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Abstract

Let µ be an even Borel probability measure on R. For every N > n consider N independent random
vectors ~X1, . . . , ~XN in Rn, with independent coordinates having distribution µ. We establish a sharp
threshold for the product measure µn of the random polytope KN := conv

{
~X1, . . . , ~XN

}
in Rn under the

assumption that the Legendre transform Λ∗µ of the logarithmic moment generating function of µ satisfies
the condition

lim
x↑x∗

− lnµ([x,∞))

Λ∗µ(x)
= 1,

where x∗ = sup {x ∈ R : µ([x,∞)) > 0}. An application is a sharp threshold for the case of the product
measure νnp = ν⊗np , p > 1 with density (2γp)

−n exp(−‖x‖pp), where ‖ · ‖p is the `np -norm and γp =
Γ(1 + 1/p).

1 Introduction

Let µ be an even Borel probability measure on the real line and letX1, . . . , Xn be independent and identically
distributed random variables, defined on some probability space (Ω,F , P ), each with distribution µ, i.e.,
µ(B) := P (Xi ∈ B) for all i 6 n and all B in the Borel σ-algebra B(R) of R. Consider the random vector
~X = (X1, . . . , Xn) and, for a fixed N satisfying N > n, consider N independent copies ~X1, . . . , ~XN of ~X.
The distribution of ~X is µn := µ⊗· · ·⊗µ (n times) and the distribution of ( ~X1, . . . , ~XN ) is µNn := µn⊗· · ·⊗µn
(N times). Our aim is to obtain a sharp threshold for the expected µn-measure of the random polytope

KN := conv
{
~X1, . . . , ~XN

}
.

In order to make the notion of a sharp threshold precise, for any n > 1 and δ ∈
(
0, 1

2

)
we define the upper

threshold

(1.1) %1(µn, δ) = sup{%1 : sup{EµNn [µn(KN )] : N 6 exp(%1n)} 6 δ}

and the lower threshold

(1.2) %2(µn, δ) = inf{%2 : inf{EµNn [µn(KN )] : N > exp(%2n)} > 1− δ}.

Then, we say that {µn}∞n=1 exhibits a sharp threshold if

%(µn, δ) := %2(µn, δ)− %1(µn, δ) −→ 0

as n→∞, for any fixed δ ∈
(
0, 1

2

)
.

A threshold of this form was first established in the classical work of Dyer, Füredi and McDiarmid [10]
for the case of the uniform measure µ on [−1, 1]. We apply the general approach that was proposed in [5] and
obtain an affirmative answer for a general even probability measure µ on R that satisfies some additional
assumptions, which we briefly explain (see Section 2 for more details). We assume that µ is non-degenerate,
i.e. Var(X) > 0. Let

x∗ = x∗(µ) := sup {x ∈ R : µ([x,∞)) > 0}
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be the right endpoint of the support of µ and set Iµ = (−x∗, x∗). Note that since µ is non-degenerate and
even, we have that x∗ > 0. Let

g(t) := E
(
etX
)

:=

∫
R
etx dµ(x), t ∈ R

denote the moment generating function of X, and let Λµ(t) := ln g(t) be its logarithmic moment generating
function. By Hölder’s inequality, Λµ is a convex function on R. Consider the Legendre transform Λ∗µ : Iµ → R
of Λµ; this is the function

Λ∗µ(x) := sup {tx− Λµ(t) : t ∈ R} .

One can show (see Proposition 2.6) that Λ∗µ has finite moments of all orders.
We say that µ is admissible if it is non-degenerate, i.e. Varµ(X) > 0, and satisfies the following

conditions:

(i) There exists r > 0 such that E
(
etX
)
<∞ for all t ∈ (−r, r); in particular, X has finite moments of all

orders.

(ii) One of the following holds: (1) x∗ < +∞ and P (X = x∗) = 0, or (2) x∗ = +∞ and {Λµ <∞} = R, or
(3) x∗ = +∞, {Λµ <∞} is bounded and µ is log-concave.

Finally, we say that µ satisfies the Λ∗-condition if

lim
x↑x∗

− lnµ([x,∞))

Λ∗µ(x)
= 1.

We often express this condition in the form − lnµ([x,∞)) ∼ Λ∗µ(x) as x ↑ x∗, where ‘‘a(x) ∼ b(x) as x→ A"
stands for ‘‘ lim

x→A
a(x)
b(x) = 1". With these definitions, our main result is the following.

Theorem 1.1. Let µ be an admissible even probability measure on R that satisfies the Λ∗-condition. Then,
for any δ ∈

(
0, 1

2

)
and any ε ∈ (0, 1) there exists n0(µ, δ, ε) such that

%1(µn, δ) > (1− ε)Eµ(Λ∗µ) and %2(µn, δ) 6 (1 + ε)Eµ(Λ∗µ)

for every n > n0(µ, δ, ε). In particular, {µn}∞n=1 exhibits a sharp threshold, i.e. lim
n→∞

%(µn, δ) = 0, with

‘‘threshold constant" Eµ(Λ∗µ).

In Section 4 we give an application of Theorem 1.1 to the case of the product p-measure νnp := ν⊗np .
For any p > 1 we denote by νp the probability distribution on R with density (2γp)

−1 exp(−|x|p), where
γp = Γ(1 + 1/p). We show that νp satisfies the Λ∗-condition.

Theorem 1.2. For any p > 1 we have that

lim
x→∞

− ln(νp[x,∞))

Λ∗νp(x)
= 1.

