
Low M �-estimates on 
oordinatesubspa
esA. Giannopoulos and V.D. MilmanAbstra
tLet K be a symmetri
 
onvex body in Rn . It is well-known that for every� 2 (0; 1) there exists a subspa
e F of Rn with dimF = [(1� �)n℄ su
h that(�) PF (K) � 
p�MK Dn \ F;where PF denotes the orthogonal proje
tion onto F . Consider a �xed 
o-ordinate system in Rn . We study the question whether an analogue of (�)
an be obtained when one is restri
ted to 
hoose F among the 
oordinatesubspa
es R� ; � � f1; : : : ; ng, with j�j = [(1��)n℄. We prove several \
oor-dinate versions" of (�) in terms of the 
otype-2 
onstant, of the volume ratioand other parameters of K. The basi
 sour
e of our estimates is an exa
t
oordinate analogue of (�) in the ellipsoidal 
ase. Appli
ations to the 
om-putation of the number of latti
e points inside a 
onvex body are 
onsideredthroughout the paper.1 Introdu
tionNotation. Our setting is Rn equipped with an inner produ
t h:; :i and the asso
iatedEu
lidean norm de�ned by jxj = hx; xi1=2; x 2 Rn . We denote the Eu
lidean unitball and the unit sphere by Dn and Sn�1 respe
tively, and we write � for therotationally invariant probability measure on Sn�1.Let K be a symmetri
 
onvex body in Rn . Then, K indu
es in a natural waya norm k:kK on Rn . In what follows we shall denote by XK the normed spa
e(Rn ; k:kK). As usual, Ko = fy 2 Rn : hy; xi � 1 for every x 2 Kg is the polar bodyof K, and XKo = (Rn ; k:kKo) is the dual spa
e of XK .Finally, we 
onsider the integral parametersM =MK = �ZSn�1 kxk2K �(dx)�1=2 ; M� =MKo = �ZSn�1 kxk2Ko �(dx)�1=2 ;1



whi
h are up to a 
onstant the mean widths of Ko and K respe
tively.Results. The following inequality of the se
ond named author plays an impor-tant role in developing a proportional theory of high-dimensional 
onvex bodies:Theorem A (Low M�-estimate). There exists a fun
tion f : (0; 1) ! R+ su
hthat for every symmetri
 
onvex body K in Rn and for every � 2 (0; 1) one 
an �nda subspa
e F of Rn with dimF = [(1� �)n℄ satisfying(1:1) kxkK � f(�)MKo jxj ; x 2 F:Theorem A was originally proved in [M1℄ and a se
ond proof using the isoperi-metri
 inequality on Sn�1 was given in [M2℄ where it was shown that (1.1) holdswith f(�) � 
� for some absolute 
onstant 
 > 0 (and with an estimate f(�) �� + o(1 � �) as � ! 1�). This was later improved to f(�) � 
p� in [PT℄, see also[M3℄ for a di�erent proof with this best possible p�-dependen
e. Finally, it wasproved in [Go℄ that one 
an have(1:2) f(�) � p�(1 +O( 1�n )):Moreover, if we �x some � 2 (0; 1) and 
onsider the Grassmannian manifoldGn;k of all k-dimensional subspa
es of Rn , where k = k(�; n) = [(1��)n℄, equippedwith the Haar probability measure �n;k, then (1.1) holds true with f(�) � 
p� forall subspa
es F in a subset An;k of Gn;k whi
h is of almost full measure �n;k(An;k)as n!1.Inter
hanging the roles of K and Ko, we may equivalently read Theorem A inthe following geometri
 form:(1:3) PF (K) � 
p�MK Dn \ F;where PF denotes the orthogonal proje
tion onto F . In this paper we will follow thetradition and 
ontinue 
alling an in
lusion of the type (1.3) a \low M�-estimate"(for Ko).Among other appli
ations of (1.3), let us mention the quotient of subspa
etheorem and the reverse Santal�o inequality [M1℄, [BM℄.Let fe1; : : : ; eng be an arbitrary but �xed orthonormal basis of Rn with respe
tto h:; :i. For a subset � � f1; : : : ; ng we naturally de�ne the 
oordinate subspa
eR� = fx 2 Rn : hx; eji = 0 if j =2 �g. We write D� for Dn\R� and Q� for the unit
ube Qn \ R� = [�1; 1℄� in R� .Our purpose is to dis
uss \low M�-estimates" in the form (1.3) when one isrestri
ted to 
hoose F among the 
oordinate subspa
es of Rn of a 
ertain dimensionm proportional to n. 2



In Se
tion 2 we study the 
ase of an ellipsoid E in Rn . It turns out that for anyorthonormal basis of Rn one has results analogous to (1.3) with almost the samep�-dependen
e on the parameter �:Theorem B (Coordinate low M�-estimate for ellipsoids). Let E be an ellipsoid inRn and � 2 (0; 1). Then, there exists � � f1; : : : ; ng; j�j � (1� �)n, withP�(E) � 
p�log1=2( 2� )ME D�;where P� denotes the orthogonal proje
tion onto R� , and 
 > 0 is an absolute
onstant.It is perhaps surprising that this type of geometri
 result about ellipsoids isnew and non-trivial. Note that our investigation of these questions was startedfrom a simpler fa
t of the same nature about a spe
ial 
lass of ellipsoids, whi
h wasdis
overed in [Gi℄.It 
an be 
he
ked that Theorem B is optimal apart from the logarithmi
 term(see Remark 2.5). A result of the same type 
an be proved for an ellipsoid E ofsmaller but suÆ
iently large dimension living in an arbitrary subspa
e F of Rn(Theorem 2.3). We also 
onsider the 
orresponding problem for se
tions (insteadof proje
tions) of E with 
oordinate subspa
es (Theorem 2.4).Simple examples show that one 
annot a
hieve the same strong estimate in fullgenerality: for an arbitrary symmetri
 
onvex bodyK and an arbitrary orthonormalbasis in Rn . Consider e.g the 
ase of the unit 
ube Qn and the standard basis ofRn : observe that MQn ' plogn=n, while the radius of the largest Eu
lidean ball
ontained in any 
oordinate proje
tion of Qn is 1. In Se
tion 3 we give a generallow M�-estimate in terms of the 
otype-2 
onstant CK of XK :Theorem C (M�-estimate in terms of CK). For an arbitrary symmetri
 
onvexbody K in Rn and for any � 2 (0; 1), one 
an �nd � � f1; : : : ; ng, j�j � (1 � �)n,satisfying P�(K) � 
1�log2( 2� )h(CK)MK D� ;where h(y) = y log 2y; y � 1, and 
1 > 0 is an absolute 
onstant.Let us note that one 
an give a simpler argument, based on the isomorphi
Sauer-Shelah lemma of S.J. Szarek and M. Talagrand and a fa
torization theoremof B. Maurey, whi
h results in a weaker estimate of the same type (we sket
h it inRemark 3.6). We also obtain results of the same nature in whi
h MK is repla
edby various other \volumi
" parameters of K or Ko (see Remark 3.7).In Se
tion 4 we give a general low M�-estimate in terms of the volume ratiovr(K) of K:
3



