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Abstract

We extend a theorem of Groemer’s on the expected volume of a random polytope in a convex body.
The extension involves various ways of generating random convex sets. We also treat the case of abso-
lutely continuous probability measures rather than convex bodies. As an application, we obtain a new
proof of a recent result of Lutwak, Yang and Zhang on the volume of Orlicz-centroid bodies.
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1 Introduction

The Euclidean ball is the extremal case in a host of isoperimetric problems in convex geom-
etry. If Kn denotes the class of convex bodies in Rn, then various functionals Φ : Kn → R+

are minimized (or maximized) on the Euclidean ball. A result of this type, and the main
motivation for the present article, involves the functional

Φ(K) :=
1

voln (K)N

∫
K

· · ·
∫
K

voln (conv {x1, . . . , xN}) dx1 . . . dxN (K ∈ Kn).

Thus Φ(K) gives the expected volume of the convex hull of independent random points
sampled in K. In [11], Groemer proved that

Φ(K) > Φ(Bn
2 ),

where Bn
2 is the Euclidean ball; equality holds if and only if K is an ellipsoid. Similar results

hold for various functionals Φ involving the volume of random sets associated with K (e.g.,
[7], [2], [22], [5], [13], [10], [9, Chapter 9], [6]).

We extend Groemer’s theorem, and a number of related results, in two directions. Firstly,
we work in the class P[n] of all probability measures on Rn that are absolutely continuous
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with respect to Lebesgue measure. Whereas Steiner symmetrization is typically used in
Kn, we make use of rearrangement inequalities; especially those related to the well-known
theorem of Brascamp, Lieb and Luttinger [3]. The second difference is that we adopt an
operator-theoretic viewpoint by considering random matrices applied to various convex sets.
This is a natural, well-studied approach in the Local Theory of Banach spaces (see, e.g.,
[19] and the references therein). In our context, if N > n and x1, . . . , xN are independent
random points with xi distributed according to µi ∈ P[n], we treat the n×N random matrix
[x1 . . . xN ] as a linear operator from RN to Rn; applying [x1 . . . xN ] to a convex body C ⊂ RN

produces a random convex set in Rn, i.e.,

[x1 . . . xN ]C =

{
N∑
i=1

cixi : (ci) ∈ C

}
.

We seek the minimum of the expected volume of the latter set, subject to a uniform upper
bound on the densities of the µi’s. Even in the class P[n], the Euclidean ball plays a special
role.

Theorem 1.1. Let N > n and µ1, . . . , µN ∈ P[n]; denote the density of µi by fi. Let C be a
convex body in RN and set

FC(f1, . . . , fN) =

∫
Rn
. . .

∫
Rn

voln ([x1 . . . xN ]C)
N∏
i=1

fi(xi)dxN . . . dx1. (1)

If ‖fi‖∞ 6 1 for i = 1, . . . , N , then

FC(f1, . . . , fN) > FC(1Dn , . . . ,1Dn),

where Dn ⊂ Rn is the Euclidean ball of volume one.

If K ⊂ Rn is a convex body with voln (K) = 1, we can take fi = 1K . By choosing C ⊂ RN

suitably, we recover various known inequalities. If C = conv {±e1, . . . ,±eN}, then

[x1 . . . xN ]C = conv {±x1, . . . ,±xN} ,

which corresponds to the symmetric analogue of Groemer’s result mentioned above. For
another example, take C = [−1, 1]N . In this case,

[x1 . . . xN ]C =

{
N∑
i=1

αixi : |αi| 6 1 for i = 1, . . . , N

}
,

which is just the zonotope (i.e., Minkowski sum of line segments) generated by the line
segments [−xi, xi] = {αxi : |α| 6 1}. Thus Theorem 1.1 also recovers a result due to
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Bourgain, Meyer, Milman and Pajor [2]. For the class Kn, a general framework for proofs
of results of this type is discussed in [6]; the underlying principle goes back to a result of
Shephard [24]. In addition to the extension to P[n], a new insight provided by Theorem 1.1
is that rather than applying a particular method to a given functional, it applies to many
functionals at once; one need only select C ⊂ RN .

Furthermore, one is not limited to choosing a single C ⊂ RN . By taking a sequence of
convex bodies CN ⊂ RN for N = n, n + 1, . . . and applying a simple limiting argument, we
get additional applications. We obtain a family of isoperimetric inequalities, not necessarily
involving random sets. For instance, we retrieve, and extend to the class P[n], the following
theorem of Lutwak, Yang and Zhang [18] (here we deal only with the symmetric case; cf.
Remark 5.5).

Theorem 1.2. Let ψ : [0,∞)→ [0,∞) be a Young function, i.e., convex, strictly increasing
with ψ(0) = 0. Let µ ∈ P[n]. Define the Orlicz-centroid body Zψ(µ) of µ corresponding to ψ
by its support function

h(Zψ(f), y) = inf

{
λ > 0 :

∫
Rn
ψ

(
|〈x, y〉|
λ

)
dµ(x) 6 1

}
.