Note that the measure νp is admissible for all 1 6 p < ∞; it satisfies condition (ii-3) if p = 1 and
condition (ii-2) for all 1 < p < ∞. Therefore, Theorem 1.2 implies that if KN is the convex hull of N > n
independent random vectors ~X1, . . . , ~XN with distribution νnp then the expected measure E(νnp )N (νnp (KN ))

exhibits a sharp threshold at N = exp((1± ε)Eνp(Λ∗νp)n); for any δ ∈
(
0, 1

2

)
we have that lim

n→∞
%(νnp , δ) = 0.

We close this introductory section with a brief review of the history of the problem that we study and
related results. A variant of the question, in which µn(KN ) is replaced by the volume of KN , has been
studied in the case where µ is compactly supported. Define

κ = κ(µ) :=
1

2x∗

∫ x∗

−x∗
Λ∗µ(x)dx.
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In [14] the following threshold for the expected volume of KN was established for a large class of compactly
supported distributions µ: For every ε > 0,

(1.3) lim
n→∞

sup
{

(2x∗)−nE(|KN |) : N 6 exp((κ− ε)n)
}

= 0

and

(1.4) lim
n→∞

inf
{

(2x∗)−nE(|KN |) : N > exp((κ+ ε)n)
}

= 1.

This result generalized the work of Dyer, Füredi and McDiarmid [10] who studied the following two cases:

(i) If µ({1}) = µ({−1}) = 1
2 then Λµ(t) = ln(cosh t) and Λ∗µ : (−1, 1)→ R is given by

Λ∗µ(x) = 1
2 (1 + x) ln(1 + x) + 1

2 (1− x) ln(1− x),

and the result holds with κ = ln 2− 1
2 . This is the case of ±1 polytopes.

(ii) If µ is the uniform distribution on [−1, 1], then Λµ(t) = ln(sinh t/t), and the result holds with

κ =

∫ ∞
0

(
1

u
− 1

eu − 1

)2

du.

The generalization from [14] states that if µ is an even, compactly supported, Borel probability measure on
the real line and 0 < κ(µ) < ∞, then (1.3) holds for every ε > 0, and (1.4) holds for every ε > 0 provided
that the distribution µ satisfies the Λ∗-condition.

Further sharp thresholds for the volume of various classes of random polytopes appear in [20] and
[2], [3] where the same question is addressed for a number of cases where ~Xi have rotationally invariant
densities. Exponential in the dimension upper and lower thresholds are obtained in [12] for the case where
~Xi are uniformly distributed in a simplex. General upper and lower thresholds have been obtained by
Chakraborti, Tkocz and Vritsiou in [7] for some general families of distributions; see also [4].

2 Background and auxiliary results

As stated in the introduction, we consider an even Borel probability measure µ on the real line and a random
variable X, on some probability space (Ω,F , P ), with distribution µ. In order to avoid trivialities we assume
that Varµ(X) > 0, and in particular that pµ := max{P (X = x) : x ∈ R} < 1. Recall that µ is even if
µ(−B) = µ(B) for every Borel subset B of R.

For the proof of our main result we have to make a number of additional assumptions on µ. The first
one is that there exists r > 0 such that

(2.1) E
(
etX
)

:=

∫
R
etx dµ(x) <∞

for all t ∈ (−r, r). This assumption ensures that X has finite moments of all orders.
We define x∗ := sup {x ∈ R : µ([x,∞)) > 0} and Iµ := (−x∗, x∗). Note that we may have x∗ = ∞. Our

second assumption is that if x∗ <∞ then

(2.2) P (X = x∗) = µ({x∗}) = 0.

Let g(t) := E
(
etX
)

for t ∈ R and Λµ(t) := ln g(t). One can easily check that Λµ is an even convex
function and Λµ(0) = 0, therefore, Λµ is a non-negative function. The assumption (2.1) implies that the
interval Jµ := {Λµ < ∞} is a non-degenerate symmetric interval, possibly the whole real line. We define
t∗ = sup Jµ. Then, Λµ is C∞ and strictly convex on (−t∗, t∗) (for the first assertion see [21, Section 1.3] or
[13, Section 2]; the strict convexity of Λµ follows from the fact that Λ′µ is strictly increasing on (−t∗, t∗), as
explained below).
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For every t ∈ (−t∗, t∗) we define the probability measure Pt on (Ω,F) by

Pt(A) := E
(
etX−Λµ(t)1A

)
, A ∈ F .

Define also µt(B) := Pt(X ∈ B) for any Borel subset B of R. Since dPt = etX−Λµ(t)dP and Eµ(XketX) <
+∞ for all k > 1 and t ∈ Jµ, we see that µt has finite moments of all orders. Also, differentiating twice Λµ
and taking into account the definition of Pt, we check that

(2.3) Et(X) = Λ′µ(t) and Vart(X) = Λ′′µ(t),

where Et and Vart denote expectation and variance with respect to Pt. Notice that P0 = P and µ0 = µ.
Since µ is non-degenerate we have that µt({c}) 6= 1 for all c ∈ R and t ∈ (−t∗, t∗), which implies that
Λ′′µ(t) > 0 for all t ∈ (−t∗, t∗). It follows that Λ′µ is strictly increasing and since Λ′µ(0) = 0 we conclude that
Λµ is strictly increasing on [0, t∗).

Let m : [0, x∗)→ [0,∞) be defined by

m(x) = − lnµ([x,∞)).

It is clear that m is non-decreasing. Observe that, from Markov’s inequality, for any x ∈ (0, x∗) and any
t > 0, we have E

(
etX
)
> etxµ([x,∞)), and hence,

(2.4) Λµ(t) > tx−m(x).

