has proved that LK �  4pn logn for every origin symmetriisotropi onvex body K in Rn (the same estimate holds true for non-symmetrionvex bodies as well; see [8℄ and [18℄). Bourgain's argument shows that if K is a 2-body with onstant b2, then LK � b2 logn where  > 0 is an absolute onstant.Examples of  2-bodies are given by the ball and the ube in Rn .Alesker [1℄ has proved that the Eulidean norm satis�es a  2-estimate: thereexists an absolute onstant C > 0 suh that(1:5) ZK exp� jxj2C2I22 � dx � 2for every isotropi onvex body K in Rn , where I22 = RK jxj2dx.It is not lear if every isotropi onvex body satis�es a good  2-estimate formost diretions � 2 Sn�1; for a related onjeture, see [2℄. On the other hand, tothe best of our knowledge, even the existene of some good  2-diretion has notbeen veri�ed in full generality. This would orrespond to a sharpening of Alesker'sresult.Bobkov and Nazarov [6℄ have reently proved that every 1-unonditional andisotropi onvex body satis�es a  2-estimate with onstant  in the diretion y =(1; 1; : : : ; 1), where  > 0 is an absolute onstant. The purpose of this note is toestablish an analogous fat for zonoids. 2



Theorem 1.1 There exists an absolute onstant C > 0 with the following property:For every zonoid Z in Rn with volume jZj = 1, there exists � 2 Sn�1 suh that�ZZ jhx; �ijpdx�1=p � CppZZ jhx; �ijdxfor every p � 1.The proof of Theorem 1.1 is presented in Setion 2. The argument shows thatthe same is true for every onvex body in Rn whih has a linear image of volume 1with diameter of the order of pn (we all these \bodies with small diameter"). InSetion 3 we show that zonoids belong to this lass.In the opposite diretion, we show that every  2-isotropi onvex body hassmall diameter. More preisely, in Setion 4 we prove the following.Theorem 1.2 Let K be an isotropi onvex body in Rn . Assume that K is a 2-body with onstant b2. Then,K � Cb22pn lognBn2 ;where C > 0 is an absolute onstant.The letters ; 1; 2; 0 et. denote absolute positive onstants, whih may hangefrom line to line. Wherever we write a ' b, this means that there exist absoluteonstants 1; 2 > 0 suh that 1a � b � 2a. We refer the reader to the books [17℄,[20℄ and [22℄ for standard fats that we use in the sequel. We thank the referee forsuggestions that improved the presentation and some estimates.2 Bodies with small diameterWe say that a onvex body K in Rn with entre of mass at the origin has \smalldiameter" if jKj = 1 and K � �pnBn2 , where � is \well bounded". Note that aonvex body has a linear image with small diameter if and only if its polar bodyhas bounded volume ratio. Our purpose is to show that bodies with small diameterhave \good"  2-diretions.Our �rst lemma follows by a simple omputation.Lemma 2.1 For every p � 1 and every x 2 Rn ,(2:1) �ZSn�1 jhx; �ijp�(d�)�1=p ' pppp+ n jxj:Proof: Observe thatZBn2 jhx; yijpdy = jBn2 j nn+ p ZSn�1 jhx; �ijp�(d�):3