Theorem D (M�-estimate in terms of vr(K)). Let K be a symmetri
 
onvex bodyin Rn . For every � 2 (0; 1), there exists � � f1; : : : ; ng; j�j � (1� �)n, su
h thatP�(K) � 1[
2vr(K)℄ 
3 log( 2� )� MK D�;where 
2; 
3 > 0 are absolute 
onstants.In Se
tions 5 and 6 we give some further appli
ations of the low M�-estimatefor ellipsoids. We demonstrate an exa
t dependen
e between 
oordinate se
tions ofan ellipsoid and its polar in the spirit of [M5℄. We also apply Theorems 2.2 and 2.4to questions related to the number of integer or \almost integer" points inside anellipsoid.Re
all that the 
otype-2 
onstant CK of XK is the smallest 
onstant � > 0 forwhi
h 0�Ave"j=�1k mXj=1 "jxjk2K1A1=2 � 1� 0� mXj=1 kxjk2K1A1=2holds for all 
hoi
es of m 2 N and fxjgj�m in XK . We refer to [MS℄ and [TJ℄for basi
 fa
ts about type, 
otype and p-summing operators whi
h are used below.The letter 
 will always denote an absolute positive 
onstant, not ne
essarily thesame in all its o

urren
es. By j:j we denote the 
ardinality of a �nite set, volumeof appropriate dimension, and the Eu
lidean norm (this will 
ause no 
onfusion).A
knowledgement: This work was initiated while both authors were visitingthe Institute for Advan
ed Study and was 
ompleted at the Mathemati
al S
ien
esResear
h Institute.2 Ellipsoidal 
aseIn this Se
tion we 
onsider the 
ase of an arbitrary ellipsoid E in Rn . There existsa linear isomorphism T : Rn ! Rn su
h that T (E) = Dn. It will be 
onvenient forus to write E in the form(2:1) E = fx = nXj=1 xjej 2 Rn : j nXj=1 xjuj j � 1g;where uj = T (ej); j = 1; : : : ; n. Writing E in this way, we 
an easily express MEin terms of the uj 's as follows:(2:2) ME = �ZSn�1 kxk2T�1(Dn) �(dx)�1=2 = 0�ZSn�1 j nXj=1 xjuj j2 �(dx)1A1=2
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= 0� 1n nXj=1 juj j21A1=2 :Under the extra assumption that juj j � 1; j = 1; : : : ; n, an estimate for 
oor-dinate proje
tions of E was given in [Gi℄ in 
onne
tion with the problems of theBana
h-Mazur distan
e to the 
ube and the proportional Dvoretzky-Rogers fa
-torization. Its proof 
ombines the stru
ture of the ellipsoid with the well-knownSauer-Shelah lemma and fa
torization arguments analogous to the ones in [BT,Theorem 1.2℄:Lemma 2.1. Let E� = fx =Pj2� xjej 2 R� : jPj2� xjuj j � 1g, where uj 2 Rn ,j 2 � , with juj j � 1. Then, for every � 2 (0; 1) there exists � � �; j�j � (1� �)j� j,su
h that P�(E� ) � 
p� D�;where 
 > 0 is an absolute 
onstant. 2One more step is needed in order to obtain a low M�-estimate for 
oordinatesubspa
es in the ellipsoidal 
ase:Theorem 2.2. Let E be an ellipsoid in Rn . For every � 2 (0; 1) there exists asubset � of f1; : : : ; ng with j�j � (1� �)n, su
h thatP�(E) � 
p�log1=2( 2� )ME D�;where 
 > 0 is an absolute 
onstant.Proof: We write E in the form (2.1) and assume as we may that ME = 1. If� = fj � n : juj j � p2=�g, then by (2.2) we have 2j�j=� �Pj�n juj j2 = n, hen
ej�j � �n=2. Consider the sets of indi
es:�0 = fj � n : juj j � 1g,�k = fj � n : ek�1 < juj j � ekg; k � 1.If k0 = [log(p2=�)℄ + 1, we have jS0�k�k0 �k j � n� j�j � (1� �2 )n.We de�ne �k = �n2 ek=pj�kjPk ekpj�kj for all k � k0 with �k 6= ;, and 
onsider the setI = fk � k0 : �k 6= ; and �k < 1g. For ea
h k 2 I we 
an apply Lemma 2.1 for theellipsoid E�k = E \ R�k to �nd �k � �k with j�kj � (1� �k)j�kj su
h that(2:3) P�k (E�k) � 
1p�kek D�k ;where 
1 is the 
onstant from Lemma 2.1. Finally, we set � = Sk2I �k. Note thatthe above 
hoi
e of �k's implies thatj k0[k=0 �kj � j�j � k0Xk=0 �kj�kj = �n2 ;5



and therefore, j�j � (1� �)n.Suppose that w 2 D�. If we write w =Pk2I wk, where wk = P�k(w), then by(2.3),(2:4) w 2 1
1 Xk2I jwkj ekp�k P�k(E \ R�k ) � 1
1  Xk2I jwkj ekp�k!P�(E);and sin
e w 2 D� was arbitrary, an appli
ation of the Cau
hy-S
hwartz inequalityshows that(2:5) D� � 1
1  Xk2I e2k�k !1=2 P�(E):Inserting our �k's in the sum above, we 
on
lude that(2:6) D� � 1
2p�n  k0Xk=0 ekpj�k j!P�(E):It remains to give an upper bound for the sumPk�k0 ekpj�k j: to this end, notethat for k = 1; : : : ; k0, we have j�kje2k�2 � Pj2�k juj j2 � n and thus ekpj�kj �epn for k = 1; : : : ; k0 whi
h allows a �rst upper bound of the order of k0pn.We partition the set of indi
es f0; 1; : : : ; k0g setting'0 = fk � k0 : j�k j � 1k0 ne2k�2 g,'s = fk � k0 : es�1k0 ne2k�2 < j�kj � esk0 ne2k�2 g; s � 1:If s0 = [log k0℄+ 2, we have S0�s�s0 's = f0; 1; : : : ; k0g, and for every s = 1; : : : ; s0we easily 
he
k thatj'sjes�1k0 ne2k�2 e2k�2 � Xk2's Xj2�k juj j2 � n;whi
h means that(2:7) j'sj � k0es�1 ;for all s � s0. By the de�nition of 's and by (2.7), we 
an now estimate the sumin (2.6) as follows:(2:8) k0Xk=0 ekpj�kj = s0Xs=0 Xk2's ekpj�kj � s0Xs=0 j'sjekes=2pnpk0ek�1� epnpk0 s0Xs=0 k0es�1 es=2 � e2( 1Xs=0 e�s=2)pnpk0 � 
3pk0pn:6



