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Abstract

It is known that every isotropic convex bodyK in Rn has a “subgaussian”
direction with constant r = O(

√
logn). This follows from the upper bound

|Ψ2(K)|1/n 6 c
√

logn√
n

LK for the volume of the body Ψ2(K) with support

function hΨ2(K)(θ) := sup26q6n
‖〈·,θ〉‖q√

q
. The approach in all the related

works does not provide estimates on the measure of directions satisfying a
ψ2-estimate with a given constant r. We introduce the function ψK(t) :=
σ
(
{θ ∈ Sn−1 : hΨ2(K)(θ) 6 ct

√
lognLK}

)
and we discuss lower bounds for

ψK(t), t > 1. Information on the distribution of the ψ2-norm of linear
functionals is closely related to the problem of bounding from above the
mean width of isotropic convex bodies.

1 Introduction

A convex body K in Rn is called isotropic if it has volume 1, it is centered (i.e. it
has its center of mass at the origin), and there exists a constant LK > 0 such that

(1.1)

∫
K

〈x, θ〉2dx = L2
K

for every θ ∈ Sn−1. It is known (see [19]) that for every convex body K in Rn there
exists an invertible affine transformation T such that T (K) is isotropic. Moreover,
this isotropic position of K is uniquely determined up to orthogonal transforma-
tions; therefore, if we define LK = LK̃ where K̃ is an isotropic affine image of K,
then LK is well defined for the affine class of K.

A central question in asymptotic convex geometry asks if there exists an ab-
solute constant C > 0 such that LK 6 C for every convex body K. Bourgain [4]
proved that LK 6 c 4

√
n log n for every symmetric convex body K in Rn. The best

known general estimate is currently LK 6 c 4
√
n; this was proved by Klartag in [10]

– see also [12].
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Let K be a centered convex body of volume 1 in Rn. We say that θ ∈ Sn−1 is
a subgaussian direction for K with constant r > 0 if ‖〈·, θ〉‖ψ2 6 r‖〈·, θ〉‖2, where

(1.2) ‖f‖ψα = inf

{
t > 0 :

∫
K

exp ((|f(x)|/t)α) dx 6 2

}
, α ∈ [1, 2].

V. Milman asked if every centered convex body K has at least one “subgaussian”
direction (with constant r = O(1)). By the formulation of the problem, it is
clear that one can work within the class of isotropic convex bodies. Affirmative
answers have been given in some special cases. Bobkov and Nazarov (see [2] and
[3]) proved that if K is an isotropic 1–unconditional convex body, then ‖〈·, θ〉‖ψ2

6
c
√
n‖θ‖∞ for every θ ∈ Sn−1; a direct consequence is that the diagonal direction is

a subgaussian direction with constant O(1). In [23] it is proved that every zonoid
has a subgaussian direction with a uniformly bounded constant. Another partial
result was obtained in [24]: if K is isotropic and K ⊆ (γ

√
nLK)Bn2 for some γ > 0,

then

(1.3) σ
(
θ ∈ Sn−1 : ‖〈·, θ〉‖ψ2 > c1γtLK

)
6 exp(−c2

√
nt2/γ)

for every t > 1, where σ is the rotationally invariant probability measure on Sn−1

and c1, c2 > 0 are absolute constants.
The first general answer to the question was given by Klartag who proved in

[11] that every isotropic convex body K in Rn has a “subgaussian” direction with
a constant which is logarithmic in the dimension. An alternative proof with a
slightly better estimate was given in [6]. The best known estimate, which appears
in [7], follows from an upper bound for the volume of the body Ψ2(K) with support
function

(1.4) hΨ2(K)(θ) := sup
26q6n

‖〈·, θ〉‖q√
q

.

It is known that ‖〈·, θ〉‖ψ2
' sup26q6n

‖〈·,θ〉‖q√
q , and hence, hΨ2(K)(θ) ' ‖〈·, θ〉‖ψ2

.

The main result in [7] states that

(1.5)
c1√
n
LK 6 |Ψ2(K)|1/n 6

c2
√

log n√
n

LK ,

where c1, c2 > 0 are absolute constants. A direct consequence of the right hand side
inequality in (1.5) is the existence of subgaussian directions for K with constant
r = O(

√
log n). With a small amount of extra work, one can also show that if K is

a centered convex body of volume 1 in Rn, then there exists θ ∈ Sn−1 such that

(1.6) |{x ∈ K : |〈x, θ〉| > ct‖〈·, θ〉‖2}| 6 e−
t2

log (t+1)

for all t > 1, where c > 0 is an absolute constant.
The approach in [11], [6] and [7] does not provide estimates on the measure of

directions for which an isotropic convex body satisfies a ψ2-estimate with a given
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constant r. Klartag obtains some information on this question, but for a different
position of K. More precisely, in [11] he proves that if K is a centered convex body
of volume 1 in Rn then, there exists T ∈ SL(n) such that the body K1 = T (K) has
the following property: there exists A ⊆ Sn−1 with measure σ(A) > 4

5 such that,
for every θ ∈ A and every t > 1,

(1.7) |{x ∈ K1 : |〈x, θ〉| > ct‖〈·, θ〉‖2}| 6 e
− ct2

log2 n log5 (t+1)

In this result, K1 is the `-position of K (this is the position of the body which essen-
tially minimizes its mean width; see [27]). The first aim of this note is to pose the
problem of the distribution of the ψ2-norm of linear functionals on isotropic convex
bodies and to provide some first measure estimates. To this end, we introduce the
function

(1.8) ψK(t) := σ
(
{θ ∈ Sn−1 : hΨ2(K)(θ) 6 ct

√
log nLK}

)
.

The problem is to give lower bounds for ψK(t), t > 1. We present a general estimate
in Section 4:

Theorem 1.1. Let K be an isotropic convex body in Rn. For every t > 1 we have

(1.9) ψK(t) > exp(−cn/t2),

where c > 0 is an absolute constant.

For the proof of Theorem 1.1 we first obtain, for every 1 6 k 6 n, some
information on the ψ2-behavior of directions in an arbitrary k-dimensional subspace
of Rn:

Theorem 1.2. Let K be an isotropic convex body in Rn.