On the other hand,ZBn2 jhx; yijpdy = jxjp ZBn2 jhe1; yijpdy= 2jBn�12 j � jxjp Z 10 tp(1� t2)(n�1)=2dt= jBn�12 j � jxjp� �p+12 �� �n+12 �� �p+n+22 � :Sine jBk2 j = �k=2=��k+22 �, we getZSn�1 jhx; �ijp�(d�) = 1p� n+ pn ��p+12 ���n+22 ���p+n+22 � jxjp:The result follows from Stirling's formula. 2Lemma 2.2 Let K be a onvex body in Rn with volume jKj = 1 and entre ofmass at the origin. Then,��� 2 Sn�1 : ZK jhx; �ij dx � 1� � 1� 2�n;where 1 > 0 is an absolute onstant.Proof: The Binet ellipsoid E of K is de�ned byk�k2E = ZKhx; �i2dx = hMK�; �i;where MK = � RK xixjdx� is the matrix of inertia of K (see [16℄). It is easilyheked that detMK = detMTK for every T 2 SL(n), and this implies thatZSn�1 k�k�nE �(d�) = jEjjBn2 j = (detMK)�1=2 = L�nK :Then, Markov's inequality shows that� �� 2 Sn�1 : k�kE � LK=2� � 1� 12n :Sine LK �  and kh�; �ik1 ' kh�; �ik2 (see [16℄), the result follows. 2Lemma 2.3 Let K be a onvex body in Rn with volume jKj = 1 and entre ofmass at the origin. Assume that K � �pnBn2 . Then,ZSn�1 ZK exp� jhx; �ij2� �2 dx�(d�) � 2;where 2 > 0 is an absolute onstant. 4



Proof: For every s > 0 we haveZSn�1 ZK exp� jhx; �ijs �2 dx�(d�) = 1 + 1Xk=1 1k!s2k ZK ZSn�1 jhx; �ij2k�(d�)dx:From Lemma 2.1 we see that this is bounded by1 + 1Xk=1 1k!s2k �  � 2k2k + n�k ZK jxj2kdx � 1 + 1Xk=1�0�s �2kwhere ; 0 > 0 are absolute onstants. We onlude the proof taking s = 2� where2 = 20. 2An appliation of Markov's inequality gives the following.Corollary 2.1 Let K be a onvex body in Rn with volume jKj = 1 and entre ofmass at the origin. Assume that K � �pnBn2 . Then, for every A > 2 we have� � 2 Sn�1 : ZK exp� jhx; �ij2� �2 dx < A! > 1� 2Awhere 2 > 0 is the onstant from Lemma 2.3. 2Theorem 2.1 Let K be a onvex body in Rn with volume jKj = 1 and entre ofmass at the origin. Assume that K � �pnBn2 . There exists � 2 Sn�1 suh that�ZK jhx; �ijpdx�1=p � C�pp ZK jhx; �ijdxfor every p > 1, where C > 0 is an absolute onstant.Proof: Choose A = 4. Using the inequality ez > zk=k! (z > 0), Lemma 2.2 andCorollary 2.1 we see that with probability greater than 12 � 12n a diretion � 2 Sn�1satis�es ZK jhx; �ijdx � 1 and ZK exp� jhx; �ij2� �2 dx < 4:It follows that ZK jhx; �ij2kdx � 4k!(2�)2kfor every k � 1, and hene�ZK jhx; �ij2kdx� 12k � �p2k � 1�p2k ZK jhx; �ijdx:This is the statement of the theorem for p = 2k. The general ase follows easily. 25



Remarks: (a) Bourgain's argument in [4℄ shows that LK is bounded by a powerof logn for every onvex body K in Rn if the following statement holds true: If Wis an isotropi onvex body in Rn and W � ��pnLW �Bn2 , then W is a  2-bodywith onstant O(�s). Lemma 2.3 shows that, under the same assumptions, \half"of the diretions are  2-diretions for W , with onstant �.(b) It an be also easily proved that onvex bodies with small diameter havelarge hyperplane setions (this an be veri�ed in several other ways, but the argu-ment below gives some estimate on the distribution of the volume of their (n� 1)-dimensional setions).Proposition 2.1 Let K be a onvex body in Rn with volume jKj = 1 and entreof mass at the origin. Assume that K � �pnBn2 . Then, for every t > 0 we have� �� 2 Sn�1 : jK \ �?j � 3t�� � 1� 2e�t2 :where 3 > 0 is an absolute onstant.Proof: Applying Jensen's inequality to Lemma 2.3, we getZSn�1 exp��RK jhx; �ij dx2� �2��(d�) � 2:Markov's inequality shows that��� 2 Sn�1 : ZK jhx; �ij dx � 2�t� � 2e�t2for every t > 0. On the other hand, it is a well-known fat (see [16℄ for the symmetriase) that if K has volume 1 and entre of mass at the origin, then(2:2) ZK jhx; �ij dx ' 1jK \ �?jfor every � 2 Sn�1. This ompletes the proof. 23 Positions of zonoidsWe �rst introdue some notation and reall basi fats about zonoids. Thesupport funtion of a onvex body K is de�ned by hK(y) = maxx2Khx; yi for ally 6= 0. The mean width of K is given byw(K) = 2 ZSn�1 hK(u)�(du):We say that K has minimal mean width if w(K) � w(TK) for every T 2 SL(n).6