If f denotes the density of µ and if ‖f‖∞ 6 1, then

voln (Zψ(µ)) > voln (Zψ(λDn)) ,

where λDn is the restriction of Lebesgue measure to Dn.

Despite the fact that the latter theorem involves non-random sets, our proof shows that
it can be seen as a Law of Large Numbers, which is the “probabilistic take” referred to in
the title. In the present paper, we do not consider equality cases in Theorems 1.1 and 1.2.
When µ = 1K and K ⊂ Rn is a convex body (with the origin in its interior) equality holds
in Theorem 1.2 if and only if K is a centered ellipsoid [18].

The paper is organized as follows. In Section 2, we collect definitions and basic facts about
rearrangements and give an overview of inequalities related to [3]. In Section 3, we isolate
a condition (which we call Groemer’s Convexity Condition (GCC)) under which one can
conclude a minimization result such as Theorem 1.1. In the presence of (GCC), rearrange-
ment inequalities allow us to pass to densities that are rotationally invariant; moving then
to the Euclidean ball is done in §3.1. In Section 4, we verify that the particular integrand
in FC(f1, . . . , fN) satisfies (GCC). Section 5 concludes with applications; in particular, the
proof of Theorem 1.2.

2 Preliminaries on rearrangements of functions

Let A be a Borel subset of Rn with finite Lebesgue measure. The symmetric rearrange-
ment A∗ of A is the open ball with centre at the origin, whose volume is equal to the
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measure of A. Since we choose A∗ to be open, χA∗ is lower semicontinuous. The symmetric
decreasing rearrangement of χA is defined by

χ∗A = χA∗ .

We consider Borel measurable functions f : Rn → R+ which satisfy the following condi-
tion: for every t > 0, the set {x ∈ Rn : f(x) > t} has finite Lebesgue measure. In this case,
we say that f vanishes at infinity. For such f , the symmetric decreasing rearrangement
f ∗ is defined by

f ∗(x) =

∫ ∞
0

χ∗{f>t}(x)dt =

∫ ∞
0

χ{f>t}∗(x)dt.

Let f : Rn → R+ be a measurable function vanishing at infinity. For θ ∈ Sn−1, we fix
a coordinate system such that e1 := θ. The Steiner symmetrization f ∗(·|θ) of f with
respect to θ⊥ is defined as follows: for x2, . . . , xn ∈ R, we set h(t) = f(t, x2, . . . , xn) and
define

f ∗(t, x2, . . . , xn|θ) := h∗(t). (2)

We refer the reader to the book [16] or the introductory notes [4] for further background
material on rearrangements of functions.

2.1 Brascamp, Lieb & Luttinger and consequences

In this section we give an overview of results related to the Brascamp, Lieb & Luttinger
rearrangement inequality [3, Theorem 1.2] (for functions of one variable). The main conse-
quence which we use here was observed by M. Christ [7, Theorem 4.2]. We prefer to explicitly
state the ingredients used in the proof to point out connections to pertinent results in the
literature.

Theorem 2.1 ([3]). Let f1, . . . , fM : R → R+ be non-negative measurable functions. Let
u1, . . . , uM ∈ Rn. Then ∫

Rn

M∏
i=1

fi(〈x, ui〉)dx 6
∫
Rn

M∏
i=1

f ∗i (〈x, ui〉)dx (3)

Corollary 2.2. Let K be a symmetric convex set in Rn. Suppose that f1, . . . , fn are non-
negative measurable functions defined on R. Then∫

K

n∏
i=1

fi(xi)dx 6
∫
K

n∏
i=1

f ∗i (xi)dx.
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The corollary can be proved by approximating K by intersections of slabs of the form

Km =
m⋂
i=1

{x ∈ Rn : |〈x, ui〉| 6 1}

for suitable u1, . . . , um ∈ Rn. In this case, 1Km =
∏m

i=1 1[−1,1](〈·, ui〉) and one can apply (3)
with M = m+ n. For an extension of Corollary 2.2 to certain cases when K is non-convex,
see [8]; see [22] for the case when fi is the indicator of a compact subset of R; related results
appear in [1].

We say that F : RN → R is quasi-concave if for all s the set {x : F (x) > s} is convex.
Similarly, F : RN → R is quasi-convex if for all s the set {x : F (x) < s} is convex. An
immediate consequence of Corollary 2.2 is the following.

Corollary 2.3. Let F : RN → R+ be an even quasi-concave function and gi be real non-
negative integrable functions. Then∫

RN
F (t)g1(t1) · · · gN(tN)dt 6

∫
RN
F (t)g∗1(t1) · · · g∗N(tN)dt.

If F : RN → R+ is even and quasi-convex then∫
RN
F (t)g1(t1) · · · gN(tN)dt >

∫
RN
F (t)g∗1(t1) · · · g∗N(tN)dt.

Proof. For s > 0, let K(s) := {x : F (x) > s}. Then K(s) is symmetric and convex. Using
the layer-cake representation (cf. [16, Theorem 1.13]), Fubini’s Theorem, and Proposition
2.1, we have ∫

RN
F (t)g1(t1) · · · gN(tN)dt =

∫ ∞
0

∫
K(s)

g1(t1) · · · gN(tN)dtds

6
∫ ∞

0

∫
K(s)

g∗1(t1) · · · g∗N(tN)dtds

=

∫
RN
F (t)g1(t1) · · · gN(tN)dt.