(i) For every log2 n 6 k 6 n/ log n and every F ∈ Gn,k there exists θ ∈ SF such
that

(1.10) ‖〈·, θ〉‖ψ2 6 C
√
n/k LK ,

(ii) For every 1 6 k 6 log2 n and every F ∈ Gn,k there exists θ ∈ SF such that

(1.11) ‖〈·, θ〉‖ψ2
6 C

√
n/k

√
log 2k LK ,

(iii) For every n/ log n 6 k 6 n and every F ∈ Gn,k there exists θ ∈ SF such that

(1.12) ‖〈·, θ〉‖ψ2
6 C

√
log nLK ,

where C > 0 is an absolute constant.

It is known (for example, see [14]) that every isotropic convex body K is con-
tained in [(n+ 1)LK ]Bn2 . This implies that the ψ2-norm is Lipschitz with constant

3



O(
√
nLK). Then, Theorem 1.2 is combined with a simple argument which is based

on the fact that the ψ2-norm is stable on a spherical cap of the appropriate radius.
Note that ψK(t) = 1 if t > c

√
n/ log n. Therefore, the bound of Theorem 1.1 is

of some interest only when 1 6 t 6 c
√
n/ log n. Actually, if t ≥ c 4

√
n then we have

much better information. In Section 5 we give some estimates on the mean width
of the Lq–centroid bodies of K and of Ψ2(K); as a consequence, we get:

Proposition 1.3. Let K be an isotropic convex body in Rn. For every t >
c1 4
√
n/
√

log n one has

(1.13) ψK(t) > 1− e−c2t
2 logn,

where c1, c2 > 0 are absolute constants.

Deeper understanding of the function ψK(t) would have important applica-
tions. The strength of the available information can be measured on the problem
of bounding from above the mean width of isotropic convex bodies. From the in-
clusion K ⊆ [(n + 1)LK ]Bn2 , one has the obvious bound w(K) 6 cnLK . However,
a better estimate is always possible: for every isotropic convex body K in Rn one
has

(1.14) w(K) 6 cn3/4LK ,

where c > 0 is an absolute constant. There are several approaches that lead to
the estimate (1.14). The first one appeared in the PhD Thesis of M. Hartzoulaki
[9] and was based on a result from [5] regarding the mean width of a convex body
under assumptions on the regularity of its covering numbers. The second one is
more recent and is due to P. Pivovarov [28]; it relates the question to the geometry
of random polytopes with vertices independently and uniformly distributed in K
and makes use of the concentration inequality of [25]. A third – very direct –
proof of this bound can be based on the “theory of Lq–centroid bodies” which was
developed by the second named author (see Section 5). In Section 6 we propose
one more approach, which can exploit our knowledge on ψK(t).

2 Background material

§2.1. We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We
denote by ‖ · ‖2 the corresponding Euclidean norm, and write Bn2 for the Euclidean
unit ball, and Sn−1 for the unit sphere. Volume is denoted by | · |. We write ωn for
the volume of Bn2 and σ for the rotationally invariant probability measure on Sn−1.
The Grassmann manifold Gn,k of k-dimensional subspaces of Rn is equipped with
the Haar probability measure µn,k. Let k 6 n and F ∈ Gn,k. We will denote by
PF the orthogonal projection from Rn onto F . We also define BF := Bn2 ∩ F and
SF := Sn−1 ∩ F .

The letters c, c′, c1, c2 etc. denote absolute positive constants which may change
from line to line. Whenever we write a ' b, we mean that there exist absolute
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constants c1, c2 > 0 such that c1a 6 b 6 c2a. Also if K,L ⊆ Rn we will write
K ' L if there exist absolute constants c1, c2 > 0 such that c1K ⊆ L ⊆ c2K.

§2.2. A convex body in Rn is a compact convex subset C of Rn with non-empty
interior. We say that C is symmetric if x ∈ C implies that −x ∈ C. We say that
C is centered if it has center of mass at the origin, i.e.

∫
C
〈x, θ〉 dx = 0 for every

θ ∈ Sn−1. The support function of a convex body C is defined by

(2.1) hC(y) = max{〈x, y〉 : x ∈ C},

and the mean width of C is

(2.2) w(C) =

∫
Sn−1

hC(θ)σ(dθ).

For each −∞ < p <∞, p 6= 0, we define the p-mean width of C by

(2.3) wp(C) =

(∫
Sn−1

hpC(θ)σ(dθ)

)1/p

.

The radius of C is the quantity R(C) = max{‖x‖2 : x ∈ C} and, if the origin is an
interior point of C, the polar body C◦ of C is

(2.4) C◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ C}.

A centered convex body C is called almost isotropic if C has volume one and
C ' T (C) where T (C) is an isotropic linear transformation of C. Finally, we write
C for the homothetic image of volume 1 of a convex body C ⊆ Rn, i.e. C := C

|C|1/n .

§2.3. Let K be a convex body of volume 1 in Rn. For every q > 1 and y ∈ Rn we
define

(2.5) hZq(K)(y) :=

(∫
K

|〈x, y〉|qdx
)1/q

.

We define the Lq-centroid body Zq(K) of K to be the centrally symmetric convex
set with support function hZq(K). Note that K is isotropic if and only if Z2(K) =
LKB

n
2 . It is clear that Z1(K) ⊆ Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for every 1 6 p 6 q 6

∞, where Z∞(K) = conv{K,−K}. If T ∈ SL(n) then Zp(T (K)) = T (Zp(K)).
Moreover, as a consequence of Borell’s lemma (see [20, Appendix III]), one can
check that

(2.6) Zq(K) ⊆ cq Z2(K)

for every q > 2 and, more generally,

(2.7) Zq(K) ⊆ cq
p
Zp(K)
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for all 1 6 p < q, where c > 1 is an absolute constant. Also, if K is centered, then

(2.8) Zq(K) ⊇ c1K

for all q > n, where c1 > 0 is an absolute constant.

§2.4. Let C be a symmetric convex body in Rn. We write ‖ · ‖C for the norm
induced on Rn by C. We also define k∗(C) as the largest positive integer k ≤ n
for which the measure of F ∈ Gn,k for which 1

2w(C)BF ⊆ PF (C) ⊆ 2w(C)BF is
greater than n

n+k . The parameter k∗(C) is determined, up to an absolute constant,
by the mean width and the radius of C: There exist c1, c2 > 0 such that

(2.9) c1n
w(C)2

R(C)2
≤ k∗(C) ≤ c2n

w(C)2

R(C)2

for every symmetric convex body C in Rn. The lower bound follows from Milman’s
proof of Dvoretzky’s theorem (see [18]) and the upper bound was proved in [21].