Therefore, (2.6) be
omes(2:9) D� � 1
4p�pk0P�(E);whi
h 
ompletes the proof, sin
e k0 ' log(2=�) and we had assumed that ME = 1.2 We pro
eed to prove an extension of Theorem 2.2 
on
erning the 
ase where Eis an ellipsoid of dimension m < n living in an arbitrary m-dimensional subspa
e Fof Rn . If m is proportional to n, with m=n suÆ
iently 
lose to 1, then we still have
oordinate proje
tions of E of large dimension 
ontaining large Eu
lidean balls.This result will be useful for our treatment of the general 
ase in Se
tions 3 and 4:Theorem 2.3. Let " 2 (0; 1) and F be a subspa
e of Rn with dimF = m � (1�")n.Then, for every non-degenerate ellipsoid E in F and for every � 2 [
1" log( 2" ); 1)there exists � � f1; : : : ; ng with j�j � (1� �)n, su
h thatP�(E) � 
p�2p2 log1=2( 2� )ME D� ;where 
 is the 
onstant from Theorem 2.2 and 
1 = maxf 8
2 ; 1log 2g.Proof: Suppose that an ellipsoid E is given in F . We 
an �nd an orthonormalbasis fw1; : : : ; wmg of F and �1; : : : ; �m > 0 su
h thatE = fx 2 F : mXj=1 hx;wji2�2j � 1g:We extend to an orthonormal basis fwjgj�n of Rn and 
onsider the ellipsoidE0 = fx 2 Rn : mXj=1 hx;wji2�2j + nXj=m+1 hx;wji2b2 � 1g;where b = p"=ME. It is easy to 
he
k that(2:10) M2E0 = 1n 24 mXj=1 1�2j + n�mb2 35 = mM2E + (n�m)M2E="n � 2M2E:Let � 2 [
1" log( 2" ); 1). Applying Theorem 2.2 for E0 and taking into a

ount(2.10), we �nd � � f1; : : : ; ng with j�j � (1� �)n for whi
h(2:11) P�(E0) � 
p�p2 log1=2(2=�)ME D�:7



Sin
e � � 
1" log( 2" ) and the fun
tion �= log( 2� ) is in
reasing on (0,1), one 
aneasily 
he
k that(2:12) 
p�p2 log1=2( 2� ) � 2p":On the other hand, we 
learly have E0 � E+bDn and hen
e P�(E0) � P�(E)+bD�. Combining this with (2.11) and (2.12) we 
on
lude that(2:13) 
p�p2 log1=2( 2� )ME D� � P�(E) + 12 
p�p2 log1=2( 2� )ME D�:Claim: If A and B are 
onvex symmetri
 bodies in R� and A � B + 12A, thenA � 2B.[One easily 
he
ks that A � (1 + 12 + : : : + 12k )B + 12kA and the 
laim followsby letting k !1.℄Our 
laim and (2.13) imply thatP�(E) � 
2p2 p�log1=2( 2� )ME D� ;and the proof of the theorem is 
omplete. 2Our next result 
on
erns 
oordinate se
tions of ellipsoids: again, we are inter-ested in �nding large balls 
ontained in them. Using a result of [AM℄ whi
h wasre
ently improved in [T℄ (in our 
ase ea
h of them works equally well), we 
an givean essentially optimal answer to this question when the dimension of the 
oordinatese
tions is small (of order roughly not ex
eeding pn):Theorem 2.4. Let E be an ellipsoid in Rn . For every m � 
pn we 
an �nd asubset � of f1; : : : ; ng of 
ardinality j�j = m, su
h thatE \ R� � 
0pmME D� :In the statement above, 
 and 
0 are absolute positive 
onstants.Proof: We write E in the form (2.1). As a 
onsequen
e of (2.2), observe that forevery s � n the following identity holds:(2:14) Avej� j=sM2E\R� = ��n� 1s� 1�=�ns�� 1s nXj=1 juj j2 =M2E ;where the average is over all � � f1; : : : ; ng with j� j = s. This means in parti
ularthat for every s � n we 
an �nd � with j� j = s for whi
h ME\R� �ME.8



Assume that m � 
pn is given, where 
 > 0 is an absolute 
onstant to be
hosen. We 
hoose s = [m2
2 ℄ and �nd � with j� j = s and ME\R� � ME. Observethat Ave"j=�1kXj2' "jejkE �pj� jME\R� �pj� jME :Hen
e, if 
 is small enough, the results of [AM℄ or [T℄ allow us to �nd ' � �with j'j = 2m su
h that(2:15) kXj2' "jejkE � 
1pj� jME ;for all ("j)j2' 2 f�1; 1g', where 
1 is a positive absolute 
onstant. In other words,the 
oordinate se
tion of E by R' satis�es(2:16) E \ R' � 1
1pj� jME Q':This means that the identity operator id : `'1 ! XE \ R' has norm kidk �
1pj� jME , and this implies that �2(id) � 
1KGpj� jME whereKG is Grothendie
k's
onstant. Applying Piet
h's fa
torization theorem we 
an �nd (�i)i2'; Pi2' �2i =1:(2:17) kXi2' tieikE � 
1KGpj� jME 0�Xi2' �2i t2i1A1=2for every 
hoi
e of reals (ti)i2'. By Markov's inequality, we �nd �1 � ', j�1j �j'j=2 � m, su
h that j�ij � p2pj'j for all i 2 �1. Then, for any (ti)i2�1 we have(2:18) kXi2�1 tieikE � 
1KGpj� jME p2pj'j  Xi2�1 t2i!1=2 :The 
hoi
e of j� j and j'j shows that(2:19) E \ R�1 � 
0pmME D�1 ;for some absolute 
onstant 
0 > 0, and we 
on
lude the proof by 
hoosing any� � �1 of 
ardinality j�j = m. 2Remark 2.5. An iteration of the argument above shows that one 
an extend therange ofm's for whi
h Theorem 2.4 holds to e.g the set f1; : : : ; [pn℄g, with some lossin the 
onstant 
0. The dependen
e on m is sharp as it 
an be seen by the followingexample: 
onsider the ellipsoid E = f(tj)j�n 2 Rn : jP tjuj jn+1 � 1g; whereuj = ej + en+1; j = 1; : : : ; n, and fejgj�n+1 is the standard orthonormal basis in9