For the second assertion, one can use the fact that 1{F6s} + 1{F>s} = 1.

3 Groemer’s Convexity Condition

For a function F : ⊗Ni=1Rn → R, set

FF (f1, . . . , fN) :=

∫
Rn
. . .

∫
Rn
F (x1, . . . xN)f1(x1) . . . fN(xN)dx1, . . . , dxN
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In this section we isolate a condition on F from which one can conclude a minimization
result such as Theorem 1.1. We will say that F : ⊗Ni=1Rn → R+ satisfies Groemer’s
Convexity Condition, or simply (GCC) in short, if for every z ∈ Rn and for every
y1 . . . , yN ∈ z⊥ the function FY : RN → R+ defined by

FY (t) = F (y1 + t1z, . . . , yN + tNz)

is even and convex.

Proposition 3.1. Let F : ⊗Ni=1Rn → R+ be a function that satisfies (GCC). Let f1, . . . , fn
be non-negative integrable functions defined on Rn and let θ ∈ Sn−1. Then

FF (f1, . . . , fN) > FF (f ∗1 (·|θ), . . . , f ∗N(·|θ)),

where f ∗(·|θ) is the Steiner symmetrization of f about θ⊥ (cf. (2)).

Proof. Using the notation for the Steiner symmetrization of f with respect to θ, FF (f1, . . . , fN)
is equal to

=

∫
Rn−1

. . .

∫
Rn−1

∫
R
. . .

∫
R
F (y1 + t1e1, . . . yN + tNe1)

N∏
i=1

fi(yi + tie1)dt1 . . . dtNdy1 . . . dyN

=

∫
Rn−1

. . .

∫
Rn−1

∫
RN
FY (t1, · · · , tN)h1(t1) . . . hN(tN)dt1 . . . dtNdy1 . . . dyN

>
∫
Rn−1

. . .

∫
Rn−1

∫
RN
FY (t1, · · · , tN)h∗1(t1) . . . hN(tN)dt1 . . . dtNdy1 . . . dyN ,

which is simply equal to FF (f ∗1 (·|θ), . . . , f ∗N(·|θ)) (cf. Corollary 2.3).

Successive symmetrizations with respect to n − 1 dimensional subspaces yield the sym-
metric rearrangement f ∗i for each fi, i 6 N . In particular, we will make use of the following
result, proved in [3].

Proposition 3.2. Let f : Rn → R+ be a measurable function with compact support. Then
there exists a sequence of functions fn, where f0 = f and fn+1 = fn(·|θ) for some θ ∈ Sn−1,
such that

lim
n→∞

‖fn − f ∗‖L1
= 0.

By a standard approximation argument, we obtain the following proposition.

Proposition 3.3. Suppose F : ⊗Ni=1Rn → R+ satisfies (GCC) and f1, . . . , fn are non-
negative integrable functions on Rn. Then

FF (f1, . . . , fN) > FF (f ∗1 , . . . , f
∗
N). (4)

6



Remark 3.4. (1) As the proof shows, in Proposition 3.3, one can replace the (GCC) as-
sumption on F by the following: for almost all θ ∈ Sn−1 and almost all choices of
y1, . . . , yN ∈ θ⊥, the sets {FY 6 s} are centrally symmetric and convex.

(2) If F satisfies the quasi-concave analogue of (1) above, i.e., if for almost all θ ∈ Sn−1 and
almost all choices of y1, . . . , yN ∈ θ⊥, the level sets {FY > s} are centrally symmetric
and convex, then

FF (f1, . . . , fN) 6 FF (f ∗1 , . . . , f
∗
N).

The latter inequality was observed by M. Christ [7, Theorem 4.2]; such functions F are
referred to there as “Steiner convex.”

3.1 From rotational invariance to the ball

Let f1, . . . , fN be bounded integrable functions with
∫
Rn f(x)dx = 1. We will say that f

is rotationally invariant if f(x) = f(y) whenever ‖x‖2 = ‖y‖2. As in the introduction, let
P[n] be the class of probability measures on Rn that are absolutely continuous with respect
to Lebesgue measure; let RP [n] ⊂ P[n] be the subclass consisting of rotationally invariant
measures. The previous proposition shows that if F satisfies (GCC), then

inf
P[n]

FF (f1, . . . , fN) = inf
RP [n]

FF (f1, . . . , fN),

where the fi’s are the densities of measures in P[n] and RP [n], respectively.
The remainder of this section is devoted to studying the quantity

inf
RP [n]

FF (f1, . . . , fN)

under the additional assumption that ‖fi‖∞ 6 1, for 1 6 i 6 N . The following lemma is
standard; the proof given for completeness.

Lemma 3.5. Let f : R+ → [0, 1] be a measurable function and assume that

A :=

∫ ∞
0

f(t)tn−1dt <∞.

