
Isotropi
 surfa
e area measuresA. Giannopoulos and M. PapadimitrakisAbstra
tThe purpose of this note is to bring into attention an apparently forgottenresult of C.M. Petty: a 
onvex body has minimal surfa
e area among itsaÆne transformations of the same volume if and only if its area measureis isotropi
. We obtain sharp aÆne inequalities whi
h demonstrate the fa
tthat this \surfa
e isotropi
" position is a natural framework for the study ofhyperplane proje
tions of 
onvex bodies.1 Introdu
tionWe shall work in Rn equipped with a �xed Eu
lidean stru
ture and write j � j forthe 
orresponding Eu
lidean norm. We denote the Eu
lidean unit ball and the unitsphere by Dn and Sn�1 respe
tively, and we write � for the rotationally invariantprobability measure on Sn�1. The volume of appropriate dimension will be alsodenoted by j � j. We shall write !n for the volume of the Eu
lidean unit ball in Rn .Finally, L(Rn ;Rn ) is the spa
e of all linear transformations of Rn .Let K be a 
onvex body in Rn . The area measure �K is de�ned on Sn�1 and
orresponds to the usual surfa
e measure on K via the Gauss map. If A is a Borelsubset of Sn�1, then�K(A) = �fx 2 bd(K) : the outer normal to K at x belongs to Ag;where � is the (n� 1){dimensional surfa
e measure on K. In the 
ase where K isa polytope with fa
ets fFjgj�m and normals fujgj�m, the measure �K is purelyatomi
 with mass jFj j at uj , j = 1; : : : ;m. The surfa
e area of K is 
learly givenby �(K) = �K(Sn�1):For every 
onvex body K we de�ne the aÆnely invariant quantity�K = minf�(TK)=jKjn�1n : T 2 L(Rn ;Rn ) ; jdetT j = 1g;the minimal surfa
e area of an aÆne image of K with volume 1. It is not hard to
he
k that this minimum is attained for some T .1



De�nition A Borel measure � on Sn�1 will be 
alled isotropi
 ifZSn�1 jhu; �ij2d�(u) = �(Sn�1)nfor every � 2 Sn�1.C.M. Petty [5℄ has proved the following 
hara
terization of the area measure ofa 
onvex body with minimal surfa
e area:Theorem 1 Let K be a 
onvex body in Rn . Then, �(K) = �K jKjn�1n if and onlyif �K is isotropi
.In Se
tion 2 we give a short proof of this fa
t. A
tually, we 
ame to the same
on
lusion without being aware of Petty's result. The latter was brought to ourattention later, when V.D. Milman pointed out to us that Petty had studied theminimal surfa
e position. The argument shows that for �xed volume the positionis unique up to an orthogonal transformation.We shall say that a 
onvex body K is surfa
e isotropi
 if its area measure �K isisotropi
. This 
lass of bodies with minimal surfa
e area is very useful for questionsrelated to hyperplane proje
tions of 
onvex bodies (one may say that it plays therole isotropi
 bodies { see [4℄ { play for questions related to se
tions). In Se
tion 3we demonstrate this in several ways:We show that if K is surfa
e isotropi
 then(1:1) �(K)2n � jP�(K)j � �(K)2pnfor every � 2 Sn�1, where P� denotes the orthogonal proje
tion onto the subspa
e�? perpendi
ular to �. Both estimates are sharp in the 
ase of the 
ube. However,one 
an see that most proje
tions of K have area 
lose to the upper bound. Morepre
isely, there exists an absolute 
onstant 
 > 0 su
h that(1:2) jP�(K)j � 
�(K)pnwith probability greater than 1 � 2�n with respe
t to the standard measure � onSn�1. This should be 
ompared with the fa
t that all (n� 1){dimensional 
entralse
tions of an isotropi
 body have the same area up to an absolute 
onstant (see[4℄).The proje
tion body �K of K is the symmetri
 
onvex body whose supportfun
tion is de�ned by h�K(�) = jP�(K)j, � 2 Sn�1. We write ��K for the polarproje
tion body.The volume radius of �K and ��K are determined by the minimal surfa
e area�K : If jKj = 1, then(1:3) j��Kj1=n ' 1�K and j�Kj1=n ' �Kn2



up to absolute 
onstants. This fa
t together with a result of G. Zhang [11℄ show that�K � 
n for every body K. K. Ball [2℄ has proved a reverse isoperimetri
 inequalityof this type. His result is exa
t in the symmetri
 
