
Isotropi surfae area measuresA. Giannopoulos and M. PapadimitrakisAbstratThe purpose of this note is to bring into attention an apparently forgottenresult of C.M. Petty: a onvex body has minimal surfae area among itsaÆne transformations of the same volume if and only if its area measureis isotropi. We obtain sharp aÆne inequalities whih demonstrate the fatthat this \surfae isotropi" position is a natural framework for the study ofhyperplane projetions of onvex bodies.1 IntrodutionWe shall work in Rn equipped with a �xed Eulidean struture and write j � j forthe orresponding Eulidean norm. We denote the Eulidean unit ball and the unitsphere by Dn and Sn�1 respetively, and we write � for the rotationally invariantprobability measure on Sn�1. The volume of appropriate dimension will be alsodenoted by j � j. We shall write !n for the volume of the Eulidean unit ball in Rn .Finally, L(Rn ;Rn ) is the spae of all linear transformations of Rn .Let K be a onvex body in Rn . The area measure �K is de�ned on Sn�1 andorresponds to the usual surfae measure on K via the Gauss map. If A is a Borelsubset of Sn�1, then�K(A) = �fx 2 bd(K) : the outer normal to K at x belongs to Ag;where � is the (n� 1){dimensional surfae measure on K. In the ase where K isa polytope with faets fFjgj�m and normals fujgj�m, the measure �K is purelyatomi with mass jFj j at uj , j = 1; : : : ;m. The surfae area of K is learly givenby �(K) = �K(Sn�1):For every onvex body K we de�ne the aÆnely invariant quantity�K = minf�(TK)=jKjn�1n : T 2 L(Rn ;Rn ) ; jdetT j = 1g;the minimal surfae area of an aÆne image of K with volume 1. It is not hard tohek that this minimum is attained for some T .1



De�nition A Borel measure � on Sn�1 will be alled isotropi ifZSn�1 jhu; �ij2d�(u) = �(Sn�1)nfor every � 2 Sn�1.C.M. Petty [5℄ has proved the following haraterization of the area measure ofa onvex body with minimal surfae area:Theorem 1 Let K be a onvex body in Rn . Then, �(K) = �K jKjn�1n if and onlyif �K is isotropi.In Setion 2 we give a short proof of this fat. Atually, we ame to the sameonlusion without being aware of Petty's result. The latter was brought to ourattention later, when V.D. Milman pointed out to us that Petty had studied theminimal surfae position. The argument shows that for �xed volume the positionis unique up to an orthogonal transformation.We shall say that a onvex body K is surfae isotropi if its area measure �K isisotropi. This lass of bodies with minimal surfae area is very useful for questionsrelated to hyperplane projetions of onvex bodies (one may say that it plays therole isotropi bodies { see [4℄ { play for questions related to setions). In Setion 3we demonstrate this in several ways:We show that if K is surfae isotropi then(1:1) �(K)2n � jP�(K)j � �(K)2pnfor every � 2 Sn�1, where P� denotes the orthogonal projetion onto the subspae�? perpendiular to �. Both estimates are sharp in the ase of the ube. However,one an see that most projetions of K have area lose to the upper bound. Morepreisely, there exists an absolute onstant  > 0 suh that(1:2) jP�(K)j � �(K)pnwith probability greater than 1 � 2�n with respet to the standard measure � onSn�1. This should be ompared with the fat that all (n� 1){dimensional entralsetions of an isotropi body have the same area up to an absolute onstant (see[4℄).The projetion body �K of K is the symmetri onvex body whose supportfuntion is de�ned by h�K(�) = jP�(K)j, � 2 Sn�1. We write ��K for the polarprojetion body.The volume radius of �K and ��K are determined by the minimal surfae area�K : If jKj = 1, then(1:3) j��Kj1=n ' 1�K and j�Kj1=n ' �Kn2