Rn+1 . Given any � � f1; : : : ; ng with j�j = m, we have that ( tpm ; : : : ; tpm ) 2 E\R�pre
isely when (1 +m)t2 � 1. In parti
ular, we must have jtj � 1pm . This meansthat the largest ball 
ontained in E \ R� 
annot have radius larger than 1pm . Onthe other hand, observe that ME = p2.The same example shows that the estimate in Theorem 2.2 is best possible apartfrom the log1=2( 2� ) term. By Lemma 2.1, this logarithmi
 term 
an be removed ifall the uj 's are of about the same Eu
lidean norm.3 General 
ase: estimate in terms of the 
otype-2
onstantIn this Se
tion we study the general 
ase, that is K is an arbitrary symmetri

onvex body in Rn , and fejgj�n is a �xed orthonormal basis. We shall make useof the maximal volume ellipsoid E of K and of the better information we have for
oordinate proje
tions of ellipsoids. For this purpose we will also need an estimatefor the parametersAm(K) = supf(jK\F j=jE\F j)1=m : dimF = mg; m = 1; : : : ; n.It was proved in [BM℄ that the volume ratio vr(K) = (jKj=jEj)1=n of K isbounded by f(CK) = 
CK [logCK ℄4, with the power of logCK improved to 1 in[MiP℄. A third proof of the same fa
t is given in [M4℄, where it is also shown thatvr(K) � 
h(CK), where h(y) = y log 2y, y � 1, and 
 > 0 is an absolute 
onstant.Our �rst lemma is a modi�
ation of the argument presented in [M4℄ whi
h providesan estimate for Am(K);m � n, in terms of CK :Lemma 3.1. Let K be a symmetri
 
onvex body in Rn , and E be the maximalvolume ellipsoid of K. If F is an m-dimensional subspa
e of Rn , then� jK \ F jjE \ F j�1=m � 
h(pn=mCK);where h(y) = y log 2y, y � 1.Proof: We may 
learly assume that E = Dn. The proof will be based on aniteration s
heme, analogous to the one in [M4℄.We set K0 = K, �0 = n, �0 = n, and for j = 1; 2; : : : we de�ne:(i) �j = log�j�1 = log(j) n, the j-iterated logarithm of n,(ii) �j = �jM(Kj�1\F )o ,(iii) Kj = K \ �jDn.Note that for every j the maximal volume ellipsoid of Kj is Dn. Also, CKj �2CK and d(XKj ; `n2 ) � �j . By Sudakov's inequality [Su℄, [P1℄ the 
overing numberof Kj�1 \ F by �jDn \ F 
an be estimated as follows:N(Kj�1 \ F; �jDn \ F ) = N � exp(
1mM2(Kj�1\F )o=�2j ) = exp(
1m=�2j );10



and sin
e, by Brunn's theorem, jKj�1\(x+�jDn\F )j � jKj�1\�jDn\F j; x 2 F;we have jKj�1 \ F j � N jKj \ F j and hen
e(3:1) jKj�1 \ F j1=m � exp( 
1�2j ) jKj \ F j1=m:By well-known results of [DMT℄, [MP℄, and [P2℄ we have the string of inequal-itiesM(Kj\F )o � 
2r nmMKoj � 
3r nmT2(XKoj ) � 
4r nmCKj log(2d(XKj ; `n2 ))and therefore M(Kj\F )o � 2
4r nmCK log(2�j):It follows that the sequen
e f�jgj�0 satis�es the relation(3:2) �j+1 � 2
4r nmCK�j log(2�j):We stop this pro
edure at the smallest t for whi
h �t < 6
4. Indu
tion and(3.2) show that(3:3) �t � 36
24r nmCK �log(r nmCK) + 6
4� � 
0h(pn=mCK):By (3.1) we see that(3:4) jK \ F j1=m � jKt \ F j1=m exp(
1[ 1�21 + : : :+ 1�2t ℄) � 
00jKt \ F j1=m;sin
eP 1�2j is easily seen to be uniformly bounded. Taking into a

ount (3.3), (3.4)and the Blas
hke-Santal�o inequality we 
on
lude that(3:5) � jK \ F jjDn \ F j�1=m � 
00� jDn \ F jj(Kt \ F )oj�1=m � 
00M(Kt\F )o� 2
4
00r nmCK log(2
0h(pn=mCK)) � 
h(pn=mCK): 2Simple examples (see Remark 3.3) show that one 
annot 
ompareMK and MEeven if CK is small: the only estimate one 
an give is that ME � pnMK , whi
h isa dire
t 
onsequen
e of the fa
t that K � pnE by John's theorem. However, thereexist subspa
es F of Rn of proportional dimension on whi
h we 
an 
ompare MKwith ME\F reasonably well: 11



Lemma 3.2. Let E be the maximal volume ellipsoid of K. For every " 2 (0; 1)there exists a subspa
e F of Rn with dimF = m � (1� ")n su
h thatME\F � 
h(CK) log( 2" )p" MK ;where h(y) = y log 2y; y � 1, and 
 > 0 is an absolute 
onstant.Proof: Let fw1; : : : ; wng be an orthonormal basis of Rn and �1 � : : : � �n > 0su
h that E = fx 2 Rn : nXj=1 hx;wji2�2j � 1g:For k = 1; : : : ; n, set Wk = spanfwk; : : : ; wng. By Lemma 3.1 we have(3:6) � jK \WkjjE \Wkj� 1n�k+1 � 
1h(r nn� k + 1CK):Note that E \Wk � �k(Dn \Wk), and hen
e(3:7) � jK \WkjjE \Wkj� 1n�k+1 � 1�k � jK \Wk jjDn \Wkj� 1n�k+1� 1�kMK\Wk � 1
2�kq nn�k+1MK :Combining (3.6), (3.7) we obtain(3:8) 1�k � 
1
2r nn� k + 1h(r nn� k + 1CK)MK ; k = 1; : : : ; n:Given " 2 (0; 1), let m = [(1� ")n℄ and set Fm = spanfw1; : : : ; wmg. By (3.8)we 
an estimate ME\Fm as follows:(3:9) ME\Fm =  1m mXk=1 1�2k!1=2� 
1
2CKMK " mXk=1 n2m(n� k + 1)2 log2(2r nn� k + 1CK)#1=2� 
1
2CK log(2r nn�mCK)r nn�mMK � 
h(CK) log( 2" )p" MK : 2Remark 3.3. The estimate (3.9) is essentially sharp, even if CK is small: tosee this, 
onsider the 
lass of bodies K = K(a; b; s) = fx 2 Rn : Pj�s jxjja +12