The q-mean width wq(C) is equivalent to w(C) as long as q ≤ k∗(C). As Litvak,
Milman and Schechtman prove in [16], there exist c1, c2, c3 > 0 such that for every
symmetric convex body C in Rn we have:

1. If 1 ≤ q ≤ k∗(C) then w(C) ≤ wq(C) ≤ c1w(C).

2. If k∗(C) ≤ q ≤ n then c2
√
q/nR(C) ≤ wq(C) ≤ c3

√
q/nR(C).

§2.5. For every q > −n, q 6= 0, we define the quantities Iq(K) by

(2.10) Iq(K) :=

(∫
K

‖x‖q2 dx
)1/q

.

In [26] and [25] it is proved that for every 1 ≤ q ≤ n/2,

(2.11) I−q(K) '
√
n/q w−q(Zq(K))

and

(2.12) Iq(K) '
√
n/q wq(Zq(K)).

We define

(2.13) q∗(K) := max{k ≤ n : k∗(Zk(K)) ≥ k}.

Then, the main result of [26] states that, for every centered convex body K of
volume 1 in Rn, one has

(2.14) I−q(K) ' Iq(K)

for every 1 ≤ q ≤ q∗(K). In particular, for all q ≤ q∗(K) one has Iq(K) ≤ CI2(K),
where C > 0 is an absolute constant.
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If K is isotropic, one can check that q∗(K) ≥ c
√
n, where c > 0 is an absolute

constant (for a proof, see [25]). Therefore,

(2.15) Iq(K) ≤ C
√
nLK for every q ≤

√
n.

In particular, from (2.12) and (2.15) we see that, for all q 6
√
n,

(2.16) w(Zq(K)) ' wq(Zq(K)) ' √qLK .

§2.6. Let C be a symmetric convex body in Rn. For every δ ≥ 1 we define

(2.17) d∗(C, δ) = max{q ≥ 1 : w(C) ≤ δw−q(C)}.

It was proved in [13] and [15] that

(2.18) k∗(C) ≤ cd∗(C, 2)

§2.7. For every k-dimensional subspace F of Rn we denote by E the orthogonal
subspace of F . For every φ ∈ F \{0} we define E+(φ) = {x ∈ span{E, φ} : 〈x, φ〉 ≥
0}. K. Ball (see [1] and [19]) proved that, if K is a centered convex body of volume
1 in Rn then, for every q > 0, the function

(2.19) φ 7→ ‖φ‖1+ q
q+1

2

(∫
K∩E+(φ)

〈x, φ〉qdx

)− 1
q+1

is the gauge function of a convex body Bq(K,F ) on F . A basic identity from [25]
states that for every F ∈ Gn,k and every q > 1 we have that

(2.20) PF (Zq(K)) =

(
k + q

2

)1/q

|Bk+q−1(K,F )|1/k+1/qZq(Bk+q−1(K,F )).

It is a simple consequence of Fubini’s theorem that if K is isotropic then Bk+1(K,F )
is almost isotropic. Moreover, using (2.20) one can check that

(2.21) c1
k

k + q

Zq(Bk+1(K,F ))

LBk+1(K,F )

⊆ PF (Zq(K))

LK
⊆ c2

k + q

k

Zq(Bk+1(K,F ))

LBk+1(K,F )

for all 1 6 k, q 6 n. In particular, for all q 6 k we have

(2.22)
Zq(Bk+1(K,F ))

LBk+1(K,F )

' PF (Zq(K))

LK
.

§2.8. Recall that if A and B are convex bodies in Rn, then the covering number
N(A,B) of A by B is the smallest number of translates of B whose union covers
A. A simple and useful observation is that, if A and B are both symmetric and if
St(A,B) is the maximal number of points zi ∈ A which satisfy ‖zi − zj‖B > t for
all i 6= j, then

(2.23) N(A, tB) 6 St(A,B) 6 N(A, (t/2)B).
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3 Covering numbers of projections of Lq-centroid
bodies

Let K be an isotropic convex body in Rn. We first give an alternative proof of
some estimates on the covering numbers N(Zq(K), t

√
qLKB

n
2 ) that were recently

obtained in [7]; they improve upon previous estimates from [6].

Proposition 3.1. Let K be an isotropic convex body in Rn, let 1 6 q 6 n and
t > 1. Then,

(3.1) logN (Zq(K), c1t
√
qLKB

n
2 ) 6 c2

n

t2
+ c3

√
qn

t
,

where c1, c2, c3 > 0 are absolute constants.

Note that the upper bound in (3.1) is of the order n/t2 if t 6
√
n/q and of

the order
√
qn/t if t >

√
n/q. Our starting point is a “small ball probability” type

estimate which appears in [22, Fact 3.2(c)]:

Lemma 3.2. Let θ ∈ Sn−1, 1 6 k 6 n− 1 and r >
√
e. Then,

(3.2) µn,k

({
F ∈ Gn,k : ‖PF (θ)‖2 6

1

r

√
k

n

})
6

(√
e

r

)k
.

Under the restriction logN(C, tBn2 ) 6 k, Lemma 3.2 allows us to compare the
covering numbers N(C, tBn2 ) of a convex body C with the covering numbers of its
random k-dimensional projections.

Lemma 3.3. Let C be a convex body in Rn, let r >
√
e, s > 0 and 1 6 k 6 n− 1.

If Ns := N(C, sBn2 ), then there exists F ⊆ Gn,k such that µn,k(F) > 1−N2
s e
k/2r−k

and

(3.3) N

(
PF (C),

s

2r

√
k

n
BF

)
> Ns

for all F ∈ F .

Proof. Let Ns = N(C, sBn2 ). From (2.23) we see that there exist z1, . . . , zNs ∈ C
such that ‖zi − zj‖2 > s for all 1 6 i, j 6 Ns, i 6= j. Consider the set {wm : 1 6

m 6 Ns(Ns−1)
2 } of all differences zi − zj (i 6= j). Note that ‖wm‖2 > s for all m.

Lemma 3.2 shows that

(3.4) µn,k

({
F ∈ Gn,k : ‖PF (wm)‖2 6

1

r

√
k

n
‖wm‖2

})
6

(√
e

r

)k
,

and hence,

(3.5) µn,k

({
F : ‖PF (wm)‖2 >

1

r

√
k

n
‖wm‖2 for all m

})
> 1−N2

s e
k/2r−k.
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Let F be the subset of Gn,k described in (3.5). Then, for every F ∈ F and all i 6= j,

(3.6) ‖PF (zi)− PF (zj)‖2 >
1

r

√
k

n
‖zi − zj‖2 >

s

r

√
k

n
.

