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Abstract

It is known that every isotropic convex body K in R™ has a “subgaussian”
direction with constant » = O(y/logn). This follows from the upper bound
|\112(K)|1/” < Lj}ng"LK for the volume of the body Ws(K) with support
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N
works does not provide estimates on the measure of directions satisfying a

1o-estimate with a given constant r. We introduce the function ¢k (t) :=
o ({0 € "' hyyx)(0) < cty/lognLi}) and we discuss lower bounds for
Vi (t), t > 1. Information on the distribution of the t-norm of linear
functionals is closely related to the problem of bounding from above the
mean width of isotropic convex bodies.

function hg,x)(0) = SUPs¢cn The approach in all the related

1 Introduction

A convex body K in R" is called isotropic if it has volume 1, it is centered (i.e. it
has its center of mass at the origin), and there exists a constant Lx > 0 such that

(1.1) /}((x, 0)2dx = L3

for every 6 € S"~L. Tt is known (see [19]) that for every convex body K in R™ there
exists an invertible affine transformation T such that T'(K) is isotropic. Moreover,
this isotropic position of K is uniquely determined up to orthogonal transforma-
tions; therefore, if we define Lx = Lz where K is an isotropic affine image of K,
then L is well defined for the affine class of K.

A central question in asymptotic convex geometry asks if there exists an ab-
solute constant C' > 0 such that Lx < C for every convex body K. Bourgain [4]
proved that Lx < c¢/nlogn for every symmetric convex body K in R™. The best
known general estimate is currently Lx < c/n; this was proved by Klartag in [10]
— see also [12].



Let K be a centered convex body of volume 1 in R™. We say that § € S"~! is
a subgaussian direction for K with constant r > 0 if ||(-, 0}y, < 7||(-,0)||2, where

(1.2) | f]l5., = inf {t>0:/KeXp((f(x)|/t)°‘) d$<2}, a€1,2].

V. Milman asked if every centered convex body K has at least one “subgaussian”
direction (with constant » = O(1)). By the formulation of the problem, it is
clear that one can work within the class of isotropic convex bodies. Affirmative
answers have been given in some special cases. Bobkov and Nazarov (see [2] and
[3]) proved that if K is an isotropic 1-unconditional convex body, then ||(-, )|y, <
cy/n|0]| for every 6 € S"1; a direct consequence is that the diagonal direction is
a subgaussian direction with constant O(1). In [23] it is proved that every zonoid
has a subgaussian direction with a uniformly bounded constant. Another partial
result was obtained in [24]: if K is isotropic and K C (y4/nLk)Bj for some v > 0,
then

(1.3) (@€ S 1(,0)|lp, = c1vtli) < exp(—cav/nt?/7)

for every t > 1, where o is the rotationally invariant probability measure on S”~!
and c1,co > 0 are absolute constants.

The first general answer to the question was given by Klartag who proved in
[11] that every isotropic convex body K in R™ has a “subgaussian” direction with
a constant which is logarithmic in the dimension. An alternative proof with a
slightly better estimate was given in [6]. The best known estimate, which appears
in [7], follows from an upper bound for the volume of the body ¥ (K) with support
function

1,0}l

1.4 hy. 0) := su
(1.4) v, () (0) qun NG
It is known that ||(-,0)y, =~ SUPac y<n %, and hence, hy, k) (0) > [[(-, 0)] .-

The main result in [7] states that

1 cav/logn
vn vn

where c1, ca > 0 are absolute constants. A direct consequence of the right hand side
inequality in (1.5) is the existence of subgaussian directions for K with constant
r = O(y/logn). With a small amount of extra work, one can also show that if K is
a centered convex body of volume 1 in R™, then there exists # € S"~! such that

(1.5) Lk < [Ua(K)[M™ < L,

t2
(1.6) o € K« |(@,0)] > ctl|(- 0)]2}] < e =D

for all ¢ > 1, where ¢ > 0 is an absolute constant.
The approach in [11], [6] and [7] does not provide estimates on the measure of
directions for which an isotropic convex body satisfies a io-estimate with a given



constant r. Klartag obtains some information on this question, but for a different
position of K. More precisely, in [11] he proves that if K is a centered convex body
of volume 1 in R™ then, there exists T' € SL(n) such that the body K; = T(K) has
the following property: there exists A C S"~1 with measure o(A) > % such that,
for every 6 € A and every t > 1,

(1.7) o € Ky : [, 0)] > et )2} < e oo

In this result, K is the ¢-position of K (this is the position of the body which essen-
tially minimizes its mean width; see [27]). The first aim of this note is to pose the
problem of the distribution of the ¥s-norm of linear functionals on isotropic convex
bodies and to provide some first measure estimates. To this end, we introduce the
function

(1.8) Vr(t) =0 ({9 € 8" ¢ hyy o) (6) < ct\/@LK}) .

The problem is to give lower bounds for ¥, (t), t > 1. We present a general estimate
in Section 4:

Theorem 1.1. Let K be an isotropic convex body in R™. For everyt > 1 we have
(1.9) VK (t) = exp(—cn/t?),
where ¢ > 0 s an absolute constant.

For the proof of Theorem 1.1 we first obtain, for every 1 < k < n, some
information on the s-behavior of directions in an arbitrary k-dimensional subspace
of R™:

Theorem 1.2. Let K be an isotropic convex body in R™.