up to absolute onstants. This fat together with a result of G. Zhang [11℄ show that�K � n for every body K. K. Ball [2℄ has proved a reverse isoperimetri inequalityof this type. His result is exat in the symmetri ase: If K is symmetri, then�K � 2n and there is equality in the ase of a ube.K. Ball notes in [1℄ that every onvex body K has an aÆne image ~K suh that(1:4) jP�( ~K)j �Mpnj ~Kjn�1nfor some absolute onstant M > 0 and for every � 2 Sn�1, and onjetures thatthe onstant M ould be taken to be 1 in the symmetri ase. Ball's reverseisoperimetri inequality and (1.1) show that, in the symmetri ase, the surfaeisotropi position satis�es (1.4) with M = 1. The ube shows that (1.4) is sharp.K. Ball [1℄ has also proved that every onvex body K has an aÆne image ~Ksuh that for every unit vetor �,(1:5) jP�( ~K)j � j ~Kjn�1n :The lassial isoperimetri inequality and (1.2) show that with high probability theprojetions of a surfae isotropi body satisfy(1:6) jP�(K)j � jKjn�1n :The information given by (1.2) is atually muh stronger. However, we do notknow if (1.6) holds for every � 2 Sn�1. We an show that if �K is isotropi thenthe Loomis{Whitney type inequality(1:7) jKjn�1n � exp� 1�(K) ZSn�1 log jP�(K)j �K(d�)�is true.Finally, we show that extremal ounterexamples for Shephard's problem (inthe sense of [1℄) an be onstruted inside the lass of surfae isotropi symmetrionvex bodies. There exist surfae isotropi K's satisfying jP�(K)j ' jKjn�1n andothers satisfying jP�(K)j ' pnjKjn�1n for every � 2 Sn�1.For well{known fats from the lassial and the asymptoti theory of onvexbodies we refer the reader to the books of R. Shneider [9℄ and G. Pisier [7℄.2 A Proof of Petty's theoremPetty's theorem will be an immediate onsequene of the following three laims:Claim 1 Let K be a onvex body in Rn with jKj = 1. If �(K) = �K , then �K isisotropi. 3



Proof: Let R be a volume preserving transformation of Rn . It is not hard to hekthat(2:1) �((R�1)�K) = ZSn�1 jR(u)j�K(du):Consider any T 2 L(Rn ;Rn ) and let " > 0 be small enough. Then, (I+"T )=[det(I+"T )℄1=n is volume preserving, so our minimality assumption for K and (2.1) give(2:2) ZSn�1 j(I + "T )(u)j�K(du) � [det(I + "T )℄ 1n �K :Observe that ju+"Tuj = 1+"hu; Tui+O("2) and [det(I+"T )℄1=n = 1+" trTn +O("2).Letting "! 0 we get(2:3) ZSn�1hu; Tui�K(du) � trTn �K ;and by symmetry we onlude that(2:4) ZSn�1hu; Tui�K(du) = trTn �Kfor every linear transformation T . This implies(2:5) ZSn�1 ukul�K(du) = �Kn Ækl ; k; l = 1; : : : ; n;whih ompletes the proof. 2Claim 2 Let K be a onvex body in Rn with jKj = 1. If �K is isotropi, then�(K) = �K .Proof: Assume that �K is isotropi. This is equivalent to the ondition (2.4). IfT is any volume preserving transformation, then(2:6) �(TK) = ZSn�1 j(T�1)�uj�K(du) � ZSn�1hu; T�1ui�K(du)= tr(T�1)n �(K) � �(K);beause tr(T�1)=n � [det(T�1)℄1=n = 1. This shows that K has minimal surfaearea. 2Claim 3 The minimal surfae position is unique up to orthogonal transformations.Proof: Assume that K has minimal surfae area, and �(RK) = �(K) for somevolume preserving transformation R. We an write R = UT , where T�1 is sym-metri positive{de�nite and U is an orthogonal transformation. Repeating theomputation of (2.6) we have�(K) = �(UT (K)) = �(TK) � tr(T�1)n �(K):4