An important case where (2.1) is satisfied is when µ is log-concave. Recall that a Borel measure µ on R
is called log-concave if µ(λA + (1 − λ)B) > µ(A)λµ(B)1−λ for all compact subsets A and B of R and any
λ ∈ (0, 1). A function f : R → [0,∞) is called log-concave if its support {f > 0} is an interval in R and
the restriction of ln f to it is concave. Any non-degenerate log-concave probability measure µ on R has a
log-concave density f := fµ. Since f has finite positive integral, one can check that there exist constants
A,B > 0 such that f(x) 6 Ae−B|x| for all x ∈ R (see [6, Lemma 2.2.1]). In particular, f has finite moments
of all orders. We refer to [6] for more information on log-concave probability measures.

The next lemma describes the behavior of Λµ at the endpoints of Jµ for a log-concave probability measure
with unbounded support on R .

Lemma 2.1. Let µ be an even log-concave probability measure on R with

x∗ = sup {x ∈ R : µ([x,∞)) > 0} = +∞.

If Jµ is a bounded interval, then Jµ = (−t∗, t∗) for some t∗ > 0 and limt↑t∗ Λµ(t) = +∞.

Proof. Let f denote the density of µ. Since x∗ = +∞, we have that supp(µ) = R, and hence, f can be
written as f = e−q, where q : R→ R is an even convex function. By symmetry, it is enough to consider the
convergence of Λµ(t) for t > 0.

Note that, since q is even and convex on R, we have limx→+∞ q(x) = +∞ and the function u(x) =
q(x)−q(0)

x is increasing on (0,∞). First we observe that we cannot have limx→∞ u(x) = ∞. If this was the
case then we would have limx→∞

q(x)
x =∞, and hence∫ ∞
0

etxf(x)dx =

∫ ∞
0

ex(t−
q(x)
x )dx <∞

for all t > 0, i.e. Λµ(t) <∞ for all t > 0, which is not our case.
Therefore, since u is increasing, there exists t∗ > 0 such that

lim
x→∞

u(x) = lim
x→∞

q(x)− q(0)

x
= t∗.
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Assume that 0 < t < t∗. If ε > 0 satisfies t + ε < t∗ then there exists M > 0 such that u(x) − t > ε for all
x >M and then ∫ ∞

0

etxf(x)dx = e−q(0)

∫ ∞
0

e−x(u(x)−t)dx <∞,

which shows that t ∈ Jµ, and hence (−t∗, t∗) ⊆ Jµ.
On the other hand, if t = t∗ then using the fact that u(x) 6 t∗ for all x > 0 we get∫ ∞

0

et
∗xf(x)dx = e−q(0)

∫ ∞
0

ex(t∗−u(x))dx = +∞.

This shows that Jµ = (−t∗, t∗).
Finally, if we consider a strictly increasing sequence tn → t∗ then by the monotone convergence theorem

we get

eΛµ(tn) =

∫ ∞
0

etnxf(x)dx −→
∫ ∞

0

et
∗xf(x)dx = +∞,

which shows that limt↑t∗ Λµ(t) = +∞.

Definition 2.2. Let µ be an even probability measure on R. We will call µ admissible if it satisfies (2.1) and
(2.2), as well as one of the following conditions:

(i) µ is compactly supported, i.e. x∗ < +∞.

(ii) x∗ = +∞ and {Λµ <∞} = R.

(iii) x∗ = +∞, {Λµ <∞} is bounded and µ is log-concave.

Note that if x∗ < +∞ then {Λµ < ∞} = R. Taking also into account Lemma 2.1 we see that, in all the
cases that we consider, the interval Jµ = {Λµ <∞} is open, i.e. Jµ = (−t∗, t∗) where t∗ = sup Jµ.

The next lemma describes the behavior of Λ′µ for an admissible measure µ. The first case was treated
in [14].

Lemma 2.3. Let µ be an admissible even Borel probability measure on the real line. Then, Λ′µ : Jµ → Iµ is
strictly increasing and surjective. In particular,

lim
t→±t∗

Λ′µ(t) = ±x∗.

Proof. We have already explained that, since (Λ′µ)′(t) = Λ′′µ(t) = Vart(X) > 0, the function Λ′µ is strictly
increasing. Now, we consider the three cases of the lemma separately.

(i) From the inequality −x∗etX 6 XetX 6 x∗etX , which holds with probability 1 for each fixed t, and the
formula Λ′µ(t) = E

(
XetX

)
/E
(
etX
)
, we easily check that Λ′µ(t) ∈ (−x∗, x∗) for every t ∈ R.

It remains to show that Λ′µ is onto Iµ. Let x ∈ (0, x∗) and y ∈ (x, x∗). Since Λµ(t) > ty − m(y) for
all t > 0, we have that Λµ

(
m(y)/(y − x)

)
> xm(y)/(y − x). It follows that if we consider the function

qx(t) := tx − Λµ(t), then qx(0) = 0 and qx
(
m(y)/(y − x)

)
6 0. Since qx is concave and q′x(0) = x > 0,

this shows that qx attains its maximum at some point in the open interval
(
0,m(y)/(y − x)

)
, and hence,

Λ′µ(t) = x for some t in this interval. The same argument applies for all x ∈ (−x∗, 0). Finally, for x = 0 we
have that Λ′µ(0) = x.

(ii) We apply the same argument as in (i).
(iii) Assume that Λ′µ is bounded from above. Then, there exists x > 0 such that Λ′µ(t) < x for all t ∈ Jµ.