Pj>s jxjjb � 1g, where a; b are positive parameters and s 2 f0; 1; : : : ; n � 1g. Itis 
lear that the ellipsoid of maximal volume in K is E = E(a; b; s) = fx 2 Rn :Pj�s jxjj2a2 +Pj>s jxjj2b2 � 1g. It is also 
lear that both the 
otype-2 
onstant andthe volume ratio of K are uniformly bounded (independently of n; s; a and b).Given " 2 (0; 1), 
hoose b = ap", s = m = (1 � ")n. Then, it is easy to 
he
kthat MK ' pnp"=a, while ME\Fm ' pn=a.Also, we 
an have the ratio ME=MK as 
lose to pn as we like: 
hoose, forexample, s = n� 1 and b = an�1 . Then, MK ' 1=pnb while ME ' 1=b.Combining Theorem 2.3 and Lemma 3.2 we prove our M�-estimate in terms ofthe 
otype-2 
onstant of XK :Theorem 3.4. Let K be a symmetri
 
onvex body in Rn , and XK = (Rn ; k:kK).For every � 2 (0; 1) there exists � � f1; : : : ; ng; j�j � (1� �)n, su
h thatP�(K) � 
�log2( 2� )h(CK)MK D� ;where h(y) = y log 2y; y � 1, and 
 > 0 is an absolute 
onstant.Proof: Let E be the maximal volume ellipsoid ofK, and set " = "(�) = �=
2 log( 2� ),where 
2 > 0 is a 
onstant to be 
hosen. By Lemma 3.2 we 
an �nd a subspa
e Fof Rn with dimF � (1� ")n su
h that(3:10) ME\F � 
3h(CK) log( 2" )p" MK :Observe that if 
2 is large enough, then � � 
1" log( 2" ) where 
1 is the 
onstantin Theorem 2.3. Thus, we 
an apply Theorem 2.3 for E \ F to �nd � � f1; : : : ; ngwith j�j � (1� �)n for whi
h(3:11) P�(E \ F ) � 
p�2p2 log1=2( 2� )ME\F D� :Combining (3.10) with (3.11) we �nish the proof. 2Remark 3.5. It should be noted that the estimate given by Theorem 3.4 is exa
tnot only when CK is small (like e.g in the ellipsoidal 
ase), but in the whole range[1;pn℄ of possible values of CK i.e even if CK is extremely large. This 
an be easilyseen if one 
onsiders the 
ase of Bnp ; p > 2, the unit ball of `np , and the standard
oordinate system in Rn . Fix for example � = 12 . Then, the radius of the largestEu
lidean ball ins
ribed in any [n2 ℄-dimensional 
oordinate proje
tion of Bnp is 1,and the well-known estimates for CBnp and MBnp show that Theorem 3.4 is sharpapart from logarithmi
 terms. We do not know if the \almost linear" dependen
e13



on � whi
h our method provides is optimal. However, the ellipsoidal 
ase showsthat p� dependen
e is the best one might hope for.Remark 3.6. One 
an give a weaker estimate, analogous to the one obtained inTheorem 3.4, using the isomorphi
 Sauer-Shelah lemma of Szarek-Talagrand [ST℄and a fa
torization result of Maurey [Ma℄ (see also [TJ℄). Starting with the bodyK and the orthonormal basis fejgj�n, we have the inequalityAve"j=�1k nXj=1 "jejkK � pnMK ;and therefore, by Markov's inequality we 
an �nd A � f�1; 1gn of 
ardinalityjAj � 2n�1 su
h that kP "jejkK � 2MKpn whenever " = ("1; : : : ; "n) 2 A. If weview A as a set of points in Rn , this means that A � 2MKpnK. On the otherhand, the isomorphi
 Sauer-Shelah lemma shows that for some absolute 
onstant
1 > 0 and for every � 2 (0; 1) there exists � � f1; : : : ; ng, j�j � (1 � �2 )n, with
o(P�(A) � 
1 �2Q�, and hen
eP�(K) � 
1�4MKpn Q�:It follows that if Y = (R�1 ; k:kKo), then id : `�11 ! Y � has norm kidk � 4MKpn
1� ,and Maurey's theorem shows that�2(id) � 
2MKpn� g(Y �);where g(Y �) = CY �p1 + log(CY �). Then, we 
an apply Piet
h's fa
torizationtheorem in the 
ontext of [BT, Theorem 1.2℄ to �nd � � �1 with j�j � (1� �2 )j�1j �(1� �)n for whi
h  Xi2� t2i!1=2 � 
3MKg(Y �)�3=2 kXi2� tieikKois true for all (ti)i2� . Taking polars in R� and using the fa
t that CY � � 
4CKkRadXKk,we 
on
lude that P�(K) � 
�3=2f(K)MK D�;where 
 > 0 is an absolute 
onstant, and f(K) = CKkRadXKkp1 + log(CKkRadXKk).Remark 3.7. One 
an modify the proof of Theorem 3.6 to give analogous estimatesin whi
h MK is repla
ed by other \volumi
" parameters of K or Ko.Consider e.g the sequen
e of volume numbers of Ko(3:12) vs(Ko) = maxf(jPF (Ko)j=jDn \ F j)1=s : dimF = sg;14



where s = 1; : : : ; n. As a 
onsequen
e of the Aleksandrov-Fen
hel inequalities, one
an easily see that fvs(Ko)gs�n is non in
reasing (see [P1℄):(3:13) v1(Ko) � v2(Ko) � : : : � vn(Ko) = v:rad(Ko):Let K be a symmetri
 