Since PF (zi) ∈ PF (C), the right hand side inequality of (2.23) implies that

(3.7) N

(
PF (C),

s

2r

√
k

n
BF

)
> Ns,

as claimed. 2

Finally, we will use the following regularity estimate for the covering numbers
of Lq-centroid bodies (see [6, Proposition 3.1] for a proof of the first inequality and
[9] for a proof of the second one): For all t > 0 and 1 6 q 6 n,
(3.8)

log N (Zq(K), ct
√
qLKB

n
2 ) 6

√
qn
√
t

+
n

t
and logN

(
K −K, t

√
nLKB

n
2

)
6
n

t
,

where c > 0 is an absolute constant. Note that the upper bound in (3.8) is of the
order n/t if t 6 n/q and of the order

√
qn/
√
t if t > n/q.

Proof of Proposition 3.1. We set s = ct
√
qLK and Ns := N(Zq(K), sBn2 ).

Because of (3.8) we may assume that 3 6 Ns 6 ecn, and then, we choose 1 6 k 6 n
so that logNs 6 k 6 2 logNs. We distinguish two cases:

(a) Assume that 1 6 t 6
√
n/q. Applying Lemma 3.3 with r = e3 we have

that, with probability greater than 1−N2
s e
−5k/2 > 1− e−k/2, a random subspace

F ∈ Gn,k satisfies

(3.9)
k

2
6 logNs 6 logN

(
PF (Zq(K)), c1s

√
k

n
BF

)
,

where c1 > 0 is an absolute constant.

If logNs 6 q then we trivially get logNs 6 n/t2 because q 6 n/t2. So, we may
assume that logNs > q; in particular, q 6 k. Then, using (2.21) we get

(3.10)
k

2
6 logN

(
Zq(Bk+1(K,F )), c

LBk+1(K,F )

LK

√
k

n
sBF

)
.

Observe that
s
√
k/n

√
qLK

= ct
√
k/n 6 ct 6 cn/q. Therefore, applying the estimate

(3.8) for the k-dimensional isotropic convex body Bk+1(K,F ), we get

(3.11)
k

2
6 c2

k

t
√
k/n

= c2

√
kn

t
,
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which shows that

(3.12) logN(Zq(K), t
√
qLKB

n
2 ) = logNs 6 k 6 c3

n

t2
,

where c3 = 4c22.

(b) Assume that t >
√
n/q. We set p :=

√
qn

t ≤ q. Then, using (2.8), we have that

N (Zq(K), t
√
qLKB

n
2 ) ≤ N

(
q

p
Zp(K), c4t

√
qLKB

n
2

)
≤ N

(
Zp(K), c4t

√
p

q

√
pLKB

n
2

)
= N

(
Zp(K), c4

√
n

p

√
pLKB

n
2

)
.

Applying the result of case (a) for Zp(K) with t =
√
n/p, we see that

N (Zq(K), t
√
qLKB

n
2 ) ≤ N

(
Zp(K), c4

√
n

p

√
pLKB

n
2

)
≤ ec5p = exp

(
c5

√
qn

t

)
,

and the proof is complete. 2

Using Proposition 3.1 we can obtain analogous upper bounds for the covering
numbers of PF (Zq(K)), where F ∈ Gn,k.

Proposition 3.4. Let K be an isotropic convex body in Rn. For every 1 6 q <
k 6 n, for every F ∈ Gn,k and every t > 1, we have

(3.13) logN (PF (Zq(K)), t
√
qLKBF ) 6

c1k

t2
+
c2
√
qk

t
,

where c1, c2 > 0 are absolute constants. Also, for every k 6 q 6 n, F ∈ Gn,k and
t > 1,

(3.14) logN (PF (Zq(K)), t
√
qLKBF ) 6

c3
√
qk

t
,

where c3 > 0 is an absolute constant.

Proof. (i) Let 1 6 q 6 k, F ∈ Gn,k and t > 1. From (2.22) we see that
(3.15)

logN (PF (Zq(K)), t
√
qLKBF ) 6 logN

(
Zq(Bk+1(K,F )), ct

√
qLBk+1(K,F )BF

)
,

where c > 0 is an absolute constant. Since Bk+1(K,F ) is almost isotropic, we may
apply Proposition 3.1 for Bk+1(K,F ) in F : we have

(3.16) logN
(
Zq(Bk+1(K,F )), ct

√
qLBk+1(K,F )BF

)
6
c1k

t2
+
c2
√
qk

t
,
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and hence,

(3.17) logN (PF (Zq(K)), t
√
qLKBF ) 6

c1k

t2
+
c2
√
qk

t
.

(ii) Assume that k 6 q 6 n and F ∈ Gn,k. Then, using (2.21) and the fact that
Zq(C) ⊆ conv{C,−C}, for every t > 1 we write

logN (PF (Zq(K)), t
√
qLKBF ) 6 logN

(cq
k
Dk+1(K,F ), t

√
qLBk+1(K,F )BF

)
6 logN

(
Dk+1(K,F ), t

√
k

q

√
kLBk+1(K,F )BF

)

6 c3

√
qk

t
,

where Dk+1(K,F ) = Bk+1(K,F )− Bk+1(K,F ), using in the end the second esti-
mate of (3.8) for the isotropic convex body Bk+1(K,F ). This completes the proof.
2

Using these bounds we can prove the existence of directions with relatively
small ψ2-norm on any subspace of Rn. The dependence is better as the dimension
increases.

Theorem 3.5. Let K be an isotropic convex body in Rn.

(i) For every log2 n 6 k 6 n/ log n and every F ∈ Gn,k there exists θ ∈ SF such
that

(3.18) ‖〈·, θ〉‖ψ2
6 C

√
n/k LK ,

(ii) For every n/ log n 6 k 6 n and every F ∈ Gn,k there exists θ ∈ SF such that

(3.19) ‖〈·, θ〉‖ψ2 6 C
√

log nLK ,

where C > 0 is an absolute constant.

Proof. For every integer q ≥ 1 we define the normalized Lq–centroid body Kq of K
by

(3.20) Kq =
1

√
qLK

Zq(K),

and we consider the convex body

(3.21) T = conv

blog2 nc⋃
i=1

K2i

 .

11



Then, for every F ∈ Gn,k we have

(3.22) PF (T ) = conv

blog2 nc⋃
i=1

PF (K2i)

 .