Reall also the de�nition of the area measure �K of a onvex body K: for everyBorel V � Sn�1 we have�K(V ) = � (fx 2 bd(K) : the outer normal to K at x is in V g) ;where � is the (n�1)-dimensional surfae measure onK. It is lear that �K(Sn�1) =A(K), the surfae area of K. We say that K has minimal surfae area if A(K) �A(TK) for every T 2 SL(n).A zonoid is a limit of Minkowski sums of line segments in the Hausdor� metri.Equivalently, a symmetri onvex body Z is a zonoid if and only if its polar bodyis the unit ball of an n-dimensional subspae of an L1 spae; i.e. if there exists apositive measure � (the supporting measure of Z) on Sn�1 suh that(3:1) kxkZÆ = 12 ZSn�1 jhx; yij�(dy):The lass of zonoids oinides with the lass of projetion bodies. Reall that theprojetion body �K of a onvex body K is the symmetri onvex body whosesupport funtion is de�ned by(3:2) h�K(�) = jP�(K)j; � 2 Sn�1where P�(K) is the orthogonal projetion of K onto �?. From the integral repre-sentation(3:3) jP�(K)j = 12 ZSn�1 jhu; �ij d�K(u)whih is easily veri�ed in the ase of a polytope and extends to any onvex bodyK by approximation, it follows that the projetion body of K is a zonoid whosesupporting measure is �K . Moreover, if we denote by Cn the lass of symmetrionvex bodies and by Z the lass of zonoids, Aleksandrov's uniqueness theoremshows that the Minkowski map � : Cn ! Z with K 7! �K, is injetive. Notealso that Z is invariant under invertible linear transformations (in fat, �(TK) =(T�1)�(�K) for every T 2 SL(n)) and losed in the Hausdor� metri. For moreinformation on zonoids, see [22℄ and [5℄.We shall see that three natural positions of a zonoid have small diameter inthe sense of Setion 2. The proof makes use of the isotropi desription of suhpositions whih allows the use of the Brasamp-Lieb inequality.1. Lewis position: A result of Lewis [14℄ (see also [3℄) shows that every zonotopeZ has a linear image Z1 (the \Lewis position" of Z) with the following property:there exist unit vetors u1; : : : ; um and positive real numbers 1; : : : ; m suh thathZ1(x) = mXj=1 j jhx; ujijand I = mXj=1 juj 
 uj7



where I denotes the identity operator in Rn . Using the Brasamp-Lieb inequality,Ball proved in [3℄ that, under these onditions,jZÆ1 j � 2nn! and Bn2 � pnZÆ1 :The reverse Santal�o inequality for zonoids (see [21℄ and [13℄) implies that(3:4) jZ1j � 2n and Z1 � pnBn2 :This shows that(A) diam(Z1) � pnjZ1j1=n:2. Lowner position: Assume that Bn2 is the ellipsoid of minimal volume ontain-ing a zonoid Z2. Let Z1 be the Lewis position of Z2. Then,(3:5) jBn2 jjZ2j � jpnBn2 jjZ1j :Now, (3.5) and (3.4) show that(B) diam(Z2) � 2 � jZ1j1=n � pnjZ2j1=n:3. Minimal mean width position: Assume that Z3 = �K is a zonoid of volume1 whih has minimal mean width. The results of [9℄ and [12℄ show that the areameasure �K is isotropi, i.e.(3:6) ZSn�1hu; �i2d�K(u) = A(K)nfor every � 2 Sn�1, where A(K) is the surfae area of K. Moreover, a result ofPetty [19℄ shows that K has minimal surfae area. Now, an appliation of theCauhy-Shwarz inequality and (3.6) show thathZ3(�) = 12 ZSn�1 jh�; uijd�K(u) � A(K)2pnfor every � 2 Sn�1. We will use the following fat from [11℄:Lemma 3.1 If K has minimal surfae area, thenA(K) � nj�Kj1=n:It follows that hZ3(�) � pn=2 for every � 2 Sn�1. In other words,(C) diam(Z3) � pnjZ3j1=n:The preeding disussion shows that zonoids have positions with small diameter.More preisely, we have the following statement.8