(i) For every log*n < k < n/logn and every F € G there exists 0 € Sp such
that

(1.10) 16Oy, < CV/n/k L,

(ii) For every 1 < k < 1og2 n and every F' € G, i, there exists 0 € S such that

(1.11) 1$ O)llw, < Cv/n/k/log 2k L,

(iii) For every n/logn < k < n and every F' € G, i, there exists 6 € Sp such that

(1.12) [1{-,0)]|py < C+/logn L,

where C > 0 is an absolute constant.

It is known (for example, see [14]) that every isotropic convex body K is con-
tained in [(n + 1)Lk|BY. This implies that the 1o-norm is Lipschitz with constant



O(y/nLg). Then, Theorem 1.2 is combined with a simple argument which is based
on the fact that the 1;-norm is stable on a spherical cap of the appropriate radius.

Note that ¥ (t) = 1if t > cy/n/logn. Therefore, the bound of Theorem 1.1 is
of some interest only when 1 < ¢ < ¢y/n/logn. Actually, if ¢ > ¢/n then we have
much better information. In Section 5 we give some estimates on the mean width
of the L,—centroid bodies of K and of Uy(K); as a consequence, we get:

Proposition 1.3. Let K be an isotropic convexr body in R™. For every t >

c1v/n//logn one has
(1.13) P (t) =1 — emcat’loan

where c1,co > 0 are absolute constants.

Deeper understanding of the function 1k (t) would have important applica-
tions. The strength of the available information can be measured on the problem
of bounding from above the mean width of isotropic convex bodies. From the in-
clusion K C [(n+ 1)Lk]B%, one has the obvious bound w(K) < enLgk. However,
a better estimate is always possible: for every isotropic convex body K in R™ one
has

(1.14) w(K) < en®/* L,

where ¢ > 0 is an absolute constant. There are several approaches that lead to
the estimate (1.14). The first one appeared in the PhD Thesis of M. Hartzoulaki
[9] and was based on a result from [5] regarding the mean width of a convex body
under assumptions on the regularity of its covering numbers. The second one is
more recent and is due to P. Pivovarov [28]; it relates the question to the geometry
of random polytopes with vertices independently and uniformly distributed in K
and makes use of the concentration inequality of [25]. A third — very direct —
proof of this bound can be based on the “theory of L,—centroid bodies” which was
developed by the second named author (see Section 5). In Section 6 we propose
one more approach, which can exploit our knowledge on ¥k (t).

2 Background material

§2.1. We work in R™, which is equipped with a Euclidean structure (-,-). We
denote by || - ||2 the corresponding Euclidean norm, and write BY for the Euclidean
unit ball, and S"~! for the unit sphere. Volume is denoted by |- |. We write w,, for
the volume of BY and o for the rotationally invariant probability measure on S™~1.
The Grassmann manifold G, ;, of k-dimensional subspaces of R™ is equipped with
the Haar probability measure i, 5. Let & < n and F' € G, . We will denote by
Pr the orthogonal projection from R™ onto F'. We also define Br := By N F' and
Sg = SN F.

The letters ¢, ¢, c1, ¢y ete. denote absolute positive constants which may change
from line to line. Whenever we write a ~ b, we mean that there exist absolute



constants cq,co > 0 such that cia < b < cea. Also if K, L C R™ we will write
K ~ L if there exist absolute constants ¢1, ¢y > 0 such that ¢; K C L C o K.

§2.2. A convex body in R" is a compact convex subset C' of R with non-empty
interior. We say that C is symmetric if x € C implies that —x € C. We say that
C' is centered if it has center of mass at the origin, i.e. [, (z,0)dzr = 0 for every
6 € S"~1. The support function of a convex body C is defined by

(2.1) he(y) = max{(z,y) : © € C},

and the mean width of C' is
(2.2) w(C) = / he (6)(d6).
S’nfl

For each —0o < p < 00, p # 0, we define the p-mean width of C' by

23) wiey={ [ o)

The radius of C is the quantity R(C) = max{||z||2 : z € C} and, if the origin is an
interior point of C, the polar body C° of C is

(2.4) C°:={yeR": (z,y) <lforallze C}.

A centered convex body C is called almost isotropic if C has volume one and
C = T(C) where T(C') is an isotropic linear transformation of C. Finally, we write
C for the homothetic image of volume 1 of a convex body C C R™, i.e. C':= ‘C‘Ll/n
§2.3. Let K be a convex body of volume 1 in R™. For every ¢ > 1 and y € R™ we
define

(25) a0 = ( [ <x,y>|de)1/q.

We define the Lg-centroid body Z,(K) of K to be the centrally symmetric convex
set with support function hz_ (k). Note that K is isotropic if and only if Z(K) =
LiBj. It is clear that Z1(K) C Z,(K) C Z,(K) C Zoo(K) for every 1 < p < ¢ <
00, where Zo(K) = conv{K,—K}. If T € SL(n) then Z,(T(K)) = T(Z,(K)).
Moreover, as a consequence of Borell’s lemma (see [20, Appendix III]), one can
check that

(2.6) Zy(K) CcqZy(K)
for every ¢ > 2 and, more generally,

(2.7) Zy(K) C c%zp(m



for all 1 < p < q, where ¢ > 1 is an absolute constant. Also, if K is centered, then
(2.8) ZyK)Da K

for all ¢ > n, where ¢; > 0 is an absolute constant.