We will use the following standard fact (see [6] for a proof): If A1, . . . , As are
subsets of RBk2 , then for every t > 0 we have

(3.23) N(conv(A1 ∪ · · · ∪As), 2tBk2 ) 6

(
cR

t

)s s∏
i=1

N(Ai, tB
k
2 ).

We apply this to the sets Ai = PF (K2i). Observe that K2i ⊆ c12i/2Bn2 , and
hence, N(Ai, tBF ) = 1 if c12i/2 6 t. Also, Ai ⊆ c2

√
nBF for all i.

Using Proposition 3.4, for every t > 1 we can write

N(PF (T ), 2tBF ) 6 (c2
√
n)blog2 nc

blog2 nc∏
i=1

N(PF (K2i), tBF )


6 ec3 log2 n exp

C blog2 nc∑
i=1

2i/2
√
k

t
+ C

∑
t262i6k

k

t2


6 ec3 log2 n exp

(
C

√
nk

t
+ C

k

t2
log(k/t2)

)
,

where the second term appears only if k > ct2.
Now, we distinguish two cases:

(i) If log2 n 6 k 6 n/ log n we choose t0 =
√
n/k. Observe that

√
nk
t0

= k and

(3.24)
k

t20
log

(
k

t20

)
=
k2

n
log

(
k2

n

)
6

k

log n
log

(
k2

n

)
6 k.

This implies that N(PF (T ),
√
n/kBF ) 6 eck. It follows that

(3.25) |PF (T )| 6 |C
√
n/k BF |.

Therefore, there exists θ ∈ SF such that

(3.26) hT (θ) = hPF (T )(θ) 6 C
√
n/k,

which implies

(3.27) ‖〈·, θ〉‖2i 6 C 2i/2
√
n/k LK

for every i = 1, 2, . . . , blog2 nc. This easily implies (3.18).

12



(ii) If n/ log n 6 k 6 n we choose t0 =
√

log n '
√

log k. Observe that
√
nk
t0

=

k
√

n
k logn 6 k and

(3.28)
k

t20
log

(
k

t20

)
=

k

log n
log

(
k

log n

)
6

k

log n
log

(
n

log n

)
6 k.

This implies that N(PF (T ),
√

log nBF ) 6 eck and, as in case (i), we see that

(3.29) ‖〈·, θ〉‖2i 6 C 2i/2
√

log nLK

for every i = 1, 2, . . . , blog2 nc. The result follows. 2

We close this Section with a sketch of the proof of an analogue of the estimate
of Proposition 3.1 for N(Zq(K), t

√
qLKB

n
2 ) for t ∈ (0, 1).

Proposition 3.6. Let K be an isotropic convex body in Rn. If 1 6 q 6 n and
t ∈ (0, 1), then

(3.30) N (Zq(K), c1t
√
qLKB

n
2 ) 6

(c2
t

)n
and

(3.31) N (Zq(K), c3t
√
qBn2 ) >

(c4
t

)n
,

where ci > 0 are absolute constants.

Proof. The lower bound is a consequence of the estimate |Zq(K)|1/n > c
√
q|Bn2 |1/n

(see [17]). Then, we write

(3.32) N (Zq(K), c1t
√
qBn2 ) >

|Zq(K)|
|c1t
√
qBn2 |

>
(c2
t

)n
.

For the upper bound, we will use the fact (see [7, Section 3] for the idea of this
construction) that there exists an isotropic convex body K1 in Rn with the following
properties:

(i) N
(
Zq(K), t

√
qLKB

n
2

)
6 N

(
Zq(K1), c1t

√
qBn2

)
for every t > 0.

(ii) c2
√
qBn2 ⊆ Zq(K1) for all 1 6 q 6 n.

(iii) |Zq(K1)|1/n 6 c3
√
q/n for all 1 6 q 6 n.

Therefore, for every t ∈ (0, 1) we have

N

(
Zq(K),

t

2

√
qLKB

n
2

)
6
|Zq(K1) + t

√
qBn2 |

|t√qBn2 |

6
|cZq(K1)|
|t√qBn2 |

6
(c
t

)n
,

and (3.30) is proved. 2
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4 On the distribution of the ψ2-norm

From Theorem 3.5 we can deduce a measure estimate for the set of directions which
satisfy a given ψ2-bound. We start with a simple lemma.

Lemma 4.1. Let 1 6 k 6 n and let A be a subset of Sn−1 which satisfies A∩F 6= ∅
for every F ∈ Gn,k. Then, for every ε > 0 we have

(4.1) σ(Aε) >
1

2

(ε
2

)k−1

,

where

(4.2) Aε =
{
y ∈ Sn−1 : inf{‖y − θ‖2 : θ ∈ A} 6 ε

}
.

Proof. We write

(4.3) σ(Aε) =

∫
Sn−1

χAε(y) dσ(y) =

∫
Gn,k

∫
SF

χAε(y) dσF (y) dµn,k(F ),

and observe that, since A ∩ SF 6= ∅, the set Aε ∩ SF contains a cap CF (ε) = {y ∈
SF : ‖y − θ0‖2 6 ε} of Euclidean radius ε in SF . It follows that

(4.4)

∫
SF

χAε(y) dσF (y) > σF (CF (ε)) >
1

2

(ε
2

)k−1

,

by a well-known estimate on the area of spherical caps, and the result follows. 2

Remark. As the proof of the Lemma shows, the strong assumption that A∩ F 6= ∅
for every F ∈ Gn,k is not really needed for the estimate on σ(Aε). One can have
practically the same lower bound for σ(Aε) under the weaker assumption that
A ∩ F 6= ∅ for every F in a subset Fn,k of Gn,k with measure µn,k(Fn,k) > c−k.

Theorem 4.2. Let K be an isotropic convex body in Rn. For every log2 n 6 k 6 n
there exists Ak ⊆ Sn−1 such that

(4.5) σ(Ak) > e−c1k log k

where c1 > 0 is an absolute constant, and

(4.6) ‖〈·, y〉‖ψ2
6 C max

{√
n/k,

√
log n

}
LK

for all y ∈ Ak.