This means that tr(T�1) = n, and sine T is symmetri positive{de�nite we musthave T = Id. This proves the laim. 2We lose this setion with a lemma whih is useful for approximation arguments:Lemma 2.1 Every surfae isotropi onvex body is the limit of a sequene of surfaeisotropi polytopes in the Hausdor� metri.Proof: Let Ki be a sequene of polytopes onverging to K in the Hausdor� metri.There exists a seond sequene Ti of volume preserving transformations suh that~Ki = TiKi is surfae isotropi. We may also assume that TiKi ! L = TK for someT with jdetT j = 1. Now, � ~Ki ! �L and one an easily hek that �L is isotropi.From Claim 3 it follows that T 2 O(n), and the proof is omplete. 23 Projetions of a surfae isotropi bodyLet K be a onvex body in Rn . The relation between the area of the (n � 1){dimensional projetions of K and the area measure �K is well{known: For every� 2 Sn�1 we have(3:1) jP�(K)j = 12 ZSn�1 jhu; �ijd�K(u):Using (3.1) we an easily obtain lower and upper bounds for the projetions of asurfae isotropi body:Proposition 3.1 If �K is isotropi, then�(K)2n � jP�(K)j � �(K)2pnfor every � 2 Sn�1.Proof: A diret appliation of the Cauhy{Shwarz inequality shows that(3:2) jP�(K)j � 12 �ZSn�1 jhu; �ij2d�K(u)�1=2p�(K) = �(K)2pn :On the other hand, it is obvious that(3:3) jP�(K)j � 12 ZSn�1 jhu; �ij2d�K(u) = �(K)2n : 2The example of the ube Q shows that both estimates in Proposition 3.1 aresharp. One an easily hek that1 � jP�(Q)j � pn5



for every � 2 Sn�1 with equality on both sides for suitable �. The ube is surfaeisotropi, and �(Q) = 2n. Therefore, the ratio between the maximal and theminimal projetion of a surfae isotropi body an be as large as pn. However, weare going to show that the area of the projetions is lose to the upper bound withhigh probability. To this end we are using the following result of K. Ball [2℄ whoseproof is based on the Brasamp{Lieb inequality:Lemma 3.2 Let fujgj�m be unit vetors in Rn and fjgj�m be positive numberssatisfying Id = mXj=1 juj 
 uj :De�ne a norm in Rn by kxk =Pmj=1 �j jhx; ujij, where �j > 0. If L is the unit ballof (Rn ; k � k), then jLj � 2nn! mYj=1� j�j �j : 2Assume that K is a polytope with faets Fj and normals uj , j = 1; : : : ;m,whih has isotropi area measure. Then, (2.4) is equivalent to(3:4) Id = mXj=1 njFj j�(K)uj 
 ujfor every x 2 Rn . If ��K is the polar projetion body of K we have(3:5) k�k��K = jP�(K)j = 12 mXj=1 jFj jjh�; ujijfor every � 2 Sn�1. We an therefore apply Lemma 3.2 to obtain(3:6) j��Kj � 2nn! � 2n�(K)�n :Approximating we get the same estimate for a general surfae isotropi onvexbody. On the other hand, an appliation of H�older's inequality shows that(3:7) j��Kj = !n ZSn�1 1jP�(K)jn �(d�) � !n�ZSn�1 jP�(K)j�(d�)��n :Combining this with Cauhy's surfae area formula(3:8) ZSn�1 jP�(K)j�(d�) = !n�1n!n �(K);we have a double{sided estimate for the volume of the polar projetion body of asurfae isotropi body K: 6



Proposition 3.3 Let K be a onvex body in Rn whose area measure �K is isotropi.Then, !n� n!n!n�1�n 1�(K)n � j��Kj � 4nnnn! 1�(K)n : 2Using the Blashke{Santal�o inequality and its exat reverse for zonoids (see [3℄,[8℄) we estimate the volume of �K in terms of �(K):Corollary 3.4 Let K be a surfae isotropi onvex body in Rn . Then,��(K)n �n � j�Kj � !n�!n�1n!n �n �(K)n: 2Note that all the estimates in Proposition 3.3 and Corollary 3.4 are sharp: it isenough to onsider the ball and the ube.Proposition 3.3 has some immediate onsequenes:Assume that jKj = 1 and �(K) = �K . We have(3:9) ZSn�1 1jP�(K)jn�(d�) = j��Kj!n � �pn�K �n ;hene Markov's inequality gives:Theorem 3.5 There exists an absolute onstant  > 0 suh that for every surfaeisotropi body K of volume 1  �Kpn � jP�(K)j � �K2pnholds true for all � in a subset of Sn�1 with �{measure exeeding 1� 2�n. 2It is an observation of C.M. Petty [6℄ that if T is a linear operator on Rn ofdeterminant 1 then, for every K,��(TK) = T (��K):In partiular, the volume of the polar projetion body is invariant under volumepreserving aÆne transformations. Then, Proposition 3.3 and Corollary 3.4 showthat j��Kj1=n and j�Kj1=n are determined up to absolute onstants by the minimalsurfae area �K :Theorem 3.6 There exist absolute onstants 1; 2; 3; 4 > 0 suh that if jKj = 1then 1�K � j��Kj1=n � 2�K and 3 �Kn � j�Kj1=n � 4 �Kn : 2G. Zhang [11℄ has proved that if jKj = 1, then(3:10) j��Kj � �2nn �n�n7