ase: If K is symmetri
, then�K � 2n and there is equality in the 
ase of a 
ube.K. Ball notes in [1℄ that every 
onvex body K has an aÆne image ~K su
h that(1:4) jP�( ~K)j �Mpnj ~Kjn�1nfor some absolute 
onstant M > 0 and for every � 2 Sn�1, and 
onje
tures thatthe 
onstant M 
ould be taken to be 1 in the symmetri
 
ase. Ball's reverseisoperimetri
 inequality and (1.1) show that, in the symmetri
 
ase, the surfa
eisotropi
 position satis�es (1.4) with M = 1. The 
ube shows that (1.4) is sharp.K. Ball [1℄ has also proved that every 
onvex body K has an aÆne image ~Ksu
h that for every unit ve
tor �,(1:5) jP�( ~K)j � j ~Kjn�1n :The 
lassi
al isoperimetri
 inequality and (1.2) show that with high probability theproje
tions of a surfa
e isotropi
 body satisfy(1:6) jP�(K)j � 
jKjn�1n :The information given by (1.2) is a
tually mu
h stronger. However, we do notknow if (1.6) holds for every � 2 Sn�1. We 
an show that if �K is isotropi
 thenthe Loomis{Whitney type inequality(1:7) jKjn�1n � exp� 1�(K) ZSn�1 log jP�(K)j �K(d�)�is true.Finally, we show that extremal 
ounterexamples for Shephard's problem (inthe sense of [1℄) 
an be 
onstru
ted inside the 
lass of surfa
e isotropi
 symmetri

onvex bodies. There exist surfa
e isotropi
 K's satisfying jP�(K)j ' jKjn�1n andothers satisfying jP�(K)j ' pnjKjn�1n for every � 2 Sn�1.For well{known fa
ts from the 
lassi
al and the asymptoti
 theory of 
onvexbodies we refer the reader to the books of R. S
hneider [9℄ and G. Pisier [7℄.2 A Proof of Petty's theoremPetty's theorem will be an immediate 
onsequen
e of the following three 
laims:Claim 1 Let K be a 
onvex body in Rn with jKj = 1. If �(K) = �K , then �K isisotropi
. 3



Proof: Let R be a volume preserving transformation of Rn . It is not hard to 
he
kthat(2:1) �((R�1)�K) = ZSn�1 jR(u)j�K(du):Consider any T 2 L(Rn ;Rn ) and let " > 0 be small enough. Then, (I+"T )=[det(I+"T )℄1=n is volume preserving, so our minimality assumption for K and (2.1) give(2:2) ZSn�1 j(I + "T )(u)j�K(du) � [det(I + "T )℄ 1n �K :Observe that ju+"Tuj = 1+"hu; Tui+O("2) and [det(I+"T )℄1=n = 1+" trTn +O("2).Letting "! 0 we get(2:3) ZSn�1hu; Tui�K(du) � trTn �K ;and by symmetry we 
on
lude that(2:4) ZSn�1hu; Tui�K(du) = trTn �Kfor every linear transformation T . This implies(2:5) ZSn�1 ukul�K(du) = �Kn Ækl ; k; l = 1; : : : ; n;whi
h 
ompletes the proof. 2Claim 2 Let K be a 
onvex body in Rn with jKj = 1. If �K is isotropi
, then�(K) = �K .Proof: Assume that �K is isotropi
. This is equivalent to the 
ondition (2.4). IfT is any volume preserving transformation, then(2:6) �(TK) = ZSn�1 j(T�1)�uj�K(du) � ZSn�1hu; T�1ui�K(du)= tr(T�1)n �(K) � �(K);be
ause tr(T�1)=n � [det(T�1)℄1=n = 1. This shows that K has minimal surfa
earea. 2Claim 3 The minimal surfa
e position is unique up to orthogonal transformations.Proof: Assume that K has minimal surfa
e area, and �(RK) = �(K) for somevolume preserving transformation R. We 
an write R = UT , where T�1 is sym-metri
 positive{de�nite and U is an orthogonal transformation. Repeating the
omputation of (2.6) we have�(K) = �(UT (K)) = �(TK) � tr(T�1)n �(K):4