onvex body in Rn and let E be the ellipsoid of maximalvolume in K as in Lemma 3.4. Using the inverse Santal�o inequality in (3.6), (3.7)we get(3:14) 1�k � � jDn \Wk jjK \Wkj � 1n�k+1 � jK \WkjjE \Wkj� 1n�k+1� 
� jPWk (Ko)jjDn \Wkj� 1n�k+1 
1h(r nn� k + 1CK)for k = 1; : : : ; n. By the de�nition (3.11) of vn�k+1(Ko) this means that(3:15) 1�k � 
2h(CK)vn�k+1(Ko)r nn� k + 1 log(2r nn� k + 1):Inserting this estimate in (3.9) we obtain:(3:16) M2E\Fm = 1m mXk=1 1�2k � 
22h2(CK) log2( 2nn�m+1)m mXk=1 nn� k + 1v2n�k+1(Ko):The monotoni
ity of volume numbers shows that vn�k+1(Ko) � vn�m+1(Ko); k =1; : : : ;m, and 
ombining with the fa
t thatmXk=1 nn� k + 1 � n log( nn�m )we arrive at(3:17) ME\Fm � 
nm h(CK)vn�m+1(Ko) log3=2( 2nn�m):Set m = [(1� �)n℄. Then, (3.17) 
an be rewritten asME\Fm � 
0h(CK)v[�n℄(Ko) log3=2(2� );and, using Theorem 2.3 exa
tly as in the proof of Theorem 3.4, we 
an �nd � �f1; : : : ; ng with j�j � (1� 
1� log( 2� ))n for whi
h(3:18) P�(K) � 
p�log3=2( 2� )v[�n℄(Ko)h(CK) D�:A similar argument shows that for some � of the same 
ardinality we have(3:19) P�(K) � 
p�w[�n℄(K)log3=2( 2� )h(CK) D�;where ws(K) = minf(jK \ F j=jDn \ F j)1=s : dimF = sg; s = 1; : : : ; n.15



4 General 
ase: estimate in terms of the volumeratioIn this Se
tion we use the volume ratio vr(K) of K instead of the 
otype-2 
onstantof XK as a parameter for our lowM�-estimate. Let E be the maximal volume ellip-soid of K. We start with a lemma whi
h estimates the 
overing number N(K;E) interms of the volume ratio vr(K) = (jKj=jEj)1=n. Our proof is based on Lemma 4.4from [MS2℄, a
tually the argument given there leads to a stronger estimate, but wein
lude a simple proof of what we need here for the sake of 
ompleteness. Re
all thatN(K;L) is the smallest natural number N for whi
h there exist x1; : : : ; xN 2 Rnwith K � Si�N (xi + L):Lemma 4.1. Let K and L be two symmetri
 
onvex bodies in Rn su
h that L � K.Then, N(K;L) � 
n jKjjLj ;where 
 > 0 is an absolute 
onstant.Proof: Consider a set N of points in K su
h that kx� x0kL � 1 for every x; x0 2N; x 6= x0, whi
h has the maximal possible 
ardinality. Observe that the sets23x + L3 ; x 2 N have disjoint interiors and, sin
e L � K, they are all 
ontained inK. We easily dedu
e that(4:1) jN j � 3n jKjjLj :Finally, it is 
lear that K � Sx2N (x+ L), whi
h 
ompletes the proof. 2Suppose that K is any symmetri
 
onvex body in Rn and E is the ellipsoid ofmaximal volume in K. The analogue of Lemma 3.2 in the \volume ratio" formula-tion is the following:Lemma 4.2. Let E be the maximal volume ellipsoid of K. For every " 2 (0; 1)there exists a subspa
e F of Rn with dimF = m � (1� ")n, su
h thatME\F � [
 vr(K)℄1="MK ;where 
 > 0 is an absolute 
onstant.Proof: As in the proof of Lemma 3.2, letE = fx 2 Rn : nXj=1 hx;wji2�2j � 1g;where fw1; : : : ; wng is an orthonormal basis of Rn and �1 � : : : � �n > 0. Fixk 2 f1; : : : ; ng and 
onsider the subspa
e Wk = spanfwk; : : : ; wng. A

ording to16



Lemma 4.1, we 
an �nd x1; : : : ; xN 2 K su
h that N = N(K;E) � [
1vr(K)℄n andK � S(xi +E). Proje
t all the (xi +E)'s onto Wk. Then,(4:2) K \Wk � PWk (K) � [j�N PWk (xj +E) = [j�N(PWk (xi) +E \Wk);and hen
e, N(K \Wk; E \Wk) � N(K;E). Thus, we 
an estimate the ratio of thevolumes of K \Wk and E \Wk using (4.2):(4:3) � jK \WkjjE \Wkj� 1n�k+1 � [N(K;E)℄ 1n�k+1 � [
1vr(K)℄ nn�k+1 :Combining with (3.7) we get(4:4) 1�k � 
2r nn� k + 1 [
1vr(K)℄ nn�k+1MK ; k = 1; : : : ; n:We 
ontinue as in Lemma 3.2: Given any " 2 (0; 1), we 
onsider the �rst m forwhi
h m � (1 � ")n and set Fm = spanfw1; : : : ; wmg. In view of (4.5) we 
an
ompare ME\Fm with MK as follows:(4:5) ME\Fm =  1m mXk=1 1�2k! 12� 
2MK  mXk=1 nm(n� k + 1) [
1vr(K)℄ 2nn�k+1! 12�MK [
3vr(K)℄ nn�m+1r nm log1=2( nn�m);and the lemma follows with the observation that log(1=")1�" ! 1 as "! 1�. 2Remark 4.3. By well-known results of S.J. Szarek and N. Tom
zak-Jaegermann(see [Sz℄, [STJ℄) whi
h were extending previous work of Kashin, if E is the maximalvolume ellipsoid of K, then for every k = 1; : : : ; n � 1 there exist k-dimensionalsubspa
es F of Rn for whi
h E\F � K\F � (
 vr(K)) nn�kE\F , and this obviouslyimplies that ME\F � [
 vr(K)℄ nn�kMK\F . This leads to the same estimate as inLemma 4.2 above, a
tually if E = Dn this is true for all subspa
es F in a subsetA of Gn;k with almost full measure �n;k(A) > 1� 2�n. The argument provided byLemmata 4.1 and 4.2 gives a 
on
rete example of a subspa
e on whi
h the weaker\ME\F and MK\F " 
omparison is true: it 
an be 
hosen as the k-dimensionalsubspa
e whi
h is 
oordinate with respe
t to E and 
orresponds to the k largestsemiaxes of E. If E = Dn, then this weak 
omparison is true for all F 2 Gn;k.Combining Lemma 4.2 with Theorem 2.3 we prove our volume-ratio result:17