We consider the function qx : Jµ → R with qx(t) = tx − Λµ(t). Then, qx is strictly increasing. However,
limt↑t∗ qx(t) = −∞ because limt↑t∗ Λµ(t) = +∞ by Lemma 2.1, which leads to a contradiction.
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Let µ be an admissible even Borel probability measure on the real line. Lemma 2.3 allows us to define
h : Iµ → Jµ by h := (Λ′µ)−1. Observe that h is a strictly increasing C∞ function and

(2.5) h′(x) =
1

Λ′′µ(h(x))
.

Next, consider the Legendre transform of Λµ. This is the function

Λ∗µ(x) := sup {tx− Λµ(t) : t ∈ R} , x ∈ R.

In fact, since tx− Λµ(t) < 0 for t < 0 when x ∈ [0, x∗), we have that Λ∗µ(x) = sup{tx− Λµ(t) : t > 0} in this
case, and similarly Λ∗µ(x) := sup{tx− Λµ(t) : t 6 0} when x ∈ (−x∗, 0].

The basic properties of Λ∗µ are described in the next lemma (for a proof, see e.g. [13, Proposition 2.12]).

Lemma 2.4. Let µ be an admissible even probability measure on R. Then,

(i) Λ∗µ > 0, Λ∗µ(0) = 0 and Λ∗µ(x) =∞ for x ∈ R \ [−x∗, x∗].

(ii) For every x ∈ Iµ we have Λ∗µ(x) = tx− Λµ(t) if and only if Λ′µ(t) = x; hence

Λ∗µ(x) = xh(x)− Λµ(h(x)) for x ∈ Iµ.

(iii) Λ∗µ is a strictly convex C∞ function on Iµ, and

(Λ∗µ)′(x) = h(x).

(iv) Λ∗µ attains its unique minimum on Iµ at x = 0.

(v) Λ∗µ(x) 6 m(x) for all x ∈ [0, x∗); this is a direct consequence of (2.4).

Corollary 2.5. We have that limx↑x∗ Λ∗µ(x) = +∞.

Proof. If x∗ = +∞ then the convexity of Λ∗µ and the fact that (Λ∗µ)′(x) > 0 for all x > 0 (which is a
consequence of Lemma 2.4 (iv) and of the fact that (Λ∗µ)′′ = h′ > 0) imply that limx↑x∗ Λ∗µ(x) = +∞.

Next, assume that x∗ < +∞. Since Λ′µ(t) 6 x∗ for all t, the function t 7→ tx∗ −Λµ(t) is non-decreasing.
Therefore,

Λ∗µ(x∗) = sup
t∈R

[tx∗ − Λµ(t)] = lim
t↑∞

[tx∗ − Λµ(t)].

However,

lim
t↑∞

e−(tx∗−Λµ(t)) = lim
t↑∞

e−tx
∗
g(t) = lim

t↑∞
E
(
et(X−x

∗)
)

= E
(

lim
t↑∞

et(X−x
∗)

)
= P (X = x∗),

the third equality being a consequence of the dominated convergence theorem. It follows that Λ∗µ(x∗) =
− lnP (X = x∗) = +∞. Since Λ∗µ is lower semi-continuous on R as the pointwise supremum of the
continuous functions x 7→ tx− Λµ(t), t ∈ R, it follows that limx↑x∗ Λ∗µ(x) = +∞.

The next result generalizes an observation from [5] which states that Λ∗µ has finite moments of all orders
in the case where µ is absolutely continuous with respect to Lebesgue measure. The more general statement
of the next proposition can be found as an exercise in [9].

Proposition 2.6. Let µ be an even probability measure on R. Then,∫
Iµ

eΛ∗
µ(x)/2dµ(x) 6 4.

In particular, for all p > 1 we have that
∫
Iµ

(Λ∗µ(x))p dµ(x) < +∞.
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Sketch of the proof. We define F (x) = µ((−∞, x]) and for any fixed z > 0 we set α(x) = F (x) − F (z) and
β(x) = exp(I(x)/2) where I(x) = 0 if x 6 0 and I(x) = Λ∗µ(x) if x > 0. Note that α is right continuous and
increasing, and β is increasing. Applying [15, Theorem 21.67 (iv)] we write∫ z

0

β(x)dα(x) +

∫ z

0

α(x−)dβ(x) = α(z)eI(z+)/2 − α(0−)eI(0−)/2,

where, for a function f , we denote f(x+) = lim
y→x+

f(y) and f(x−) = lim
y→x−

f(y). It follows that, for every

0 < z < x∗,∫ z

0

eΛ∗
µ(x)/2dµ(x) =

∫ z

0

β(x)dα(x) = −
∫ z

0

α(x−)dβ(x) + α(z)eI(z+)/2 − α(0−)eI(0−)/2

6
∫ z

0

e−I(x)dβ(x) + 1,

where we have used the fact that −α(x−) = µ([x, z]) 6 e−Λ∗
µ(x) and I(0−) = 0, −α(0−) 6 1. Finally, we

note that ∫ z

0

e−I(x)dβ(x) + 1 =

∫ z

0

β(x)−2dβ(x) + 1 6
∫ ∞

1

t−2dt+ 1 = 2,

because β is strictly increasing and continuous on [0, z] and β(0) = 1. The result follows by symmetry.

We close this section by recalling the Λ∗-condition that was already mentioned in the introduction.

Definition 2.7. Let µ be an admissible even Borel probability measure on the real line. Recall that Λ∗µ(x) 6
m(x) for all x ∈ [0, x∗). We shall say that µ satisfies the Λ∗-condition if

lim
x↑x∗

m(x)

Λ∗µ(x)
= 1.