This means that tr(T�1) = n, and sin
e T is symmetri
 positive{de�nite we musthave T = Id. This proves the 
laim. 2We 
lose this se
tion with a lemma whi
h is useful for approximation arguments:Lemma 2.1 Every surfa
e isotropi
 
onvex body is the limit of a sequen
e of surfa
eisotropi
 polytopes in the Hausdor� metri
.Proof: Let Ki be a sequen
e of polytopes 
onverging to K in the Hausdor� metri
.There exists a se
ond sequen
e Ti of volume preserving transformations su
h that~Ki = TiKi is surfa
e isotropi
. We may also assume that TiKi ! L = TK for someT with jdetT j = 1. Now, � ~Ki ! �L and one 
an easily 
he
k that �L is isotropi
.From Claim 3 it follows that T 2 O(n), and the proof is 
omplete. 23 Proje
tions of a surfa
e isotropi
 bodyLet K be a 
onvex body in Rn . The relation between the area of the (n � 1){dimensional proje
tions of K and the area measure �K is well{known: For every� 2 Sn�1 we have(3:1) jP�(K)j = 12 ZSn�1 jhu; �ijd�K(u):Using (3.1) we 
an easily obtain lower and upper bounds for the proje
tions of asurfa
e isotropi
 body:Proposition 3.1 If �K is isotropi
, then�(K)2n � jP�(K)j � �(K)2pnfor every � 2 Sn�1.Proof: A dire
t appli
ation of the Cau
hy{S
hwarz inequality shows that(3:2) jP�(K)j � 12 �ZSn�1 jhu; �ij2d�K(u)�1=2p�(K) = �(K)2pn :On the other hand, it is obvious that(3:3) jP�(K)j � 12 ZSn�1 jhu; �ij2d�K(u) = �(K)2n : 2The example of the 
ube Q shows that both estimates in Proposition 3.1 aresharp. One 
an easily 
he
k that1 � jP�(Q)j � pn5



for every � 2 Sn�1 with equality on both sides for suitable �. The 
ube is surfa
eisotropi
, and �(Q) = 2n. Therefore, the ratio between the maximal and theminimal proje
tion of a surfa
e isotropi
 body 
an be as large as pn. However, weare going to show that the area of the proje
tions is 
lose to the upper bound withhigh probability. To this end we are using the following result of K. Ball [2℄ whoseproof is based on the Bras
amp{Lieb inequality:Lemma 3.2 Let fujgj�m be unit ve
tors in Rn and f
jgj�m be positive numberssatisfying Id = mXj=1 
juj 
 uj :De�ne a norm in Rn by kxk =Pmj=1 �j jhx; ujij, where �j > 0. If L is the unit ballof (Rn ; k � k), then jLj � 2nn! mYj=1� 
j�j �
j : 2Assume that K is a polytope with fa
ets Fj and normals uj , j = 1; : : : ;m,whi
h has isotropi
 area measure. Then, (2.4) is equivalent to(3:4) Id = mXj=1 njFj j�(K)uj 
 ujfor every x 2 Rn . If ��K is the polar proje
tion body of K we have(3:5) k�k��K = jP�(K)j = 12 mXj=1 jFj jjh�; ujijfor every � 2 Sn�1. We 
an therefore apply Lemma 3.2 to obtain(3:6) j��Kj � 2nn! � 2n�(K)�n :Approximating we get the same estimate for a general surfa
e isotropi
 
onvexbody. On the other hand, an appli
ation of H�older's inequality shows that(3:7) j��Kj = !n ZSn�1 1jP�(K)jn �(d�) � !n�ZSn�1 jP�(K)j�(d�)��n :Combining this with Cau
hy's surfa
e area formula(3:8) ZSn�1 jP�(K)j�(d�) = !n�1n!n �(K);we have a double{sided estimate for the volume of the polar proje
tion body of asurfa
e isotropi
 body K: 6



Proposition 3.3 Let K be a 
onvex body in Rn whose area measure �K is isotropi
.Then, !n� n!n!n�1�n 1�(K)n � j��Kj � 4nnnn! 1�(K)n : 2Using the Blas
hke{Santal�o inequality and its exa
t reverse for zonoids (see [3℄,[8℄) we estimate the volume of �K in terms of �(K):Corollary 3.4 Let K be a surfa
e isotropi
 
onvex body in Rn . Then,��(K)n �n � j�Kj � !n�!n�1n!n �n �(K)n: 2Note that all the estimates in Proposition 3.3 and Corollary 3.4 are sharp: it isenough to 
onsider the ball and the 
ube.Proposition 3.3 has some immediate 
onsequen
es:Assume that jKj = 1 and �(K) = �K . We have(3:9) ZSn�1 1jP�(K)jn�(d�) = j��Kj!n � �
pn�K �n ;hen
e Markov's inequality gives:Theorem 3.5 There exists an absolute 
onstant 
 > 0 su
h that for every surfa
eisotropi
 body K of volume 1 
 �Kpn � jP�(K)j � �K2pnholds true for all � in a subset of Sn�1 with �{measure ex
eeding 1� 2�n. 2It is an observation of C.M. Petty [6℄ that if T is a linear operator on Rn ofdeterminant 1 then, for every K,��(TK) = T (��K):In parti
ular, the volume of the polar proje
tion body is invariant under volumepreserving aÆne transformations. Then, Proposition 3.3 and Corollary 3.4 showthat j��Kj1=n and j�Kj1=n are determined up to absolute 
onstants by the minimalsurfa
e area �K :Theorem 3.6 There exist absolute 
onstants 
1; 
2; 
3; 
4 > 0 su
h that if jKj = 1then 
1�K � j��Kj1=n � 
2�K and 
3 �Kn � j�Kj1=n � 
4 �Kn : 2G. Zhang [11℄ has proved that if jKj = 1, then(3:10) j��Kj � �2nn �n�n7