with equality if and only if K is a simplex. This an be ombined with Proposition3.3 to give an upper estimate for �K :Theorem 3.7 For every onvex body K we have�K � 4n2=[n!�2nn �℄1=n � n;where  > 0 is an absolute onstant. 2The onstant  may be (asymptotially) hosen to be equal to e. K. Ball [2℄ hasproved an exat reverse isoperimetri inequality of this type in the symmetri ase:Let Q be the ube of volume 1. Every symmetri onvex body K has an aÆneimage ~K satisfying j ~Kj = 1 and �( ~K) � �(Q). In our notation this means that(3:11) �K � 2nfor every symmetri onvex body. Observe that this would follow from (3.6) if theube was minimizing j��Kj over all symmetri bodies of volume 1. Combining(3.11) with Proposition 3.1 and dropping the assumption that jKj = 1 we get:Proposition 3.8 Let K be a symmetri onvex body in Rn whose area measure �Kis isotropi. Then, jP�(K)j � pnjKjn�1nfor every � 2 Sn�1. 2The estimate given by Proposition 3.8 was onjetured by K. Ball and it is sharpfor the ube. One an use Ball's non{symmetri reverse isoperimetri inequality (orTheorem 3.7) to state an analogous result for an arbitrary surfae isotropi bodyK. We now turn to lower bounds. We shall make use of an extension of the Loomis{Whitney inequality that K. Ball [1℄ proved and used for the proof of (1.5):Lemma 3.9 Let K be a onvex body in Rn , fujgj�m be a sequene of unit vetors,and fjgj�m be a sequene of positive numbers suh thatId = mXj=1 juj 
 uj :Then, jKjn�1 � mYj=1 jPuj (K)jj : 2Assume that K is a polytope with faets Fj and normals uj , j = 1; : : : ;m,whih has isotropi area measure. Beause of (3.4) we an apply Lemma 3.9 toobtain (n� 1) log jKj � n�(K) mXj=1 log jPuj (K)jjFj j;8



whih an be written in the form(3:12) jKjn�1n � exp0� 1�(K) mXj=1 log jPuj (K)jjFj j1A :Using this fat and an approximation argument we an prove the following:Proposition 3.10 Let K be a onvex body in Rn whose area measure �K isisotropi. Then, jKjn�1n � exp� 1�(K) ZSn�1 log jP�(K)j�K(d�)� :Proof: Assume that fKig is a sequene of polytopes with �Ki isotropi and Ki !K, By (3.12) we havejKijn�1n � exp� 1�(Ki) ZSn�1 log jP�(Ki)j�Ki(d�)�for every i, and taking limit as i!1 we onlude the proof. 2Combining Cauhy's formula with the isoperimetri inequality and Ball's re-verse isoperimetri inequality we have:Proposition 3.11 Let K be a surfae isotropi symmetri onvex body in Rn .Then, max� jP�(K)j � [!n�1=! n�1nn ℄jKjn�1n � jKjn�1nand min� jP�(K)j � [2!n�1=!n℄jKjn�1n � pnjKjn�1n :2The �rst inequality is sharp for a ball: the ball of volume 1 has all its projetionsof volume of the order of 1. We now show that the seond inequality is also exatup to an absolute onstant:Proposition 3.12 There exists a surfae isotropi symmetri onvex body suh thatpnjKjn�1n � jP�(K)j � pnjKjn�1nfor every � 2 Sn�1.Proof: We shall follow Ball's ounterexample on Shephard's problem [1℄. Whatwe want to make sure is that the example will be surfae isotropi.Let fej : j � ng be an orthonormal basis in Rn . It is a known fat goingbak to the work of Kashin (see [7, Chapter 6℄) that there exists an orthogonaltransformation T 2 O(n) suh that(3:13) 1pnjxj � kxk1 + kTxk1 � 2pnjxj9