Let g = 1[0,(nA)1/n]. Then for any increasing function φ : R+ → R,∫ ∞
0

φ(t)f(t)tn−1dt >
∫ ∞

0

φ(t)g(t)tn−1dt.

Proof. Note that ∫ ∞
0

f(t)tn−1dt =

∫ ∞
0

g(t)tn−1dt.
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By assumption, ‖f‖∞ 6 1 and hence for any 0 6 s 6 (nA)1/n,∫ s

0

f(t)tn−1dt 6
∫ s

0

g(t)tn−1dt.

Consequently, for any 0 6 s 6∞,∫ ∞
s

f(t)tn−1dt >
∫ ∞
s

g(t)tn−1dt.

Without loss of generality, we may assume that φ(0) = 0. Then∫ ∞
0

φ(t)f(t)tn−1dt =

∫ ∞
0

∫ t

0

φ′(s)f(t)tn−1dsdt

=

∫ ∞
0

φ′(s)

∫ ∞
s

f(t)tn−1dtds

>
∫ ∞

0

φ′(s)

∫ ∞
s

g(t)tn−1dtds

=

∫ ∞
0

∫ t

0

φ′(s)g(t)tn−1dsdt

=

∫ ∞
0

φ(t)g(t)tn−1dt.

Lemma 3.6. Let µ ∈ RP [n] and assume that its density f : Rn → R+ satisfies ‖f‖∞ 6 1.
For φ ∈ Sn−1 and s > 0, set

H(φ, s) = {x ∈ Rn : 〈x, φ〉 > s}.

Then
µ(H(φ, s)) > voln (Dn ∩H(φ, s))

Proof. Let g = 1Dn . For each fixed θ ∈ Sn−1, the function from R+ to R+ defined by

r 7→ 1H(φ,s)(rθ)

is increasing and hence so is

r 7→
∫
Sn−1

1H(φ,s)(rθ)dσ(θ).
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Using spherical coordinates and applying Lemma 3.5, we get∫
H(φ,s)

f(x)dx = nωn

∫ ∞
0

∫
Sn−1

1H(φ,s)(rθ)f(rθ)rn−1dσ(θ)dr

> nωn

∫ ∞
0

∫
Sn−1

1H(φ,s)(rθ)g(rθ)rn−1dσ(θ)dr

=

∫
H(φ,s)

g(x)dx.

Lemma 3.7. Let ρ : Rn → R be a function such that for any x ∈ Rn, the function from R
to R defined by

s 7→ ρ(sx)

is convex. Let X be a symmetric random vector with values in Rn. Then the function from
R+ to R+ defined by

s 7→ Eρ(sX)

is an increasing function.

Proof. It is sufficient to show that

Eρ(aX) 6 Eρ(X) (5)

for any 0 6 a 6 1. For such a, we can write a = b(1) + (1− b)(−1) with 0 6 b 6 1 and use
the convexity assumption

ρ(aX) 6 bρ(X) + (1− b)ρ(−X),

from which (5) follows on taking expectations.

Lemma 3.8. If F : ⊗Ni=1Rn → R+ satisfies (GCC) then for any x1, . . . , xN ∈ Rn and any
1 6 j 6 N , the function from R to R defined by

s 7→ F (x1, . . . , sxj, . . . , xN) (6)

is convex.

Proof. For 1 6 i 6 N with i 6= j, write xi = x′i + sixj with si ∈ R and x′i ⊥ xj. In
the definition of (GCC), take z = xj, yj = 0 and yi = x′i for all i 6= j. Then the map
GY : RN → R+ given by

GY (t) := F (y1 + t1s1z, . . . , tjz, . . . , yN + sN tNz)
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is convex since
GY (t) = FY (s1t1, . . . , tj, . . . , sN tN).

But the restriction of GY to the line {t ∈ RN : tj ∈ R, ti = 1 for each i 6= j} is just the
function in (6).

Proposition 3.9. Let fi : Rn → [0, 1] be rotationally invariant probability densities. Suppose
F : ⊗Ni=1Rn → R+ satisfies (GCC). Then

FF (f1, . . . , fN) > FF (1Dn , . . . ,1Dn).

Proof. Using spherical coordinates for each xi ∈ Rn, we will write

xi := riθi, with 0 6 ri <∞, and θi ∈ Sn−1 for i = 1, . . . , N.

Then FF (f1, . . . , fN) is equal to

(nωn)N
∞∫

0

. . .

∞∫
0

∫
Sn−1

. . .

∫
Sn−1

F (r1θ1, . . . , rNθN)
N∏
i=1

fi(riθi)r
n−1
i dσ(θ1) . . . dσ(θN)dr1 . . . drN .

Fix 1 6 j 6 N and suppose r1, . . . , rj−1, rj+1, . . . , rN are fixed non-negative scalars. Suppose
momentarily that θ1, . . . , θN ∈ Sn−1 are fixed vectors. By Lemma 3.8, the function from R+

to R+ defined by
rj 7→ F (r1θ1, . . . , rjθj, . . . , rNθN)

is convex. Averaging now in θj ∈ Sn−1, Lemma 3.7 implies that the function

rj 7→
∫
Sn−1

F (r1θ1, . . . , rjθj, . . . , rNθN)dσ(θj)

is increasing. By assumption, we have

1 =

∫
Rn
fj(x)dx

= nωn

∫ ∞
0

∫
Sn−1

fj(rjθj)r
n−1
j dσ(θj)drj.