with equality if and only if K is a simplex. This 
an be 
ombined with Proposition3.3 to give an upper estimate for �K :Theorem 3.7 For every 
onvex body K we have�K � 4n2=[n!�2nn �℄1=n � 
n;where 
 > 0 is an absolute 
onstant. 2The 
onstant 
 may be (asymptoti
ally) 
hosen to be equal to e. K. Ball [2℄ hasproved an exa
t reverse isoperimetri
 inequality of this type in the symmetri
 
ase:Let Q be the 
ube of volume 1. Every symmetri
 
onvex body K has an aÆneimage ~K satisfying j ~Kj = 1 and �( ~K) � �(Q). In our notation this means that(3:11) �K � 2nfor every symmetri
 
onvex body. Observe that this would follow from (3.6) if the
ube was minimizing j��Kj over all symmetri
 bodies of volume 1. Combining(3.11) with Proposition 3.1 and dropping the assumption that jKj = 1 we get:Proposition 3.8 Let K be a symmetri
 
onvex body in Rn whose area measure �Kis isotropi
. Then, jP�(K)j � pnjKjn�1nfor every � 2 Sn�1. 2The estimate given by Proposition 3.8 was 
onje
tured by K. Ball and it is sharpfor the 
ube. One 
an use Ball's non{symmetri
 reverse isoperimetri
 inequality (orTheorem 3.7) to state an analogous result for an arbitrary surfa
e isotropi
 bodyK. We now turn to lower bounds. We shall make use of an extension of the Loomis{Whitney inequality that K. Ball [1℄ proved and used for the proof of (1.5):Lemma 3.9 Let K be a 
onvex body in Rn , fujgj�m be a sequen
e of unit ve
tors,and f
jgj�m be a sequen
e of positive numbers su
h thatId = mXj=1 
juj 
 uj :Then, jKjn�1 � mYj=1 jPuj (K)j
j : 2Assume that K is a polytope with fa
ets Fj and normals uj , j = 1; : : : ;m,whi
h has isotropi
 area measure. Be
ause of (3.4) we 
an apply Lemma 3.9 toobtain (n� 1) log jKj � n�(K) mXj=1 log jPuj (K)jjFj j;8



whi
h 
an be written in the form(3:12) jKjn�1n � exp0� 1�(K) mXj=1 log jPuj (K)jjFj j1A :Using this fa
t and an approximation argument we 
an prove the following:Proposition 3.10 Let K be a 
onvex body in Rn whose area measure �K isisotropi
. Then, jKjn�1n � exp� 1�(K) ZSn�1 log jP�(K)j�K(d�)� :Proof: Assume that fKig is a sequen
e of polytopes with �Ki isotropi
 and Ki !K, By (3.12) we havejKijn�1n � exp� 1�(Ki) ZSn�1 log jP�(Ki)j�Ki(d�)�for every i, and taking limit as i!1 we 
on
lude the proof. 2Combining Cau
hy's formula with the isoperimetri
 inequality and Ball's re-verse isoperimetri
 inequality we have:Proposition 3.11 Let K be a surfa
e isotropi
 symmetri
 
onvex body in Rn .Then, max� jP�(K)j � [!n�1=! n�1nn ℄jKjn�1n � 
jKjn�1nand min� jP�(K)j � [2!n�1=!n℄jKjn�1n � 
pnjKjn�1n :2The �rst inequality is sharp for a ball: the ball of volume 1 has all its proje
tionsof volume of the order of 1. We now show that the se
ond inequality is also exa
tup to an absolute 
onstant:Proposition 3.12 There exists a surfa
e isotropi
 symmetri
 