3 Proof of the main theorem

Let µ be an admissible even Borel probability measure on the real line. Recall that µn = µ ⊗ · · · ⊗ µ (n
times), and hence the support of µn is Iµn = Inµ . The logarithmic Laplace transform of µn is defined by

Λµn(ξ) = ln
(∫

Rn
e〈ξ,z〉dµn(z)

)
, ξ ∈ Rn

and the Cramer transform of µn is the Legendre transform of Λµn , defined by

Λ∗µn(x) = sup
ξ∈Rn

{〈x, ξ〉 − Λµn(ξ)} , x ∈ Rn.

Since µn is a product measure, we can easily check that Λ∗µn(x) =
∑n
i=1 Λ∗µ(xi) for all x = (x1, . . . , xn) ∈ Iµn ,

which implies that ∫
Iµn

eΛ∗
µn

(x)/2dµn(x) =

n∏
i=1

(∫
Iµ

eΛ∗
µ(xi)/2dµ(xi)

)
< +∞.

In particular, for all p > 1 we have that
∫
Iµn

(Λ∗µn(x))p dµn(x) < +∞. We also define the parameter

(3.1) β(µn) =
Varµn(Λ∗µn)

(Eµn(Λ∗µn))2
.
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Since µn = µ⊗ · · · ⊗ µ, we have Varµn(Λ∗µn) = nVarµ(Λ∗µ) and Eµn(Λ∗µ) = nEµ(Λ∗µ). Therefore,

β(µn) =
Varµn(Λ∗µn)

(Eµn(Λ∗µn))2
=
β(µ)

n
,

where β(µ) is a finite positive constant which is independent of n. In particular, β(µn)→ 0 as n→∞.
In order to estimate %i(µn, δ), i = 1, 2, we shall follow the approach of [5]. For every r > 0 we define

Br(µn) := {x ∈ Rn : Λ∗µn(x) 6 r}.

Note that, since Λ∗µn(x) =
∑n
i=1 Λ∗µ(xi) for all x = (x1, . . . , xn) and Λ∗µ(y) increases to +∞ as y ↑ x∗, for

every r > 0 there exists 0 < Mr < x∗ such that Br(µn) ⊆ [−Mr,Mr]
n ⊆ Inµ , and hence Br(µn) is a compact

subset of Inµ .
For any x ∈ Rn we denote by H(x) the set of all half-spaces H of Rn containing x. Then we define

ϕµn(x) = inf{µn(H) : H ∈ H(x)}.

The function ϕµn is called Tukey’s half-space depth. We refer the reader to the survey article of Nagy, Schütt
and Werner [18] for a comprehensive account and references. We start with the upper threshold. Note that
the Λ∗-condition is not required for this result.

Theorem 3.1. Let µ be an even probability measure on R. Then, for any δ ∈
(
0, 1

2

)
there exist c(µ, δ) > 0

and n0(µ, δ) ∈ N such that

%1(µn, δ) >

(
1− c(µ, δ)√

n

)
Eµ(Λ∗µ).

Proof. The standard approach towards an upper threshold is based on the next fact which holds true in
general, for any Borel probability measure on Rn. For every r > 0 and every N > n we have

(3.2) EµNn (µn(KN )) 6 µn(Br(µn)) +N exp(−r).

This estimate appeared originally in [10] and follows from the observation that (by the definition of ϕµn ,
Markov’s inequality and the definition of Λ∗µn ) for every x ∈ Rn we have

(3.3) ϕµn(x) 6 exp(−Λ∗µn(x)).

We use (3.2) in the following way. Let T1 := Eµ(Λ∗µ) and Tn := Eµn(Λ∗µn) = T1n. Then, for all ζ ∈ (0, 1),
from Chebyshev’s inequality we have that

µn({Λ∗µn 6 Tn − ζTn}) 6 µn({|Λ∗µn − Tn| > ζTn}) 6
Eµn |Λ∗µn − Tn|

2

ζ2T 2
n

=
β(µn)

ζ2
=
β(µ)

ζ2n
.

Equivalently,

µn(B(1−ζ)Tn(µn)) 6
β(µ)

ζ2n
.

Let δ ∈
(
0, 1

2

)
. We may find n0(µ, δ) such that if n > n0(µ, δ) then 8β(µ)/n < δ < 1/2. We choose

ζ =
√

2β(µ)/nδ, which implies that

µ(B(1−ζ)Tn(µn)) 6
δ

2
.

From (3.2) we see that

sup{EµNn (µn(KN )) : N 6 e(1−2ζ)Tn} 6 µn(B(1−ζ)Tn(µn)) + e(1−2ζ)Tne−(1−ζ)Tn

6
δ

2
+ e−ζTn 6 δ,
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provided that ζTn > ln(2/δ). Since Tn = T1n, the last condition takes the form T1n > c1 ln(2/δ)
√
δn/β(µ)

and it is certainly satisfied if n > n0(µ), where n0(µ) depends only on β(µ) because
√
δ ln(2/δ) is bounded

on
(
0, 1

2

)
. By the choice of ζ we conclude that

%1(µn, δ) >
(

1−
√

8β(µ)/nδ
)
Eµ(Λ∗µ)

as claimed.

For the proof of the lower threshold we need a basic fact that plays a main role in the proof of all the
lower thresholds that have been obtained so far. For a proof see [14, Lemma 4.1].