Since fj depends only on the value of rj, we have that for any θj ∈ Sn−1,∫ ∞
0

fj(rjθj)r
n−1
j drj = (nωn)−1.

Thus we apply Lemma 3.5 with A = (nωn)−1 to see that∫ ∞
0

∫
Sn−1

F (r1θ1, . . . , rjθj, . . . , rNθN)fj(rjθj)r
n−1
j dσ(θj)drj

10



is at least as large as∫ ω
−1/n
n

0

∫
Sn−1

F (r1θ1, . . . , rjθj, . . . , rNθN)rn−1
j dσ(θj)drj

Applying Fubini’s theorem iteratively, we have that FF (f1, . . . , fN) is larger than or equal
to

(nωn)N
ω
−1/n
n∫
0

. . .

ω
−1/n
n∫
0

∫
Sn−1

. . .

∫
Sn−1

F (r1θ1, . . . , rNθN)
N∏
i=1

rn−1
i dσ(θ1) . . . dσ(θN)dr1 . . . drN ,

which is simply FF (1Dn , . . . ,1Dn) in spherical coordinates.

We summarize the results of this section with the following theorem.

Theorem 3.10. Let µ1, . . . , µN ∈ P[n]; denote the density of µi by fi. Suppose F : ⊗Ni=1Rn →
R+ satisfies (GCC) and set

FF (f1, . . . , fN) :=

∫
Rn
. . .

∫
Rn
F (x1, . . . , xN)

N∏
i=1

fi(xi)dx1 . . . dxN . (7)

Then
FF (f1, . . . , fN) > FF (f ∗1 , . . . , f

∗
N).

Moreover, if fi = f ∗i and ‖fi‖∞ 6 1 for i = 1, . . . , N , we also have

FF (f1, . . . , fN) > FF (1Dn , . . . ,1Dn).

4 Verifying GCC

Let C be a symmetric convex body in RN . For x1, . . . , xN ∈ Rn, let T (x1, . . . xN) = [x1 · · ·xN ]
be the n×N matrix with columns the xi’s. Throughout this section, we let F : ⊗Ni=1Rn → R+

be the function
F (x1, . . . , xN) := voln (T (x1, . . . , xN)C) . (8)

Note that for any S ∈ SLn,

F (S(x1), . . . , S(xN)) = F (x1, . . . , xN). (9)

Indeed, for any n× n matrix M , we have

F (M(x1), . . . ,M(xN)) = voln
(
[M(x1) · · ·M(xN)]C

)
= voln (M [x1 · · ·xN ])C)

= |det(M)|F (x1, . . . , xN).

Our goal is to show that F satisfies (GCC) so that we can apply Theorem 3.10.
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Proposition 4.1. Let F be as defined in (8). Let θ ∈ Sn−1 and y1, . . . , yN ∈ θ⊥. Set
Y := {y1, . . . yN}. Let TY (t) := [yi + tiθ] and define FY : RN → R+ by

FY (t) = voln (TY (t)C) .

Then FY is (i) even and (ii) convex. In particular, F satisfies (GCC).

Proof. The proof is analogous to that of [11, Lemma 3]. Note that

[y1 + t1θ . . . yN + tNθ]C =

{
N∑
i=1

ci(yi + tiθ) : (ci) ∈ C

}
,

while

[y1 − t1θ . . . yN − tNθ]C =

{
N∑
i=1

ci(yi − tiθ) : (ci) ∈ C

}
.

The latter two sets are reflections of each other about θ⊥, hence FY (t) = FY (−t).
For the second assertion, let us set P := Pθ⊥ , the orthogonal projection onto θ⊥. For any

compact, convex set A ⊂ Rn, define functions fA, gA : PA→ R by

fA(y) := sup{λ : y + λθ ∈ A} (10)

and
gA(y) := inf{λ : y + λθ ∈ A}. (11)

Then fA is concave and gA is convex.
Let s, t ∈ RN and consider the functions

fTY (s)C , gTY (s)C : PTY (s)C → R

and
fTY (t)C , gTY (t)C : PTY (t)C → R

defined as in (10) and (11). For convenience of notation, set

fs := fTY (s)C , gs := gTY (s)C

and
ft := fTY (t)C , gt := gTY (t)C .

Since P is the orthogonal projection on θ⊥, we have

PTY (s)C = P [yi + siθ]C = [yi]C = P [yi + tiθ]C = PTY (t)C.

Thus setting D = PTY (s)C = PTY (t)C, we can define f, g : D → R by

f = (1/2)fs + (1/2)ft, g = (1/2)gs + (1/2)gt.

12



Set
Ĉ := {y + λθ : y ∈ D, g(y) 6 λ 6 f(y)}.