onvex body su
h that
pnjKjn�1n � jP�(K)j � pnjKjn�1nfor every � 2 Sn�1.Proof: We shall follow Ball's 
ounterexample on Shephard's problem [1℄. Whatwe want to make sure is that the example will be surfa
e isotropi
.Let fej : j � ng be an orthonormal basis in Rn . It is a known fa
t goingba
k to the work of Kashin (see [7, Chapter 6℄) that there exists an orthogonaltransformation T 2 O(n) su
h that(3:13) 
1pnjxj � kxk1 + kTxk1 � 
2pnjxj9



for every x 2 Rn , where kxk1 = Pnj=1 jhx; ejij. It is 
lear that the sum of twoisotropi
 measures on Sn�1 is isotropi
, therefore the measure� = �Q + �T�1Qis isotropi
. FromMinkowski's existen
e theorem, there exists a symmetri
 polytopeK with �K = �.K has normals �ej ;�T �ej , and the area of ea
h fa
et of K is equal to 1. Using(3.13) we get(3:14) jP�(K)j = nXj=1 (jh�; ejij+ jh�; T �ejij) = k�k1 + kT�k1 � 
1pnfor every � 2 Sn�1. As in [1℄, 
onsider the bodyL = fx 2 Rn : jhx; ejij � 1 ; jhx; T �ejij � 1 ; j = 1; : : : ; ng:By a result of Vaaler [10℄, jLj1=n � p2, and by Minkowski's inequality,(3:15) jKjn�1n jLj 1n � 1n ZSn�1 hL(u)�K(du) = 2n nXj=1(hL(ej) + hL(T �ej)) � 4:It follows that(3:16) jP�(K)j � 
14 pnjKjn�1n jLj 1n � 
pnjKjn�1n ;whi
h 
ompletes the proof. 2Corollary 3.13 There exist two surfa
e isotropi
 symmetri
 
onvex bodies K1 andK2 in Rn su
h that jP�(K1)j � jP�(K2)j for every � 2 Sn�1, but jK1j � 
pnjK2j,where 
 > 0 is an absolute 
onstant. 24 Stability of the surfa
e isotropi
 positionLet K be a 
onvex body in Rn with volume jKj = 1. Assume that it is 
lose to thesurfa
e isotropi
 position in the sense that all the integralsZSn�1hu; �i2�K(du) ; � 2 Sn�1are equivalent up to some 
onstant � > 1. We shall show that the surfa
e area�(K) of K is 
lose to the minimal surfa
e area �K . More pre
isely, we have thefollowing stability result:Theorem 4.1 Let K be a 
onvex body in Rn with jKj = 1. Assume that there existA > 0 and � > 1 su
h that(4:1) A � ZSn�1hu; �i2�K(du) � �A10



for every � 2 Sn�1. Then,(4:2) �K � �(K) � 
��K ;where 
 > 0 is an absolute 
onstant.Proof: Choosing � = ei, i = 1; : : : ; n in (4.1) and adding all inequalities we get(4:3) 1� �(K)n � ZSn�1hu; �i2�K(du) � � �(K)n ; � 2 Sn�1:We may assume that K is a polytope with fa
ets Fj and normals uj , j = 1; : : : ;m.Consider the ellipsoid E de�ned by(4:4) kxk2E = mXj=1 jFj jhx; uji2 = ZSn�1hu; xi2�K(du):Then E = TDn for some linear transformation T , and (4.3) shows that(4:5) 1� �(K)n jTxj2 � jxj2 = kTxk2E = mXj=1 jFj jhx; T �(uj)i2 � � �(K)n jTxj2:In parti
ular,(4:6) jdetT j1=n � kT : `n2 ! `n2k �p�n=�(K):Consider the body K1 = T�1K. It has normals u0j = T �(uj)=jT �(uj)j and fa
etsjF 0j j = jT �(uj)jjFj j=jdetT j. From (4.5) it is 
lear thatjxj2 = mXj=1 jFj jjT �(uj)j2hx; u0ji2;whi
h implies(4:7) Id = mXj=1 jFj jjT �(uj)j2u0j 
 u0j :Consider the polar proje
tion body of K1. We have(4:8) k�k��K1 = jP�(K1)j = mXj=1 jFj jjT �(uj)j2jdetT j jh�; u0jij;and Lemma 3.2 shows thatj��K1j � 2nn! mYj=1(2jT �(uj)jjdetT j)jFjjjT�(uj)j2� 2nn! (2kTkjdetT j)Pj jFjjjT�(uj)j2= 4nn! kTknjdetT jn:11



Using Theorem 3.6 and (4.6), we see that
�K � jK1jn�1n j��K1j 1n � 4(n!)1=n kTkjdetT j 1n � 4e��(K) ;whi
h shows that �K � �(K) � 4e
 ��K : 2
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