for every x 2 Rn , where kxk1 = Pnj=1 jhx; ejij. It is lear that the sum of twoisotropi measures on Sn�1 is isotropi, therefore the measure� = �Q + �T�1Qis isotropi. FromMinkowski's existene theorem, there exists a symmetri polytopeK with �K = �.K has normals �ej ;�T �ej , and the area of eah faet of K is equal to 1. Using(3.13) we get(3:14) jP�(K)j = nXj=1 (jh�; ejij+ jh�; T �ejij) = k�k1 + kT�k1 � 1pnfor every � 2 Sn�1. As in [1℄, onsider the bodyL = fx 2 Rn : jhx; ejij � 1 ; jhx; T �ejij � 1 ; j = 1; : : : ; ng:By a result of Vaaler [10℄, jLj1=n � p2, and by Minkowski's inequality,(3:15) jKjn�1n jLj 1n � 1n ZSn�1 hL(u)�K(du) = 2n nXj=1(hL(ej) + hL(T �ej)) � 4:It follows that(3:16) jP�(K)j � 14 pnjKjn�1n jLj 1n � pnjKjn�1n ;whih ompletes the proof. 2Corollary 3.13 There exist two surfae isotropi symmetri onvex bodies K1 andK2 in Rn suh that jP�(K1)j � jP�(K2)j for every � 2 Sn�1, but jK1j � pnjK2j,where  > 0 is an absolute onstant. 24 Stability of the surfae isotropi positionLet K be a onvex body in Rn with volume jKj = 1. Assume that it is lose to thesurfae isotropi position in the sense that all the integralsZSn�1hu; �i2�K(du) ; � 2 Sn�1are equivalent up to some onstant � > 1. We shall show that the surfae area�(K) of K is lose to the minimal surfae area �K . More preisely, we have thefollowing stability result:Theorem 4.1 Let K be a onvex body in Rn with jKj = 1. Assume that there existA > 0 and � > 1 suh that(4:1) A � ZSn�1hu; �i2�K(du) � �A10



for every � 2 Sn�1. Then,(4:2) �K � �(K) � ��K ;where  > 0 is an absolute onstant.Proof: Choosing � = ei, i = 1; : : : ; n in (4.1) and adding all inequalities we get(4:3) 1� �(K)n � ZSn�1hu; �i2�K(du) � � �(K)n ; � 2 Sn�1:We may assume that K is a polytope with faets Fj and normals uj , j = 1; : : : ;m.Consider the ellipsoid E de�ned by(4:4) kxk2E = mXj=1 jFj jhx; uji2 = ZSn�1hu; xi2�K(du):Then E = TDn for some linear transformation T , and (4.3) shows that(4:5) 1� �(K)n jTxj2 � jxj2 = kTxk2E = mXj=1 jFj jhx; T �(uj)i2 � � �(K)n jTxj2:In partiular,(4:6) jdetT j1=n � kT : `n2 ! `n2k �p�n=�(K):Consider the body K1 = T�1K. It has normals u0j = T �(uj)=jT �(uj)j and faetsjF 0j j = jT �(uj)jjFj j=jdetT j. From (4.5) it is lear thatjxj2 = mXj=1 jFj jjT �(uj)j2hx; u0ji2;whih implies(4:7) Id = mXj=1 jFj jjT �(uj)j2u0j 
 u0j :Consider the polar projetion body of K1. We have(4:8) k�k��K1 = jP�(K1)j = mXj=1 jFj jjT �(uj)j2jdetT j jh�; u0jij;and Lemma 3.2 shows thatj��K1j � 2nn! mYj=1(2jT �(uj)jjdetT j)jFjjjT�(uj)j2� 2nn! (2kTkjdetT j)Pj jFjjjT�(uj)j2= 4nn! kTknjdetT jn:11



Using Theorem 3.6 and (4.6), we see that�K � jK1jn�1n j��K1j 1n � 4(n!)1=n kTkjdetT j 1n � 4e��(K) ;whih shows that �K � �(K) � 4e ��K : 2
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