Theorem 3.1 Let Z be a zonoid in Lewis or Lowner or minimal mean width po-sition. Then, diam(Z) � pnjZj1=n: 2It follows that the results of Setion 2 apply to the lass of zonoids: every zonoidhas  2-diretions in the sense of Theorem 1.1.Remark: We do not know if isotropi zonoids have small diameter. One an hekthat their mean width is bounded by pn (it is of the smallest possible order).4 Isotropi  2-bodies have small diameterThe purpose of this last setion is to show that a onvex body is a  2-body onlyif its isotropi position has small diameter. More preisely, we prove the following.Theorem 4.1 Let K be an isotropi onvex body in Rn . Assume that K is a 2-body with onstant b2. Then,K � Cb22pn lognBn2 ;where C > 0 is an absolute onstant.The proof will follow from two simple lemmas. The idea for the �rst one omesfrom [10℄.Lemma 4.1 Let K be a onvex body in Rn with volume 1 and entre of mass atthe origin. Then, for every � 2 Sn�1,ZK jhx; �ijpdx � �(p+ 1)�(n)2e�(p+ n+ 1) max�hpK(�); hpK(��)	:Proof: Consider the funtion f�(t) = jK \ (�? + t�)j. Brunn's priniple impliesthat f1=(n�1)� is onave. It follows thatf�(t) � �1� thK(�)�n�1 f�(0)for all t 2 [0; hK(�)℄. Therefore,ZK jhx; �ijpdx = Z hK(�)0 tpf�(t)dt+ Z hK(��)0 tpf��(t)dt� Z hK(�)0 tp�1� thK(�)�n�1 f�(0)dt+ Z hK(��)0 tp�1� thK(��)�n�1 f�(0)dt9



= f�(0)�hp+1K (�) + hp+1K (��)�Z 10 sp(1� s)n�1ds= �(p+ 1)�(n)�(p+ n+ 1) f�(0)�hp+1K (�) + hp+1K (��)�� �(p+ 1)�(n)2�(p+ n+ 1)f�(0) (hK(�) + hK(��)) �max�hpK(�); hpK(��)	:Sine K has its entre of mass at the origin, we have kf�k1 � ef�(0) (see [15℄),and hene 1 = jKj = Z hK(�)�hK(��) f�(t)dt � e (hK(�) + hK(��)) f�(0):This ompletes the proof. 2Lemma 4.2 Let K be a onvex body in Rn with volume 1 and entre of mass atthe origin. For every � 2 Sn�1,kh�; �ik 2 � maxfhK(�); hK(��)gpnwhere  > 0 is an absolute onstant.Proof: Let � 2 Sn�1 and de�neIp(�) := �ZK jhx; �ijpdx�1=pfor every p � 1. Then, (1.2) shows thatkh�; �ik 2 � In(�)pn :From Lemma 4.1 we easily see that In(�) ' maxfhK(�); hK(��)g and the resultfollows. 2Proof of Theorem 4.1: Sine K is a  2-body with onstant b2, Lemma 4.2 showsthat hK(�)pn � kh�; �ik 2 � b2kh�; �ik1for every � 2 Sn�1. Sine K is isotropi, we havekh�; �ik1 � LKfor every � 2 Sn�1. Bourgain's argument in [4℄ (see also [7℄) together with the 2-assumption show that LK � 0b2 logn:10