Proof. We fix log2 n 6 k 6 n/ log n and define A to be the set of θ ∈ Sn−1 which
satisfy (3.18). By Theorem 3.5 we have A∩SF 6= ∅ for every F ∈ Gn,k. Therefore,
we can apply Lemma 4.1 with ε = 1√

k
. If y ∈ Aε then there exists θ ∈ A such that

‖y − θ‖2 6 ε, which implies

(4.7) ‖〈·, y − θ〉‖ψ2
6 (‖〈·, y − θ〉‖∞‖〈·, y − θ〉‖ψ1

)
1/2 6 c

√
nεLK ,
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if we take into account the well-known fact that ‖〈·, θ〉‖ψ1
6 c‖〈·, θ〉‖1 6 cLK (see

[19]) and the fact that ‖〈·, θ〉‖∞ 6 (n+ 1)LK . It follows that

‖〈·, y〉‖ψ2
6 ‖〈·, θ〉‖ψ2

+ ‖〈·, y − θ〉‖ψ2

6 ‖〈·, θ〉‖ψ2
+ c
√
n/k LK .

Since θ satisfies (3.18), we get (4.6) – with a different absolute constant C – for all
y ∈ Ak := A1/

√
k. Finally, Lemma 4.1 shows that

(4.8) σ(Ak) >
1

2

(
1

2
√
k

)k−1

> e−c1k log k,

which completes the proof in this case. A similar argument works for k > n/ log n:
in this case, we apply Lemma 4.1 with ε =

√
log n/n and the measure estimate for

Ak is the same. 2

Proof of Theorem 1.1: Let t > 1 and consider the largest k for which
√
n/k >

t
√

log n. Then,

(4.9)
n

t2
' k log n > k log k,

and hence, e−c1k log k > e−c2n/t
2

. Theorem 4.2 shows that

(4.10) ψK(t) > σ(Ak) > e−c2n/t
2

.

This proves our claim. 2

5 On the mean width of Lq–centroid bodies

§5.1. Mean width of Zq(K). Let K be an isotropic convex body in Rn. For
every q 6 q∗(K) we have

(5.1) w(Zq(K)) ' wq(Zq(K)) '
√
q/nIq(K) 6 c

√
qLK .

Since q∗(K) > c
√
n, (5.1) holds at least for all q 6

√
n. For q >

√
n, we may use

the fact that Zq(K) ⊆ c(q/
√
n)Z√n(K) to write

(5.2) w(Zq(K)) 6 c
q√
n
w(Z√n(K)) 6 c1

q
4
√
n
LK .

In other words, for all q > 1 we have

(5.3) w(Zq(K)) 6 c
√
qLK

(
1 +

√
q

4
√
n

)
.

Setting q = n and taking into account (2.8) we get the general upper bound

(5.4) w(K) 6 c1w(Zn(K)) 6 c2n
3/4LK
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for the mean width of K.

In the next Proposition we slightly improve these estimates, taking into account
the radius of Zq(K) or K.

Proposition 5.1. Let K be an isotropic convex body in Rn and let 1 6 q 6 n/2.
Then,

(5.5) w(Zq(K)) 6 c
√
qLK

(
1 +

√
R(Zq(K))/

√
nLK

)
.

In particular,

(5.6) w(K) 6 c
√
nLK

(
1 +

√
R(K)/

√
nLK

)
.

Proof. Recall that, for all 1 6 q 6 n/2,

(5.7) I−q(K) '
√
n/qw−q(Zq(K)).

We first observe that, for every t > 1,

(5.8) w−q/t2(Zq(K)) 6 ct2w−q/t2(Zq/t2(K)) ' t2
√

q

t2n
I−q/t2(K) 6 ct

√
qLK .

Let δ > 1. Recall that d∗(C, δ) = max{q ≥ 1 : w(C) ≤ δw−q(C)}. We distinguish
two cases:

(a) If q 6 d∗(Zq(K), δ) then, by (5.7), we have that

(5.9) w(Zq(K)) 6 δw−q(Zq(K)) ' δ√qI−q(K)/
√
n 6 cδ

√
qLK .

(b) If q > d∗(Zq(K), δ), we set d := d∗(Zq(K), δ) and define t > 1 by the equation
q/t2 = d. Then, using (5.8), we have

(5.10) w(Zq(K)) 6 δw−d(Zq(K)) = δw−q/t2(Zq(K)) 6 cδt
√
qLK .

This gives the bound

(5.11) w(Zq(K)) 6 cδ
q√

d∗(Zq(K), δ)
LK .

Moreover, using the fact that

(5.12) d∗(Zq(K), c2) > k∗(Zq(K)) ' nw(Zq(K))2

R(Zq(K))2
,

we see that if if q > c1d∗(Zq(K), c2) then

(5.13) w(Zq(K)) 6 c

√
q
√
R(Zq(K))

4
√
n

√
LK .
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Choosing δ = 2 and combining the estimates (5.9) and (5.13) we get (5.5). Setting
q = n and using (2.8) we obtain (5.6). 2

Recall that K is called a ψα-body with constant bα if

(5.14) ‖〈·, θ〉‖ψα 6 bα‖〈·, θ〉‖1

for all θ ∈ Sn−1. If we assume that K is a ψα body for some α ∈ [1, 2] then
R(Zq(K)) 6 R(bαq

1/αZ2(K)) = bαq
1/αLK , and Proposition 5.1 gives immediately

the following.

Proposition 5.2. Let K be an isotropic convex body in Rn. If K is a ψα-body
with constant bα for some α ∈ [1, 2] then, for all 1 6 q 6 n,

(5.15) w(Zq(K)) 6 c
√
qLK

(
1 +

√
bαq

1
2α

4
√
n

)

and

(5.16) w(K) 6 c
√
bαn

α+2
4α LK .

§5.2. Mean width of Ψ2(K). As an application of Theorem 1.1 we can give the
following estimate for the q-width of Ψ2(K) for negative values of q.

Proposition 5.3. Let K be an isotropic convex body in Rn and t > 1. Then

(5.17) w− n
t2

(Ψ2(K)) 6 ct
√

log nLK .

Proof. Observe that, by Markov’s inequality,

(5.18) σ

(
{θ ∈ Sn−1 : hΨ2(K)(θ) 6

1

e
w− n

t2
(Ψ2(K))}

)
6 e−

n
t2 .

From Theorem 1.1 we know that

(5.19) e−
n
t2 6 σ

(
{θ ∈ Sn−1 : hΨ2(K)(θ) 6 ct

√
log nLK}

)
,

for some absolute constant c > 0. This proves (5.17). 2

We can also give an upper bound for the mean width of Ψ2(K):

Proposition 5.4. Let K be an isotropic convex body in Rn. Then,

(5.20) w(Ψ2(K)) 6 c 4
√
n log nLK .