Lemma 3.2. For every Borel subset A of Rn we have that

1− µNn (KN ⊇ A) 6

(
N

n

)
pN−nµ + 2

(
N

n

)(
1− inf

x∈A
ϕµn(x)

)N−n
.

where pµ = max{P (X = x) : x ∈ R} < 1. Therefore,

(3.4) EµNn [µn(KN )] > µn(A)

(
1−

(
N

n

)
pN−nµ − 2

(
N

n

)(
1− inf

x∈A
ϕµn(x)

)N−n)
.

We are going to apply Lemma 3.2 with A = B(1+ε)Tn(µn), using Chebyshev’s inequality exactly as in the
proof of Theorem 3.1. From (3.4) it is clear that we will also need a lower bound for infx∈B(1+ε)Tn (µn) ϕµn(x)
which will imply that

2

(
N

n

)(
1− inf

x∈B(1+ε)Tn (µn)
ϕµn(x)

)N−n
= on(1).

The main technical step is to obtain the next inequality.

Theorem 3.3. Let µ be an admissible even probability measure on R that satisfies the Λ∗-condition, i.e.
m(x) ∼ Λ∗µ(x) as x ↑ x∗. Then, for every ζ > 0, there exists n0(µ, ζ) ∈ N, depending only on ζ and µ, such
that for all r > 0 and all n > n0(µ, ζ) we have that

inf
x∈Br(µn)

ϕµn(x) > exp(−(1 + ζ)r − 2ζn).

Proof. Let x ∈ Br(µn) andH1 be a closed half-space with x ∈ ∂H1. There exists v ∈ Rn\{0} such thatH1 =
{y ∈ Rn : 〈v, y − x〉 > 0}. Consider the function q : Br(µn)→ R, q(w) = 〈v, w〉. Since q is continuous and
Br(µn) is compact, q attains its maximum at some point z ∈ Br(µn). Define H = {y ∈ Rn : 〈v, y − z〉 > 0}.
Then, z ∈ ∂(H) and for every w ∈ Br(µn) we have 〈v, w〉 6 〈v, z〉, which shows that ∂(H) supports Br(µn)

at z. Moreover, H ⊆ H1 and hence P ( ~X ∈ H) 6 P ( ~X ∈ H1). This shows that inf{ϕµn(x) : x ∈ Br(µn)}
is attained for some closed half-space H whose bounding hyperplane supports Br(µn). Therefore, for the
proof of the theorem it suffices to show that given ζ > 0 we may find n0(µ, ζ) so that if n > n0(µ, ζ) then

(3.5) P
(
~X ∈ H

)
> exp(−(1 + ζ)r − 2ζn)

for any closed half-space H whose bounding hyperplane supports Br(µn).
Let H be such a half-space. Then, there exists x ∈ ∂(Br(µn)) such that

P
(
~X ∈ H

)
= P

(
n∑
i=1

ti(Xi − xi) > 0

)
,

where ti = h(xi), because the normal vector to H is ∇Λ∗µn(x) and (Λ∗µ)′ = h by Lemma 2.4 (iii). We fix this
x for the rest of the proof. By symmetry and independence we may assume that xi > 0 for all 1 6 i 6 n.
Recall that Λ∗µ(0) = 0 and that µ satisfies the Λ∗-condition: we have m(x) ∼ Λ∗µ(x) as x ↑ x∗. Therefore, we
can find M > τ > 0 with the following properties:
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(i) If 0 6 x 6 τ then 0 6 Λ∗µ(x) 6 ζ.

(ii) If M < x < x∗ then P (X > x) > exp(−Λ∗µ(x)(1 + ζ)).

Set [n] = {1, . . . , n}. We consider the sets of indices

A1 = A1(x) := {i ∈ [n] : xi < τ}
A2 = A2(x) := {i ∈ [n] : τ 6 xi 6M} ,
A3 = A3(x) := {i ∈ [n] : xi > M}

and the probabilities

Pj = Pj(x) := P

∑
i∈Aj

ti(Xi − xi) > 0

 j = 1, 2, 3.

By independence we have that

P
(
~X ∈ H

)
= P

(
n∑
i=1

ti(Xi − xi) > 0

)
> P1P2P3.

We will give lower bounds for P1, P2 and P3 separately.

Lemma 3.4. We have that

P1 > exp

(
−
∑
i∈A1

(Λ∗µ(xi) + ζ)− c1 ln |A1| − c2

)
,

where c1, c2 > 0 depend only on ζ and µ.

Proof. We write

(3.6) P1 = P

(∑
i∈A1

ti(Xi − xi) > 0

)
> P

(∑
i∈A1

ti(Xi − τ) > 0

)
,

and use the following fact (see [14, Lemma 4.3]): For every τ ∈ (0, x∗), there exists c(τ) > 0 depending only
on τ and µ, such that for any k ∈ N and any v1, . . . , vk ∈ R with

∑k
i=1 vi > 0 we have that

P

(
k∑
i=1

vi(Xi − τ) > 0

)
> c(τ) k−3/2 e−kΛ∗

µ(τ).

Combining the above with (3.6) and using the simple bound Λ∗µ(τ) 6 ζ 6 Λ∗µ(x) + ζ for x in [0, τ ], we
conclude the proof of the lemma.

Lemma 3.5. We have that

P3 > exp

(
−(1 + ζ)

∑
i∈A3

Λ∗µ(xi)

)
.

Proof. By independence, we can write

P3 = P

(∑
i∈A3

ti(Xi − xi) > 0

)
>
∏
i∈A3

P (Xi > xi).