Theorem 4.4. Let K be a symmetri
 
onvex body in Rn . For every � 2 (0; 1)there exists � � f1; : : : ; ng; j�j � (1� �)n, su
h thatP�(K) � 1[
1vr(K)℄ 
2 log( 2� )� MK D�;where 
1; 
2 are absolute positive 
onstants.Proof: Let E be the maximal volume ellipsoid of K, and set " = "(�) = �
2 log( 2� ) ,where 
2 > 0 is a 
onstant to be 
hosen. Using Lemma 4.2 we �nd a subspa
e F ofRn with dimF � (1� ")n su
h that(4:6) ME\F � [
4vr(K)℄1="MK :If 
2 is large enough, we easily 
he
k that � � 
1" log( 2" ) where 
1 is the 
onstant inTheorem 2.3. We 
an therefore apply Theorem 2.3 for E \F to �nd � � f1; : : : ; ngwith j�j � (1� �)n, su
h that(4:7) P�(E \ F ) � 
p�2p2 log1=2( 2� )ME\F D� :Combining (4.6) with (4.7) we 
on
lude the proof. 2For 
lasses of spa
es with uniformly bounded volume ratio, Theorem 4.3 givesan optimal answer as long as, say, � � 12 . The estimate obtained \explodes" ifvr(K) is large or if � is needed to be 
lose to 0.5 Linear duality relations for 
oordinate se
tionsof ellipsoidsLetK be a symmetri
 
onvex body in Rn . We introdu
e the integer valued fun
tionst; t
 : R+ ! N de�ned byt(r) = t(K; r) = maxfk � n : there exists a subspa
e Ewith dimE = k; su
h that1r jxj � kxk for every x 2 Egand t
(r) = t
(K; r) = maxfk � n : there exists a 
oordinate subspa
e Ewith dimE = k su
h that 1r jxj � kxk for every x 2 Eg:18



It is easy to see that if K is an ellipsoid in Rn , then t(K; r) + t(Ko; 1r ) � n. In[M5℄ it is proved that for every body K, for every r > 0, and for every � 2 (0; 1),one has a similar duality relation:(5:1) t(K; r) + t(Ko; 1�r ) � (1� �)n� C;where C > 0 is a universal 
onstant. The proof of this fa
t is based on the strongform (1.2) of the low M�-estimate and on the \distan
e lemma": if 1a jxj � kxk �bjxj for every x 2 Rn and if (MK=b)2 + (MKo=a)2 = s > 1, then ab � 1s�1 .In this Se
tion we establish a 
oordinate version of (5.1) in the ellipsoidal 
ase.Our estimate depends on how 
lose the ellipsoid is to being in M-position:De�nition: For a symmetri
 
onvex body K in Rn we denote by �K its volumeradius: �K = (jKj=jDj)1=n. We also write NK for N(K;�KD) and say that K isin MÆ-position if Æ � 1n logNK .Our �rst lemma provides some simple estimates whi
h show that this positionis \stable" under the operations of taking interse
tion or 
onvex hull with a ball:Lemma 5.1. Let K be a symmetri
 
onvex body in Rn , and let r; r1 > 0 be given.De�ne Kr = K \ rD and Kr1 = 
o(K [ r1D). Then,(i) NKr � maxf3nN2K ; 9nNKg.(ii) NKr1 � 5nNK .Proof: (i) From the Brunn-Minkowski inequality it easily follows that jK \ rDj �jK\(x+rD)j; x 2 Rn . This implies that jKj � N(K; rD)jK\rDj or, equivalently,(5:2) �nK � N(K; rD)�nKr :We distinguish two 
ases:(1) If �K < r, then N(K; rD) � NK and, by (5.2), �nK � NK�nKr . It followsthat NKr � N(K;�KrD) � NKN(D; �Kr�K D) � NKN(D; 1NKD) � 3nN2K :(2) If �K > r, then N(K; rD) � N(K;�KD)N(D; r�KD) � NK3n(�Kr )n andhen
e, by (5.2), ( r�Kr )n � 3nNK . It follows thatNKr � N(rD; �KrD) � 3n( r�Kr )n � 9nNK :(ii) We obviously have �Kr1 � maxf�K ; r1g. Also, Kr1 � K + r1D, whi
h givesNKr1 � N(Kr1 ; 2�Kr1D)N(D; 12D) � 5nN(K + r1D; (�K + r1)D) � 5nNK : 2For an arbitrary symmetri
 
onvex body K, one has in general the information�KMK � 1 as a 
onsequen
e of the polar 
oordinates formula for volume. Our19



next lemma provides an \inverse" inequality in terms of the parameters NKo andb = supfkxk : x 2 Sn�1g:Lemma 5.2. Let K be a symmetri
 
onvex body in Rn , and assume that kxk � bjxjfor all x 2 Rn . Then, MK � 
�KN t=nKowhere 
 > 0 is an absolute 
onstant, and t � C( bMK )2.Proof: Using Theorem 6 from [BLM℄ (to be more pre
ise, using an argumentidenti
al to the one given there and the observation that what is really used is theratio b=MK), one 
an �nd orthogonal transformations u1; : : : ; ut 2 O(n) su
h that(5:4) MK2 D � T = 1t tXi=1 ui(Ko) � 2MKD;with t � C( bMK )2, where C > 0 is an absolute 
onstant.On observing that N(T; �KoD) � [(N(Ko; �KoD)℄t = N tKo , we 
an estimateMK by (5.4) as follows:(5:5) MK � 2( jT jjDj )1=n � 2�KoN t=nKo :Finally, the Blas
hke-Santal�o inequality implies that �K�Ko � 1, and hen
e theproof of the Lemma is 
omplete. 2We 
an now pass to the proof of the main result of this se
tion:Theorem 5.3. Let E be an ellipsoid in Rn , and assume that both E and Eo arein MÆ-position. For every r > 0 and every � 2 (0; 1) we havet
(E; r) + t
(Eo; u(�; Æ)r ) � (1� �)n;where u(�; Æ) = 
 log( 2� )p� e 
Æ log2( 2� )� , and 
 > 0 is an absolute 
onstant.Proof: Let r > 0 and � 2 (0; 1) be given. Consider the body Er = E \ rD. Sin
eEr is p2-isomorphi
 to an ellipsoid, one 
an easily 
he
k that Theorem 2.2 holdsfor Er: for every � 2 (0; 1) we 
an �nd � � f1; : : : ; ng with j�j � (1 � �)n su
hthat P�(Eor ) � [g(�)=M(Eor )℄D�, where g(�) = 
p�=2plog(2=�) and 
 is the same
onstant as in Theorem 2.2.We distinguish three 
ases:Case 1: M(Eor )r 2 [g(�); g(1)).In this 
ase, 
onsider any � 2 (�; 1℄ with 1rM(Eor ) < g(�). We 
an �nd �1 �f1; : : : ; ng with j�1j � (1� �)n su
h thatP�1(Eor ) � g(�)M(Eor )D�1 ;20