Proof. Let w := w(Ψ2(K)). Since R(Ψ2(K)) 6 c
√
nLK , using (2.18) we see that

(5.21) d∗(Ψ2(K)) > ck∗(Ψ2(K)) > c
w2

L2
K

.
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We choose t so that n
t2 = c w

2

L2
K

, i.e.

(5.22) t =
c
√
nLK
w

> 1.

Then, from Proposition 5.3 we see that

w 6 cw−d∗(Ψ2(K)) 6 w− cw2

L2
K

(Ψ2(K)) = w− n
t2

(Ψ2(K))

6 c1

√
n

w

√
log nL2

K ,

and (5.20) follows. 2

Actually, we can remove the logarithmic term, starting with the next lemma:

Lemma 5.5. Let K be an isotropic convex body in Rn and let 1 6 k 6 n−1. Then
for every F ∈ Gn,k,

(5.23) PF (Ψ2(K)) ⊆ c
√
n/k

LK
LBk+1(K,F )

Ψ2(Bk+1(K,F )),

where c > 0 is an absolute constant.

Proof. Indeed, because of (2.21) and (2.22), for every θ ∈ SF we can write

hΨ2(K)(θ)

LK
6 sup

16q6k

hZq(K)(θ)√
qLK

+ sup
k6q6n

hZq(K)(θ)√
qLK

= sup
16q6k

hPF (Zq(K))(θ)√
qLK

+ sup
k6q6n

hPF (Zq(K))(θ)√
qLK

6 c1 sup
16q6k

hZq(Bk+1(K,F ))(θ)√
qLBk+1(K,F )

+ c2 sup
k6q6n

q

k

hPF (Zk(K))(θ)√
qLK

= c1 sup
16q6k

hZq(Bk+1(K,F ))(θ)√
qLBk+1(K,F )

+ c2 sup
k6q6n

√
q

k

hZk(Bk+1(K,F ))(θ)√
kLBk+1(K,F )

6 c3
hΨ2(Bk+1(K,F ))(θ)

LBk+1(K,F )

+ c4 sup
k6q6n

√
q

k

hΨ2(Bk+1(K,F ))(θ)

LBk+1(K,F )

6 c5

√
n

k

hΨ2(Bk+1(K,F ))(θ)

LBk+1(K,F )

.

2

Proposition 5.6. Let K be an isotropic convex body in Rn. Then

(5.24) w(Ψ2(K)) 6 c 4
√
nLK .
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Proof. Let k =
√
n. Using Lemma 5.5 we see that

w(Ψ2(K)) =

∫
Gn,k

w(PF (Ψ2(K)))dµn,k(F )

6 c

√
n

k

∫
Gn,k

LK
LBk+1(K,F )

w(Ψ2(Bk+1(K,F )))dµn,k(F ).

Since k =
√
n 6 q∗(K), we know that a “random” Bk+1(K,F ) is “ψ2” (see [8]),

and the result follows. 2

Applying Lemma 5.5 we can cover the case 1 6 k 6 log2 n in Theorem 3.5:

Corollary 5.7. Let K be an isotropic convex body in Rn. For every 1 6 k 6 log2 n
and every F ∈ Gn,k there exists θ ∈ SF such that

(5.25) ‖〈·, θ〉‖ψ2
6 C

√
n/k

√
log 2k LK ,

where C > 0 is an absolute constant. In fact, for a random F ∈ Gn,k the term√
log 2k is not needed in (5.25).

Proof. Let 1 6 k 6 log2 n and F ∈ Gn,k. Since Bk+1(K,F ) is isotropic, Theorem
3.5(ii) shows that there exists θ ∈ SF such that

(5.26) hΨ2(Bk+1(K,F ))(θ) 6 c1
√

log 2kLBk+1(K,F ).

Then, Lemma 5.5 shows that

‖〈·, θ〉‖ψ2 ' hΨ2(K)(θ) = hPF (Ψ2(K))(θ)

6 c
√
n/k

LK
LBk+1(K,F )

hΨ2(Bk+1(K,F ))(θ) 6 C
√
n/k

√
log 2k LK .

In fact, since k 6 log2 n 6 q∗(K), for a random F ∈ Gn,k we know that Bk+1(K,F ))
is a ψ2-body (see [8]), and hence, hΨ2(Bk+1(K,F ))(θ) 6 c2LBk+1(K,F ) for all θ ∈ SF .

Using this estimate instead of (5.26) we may remove the
√

log 2k-term in (5.25) for
a random F ∈ Gn,k. 2

Proof of Proposition 1.3. Since hΨ2(K) is
√
nLK-Lipschitz, we have that

(5.27)

σ
(
{θ ∈ Sn−1 : hΨ2(K)(θ)− w(Ψ2(K)) > sw(Ψ2(K))}

)
6 e
−cns2

(
w(Ψ2(K))√

nLK

)2

.

Let u > 2w(Ψ2(K)). Then, u = (1+s)w(Ψ2(K)) for some s > 1 and sw(Ψ2(K)) >
u/2. From (5.27) it follows that

(5.28) σ
(
{θ ∈ Sn−1 : hΨ2(K)(θ) > u}

)
6 exp

(
−cu2/L2

K

)
.

If t > c1 4
√
n/
√

log n, then Proposition 5.7 shows that u = t
√

log nLK > 2w(Ψ2(K)).
Then, we can apply (5.28) to get the result. 2

The estimate of Proposition 1.3 holds true for all t > cw(Ψ2(K))/
√

log nLK ;
this is easily checked from the proof. This shows that better lower bounds for ψK(t)
would follow from a better upper estimate for w(Ψ2(K)) and vice versa.
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6 On the mean width of isotropic convex bodies

Let K be an isotropic convex body in Rn. For every 2 6 q 6 n we define

(6.1) k∗(q) = n

(
w(Zq(K))

R(Zq(K))

)2

.

Since ‖〈·, θ〉‖q 6 cqLK for all θ ∈ Sn−1, we have R(Zq(K)) 6 cqLK . Therefore,

(6.2) w(Zq(K)) 6 cqLK

√
k∗(q)√
n

Then, from (2.8) we see that

(6.3) w(K) ' w(Zn(K)) 6
cn

q
w(Zq(K)) 6 c

√
n
√
k∗(q)LK .

Define

(6.4) ρ∗ = ρ∗(K) = min
26q6n

k∗(q).

Since q was arbitrary in (6.3), we get the following:

Proposition 6.1. For every isotropic convex body K in Rn one has

(6.5) w(K) 6 c
√
n
√
ρ∗(K)LK .