§2.4. Let C be a symmetric convex body in R®. We write || - [|¢ for the norm
induced on R™ by C. We also define k.(C) as the largest positive integer k < n
for which the measure of F € G,, ), for which Jw(C)Br C Pp(C) C 2w(C)Bp is
greater than n%rk The parameter k., (C') is determined, up to an absolute constant,
by the mean width and the radius of C: There exist c1, co > 0 such that

WO ) < O

(2.9) ClnR(C)Q < < R(C)2

for every symmetric convex body C in R". The lower bound follows from Milman’s
proof of Dvoretzky’s theorem (see [18]) and the upper bound was proved in [21].

The g-mean width w,(C) is equivalent to w(C) as long as ¢ < k.(C). As Litvak,
Milman and Schechtman prove in [16], there exist ¢, ca, c3 > 0 such that for every
symmetric convex body C in R™ we have:

1. If 1 < g < k. (C) then w(C) < w,y(C) < cqw(C).
2. If k.(C) < g < n then car/q/n R(C) < w,y(C) < e3y/q/n R(C).

§2.5. For every ¢ > —n, ¢ # 0, we define the quantities I,(K) by

(2.10) I,(K) = (/K x||gd;v>1/q.

In [26] and [25] it is proved that for every 1 < ¢ < n/2,

(2.11) I_4(K) ~ \/mw—q(zq(K))

and

(2.12) I4(K) ~ \/qu(zq(K))'

We define

(2.13) ¢« (K) = max{k <n: k.(Zy(K)) > k}.

Then, the main result of [26] states that, for every centered convex body K of
volume 1 in R™, one has

(2.14) I_o(K) ~ I,(K)

for every 1 < ¢ < ¢.(K). In particular, for all ¢ < ¢.(K) one has I,(K) < CI1(K),
where C' > 0 is an absolute constant.



If K is isotropic, one can check that ¢.(K) > ¢y/n, where ¢ > 0 is an absolute
constant (for a proof, see [25]). Therefore,

(2.15) I,(K) < Cy/nLg for every q < \/n.
In particular, from (2.12) and (2.15) we see that, for all ¢ < /n,
(2.16) w(Zg(K)) ~ we(Zy(K)) ~ /qLk.

82.6. Let C be a symmetric convex body in R™. For every § > 1 we define
(2.17) d.(C,9) =max{g > 1: w(C) < dw_,(C)}.

It was proved in [13] and [15] that

(2.18) k. (C) < cdi(C,2)

82.7. For every k-dimensional subspace F' of R" we denote by E the orthogonal
subspace of F. For every ¢ € F'\ {0} we define E*(¢) = {z € span{FE, ¢} : (z, ¢) >
0}. K. Ball (see [1] and [19]) proved that, if K is a centered convex body of volume
1 in R™ then, for every ¢ > 0, the function

(2.19) b ||<z5||§+qu </KOE+(¢)<:E,¢>>%>

is the gauge function of a convex body By(XK, F) on F. A basic identity from [25]
states that for every F' € G, and every ¢ > 1 we have that

1
q+1

k+aq

1/q
+ D) B a (P92, (B2 (K ),

(220)  Pp(Z,(K)) = (

It is a simple consequence of Fubini’s theorem that if K is isotropic then By 1 (K, F)
is almost isotropic. Moreover, using (2.20) one can check that

k' ZyBii(K,F)) _ Po(Z(K k+q Zy(Bria (K, F
(221) o(Bri1(K, F)) o Pr(Z(K)) o k+q Zy(Ben (K, F))
k + q L§k+1(K7F) LK k LE)H.l(K,F)

for all 1 < k,q < n. In particular, for all ¢ < k& we have
Zq(§k+1(Ka F)) ~ PF(ZQ(K))

(2.22)
L§k+1(K,F) Lk

§2.8. Recall that if A and B are convex bodies in R™, then the covering number
N(A, B) of A by B is the smallest number of translates of B whose union covers
A. A simple and useful observation is that, if A and B are both symmetric and if
Si(A, B) is the maximal number of points z; € A which satisfy ||z; — z;||g > ¢ for
all ¢ # j, then

(2.23) N(A,tB) < Sy(A, B) < N(A, (t/2)B).



3 Covering numbers of projections of L, -centroid
bodies

Let K be an isotropic convex body in R™. We first give an alternative proof of
some estimates on the covering numbers N (Z,(K),t,/qLk Bj) that were recently
obtained in [7]; they improve upon previous estimates from [6].

Proposition 3.1. Let K be an isotropic conver body in R™, let 1 < ¢ < n and
t>1. Then,

n n vanr
(3.1) logN(Zq(K),Clt\/aLKBg) < Cztf2 +c3 P 5

where c1,co,c3 > 0 are absolute constants.

Note that the upper bound in (3.1) is of the order n/t? if t < \/n/q and of

the order \/qn/t if t > /n/q. Our starting point is a “small ball probability” type
estimate which appears in [22, Fact 3.2(c)]:

Lemma 3.2. Let 0 € S" 1, 1<k<n—1andr > /e. Then,

k
(3.2) ik ({F € G |Pr(0)]2 < % :}) < <\f) .

Under the restriction log N(C,tB¥) < k, Lemma 3.2 allows us to compare the
covering numbers N (C,tBY) of a convex body C with the covering numbers of its
random k-dimensional projections.

Lemma 3.3. Let C be a convex body in R™, let r > /e, s >0 and 1 <k <n—1.
If Ny :== N(C, sBY), then there exists F C Gy, such that fi, (F) = 1—N826k/2r_k
and

s |k
. N|[P —+/—Bp | = N
(3.3) (F(C)72r - F)
forall F e F.