By the choice of M we see that
P (Xi > xi) > e−Λ∗

µ(xi)(1+ζ)

for all i ∈ A3, and this immediately gives the lemma.
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Lemma 3.6. There exist c3, c4 > 0 depending only on ζ,M and µ, such that

P

(∑
i∈A2

ti(Xi − xi) > 0

)
> exp

(
−
∑
i∈A2

Λ∗µ(xi)− c3
√
|A2| − c4

)
.

The proof of this estimate requires some preparation. Without loss of generality, we may assume that
A2 = {1, . . . , k} for some k 6 n. Recall that ti = h(xi) for each i, and that this is equivalent to having
xi = Λ′µ(ti) for each i (see Lemma 2.4 (ii)). Define the probability measure Px1,...,xk on (Ω,F), by

Px1,...,xk(A) := E

[
1A · exp

(
k∑
i=1

(tiXi − Λµ(ti))

)]

for A ∈ F . Direct computation shows that, under Px1,...,xk , the random variables t1X1, . . . , tkXk are
independent, with mean, variance and absolute central third moment given by

Ex1,...,xk(tiXi) = tiΛ
′
µ(ti) = tixi,

Ex1,...,xk

(
|ti(Xi − xi)|2

)
= t2iΛ

′′
µ(ti),

Ex1,...,xk

(
|ti(Xi − xi)|3

)
= |ti|3 Eti

(∣∣X − Λ′µ(ti)
∣∣3),

respectively. Set σ2
i := t2iΛ

′′
µ(ti),

s2
k :=

k∑
i=1

Ex1,...,xk

(
|ti(Xi − xi)|2

)
=

k∑
i=1

t2iΛ
′′
µ(ti) =

k∑
i=1

σ2
i

and

Sk :=

k∑
i=1

ti(Xi − xi),

and let Fk : R → R denote the cumulative distribution function of the random variable Sk/sk under the
probability law Px1,...,xk : Fk(x) := Px1,...,xk(Sk 6 xsk) (x ∈ R). Write also νk for the probability measure on
R defined by νk(−∞, x] := Fk(x) (x ∈ R). Notice that Ex1,...,xk(Sk/sk) = 0 and Varx1,...,xk(Sk/sk) = 1.

Lemma 3.7. The following identity holds:

P

(
k∑
i=1

ti(Xi − xi) > 0

)
=

(∫
[0,∞)

e−sku dνk(u)

)
exp

(
−

k∑
i=1

Λ∗µ(xi)

)
.

Proof. By definition of the measure Px1,...,xk , we have that

P

(
k∑
i=1

ti(Xi − xi) > 0

)
= P (Sk > 0) = Ex1,...,xk

[
1[0,∞)(Sk) · exp

(
−

k∑
i=1

(tiXi − Λµ(ti))

)]
.

It follows that

P

(
k∑
i=1

ti(Xi − xi) > 0

)
=

∫
[0,∞)

e−sku dνk(u) · exp

(
k∑
i=1

(Λµ(ti)− tixi)

)
,

and the lemma now follows from Lemma 2.4 (ii).

We will also use the following consequence of the Berry-Esseen theorem (cf. [11], p. 544).
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Lemma 3.8. For any a, b > 0, there exist k0 ∈ N and θ > 0 with the following property: If k > k0, and if
Y1, . . . , Yk are independent random variables with

E(Yi) = 0, σ2
i := E(Y 2

i ) > a, E(|Yi|3) 6 b,

then

P

(
0 6

k∑
i=1

Yi 6 σ

)
> θ,

where σ2 = σ2
1 + · · ·+ σ2

k.

Proof of Lemma 3.6. Consider the random variables Yi := ti(Xi − xi), i ∈ A2 = {1, . . . , k}, which are
independent with respect to Px1,...,xk and satisfy Ex1,...,xk(Yi) = 0 for all 1 6 i 6 k. Set J∗µ = (Λ′µ)−1([τ,M ]).
Since τ 6 xi 6M for all 1 6 i 6 k, we see that

σ2
i = Ex1,...,xk (Y 2

i ) = t2iΛ
′′
µ(ti) > min

t∈J∗
µ

t2Λ′′µ(t) =: a1 > 0

and
Ex1,...,xk (|Yi|3) = |ti|3 Eti

(∣∣X − Λ′µ(ti)
∣∣3) 6 max

t∈J∗
µ

|t|3 Et
(∣∣X − Λ′µ(t)

∣∣3) =: b1 < +∞

for all 1 6 i 6 k. Applying Lemma 3.8 we find θ > 0 and k0 ∈ N such that if k > k0 then

(3.7) Px1,...,xk

(
0 6

k∑
i=1

Yi 6 sk

)
> θ.

Now, we distinguish two cases:
Case 1: Assume that k < k0. Then, working as for A3, we see that

P

(∑
i∈A2

ti(Xi − xi) > 0

)
>
∏
i∈A2

P (Xi > xi) >
∏
i∈A2

P (Xi >M) = e−m(M)k > e−m(M)k0 .

Case 2: Assume that k > k0. From Lemma 3.7 we have

P

(∑
i∈A2

ti(Xi − xi) > 0

)
=

(∫
[0,∞)

e−sku dνk(u)

)
exp

(
−

k∑
i=1

Λ∗µ(xi)

)
(3.8)

> e−skνk([0, 1]) exp

(
−
∑
i∈A2

Λ∗µ(xi)

)
.

From (3.7) we see that

νk([0, 1]) = Px1,...,xk(0 6 Sk 6 sk) = P

(
0 6

k∑
i=1

Yi 6 sk

)
> θ.

Moreover, sk 6 c
√
k. Combining the two cases we get the estimate of Lemma 3.6 for P2.