We claim that
TY (s/2 + t/2)C ⊂ Ĉ. (12)

Indeed, let x ∈ TY (s/2 + t/2)C so that for some c = (c1, . . . , cN) ∈ C, we have

x =
N∑
i=1

ci (yi + (si/2 + ti/2)θ) = y +
N∑
i=1

ci (si/2 + ti/2) θ,

with y :=
∑N

i=1 ciyi ∈ D. Note that

y +

(
N∑
i=1

cisi

)
θ =

N∑
i=1

ci(yi + siθ) ∈ TY (s)C

and hence

gs(y) 6
N∑
i=1

cisi 6 fs(y).

Similarly,

gt(y) 6
N∑
i=1

citi 6 ft(y).

Thus

g(y) = (1/2)gs(y) + (1/2)gt(y)

6 (1/2)
N∑
i=1

cisi + (1/2)
N∑
i=1

citi

6 (1/2)fs(y) + (1/2)ft(y)

= f(y),

which shows that x = y+
∑N

i=1 ci(si/2 + ti/2)θ ∈ Ĉ and establishes (12). Next, observe that

vold

(
Ĉ
)

=

∫
D

f(y)− g(y)dy

= (1/2)

∫
D

fs(y)− gs(y)dy + (1/2)

∫
D

ft(y)− gt(y)dy

= (1/2) vold (TY (s)C) + (1/2) vold (TY (t)C) .

This shows that FY is convex.

13



Proof of Theorem 1.1. The desired inequality follows from Theorem 3.10 and Proposition
4.1.

4.1 Further Extensions of Theorem 1.1

Before proceeding to applications, we briefly mention two natural extensions of Theorem 1.1.

Remark 4.2. In Theorem 1.1, one can replace voln (·) by intrinsic volumes (refer to e.g., [23]
for background on intrinsic volumes) by using the argument in [13, Lemma 2.3]. We omit
the details.

Remark 4.3. Let g1 : (0,∞) → (0,∞) be an increasing function and g2 : (0,∞) → (0,∞)
be decreasing. If F : ⊗Ni=1Rn → R satisfies (GCC) then g1 ◦ F satisfies the condition in
Remark 3.4 (1); similarly, g2 ◦F satisfies the condition in Remark 3.4 (2). Thus if f1, . . . , fN
are non-negative integrable functions on Rn, then

Fg1◦F (f1, . . . , fN) > Fg1◦F (f ∗1 , . . . , f
∗
N). (13)

and
Fg2◦F (f1, . . . , fN) 6 Fg2◦F (f ∗1 , . . . , f

∗
N). (14)

For instance, if g2(t) = t−p for p > 0, then (14) gives upper bounds for FF−p(f1, . . . , fN)
provided that one can compute the corresponding quantity in the rotationally invariant case.
This is possible in several cases but beyond our present scope.

5 Applications

In this section we prove a corollary of Theorem 1.1 and use it to derive various isoperimetric
inequalities.

As in the introduction, let Kn denote the collection of all convex bodies in Rn. Denote
the Hausdorff metric by δH , i.e., for K1, K2 ∈ Kn,

δH(K1, K2) := inf{δ > 0 : K1 ⊂ K2 + δBn
2 , K2 ⊂ K1 + δBn

2 }.

We assume that µ1, µ2, . . . are probability measures in P[n]; denote the density of µi
by fi. Let X1, X2, . . . be independent random vectors distributed according to densities
f1, f2, . . . respectively. Let X∗1 , X

∗
2 , . . . be independent random vectors distributed according

to f ∗1 , f
∗
2 , . . . respectively. For each N > n, let TN = TN(X1, . . . , XN) : RN → Rn be the

operator represented by the n×N matrix

TN = [X1 · · ·XN ].

Similarly, for each N > n, let T sym
N : RN → Rn be the operator with matrix

T sym
N = [X∗1 · · ·X∗N ].

14



For notational reasons, it is convenient to assume that all random vectors Xi and X∗i are
defined on an underlying probability space (Ω,Σ,P) and E denotes expectation with respect
to P.

Corollary 5.1. Suppose that (CN)∞N=n is a sequence of convex bodies with CN ⊂ RN . Let
TN and T sym

N be the linear operators defined above. Let M ∈ L1(Ω,Σ,P). Assume that

voln (TNCN) 6M (a.s.)

and
voln (T sym

N CN) 6M (a.s.).

Suppose that C and C∗ are (random) convex bodies in Rn defined by the following

C := lim
N→∞

TNCN (a.s.)

and
C∗ := lim

N→∞
T sym
N CN (a.s.),

where the convergence is in the Hausdorff metric. Then

E voln (C) > E voln (C∗) .

Proof. We use the following three facts: (1) voln (·) is continuous with respect to convergence
of convex bodies in the Hausdorff metric, (2) the Lebesgue Dominated Convergence Theorem,
and (3) Theorem 1.1.

E voln (C) = E lim
N→∞

voln (TNCN)

= lim
N→∞

E voln (TNCN)

> lim
N→∞

E voln (T sym
N CN)

= E lim
N→∞

voln (T sym
N CN)

= E voln (C∗)

To use the corollary, it is convenient to have several basic facts from convexity at hand.
We record them here for the reader’s convenience. We refer to the introductory chapters of
[23] or [9] for additional background material on convexity.