Proof. Let Ny = N(C,sBY). From (2.23) we see that there exist z1,...,2zy, € C
such that ||z; — zj]l2 > s for all 1 < 4,j < N, @ # j. Consider the set {w,, : 1 <

m < W} of all differences z; — z; (i # j). Note that ||wy,||2 > s for all m.
Lemma 3.2 shows that

k
(34) ok ({F c Gmk : ||PF(U)m)||2 < i\/§|wm|2}> < <\£g) )

and hence,

1 |k
(35)  fin ({F |1 P (wn)l2 > r\/;|wm|2 for aum}> > 1 - N2ek/2pk,
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Let F be the subset of G, i, described in (3.5). Then, for every F' € F and all i # 7,

(3.6) | Pp(z:i) — Pr(2;)l2 2 \/7||Zz zjllz2 > \[

Since Pr(z;) € Pr(C), the right hand side inequality of (2.23) implies that

(3.7) N (PF(C), ;T\/EBF> > N,,

as claimed. O

Finally, we will use the following regularity estimate for the covering numbers
of Lg-centroid bodies (see [6, Proposition 3.1] for a proof of the first inequality and
[9] for a proof of the second one): For all t >0 and 1 < g < n,

(3.8)

log N (Z,(K), ct\/qgLx BY) < —Vj; + ? and log N (K — K, t\/nLx BY) <

where ¢ > 0 is an absolute constant. Note that the upper bound in (3.8) is of the
order n/t if t < n/q and of the order \/qn/v/t if t > n/q.

Proof of Proposition 3.1. We set s = ct\/qLxg and N, := N(Z,(K),sBY).
Because of (3.8) we may assume that 3 < Ny < e, and then, we choose 1 < k < n
so that log Ny < k < 2log Ny. We distinguish two cases:

(a) Assume that 1 < ¢t < y/n/q. Applying Lemma 3.3 with r = e3 we have
that, with probability greater than 1 — Nfe’%/2 >1—e %2, arandom subspace
F € G, satisfies

n
t

k k
(3.9) 5 <log Ny <log N (PF(Zq(K)),cls\/;BF) ,

where ¢; > 0 is an absolute constant.

If log N, < ¢ then we trivially get log Ny < n/t? because ¢ < n/t?. So, we may
assume that log N5 > ¢; in particular, ¢ < k. Then, using (2.21) we get

k - Ly k
(3.10) 5 SlogN <Zq(Bk+1(K, F)), c—BreallF) sBF> .

LK n

Observe that > 7 iﬁf = cty/k/n < ¢t < en/q. Therefore, applying the estimate

(3.8) for the k-dimensional isotropic convex body Byi1(K, F), we get

k vkn
g C2t = C2 n )

k/n

(3.11)

N |



which shows that
n

(3.12) log N(Z,(K),t\/qLxB%) =1log Ns < k < €333

where c3 = 4c3.

(b) Assume that t > \/n/q. We set p := L < ¢. Then, using (2.8), we have that

N (Z4(K),t\/qLxBy) < % ), cat\/qLx By )

ll
(Z C4t\/> DLk By )
(o).

Applying the result of case (a) for Z,(K) with ¢t = \/n/p, we see that

N (Z,(K),t\/qLxkB}) < ( 04\/7\fLKB2)

ec°p—exp( , ),

and the proof is complete. ]

IN

IN

Using Proposition 3.1 we can obtain analogous upper bounds for the covering
numbers of Pr(Z,(K)), where F' € Gy, .

Proposition 3.4. Let K be an isotropic convex body in R™. For every 1 < q <
k < n, for every F € Gy i, and every t > 1, we have

c2V/qk
t t

where c1,c2 > 0 are absolute constants. Also, for every k < g < n, F € G, and
t>1,

(3.13) log N (Pr(Z4(K)),t\/qLx Br) <

c3Vqk

where cz > 0 is an absolute constant.

Proof. (i) Let 1 < ¢ <k, F € G, and t > 1. From (2.22) we see that
(3.15)

log N (Pp(Zy(K)), ty/aLic Br) < log N (Z,(Brsa (K, F)), ct/ils, ,, (c.p)Br )

where ¢ > 0 is an absolute constant. Since Biy1(K, F) is almost isotropic, we may
apply Proposition 3.1 for Bi1(K, F) in F: we have
ck  cav/qk

(3.16) log N (Zq(FkH(K, F)),ct\/QLgk+l(K7F)Bp) <o

10



and hence,

k k
ak ek

(3.17) log N (Pr(Z4(K)),t\/qLx Br) < 2 .

(ii) Assume that k£ < ¢ < n and F € G,, . Then, using (2.21) and the fact that
Z4(C) C conv{C,—C1}, for every t > 1 we write

cq
log N (Pp(Zy(K)), t\/aLxBr) < logN(ZD;CH(K,F),t\/ZILEkH(K’F)BF)

k
g logN (Dk:+1(K7 F)7t\/;\/ELBk+1(K»F)BF>

Vak

< CST;

where Dy 11(K, F) = Biy1(K, F) — Biy1(K, F), using in the end the second esti-
mate of (3.8) for the isotropic convex body Bj11(K, F'). This completes the proof.
O

Using these bounds we can prove the existence of directions with relatively
small ¥9-norm on any subspace of R"”. The dependence is better as the dimension
increases.

Theorem 3.5. Let K be an isotropic convex body in R™.