Our next observation is the following: by the isoperimetric inequality on Sn−1,
for every q > 1 one has

(6.6) σ

(
| ‖〈·, θ〉‖q − w(Zq) | >

w(Zq)

2

)
6 exp(−ck∗(q)) 6 exp(−2cρ∗)

where c > 0 is an absolute constant. Assume that log n 6 ecρ∗ . Then,

(6.7) ‖〈·, θ〉‖ ' w(Zq)

for all θ on a subset Aq of Sn−1 of measure σ(Aq) > 1− exp(−cρ∗). Taking qi = 2i,
i 6 log2 n and setting A =

⋂
Aqi , we have the following:

Lemma 6.2. For every isotropic convex body K in Rn with ρ∗(K) > C log log n
one can find A ⊂ Sn−1 with σ(A) > 1− e−cρ∗ such that

(6.8) ‖〈·, θ〉‖q ' w(Zq)

for all θ ∈ A and all 2 6 q 6 n. In particular,

(6.9) ‖〈·, θ〉‖ψ2
' max

26q6n

w(Zq)√
q

for all θ ∈ A.
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Lemma 6.2 implies that if ρ∗(K) is “large” and ‖〈·, θ〉‖ψ2
is well-bounded on a

“relatively large” subset of the sphere, then a similar bound holds true for “almost
all” directions. As a consequence, we get a good bound for the mean width of K.
The precise statement is the following.

Proposition 6.3. Let K be an isotropic convex body in Rn which satisfies the
following two conditions:

1. ρ∗(K) > C log log n.

2. For some bn > 0 we have ‖〈·, θ〉‖ψ2
6 bnLK for all θ in a set B ⊆ Sn−1 with

σ(B) > e−cρ∗ .

Then,

(6.10) ‖〈·, θ〉‖ψ2
6 CbnLK

for all θ in a set A ⊆ Sn−1 with σ(A) > 1− e−cρ∗ . Also,

(6.11) w(Zq(K)) 6 c
√
qbn LK

for all 2 6 q 6 n and

(6.12) w(K) 6 C
√
nbn LK .

Proof. We can find u ∈ A ∩ B, where A is the set in Lemma 6.2. Since u ∈ B, we
have

(6.13) ‖〈·, u〉‖q 6 C1
√
qbn LK

for all 2 6 q 6 n, and (6.8) shows that

(6.14) w(Zq(K)) 6 C2
√
qbn LK

for all 2 6 q 6 n. Going back to (6.8) we see that if θ ∈ A then

(6.15) ‖〈·, θ〉‖q 6 cw(Zq) 6 C3
√
qbn LK

for all 2 6 q 6 n. For q = n we get (6.12).
Finally, for every θ ∈ A we have

(6.16) ‖〈·, θ〉‖ψ2
' max

26q6n

‖〈·, θ〉‖q√
q

6 Cbn LK .

This completes the proof. 2

Propositions 6.1 and 6.3 provide a dichotomy. If ρ∗(K) is small then we can
use Proposition 6.1 to get an upper bound for w(K). If ρ∗(K) is large then we can
use Proposition 6.3 provided that we have some sufficiently good lower bound for
ψK(t): what we have is

(6.17) ψK(t) > e−c1n/t
2

> e−cρ∗ ,
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if t '
√
n/ρ∗. Therefore, we obtain the estimate

(6.18) w(K) 6 C
√
n log n

√
n/ρ∗ LK .

Combining the previous results, we deduce one more general upper bound for the
mean width of K.

Theorem 6.4. For every isotropic convex body K in Rn we have

(6.19) w(K) 6 C
√
nmin

{√
ρ∗,
√
n log n/ρ∗

}
LK ,

where c > 0 is an absolute constant.

The estimate in Theorem 6.4 depends on our knowledge for the behavior of
ψK(t); as it stands, it only recovers the O(n3/4LK) bound for the mean width
of K. Actually, the logarithmic term in (6.19) makes it slightly worse. However,
we can remove this logarithmic term, starting with the following modification of
Proposition 5.1.

Proposition 6.5. Let K be an isotropic convex body in Rn and 1 6 q 6 n. Then,

(6.20) w(Zq(K)) 6 c
√
qLK

(
1 +

√
q

k∗(Zq(K))

)
,

where c > 0 is an absolute constant.

Proof. If R(Zq(K)) 6 c
√
nLK then (6.20) is a direct consequence of (5.5). So, we

assume that R(Zq(K)) > c
√
nLK . Then, writing (5.5) in the form

(6.21) w(Zq(K)) 6 c

√
q

4
√
n

√
R(Zq(K))

√
LK ,

and taking into account the definition of k∗(Zq(K)) we see that

(6.22)
R(Zq(K))√

nLK
6 c1

q

k∗(Zq(K))
,

and (6.20) follows from (5.5) again. 2

Theorem 6.6. Let K be an isotropic convex body in Rn. Then,

(6.23) w(K) 6 c
√
nLK min

{
√
ρ∗,

√
n

ρ∗

}
,

where c > 0 is an absolute constant.

Proof. From Proposition 6.1 we know that

(6.24) w(K) 6 c
√
nLK

√
ρ∗.
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Let q0 satisfy ρ∗ = k∗(Zq0(K)). From Proposition 6.5 and from (2.7) and (2.8) we
have that, for all 1 6 q 6 n,

(6.25) w(K) 6 c
n

q
w(Zq(K)) 6 c1

√
nLK

(√
n

q
+

√
n

k∗(Zq(K))

)
.

Recall that q∗ is the parameter q∗(K) := max{q ∈ [1, n] : k∗(Zq(K)) > q}. We
distinguish two cases.

(i) Assume that q0 6 q∗. Then we apply (6.25) for q∗; since q∗ = k∗(Zq∗(K)) > ρ∗,
we get

(6.26) w(K) 6 2c1
√
nLK

√
n

q∗
6 2c1

√
nLK

√
n

ρ∗
.

(ii) Assume that q0 > q∗. Then, q0 > k∗(Zq0(K)) = ρ∗. Applying (6.25) for q0, we
get

(6.27) w(K) 6 2c1
√
nLK

√
n

k∗(Zq0(K))
= 2c1

√
nLK

√
n

ρ∗
.

In both cases, we have

(6.28) w(K) 6 c
√
nLK

√
n

ρ∗
.

Combining (6.28) with (6.24) we get the result. 2
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