Verifying convergence in the Hausdorff metric is often done by using support functions.
Recall that if K ∈ Kn, its support function is defined by

h(K, y) = sup{〈x, y〉 : x ∈ K}.

We will use the following standard lemma (see, e.g., [23, page 53]).
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Lemma 5.2. Let K,L ∈ KN . Then

δH(K,L) = sup
y∈Sn−1

|h(K, y)− h(L, y)| .

If T : RN → Rn is any linear operator, denote its adjoint by T t : Rn → RN . In particular,
if TN = [x1 . . . xN ], then T tN : Rn → RN is given by

T tNy = (〈x1, y〉, . . . , 〈xN , y〉) (y ∈ Rn).

Using this fact, we can write an explicit formula for the support function of TNCN .

Lemma 5.3. Let T : RN → Rn be a linear operator. Suppose C ⊂ RN is a convex body.
Then for any y ∈ Rn,

h(TC, y) = h(C, T ty).

Proof.

h(TC, y) = sup{〈Tx, y〉 : x ∈ C} = sup{〈x, T ty〉 : x ∈ C} = h(C, T ty).

Before proving Theorem 1.2, we mention one special case.

5.1 Lp-centroid bodies

Let K ⊂ Rn be a bounded Borel measurable set with voln (K) = 1. Let Zp(K) denote the
Lp-centroid body of K, i.e., the body with support function

h(Zp(K), y) =

(∫
K

|〈x, y〉|p dx
)1/p

.

Lp-centroid bodies were introduced by Lutwak, Yang and Zhang [17] (under a different
normalization). Lp-centroid bodies play an important role in concentration of measure for
convex bodies, e.g., [21], [15], [12], [14]. In this section we show how Corollary 5.1 gives a
short proof of the following result.

Corollary 5.4. Let K ⊂ Rn be a bounded Borel measurable set with voln (K) = 1. Then

voln (Zp(K)) > voln (Zp(Dn)) ,

where Dn is the Euclidean ball of volume one.

For star-shaped bodiesK ⊂ Rn the latter inequality, together with the equality conditions,
is proved in [17]. In [20], the latter result is extended to measures µ ∈ P[n], although it makes
use of the result for star-shaped bodies. In the next section, we prove the more general Orlicz
version (also for measures µ ∈ P[n]); the proof of this special case is given here to illustrate
the direct connection to the Law of Large Numbers.
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Proof. Taking CN = N−1/pBN
q in Lemma 5.3, we have

h(N−1/pTNB
N
q , y)p = h(N−1/pBN

q , T
t
Ny)p =

1

N

N∑
i=1

|〈Xi, y〉|p

for each y ∈ Sn−1. By the Strong Law of Large Numbers,

lim
N→∞

h(N−1/pTNB
N
q , y)p =

∫
K

|〈x, y〉|p dx (a.s.).

Thus for any y ∈ Sn−1,

lim
N→∞

h(N−1/pTNB
N
q , y) =

(∫
K

|〈x, y〉|p dx
)1/p

(a.s.).

Pointwise convergence of support functions in fact implies uniform convergence (see, e.g.,
[23, page 54]). Therefore, in the Hausdorff metric,

Zp(K) = lim
N→∞

N−1/pTNB
N
q (a.s.).

Finally, let R(K) denote the circumradius of K, i.e.,

R(K) = inf{R > 0 : K ⊂ RBn
2 }.

Since |〈Xi, y〉| 6 R(K), we have N−1/pTNB
N
q ⊂ R(K)Bn

2 and hence Corollary 5.1 gives the
desired result.

5.2 Orlicz centroid bodies

Here we use Corollary 5.1 to prove Theorem 1.2 stated in the introduction. As in the state-
ment of said theorem, let ψ : [0,∞) → [0,∞) be a Young function, i.e., convex, strictly
increasing with ψ(0) = 0. Let µ ∈ P[n]. Define the Orlicz-centroid body Zψ(µ) of µ corre-
sponding to ψ by its support function

h(Zψ(µ), y) = inf

{
λ > 0 :

∫
Rn
ψ

(
|〈x, y〉|
λ

)
dµ(x) 6 1

}
.

Remark 5.5. By our definition, Zψ(µ) is centrally-symmetric. In [18], Orlicz-centroid bodies
are defined and studied for more general functions ψ.

The idea of the proof is the same as that of Corollary 5.4. Set

Bψ/N :=

{
t = (t1, . . . , tN) ∈ RN :

1

N

N∑
i=1

ψ(|ti|) 6 1

}
.
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One can check that Bψ/N is convex, symmetric, bounded and the origin is an interior point,
hence

‖t‖Bψ/N := inf{λ > 0 : t ∈ λBψ/N}

defines a norm on RN , commonly called the Orlicz norm associated with ψ. In particular,
‖·‖Bψ/N is the support function for B◦ψ/N , the polar of Bψ/N .