(i) For every log*n < k < n/logn and every F € G there exists 0 € Sp such
that

(3.18) 1¢ Ol < CV/n/k L,

(ii) For every n/logn < k < n and every F € Gy, 1 there exists 0 € Sp such that

(3.19) 1, 0)llya < € Viogn L,

where C > 0 is an absolute constant.

Proof. For every integer ¢ > 1 we define the normalized L,—centroid body K, of K
by

3.20 K,=—Z7,K),
( ) q \/aLK q( )
and we consider the convex body

llogy n]
(3.21) T = conv U Ko

i=1

11



Then, for every F € G, we have

[log, 1]
(3.22) Pp(T)=conv | | ) Pr(Ky)
=1

We will use the following standard fact (see [6] for a proof): If Ay,...,As are
subsets of RBE, then for every t > 0 we have

(3.23) N(conv(A; U---UA,),2tBS) < (CR> HN A, tBE).

We apply this to the sets A4; = Pp(Ky). Observe that Ky C ¢,2/?BY, and
hence, N (A;,tBr) = 1if ¢;2¥/2 < t. Also, A; C cor/nBy for all 4.
Using Proposition 3.4, for every t > 1 we can write

Llogz ]
N(Pp(T),2tBp) < (covm)l22"l | T] N(Pr(Kz),tBr)
=1

logyn] .
22/2\/E
— +C >

i=1 t2<2i<k

Vnk k
< e loE mexp <C’? + C’t—2 log(k/tz)) )
where the second term appears only if k > ct?.
Now, we distinguish two cases:
(i) If log?n < < n/logn we choose tg = \/n/k. Observe that \ﬁ =k and
k k k2 k2 k k?

3.24 — 1 — | =—1 — ] < 1 — | < k.
62 g Og(tg) ; Og(n) oo ()
This implies that N(Pg(T), /n/kBr) ek, Tt follows that
(3.25) |Pr(T)| < |C\/nfk Bl.
Therefore, there exists 6§ € Sg such that
(3.26) hr(0) = hp.(1)(0) < C\/n/k,
which implies
(3.27) 1(-,0)||a: < C2/%\/n/k Li

for every i = 1,2,..., |logyn|. This easily implies (3.18).

12



(ii) If n/logn < k < n we choose tg = logn ~ /logk. Observe that % =

k klogn < k and
k k k k k n
3.28 —log| = | = 1 < 1 <k
(3:28) t2 8 (t%) logn © (logn) logn 8 (logn)
This implies that N(Pg(T),+/IognBr) < e and, as in case (i), we see that
(3.29) (-, 0) |2 < C2/2\/logn Lx
for every i = 1,2,..., [logyn|. The result follows. |

We close this Section with a sketch of the proof of an analogue of the estimate
of Proposition 3.1 for N(Z,(K),t\/qLxBy) for t € (0,1).

Proposition 3.6. Let K be an isotropic convex body in R™. If1 < g < n and
€ (0,1), then

(3.30) N (Z,(K),e1t/GLx BY) < (%2)”
and
(3.31) N (Zy(K), estvaBg) = ()"

where ¢; > 0 are absolute constants.

Proof. The lower bound is a consequence of the estimate | Z,(K)|'/™ > ¢,/q|By|*/"
(see [17]). Then, we write

N2, e\
3.32 N t\/qB > ( )
( ) ( ( )le 2) |cthn|
For the upper bound, we will use the fact (see [7, Section 3] for the idea of this

construction) that there exists an isotropic convex body K; in R™ with the following
properties:

(i) N (Z4(K),t\/qLgB}) < N (Z4(K1), c1t\/qBY) for every t > 0.
(i) c20/qB3 C Zy(Ky) forall 1 <qg<n
(iif) |Z, (K1) < e3+/q/n for all 1 <
Therefore, for every t € (0,1) we have

qgsmn

|Z4(K1) + /4B |

lt\/aBy|
|cZy (K1)

t/aBy|
c\"

g (7) ’
t

and (3.30) is proved. a

t
N (2,8). 5 viLeB;) <
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4 On the distribution of the 1;-norm

From Theorem 3.5 we can deduce a measure estimate for the set of directions which
satisfy a given 1s-bound. We start with a simple lemma.

Lemma 4.1. Let 1 < k < n and let A be a subset of S"~1 which satisfies ANF # ()
for every F' € Gy, . Then, for every ¢ > 0 we have

1 /ey k-1
: > (= 7
(4.1) o(4.)> 5 (5)
where
(4.2) A.={ye s inf{|ly—6]2:0 € A} <e}.

Proof. We write
@) o= [ adet) = [ [ xaw)doe) i)

and observe that, since AN Sp # 0, the set A, N Sp contains a cap Cp(e) = {y €
SE : |ly — Ooll2 < €} of Euclidean radius ¢ in Sg. It follows that

(4.4) /SF Xa.(y)dor(y) > or(Cr(e)) > % G)H’

by a well-known estimate on the area of spherical caps, and the result follows. O

Remark. As the proof of the Lemma shows, the strong assumption that AN F # ()
for every F' € G, 1, is not really needed for the estimate on o(A.). One can have
practically the same lower bound for o(A.) under the weaker assumption that
ANF # 0 for every F in a subset F, i of Gy, ; with measure j,, i (Fnx) = ¢ .

Theorem 4.2. Let K be an isotropic convez body in R™. For everylog®n < k <n
there ezists A, C S™1 such that

(4.5) o(Ay) > e-crklosk

where c¢1 > 0 is an absolute constant, and

(4.6) 190l < € max{V/n/k, v/logn | Lic

for ally € Ag.