and it is easy to 
he
k that, for every x 2 R�1 , maxfkxk; 1r jxjg = kxkEr > 1r jxj,whi
h means that 1r jxj � kxk, i.e(5:6) t
(E; r) � (1� �)n:Taking the in�mum of all �'s for whi
h M(Eor )r < g(�), we 
on
lude that (5.6) alsoholds for the solution in � of the equation M(Eor ) = rg(�).Now, 
hoose � 2 (0; 1) su
h that (1��)+(1��) = 1� � , and r1 > 0 satisfyingM((Er)r1)r1 < g(�) (this is always possible sin
e the left hand side is de
reasingin r1 and tends to zero as r1 ! 1). Sin
e (Er)r1 is 2-isomorphi
 to an ellipsoid,we 
an �nd �2 � f1; : : : ; ng, j�2j � (1� �)n, withP�2((Er)r1) � g(�)M((Er)r1)D�2 ;thus maxfr1jxj; kxkEorg = kxk[(Er)r1 ℄o � g(�)M((Er)r1 ) jxj > r1jxj, i.e kxkEo � kxkEor >r1jxj on R�2 , whi
h means that(5:7) t
(Eo; 1r1 ) � (1� �)n:Again, we may take r1 to be the solution of the equation M((Er)r1)r1 = g(�) inr1. Combining (5.6) with (5.7) we obtain(5:8) t
(E; r) + t
(Eo; 1r1 ) � (1� �)n;and it remains to 
ompare r with r1. Let us write W for the body (Er)r1 . By theway W has been 
onstru
ted, it is easily 
he
ked that the following are satis�ed:(i) M(W )r1 = g(�) and M(W o) �M(Eor ) = rg(�).(ii)kxkW � 1r1 jxj and kxkW o � rjxj, x 2 Rn .(iii) N1=nW � 
1N
2=nE and N1=nW o � 
1N
2=nEo , where 
1; 
2 > 0 are absolute
onstants. This is a simple 
onsequen
e of Lemma 5.1, sin
e both W and W o areformed from E and Eo with two su

essive operations of taking interse
tion and
onvex hull with balls.We simply write rr1 = rM(W o) 1r1M(W ) M(W )M(W o)and making use of (i)-(iii) and of Lemma 5.2 we arrive at(5:9) rr1 � 
g(�)g(�)NC=ng2(�)Eo NC=ng2(�)E :21



Note that, at some point, we also used the fa
t that �E�Eo ' 1. Finally, assumingthat both E and Eo are in MÆ-position, we rewrite (5.9) as follows:(5:10) rr1 � 
g(�)g(�)eCÆ=g2(�)g2(�):We have �+ � = 1+ � and with this 
ondition we 
an easily 
he
k that 1g(�)g(�) �
 log( 2� )p� , whi
h 
ompletes the proof in this 
ase.Case 2: M(Eor )r � g(1).We 
hoose r1 > 0 su
h that M((Er)r1)r1 = g(�) and as above we 
on
lude thatt
(Eo; 1r1 ) � (1 � �)n. The estimate for r=r1 is done exa
tly in the same way, theonly di�eren
e being that now r=M(Eor ) � 1=g(1).Case 3: M((Er)o)r < g(�).This is the simplest 
ase sin
e we already have t
(E; r) � (1� �)n. 26 Integer points inside an ellipsoid: some remarksConsider an arbitrary ellipsoid E in Rn . Write E in the form (2.1), so thatPj�n juj j2 = nM2E . Without loss of generality we may assume that the juj j'sare arranged in the in
reasing order, therefore a simple appli
ation of Markov'sinequality shows that(6:1) juj j �r nn� j + 1ME ; j = 1; : : : ; n:Re
all that the j-th su

essive minimum �j(E) of E is de�ned by �j(E) = minf� >0 : dim(span(�E \ Zn)) � jg. Inequality (6.1) gives an estimate on the su

essiveminima of E in terms of ME :Fa
t I: Let E be an ellipsoid in Rn . Then, �j(E) �q nn�j+1ME ; j = 1; : : : ; n. Inparti
ular, if ME � 1 then E 
ontains an integer point di�erent from the origin.Note that if ME > 1 then E may 
ontain no integer points other than theorigin. Consider for example a ball of radius r = 1ME .Let us 
on
entrate on the 
ase ME < 1. If ME < jDnj1=n=2, then we obviouslyhave jEj > 2n and Minkowski's theorem with its relatives start giving estimateson the 
ardinality of the set of integer points in E. We are interested in the rangejDnj1=n=2 < ME < 1. From Fa
t I we know that E 
ontains non-trivial integerpoints, and using ME as a parameter we try to estimate the number of them.Theorem 2.4 
an be useful in this dire
tion:22



Let Dm be the m-dimensional Eu
lidean unit ball, and de�ne d(t;m) = jtDm\Zmj be the 
ardinality of the set of integer points in tDm. A simple lower boundfor d(t;m) 
an be given by 
ounting the points with 
oordinates 0;�1 in tDm:(6:2) d(t;m) � [t2℄Xk=0�nk�2k � � n[t2℄�2[t2℄:By Theorem 2.4, for every m � 
1pn we 
an �nd � � f1; : : : ; ng with j�j = mand E \ R� � 
2pmMED� , where 
1; 
2 > 0 are absolute 
onstants. Assuming thatME < 
2 and using (6.2) we have some non-trivial information: It is 
lear that(6:3) jE \ Znj � maxm fjE \ Z� j : j�j = m � 
1pngThus, we have:Fa
t II: Let E be an ellipsoid in Rn with ME < 
2 < 1. Then,jE \ Znj � maxm fd( 
2pmME ;m) : m � 
1png� maxm f� n[
22=mM2E℄�2[
22=mM2E ℄ : m � 
1png:The question of 
omputation of the number of integer points inside an ellipsoid(or, more generally, inside a symmetri
 
onvex body) in Rn was relaxed in severaldire
tions in [M6℄. One of the questions stated asks for \almost integer" pointsinside E in the following pre
ise sense: for a given � 2 (0; 1), �nd a proje
tion ofE onto some 
oordinate subspa
e R� with j�j � (1� �)n, whi
h 
ontains as manyas possible integer points. Then, E itself will 
ontain many points with [(1 � �)n℄
oordinates whi
h are distin
t [(1� �)n℄-dimensional integers.Our lowM�-estimate for ellipsoids provides an answer to this question in termsof ME . We know that there exists � � f1; : : : ; ng; j�j = [(1� �)n℄, su
h thatP�(E) � 
p�qlog( 2� )ME D� :This, and (6.2), lead to the following:Fa
t III: Let E be an ellipsoid in Rn . For every � 2 (0; 1) there exists � �f1; : : : ; ng with j�j = [(1� �)n℄ for whi
hjP�(E) \ Z� j � d( 
p�qlog( 2� )ME ; [(1� �)n℄)� � [(1� �)n℄[ 
2�log( 2� )M2E ℄�2[ 
2�log( 2� )M2E ℄:Clearly, the results in Se
tions 3 and 4 give analogous estimates for an arbitrarysymmetri
 
onvex body. 23
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