If T : RN → Rn is a linear operator, the support function of TB◦ψ/N is

h(TB◦ψ/N , y) = h(B◦ψ/N , T
ty) =

∥∥T ty∥∥
Bψ/N

(y ∈ Sn−1);

cf. Lemma 5.3.

Lemma 5.6. Let µ ∈ P[n]. Let x1, x2, . . . be a sequence of vectors in Rn and suppose that

span{x1, . . . , xn} = Rn. (15)

Let ψ be a Young function. Assume that for each y ∈ Sn−1 and each λ > 0, we have

lim
N→∞

∣∣∣∣∣ 1

N

N∑
i=1

ψ

(
|〈xi, y〉|

λ

)
−
∫
Rn
ψ

(
|〈x, y〉|
λ

)
dµ(x)

∣∣∣∣∣ = 0. (16)

Let TN = TN(x1, . . . , xN) be the n×N matrix with columns x1, . . . , xN . Then

Zψ(µ) = lim
N→∞

TNB
◦
ψ/N . (17)

Proof. It will be shown that for each y ∈ Sn−1, we have pointwise convergence of support
functions

lim
N→∞

h(TNB
◦
ψ/N , y) = h(Zψ(µ), y). (18)

This is sufficient as pointwise convergence implies uniform convergence (as noted in the proof
of Corollary 5.4)

Fix y ∈ Sn−1. For simplicity of notation, for each N > n, let gN : (0,∞) → (0,∞) be
defined by

gN(λ) :=
1

N

N∑
i=1

ψ

(
|〈xi, y〉|

λ

)
.

By (15), there exists i ∈ {1, . . . , n} such that 〈xi, y〉 6= 0, hence gN is strictly positive.
Consider also g : (0,∞)→ (0,∞) defined by

g(λ) :=

∫
Rn
ψ

(
|〈x, y〉|
λ

)
dµ(x).
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Since ψ is convex and strictly increasing, g and gN are continuous and strictly decreasing.
Let us also set

λ(N) := h(TNB
◦
ψ/N , y) = inf{λ > 0 : gN(λ) 6 1}

and
λ0 := h(Zψ(µ), y) = inf{λ > 0 : g(λ) 6 1}.

Suppose towards a contradiction that (18) is false. Then there exists ε0 > 0 and a
subsequence (N(j))∞j=1 ⊂ N such that either

(i) λ(Nj) > λ0 + ε0 for each j = 1, 2, . . ., or

(ii) λ(Nj) 6 λ0 − ε0 for each j = 1, 2, . . ..

Suppose first that (i) holds. Set
λ∗ := inf

j
λ(N(j))

so that
λ∗ > λ0 + ε0. (19)

Let η > 0. For each j = 1, 2, . . ., by definition of λ(N(j)) and the fact that gN(j) is
decreasing, we have

1 < gNj(λ(Nj)− η) 6 gNj(λ∗ − η).

Thus by (16),

1 6 lim
j→∞

gNj(λ∗ − η) = g(λ∗ − η)

As η > 0 was arbitrary, and g is continuous, we have 1 6 g(λ∗). If 1 < g(λ∗), then λ∗ < λ0,
contradicting (19). On the other hand, if 1 = g(λ∗), then as g is a strictly decreasing
continuous function, we have λ∗ = λ0, contradicting (19).

Suppose now that (ii) holds. Set

λ∗ := sup
j
λ(N(j))

so that
λ∗ 6 λ0 − ε0. (20)

Let η > 0. For each j = 1, 2, . . ., by the definition of λ(N(j)) and the fact that gNj is
decreasing, we have

gNj(λ
∗ + η) 6 gNj(λ(Nj) + η) 6 1.
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Thus by (16),

g(λ∗ + η) = lim
j→∞

gNj(λ
∗ + η) 6 1.

Thus λ0 6 λ∗ + η. As η > 0 was arbitrary, we in fact have λ0 6 λ∗, contradicting (20).

Proof of Theorem 1.2. By standard approximation arguments, we can assume that µ is com-
pactly supported, say

supp(µ) ⊂ RBn
2 .

Let X1, X2, . . . be independent random vectors distributed according to µ. Let TN =
TN(X1, . . . , XN) be the matrix with columns X1, . . . , XN . Set

λ :=
R

ψ−1(1)

and observe that for any N and for any y ∈ Sn−1,

1

N

N∑
i=1

ψ

(
|〈Xi, y〉|

λ

)
6

1

N

N∑
i=1

ψ(ψ−1(1)) 6 1,

hence
h(TNB

◦
ψ/N , y) =

∥∥T tNy∥∥Bψ/N 6 λ.

Thus for any N , we have
TNB

◦
ψ/N ⊂ λBn

2 . (21)

This shows that (5.1) in Corollary 5.1 is satisfied. On the other hand, by the Strong Law of
Large Numbers, the Xi’s satisfy the assumption (16) in Lemma 5.6 almost surely. Hence, in
the Hausdorff metric,

Zψ(µ) = lim
N→∞

TNB
◦
ψ/N (a.s.),

and Corollary 5.1 applies.
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