Proof. We fix log>n < k < n/logn and define A to be the set of §# € S"~! which

satisfy (3.18). By Theorem 3.5 we have AN Sg # 0 for every F € G,, i. Therefore,

we can apply Lemma 4.1 with ¢ = % If y € A, then there exists § € A such that

lly — 0|2 < &, which implies

(4.7) 1y = )l < (15 = O ool ¢y = O)lw)/? < ev/me L,

14



if we take into account the well-known fact that ||(-, 0) |y, < c||(-,0)|1 < cLk (see
[19]) and the fact that ||{-,0)||cc < (n+ 1)Lk. It follows that

< GO gy + 15y — 0) L,
< GOy, +ev/n/k L.

Since 6 satisfies (3.18), we get (4.6) — with a different absolute constant C' — for all
y € Ay = A1/\/E' Finally, Lemma 4.1 shows that

||<'vy>||¢2

k—1
(4.8) O'(Ak) > % <2\1/%> > e—aklogk?

which completes the proof in this case. A similar argument works for k& > n/logn:

in this case, we apply Lemma 4.1 with ¢ = y/logn/n and the measure estimate for
Ay, is the same. O

Proof of Theorem 1.1: Let ¢ > 1 and consider the largest k for which \/n/k >
tv/logn. Then,

(4.9) -

o) ~ klogn > klogk,
and hence, e—cikloghk > e—c2n/t* Theorem 4.2 shows that
(4.10) Vi (t) > o(Ag) = e /P,

This proves our claim. O

5 On the mean width of L,—centroid bodies

§5.1. Mean width of Z,(K). Let K be an isotropic convex body in R™. For
every ¢ < ¢.(K) we have

(5.1) W(Zy(K)) = wy(Z,(K)) = \/q/nI,(K) < cy/qLx.

Since g« (K) = cy/n, (5.1) holds at least for all ¢ < y/n. For ¢ > y/n, we may use
the fact that Z,(K) C c(q/v/n)Z 5 (K) to write

q q
(5.2) w(Zy(K)) < c%w(Z\/ﬁ(K)) < %LK.
In other words, for all ¢ > 1 we have
q
(5.3) w(Zy(K)) < ey/qLk <1 + \\/fﬁ) .

Setting ¢ = n and taking into account (2.8) we get the general upper bound

(5.4) w(K) < cyw(Zn(K)) < ean®/ L

15



for the mean width of K.
In the next Proposition we slightly improve these estimates, taking into account
the radius of Z,(K) or K.

Proposition 5.1. Let K be an isotropic convezr body in R™ and let 1 < ¢ < n/2.
Then,

(5.5) wlZy(K)) < it (14 REZ(K) VL ).

In particular,

(5.6) w(K) < evnLg (1 +\/R(K) /\/ELK) .

Proof. Recall that, for all 1 < ¢ < n/2,
(5.7) I_o(K) = v/n/quw_q(Z(K)).
We first observe that, for every t > 1,

q

(5.8)  w_gp2(Zg(K)) < ct?w_gyp2(Zyp2(K)) = t? o

[—q/t2 (K) g Ct\/gLK.

Let 6 > 1. Recall that d,(C,d) = max{g > 1 : w(C) < dw_4(C)}. We distinguish

two cases:

(a) If ¢ < di(Z4(K),d) then, by (5.7), we have that
(5.9 w(Zy(K)) < dw_y(Zy(K)) = 83/l oK)/ < 68 /aLic.

(b) If ¢ > di(Z,(K), ), we set d := d.(Z4(K),d) and define ¢ > 1 by the equation
q/t?> = d. Then, using (5.8), we have

(5.10) w(Zy(K)) < dw_q(Z4(K)) = dw_q/2(Zg(K)) < cdt\/qLk.
This gives the bound

(5.11) w(Zy(K)) < co

Moreover, using the fact that

L w(Zy(K))2
(5.12) L2, 2) > h(Z,(0)) = n Lo,
we see that if if ¢ > ¢1d.(Z4(K), c2) then
(5.13) w(Z,(K)) < VAVIZ4(K)) VR\;?(K))\/LT{.

16



Choosing ¢ = 2 and combining the estimates (5.9) and (5.13) we get (5.5). Setting
g = n and using (2.8) we obtain (5.6). O

Recall that K is called a 1,-body with constant b, if

(5.14) (M g < ball(0)n

for all @ € S"~!. If we assume that K is a 1, body for some o € [1,2] then
R(Z,(K)) € R(baq"/*Zs(K)) = baq'/* Lk, and Proposition 5.1 gives immediately
the following.

Proposition 5.2. Let K be an isotropic convex body in R™. If K is a 1,-body
with constant by, for some « € [1,2] then, for all1 < ¢ < n,

(5.15) w(Zy(K)) < ey/qLi (1 n V%)
and
(5.16) w(K)< e banie L.

§5.2. Mean width of U5(K). As an application of Theorem 1.1 we can give the
following estimate for the g-width of ¥5(K) for negative values of g.

Proposition 5.3. Let K be an isotropic convex body in R™ andt > 1. Then

(5.17) w_ﬁ(\Ilg(K)) < cty/lognLi.