This implies that K � Cb22pn lognBn2 : 2Theorem 4.1 shows that  2-bodies belong to a rather restrited lass (theirpolars have at most logarithmi volume ratio). It would be interesting to deide ifzonoids are  2-bodies or not.Referenes[1℄ S. Alesker,  2-estimate for the Eulidean norm on a onvex body in isotropi posi-tion, Oper. Theory Adv. Appl. 77 (1995), 1-4.[2℄ M. Anttila, K.M. Ball and I. Perissinaki, The entral limit problem for onvexbodies, Preprint.[3℄ K.M. Ball, Volume ratios and a reverse isoperimetri inequality, J. London Math.So. (2) 44 (1991), 351-359.[4℄ J. Bourgain, On the distribution of polynomials on high dimensional onvex sets,Leture Notes in Mathematis 1469, Springer, Berlin (1991), 127-137.[5℄ J. Bourgain and J. Lindenstrauss, Projetion bodies, Leture Notes in Mathematis1317, Springer, Berlin (1988), 250-270.[6℄ S.G.Bobkov and F.L.Nazarov, On onvex bodies and log-onave probability mea-sures with unonditional basis, GAFA Seminar Volume (to appear).[7℄ S. Dar, Remarks on Bourgain's problem on sliing of onvex bodies, in GeometriAspets of Funtional Analysis, Operator Theory: Advanes and Appliations 77(1995), 61-66.[8℄ S. Dar, On the isotropi onstant of non-symmetri onvex bodies, Israel J. Math.97 (1997), 151-156.[9℄ A. Giannopoulos and V.D. Milman, Extremal problems and isotropi positions ofonvex bodies, Israel J. Math. 117 (2000), 29-60.[10℄ A. Giannopoulos and V.D. Milman, Conentration property on probability spaes,Advanes in Math. 156 (2000), 77-106.[11℄ A. Giannopoulos and M. Papadimitrakis, Isotropi surfae area measures, Mathe-matika 46 (1999), 1-13.[12℄ A. Giannopoulos, V.D. Milman and M. Rudelson, Convex bodies with minimal meanwidth, Leture Notes in Mathematis 1745, Springer, Berlin (2000), 81-93.[13℄ Y. Gordon, M. Meyer and S. Reisner, Zonoids with minimal volume produt - a newproof, Pro. Amer. Math. So. 104 (1988), 273-276.[14℄ D.R. Lewis, Finite dimensional subspaes of Lp, Studia Math. 63 (1978), 207-212.[15℄ E. Makai, Jr. and H. Martini, The ross-setion body, plane setions of onvex bodiesand approximation of onvex bodies, I, Geom. Dediata 63 (1996), 267-296.[16℄ V.D. Milman and A. Pajor, Isotropi position and inertia ellipsoids and zonoids ofthe unit ball of a normed n-dimensional spae, Leture Notes in Mathematis 1376,Springer, Berlin (1989), 64-104. 11



[17℄ V.D. Milman and G. Shehtman, Asymptoti Theory of Finite DimensionalNormed Spaes, Leture Notes in Mathematis 1200 (1986), Springer, Berlin.[18℄ G. Paouris, On the isotropi onstant of non-symmetri onvex bodies, LetureNotes in Mathematis 1745, Springer, Berlin (2000), 238-243 .[19℄ C.M. Petty, Surfae area of a onvex body under aÆne transformations, Pro. Amer.Math. So. 12 (1961), 824-828.[20℄ G. Pisier, The Volume of Convex Bodies and Banah Spae Geometry, CambridgeTrats in Mathematis 94 (1989).[21℄ S. Reisner, Zonoids with minimal volume produt, Math. Z. 192 (1986), 339-346.[22℄ R. Shneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge UniversityPress, Cambridge, 1993.G. Paouris: Department of Mathematis, University of Crete, Iraklion, Greee. E-mail:paouris�math.uh.gr

12