Proof. Observe that, by Markov’s inequality,

t

(5.18) o ({9 € S8" 't hyy ) (0) < i’wg(\llg(K))}) <e i,

From Theorem 1.1 we know that

n

(5.19) e # <o ({0 € 8" hyy)(0) < ct\/lognLK}) ,

o

for some absolute constant ¢ > 0. This proves (5.17). O

We can also give an upper bound for the mean width of Uy(K):

Proposition 5.4. Let K be an isotropic convex body in R™. Then,

(5.20) w(P2(K)) < cv/nlognLy.
Proof. Let w := w(Wo(K)). Since R(¥2(K)) < cy/nL, using (2.18) we see that

w2

(5.21) d.(W3(K)) > ck,(¥5(K)) > e

17



2 .
We choose t so that 73 = c%’ ie.

L
(5.22) po oVl oy
w

Then, from Proposition 5.3 we see that

w < ew g (Ta(K)) Sw_ e (Ua(K)) = w s (Va(K))

L2 t
< clﬁx/lognLﬁ(7
w

K
and (5.20) follows. a

Actually, we can remove the logarithmic term, starting with the next lemma:

Lemma 5.5. Let K be an isotropic convex body in R™ and let 1 <k <n—1. Then
for every F € Gy 1,

L

Brt1(K,F)

(5.23) Pr(U5(K)) C e/n/k Uy (Bryr (K, F)),

where ¢ > 0 is an absolute constant.

Proof. Indeed, because of (2.21) and (2.22), for every 6 € Sp we can write

ho, (16) (6) < sw hz,a(0) sup hz,(x)(0)
Lk 1<a<k VALK k<qsn VALK
— s heez,a0)O) - Peez,00) (0)
1<q<k  Valk k<q<n ALk
h, = 0 h 0
< o sup Zq(?H(K,F))( )+c2 sp % Pr(z0()) (0)
1<q<k  Valgm, ., (kP k<q<n Valk
th(§k+1(K»F))(9) q th(§k+1(K7F))(9)
= 1 Sup I + c2 Sup ¥ \f
1<e<k Valp, ., (k) k<q<n kLB, (x,P)
hy & 0 hy & 0
<. W5 (Bips (K, 7)) )+c4 sup \ﬁ V5B (5,7)) (9)
L, . (k.F k<q<n VR L (kom)
< CS\/ﬁh‘I’z(BkH(K,F))(G).
k L§k+1(K,F)

Proposition 5.6. Let K be an isotropic convex body in R™. Then

(5.24) w(Vs(K)) < e¥/nLlx.

18



Proof. Let k = y/n. Using Lemma 5.5 we see that

w(Ws(K)) = / w(Pr(Wa(K)) ) 1 (F)

Gk
n L -
< e E/ Lin(‘Ifg(BkH(KvF)))d:“n’k(F)'
G,k “Bry1(K,F)

Since k = \/n < ¢.(K), we know that a “random” By, (K, F) is “io” (see [8]),
and the result follows. a

Applying Lemma 5.5 we can cover the case 1 < k < log?n in Theorem 3.5:

Corollary 5.7. Let K be an isotropic convez body in R™. For every 1 < k < log®n
and every F' € G, 1, there exists € Sp such that

(5.25) 1 0) [l < C v/nfk\/log 2k L.,

where C' > 0 is an absolute constant. In fact, for a random F € G, j the term

Vlog 2k is not needed in (5.25).

Proof. Let 1 < k <log?n and F € Gy Since Byy1(K, F) is isotropic, Theorem
3.5(ii) shows that there exists @ € Sp such that

(526) h\llg (Ek“(K,F))(G) < C1 log 2kL§k+1(K,F)'

Then, Lemma 5.5 shows that

||<',9>||w2 = h\liz(K)(a):hPF(\I/2(K))(0)

Ly
< evnfk———hy, B, (xr)(0) <CVn/k+/log2k Lk.

Bri1(K,F)
In fact, since k < log® n < ¢.(K), for arandom F' € G, , we know that By, (K, F))
is a ¢2-body (see [8]), and hence, hy, 5, . (k,r)(0) < c2Lg, (i ) for all 0 € Sp.

Using this estimate instead of (5.26) we may remove the /log 2k-term in (5.25) for
arandom F € G, . O

Proof of Proposition 1.3. Since hy, (k) is v/nLx-Lipschitz, we have that
(5.27)

o ({6 € 5" huy () (0) — w(Wa(K)) = sw(Wa(K))}) <e

Let u > 2w(Ps(K)). Then, u = (14 s)w(V3(K)) for some s > 1 and sw(Vy(K)) >
u/2. From (5.27) it follows that

o2 ((w(Wa (k)2
—cns ( \/TLZLK

(5.28) o ({0 €S" " hy,x)(0) > u}) <exp(—cu®/L%) .
Ift > ¢1¢/n/v/logn, then Proposition 5.7 shows that u = ty/lognLg > 2w(Vy(K)).
Then, we can apply (5.28) to get the result. o

The estimate of Proposition 1.3 holds true for all ¢ > cw(V3(K))/vIognLk;
this is easily checked from the proof. This shows that better lower bounds for ¢ (t)
would follow from a better upper estimate for w(¥5(K)) and vice versa.
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6 On the mean width of isotropic convex bodies

Let K be an isotropic convex body in R™. For every 2 < ¢ < n we define

_ L (w(Z(K)*
o w0 = (Riztm)
Since ||(-, )|y < cqLk for all € S"~1, we have R(Z,(K)) < cqLk. Therefore,
(6.2) w(Zy(K)) < gl ’;;EQ)

Then, from (2.8) we see that

(6.3) w(K) ~ w(Z,(K)) < %w(zq(m) < vk (q) Li.
Define
(6.4) px = p«(K) = min k,(q).

2<qsn
Since g was arbitrary in (6.3), we get the following:
Proposition 6.1. For every isotropic convex body K in R™ one has
(6.5) w(K) < ev/n/p«(K) Lic.

Our next observation is the following: by the isoperimetric inequality on S™~1,
for every ¢ > 1 one has

w(Z,)

60 o (1160l - w(z) >

) < exp(—cka (g)) < exp(—2cp.)

where ¢ > 0 is an absolute constant. Assume that logn < e“’*. Then,
(6.7) 1¢ O = w(Zy)

for all @ on a subset A, of S"~! of measure o(4,) > 1 —exp(—cp.). Taking ¢; = 2°,
i < logyn and setting A = [ A4,,, we have the following:

Lemma 6.2. For every isotropic convex body K in R™ with p.(K) > Cloglogn
one can find A C S"1 with o(A) > 1 — e=P* such that

(6.8) 1(O)lq = w(Zg)

forall € A and all 2 < g < n. In particular,

~ w(Zy)
(6.9) 16 O, ~ jmax NG

forall 0 € A.
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Lemma 6.2 implies that if p.(K) is “large” and ||(-,0)|y, is well-bounded on a
“relatively large” subset of the sphere, then a similar bound holds true for “almost
all” directions. As a consequence, we get a good bound for the mean width of K.
The precise statement is the following.

Proposition 6.3. Let K be an isotropic convexr body in R™ which satisfies the
following two conditions:

1. p«(K) = Cloglogn.

2. For some b, > 0 we have ||(-,0)||y, < bnLk for all 0 in a set B C S"~! with
o(B) > e P+,

Then,
(6.10) 1€ Ol < CnLi

for all 0 in a set A C S" 1 with 0(A) > 1 — e+, Also,

(6.11) w(Zy(K)) < e\/qb, Lk
forall2 < qg<n and
(6.12) w(K) < Cy/nb, L.

Proof. We can find u € AN B, where A is the set in Lemma 6.2. Since u € B, we
have

(6.13) 1)l < Cav/ab Lic

for all 2 < ¢ < m, and (6.8) shows that

(6.14) w(Zy(K)) < Cav/qby, L

for all 2 < ¢ < n. Going back to (6.8) we see that if § € A then
(6.15) 160l < cw(Z,) < Cav/abn Lic

for all 2 < ¢ < n. For ¢ = n we get (6.12).

Finally, for every 6 € A we have

(6.16) 120w, ~ max WoOlla o

2<asn (/g

This completes the proof. O

Propositions 6.1 and 6.3 provide a dichotomy. If p.(K) is small then we can
use Proposition 6.1 to get an upper bound for w(K). If p.(K) is large then we can
use Proposition 6.3 provided that we have some sufficiently good lower bound for
Y (t): what we have is

(6.17) Y (t) = e/t 5 emers
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if t ~ v/n/p.. Therefore, we obtain the estimate

(6.18) w(K) < Cy/nlogny/n/p« Lk.

Combining the previous results, we deduce one more general upper bound for the
mean width of K.

Theorem 6.4. For every isotropic convexr body K in R™ we have

(6.19) w(K) < Cy/nmin {\/,(T*, \/nlogn/p*} Lk,

where ¢ > 0 is an absolute constant.

The estimate in Theorem 6.4 depends on our knowledge for the behavior of
Y (t); as it stands, it only recovers the O(n®**Lg) bound for the mean width
of K. Actually, the logarithmic term in (6.19) makes it slightly worse. However,
we can remove this logarithmic term, starting with the following modification of
Proposition 5.1.

Proposition 6.5. Let K be an isotropic conver body in R™ and 1 < q < n. Then,

(6.20) w(Zy(K)) < e/qLx <1 + k;(gj(;g))) :

where ¢ > 0 is an absolute constant.

Proof. It R(Z,(K)) < cy/nLk then (6.20) is a direct consequence of (5.5). So, we
assume that R(Z,(K)) > ¢\/nLk. Then, writing (5.5) in the form

(6.21) w(Zy(K)) < cszﬂ/mzq(m)m,

and taking into account the definition of k.(Z,(K)) we see that

R(Z4(K)) q
6.22 a <ec :
022 Vil = R (Z,E)
and (6.20) follows from (5.5) again. O

Theorem 6.6. Let K be an isotropic convex body in R™. Then,

(6.23) w(K) < cv/nLk min {\/ﬁT*, \/Z} )

where ¢ > 0 is an absolute constant.

Proof. From Proposition 6.1 we know that

(6.24) w(K) < ev/nLg\/ps.
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Let qo satisfy p. = k.(Zy, (K)). From Proposition 6.5 and from (2.7) and (2.8) we
have that, for all 1 < ¢ < n,

(6.25) w(K) < cgw(Zq(K)) < eiv/nLy <\/Z+ , /k(z:(K))> :

Recall that g, is the parameter ¢.(K) := max{q € [1,n] : k.(Z4(K)) > ¢q}. We
distinguish two cases.

(i) Assume that go < ¢.. Then we apply (6.25) for ¢,; since g, = k. (Z,, (K)) = pa,
we get

(6.26) w(K) < 261v/nLic | — < 2e1v/nLicy | —.
s P

(ii) Assume that gy > g«. Then, gy > ki(Z4,(K)) = p«. Applying (6.25) for g, we
get

In both cases, we have

(6.28) w(K) < ev/nlx, /pﬁ.
Combining (6.28) with (6.24) we get the result. |
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