We can now complete the proof of Theorem 3.3. Collecting the estimates from Lemma 3.4, Lemma 3.5
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and Lemma 3.6, we may write

P

(
n∑
i=1

ti(Xi − xi) > 0

)
>

3∏
j=1

P

∑
i∈Aj

ti(Xi − xi) > 0


> exp

(
−

n∑
i=1

Λ∗µ(xi)

)

× exp

(
−ζ |A1| − c1 ln |A1| − c2 − ζ

∑
i∈A3

Λ∗µ(xi)− c3
√
|A2| − c4

)

> exp

(
−

n∑
i=1

Λ∗µ(xi)− ζ
n∑
i=1

Λ∗µ(xi)− 2ζn

)
,

provided n > n(µ, ζ) for an appropriate n(µ, ζ) ∈ N depending only on ζ and µ. This proves (3.5).

We are now able to provide an upper bound for %2(µn, δ).

Theorem 3.9. Let µ be an admissible even probability measure on R that satisfies the Λ∗-condition, i.e.
m(x) ∼ Λ∗µ(x) as x ↑ x∗. Then, for any δ ∈

(
0, 1

2

)
and ε ∈ (0, 1) we can find n0(µ, δ, ε) such that

%2(µn, δ) 6 (1 + ε)Eµ(Λ∗µ)

for all n > n0(µ, δ, ε).

Proof. Let ε ∈ (0, 1) and define ζ = T1ε/(3T1 + 4). Note that if Tn := Eµn(Λ∗µn) then, as in the proof of
Theorem 3.1, Chebyshev’s inequality implies that

µn({Λ∗µn > Tn + ζTn}) 6 µn({|Λ∗µn − Tn| > ζTn}) 6
β(µ)

ζ2n
.

Since ζ depends only on ε and µ we can find n0(µ, δ, ε) such that

β(µ)

ζ2n
6
δ

2

and hence
µn(B(1+ζ)Tn(µn)) > 1− δ

2

for all n > n0(µ, δ, ε). Assume that N > exp((1 + ε)Tn) = exp((1 + 3ζ)Tn + 4ζn). Applying (3.4) with
A = B(1+ζ)Tn(µn) and using the estimate of Theorem 3.3 we get

(3.9) EµNn [µn(KN )] > µn(B(1+ζ)Tn(µn))

(
1−

(
N

n

)
pN−nµ − 2

(
N

n

)(
1− exp(−(1 + ζ)2Tn − 2ζn)

)N−n)
.

Therefore, taking into account the fact that (1 + ζ)2 < 1 + 3ζ for ζ < 1, we will have that

%2(µn, δ) 6 (1 + ε)T1

if we check that (
N

n

)
pN−nµ + 2

(
N

n

)
(1− exp(−(1 + 3ζ)T1n− 2ζn))

N−n 6
δ

2
.

We first claim that there exists n1(µ, δ) such that(
N

n

)
pN−nµ <

δ

4
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for all n > n1(µ, δ). Indeed, since
(
N
n

)
6 (eN/n)n, it suffices to check that

(3.10) 1 + ln

(
N

n

)
+
N − n
n

ln pµ <
1

n
ln(δ/4).

Set x := N/n. Then, (3.10) is equivalent to

(x− 1) ln(1/pµ)− lnx > 1 +
1

n
ln(4/δ).

The claim follows from the facts that the function on the left-hand side increases to infinity as x→∞, and
x = N/n > exp((1 + 3ζ)T1n+ 4ζn)/n > e4ζn/n→∞ when n→∞.

Next we check that there exists n2(µ, δ, ε) such that

2

(
N

n

)[
1− exp(−(1 + 3ζ)T1n− 2ζn)

]N−n
<
δ

4

for all n > n2(µ, δ, ε). Since 1− y 6 e−y, it suffices to check that

(3.11)
(

2eN

n

)n
exp(−(N − n) exp(−(1 + 3ζ)T1n− 2ζn)) <

δ

4

for all n > n2. Setting x := N/n, we see that this inequality is equivalent to

exp((1 + 3ζ)T1n+ 2ζn) <
x− 1

lnx+ ln(2e) + n−1 ln(4/δ)
.

Since N > exp((1 + 3ζ)T1n+ 4ζn), we easily check that the right-hand side exceeds exp((1 + 3ζ)T1n+ 3ζn)
when n > n2(µ, ζ, δ) = n2(µ, ε, δ), and hence we get (3.11). Combining the above we conclude that

%2(µn, δ) 6 (1 + ε)T1

for all n > n0, where n0 = n0(µ, δ, ε) depends only on µ, δ and ε.

Proof of Theorem 1.1. Let δ ∈
(
0, 1

2

)
and ε ∈ (0, 1). From the estimates of Theorem 3.1 and Theorem 3.9

we see that there exists n0(µ, δ, ε) such that if n > n0 then c(µ,δ)√
n

< ε (where c(µ, δ) is the constant in
Theorem 3.1) and

%1(µn, δ) >

(
1− c(µ, δ)√

n

)
Eµ(Λ∗µ)

as well as
%2(µn, δ) 6 (1 + ε)Eµ(Λ∗µ).

Therefore,
%(µn, δ) 6 2εEµ(Λ∗µ)

for all n > n0. Since ε ∈ (0, 1) was arbitrary, we see that lim
n→∞

%(µn, δ)→ 0, as claimed in Theorem 1.1.

4 Threshold for the p-measures

We write ν for the symmetric exponential distribution on R; thus, ν is the probability measure with density
1
2 exp(−|x|). More generally, for any p > 1 we denote by νp the probability distribution on R with density
(2γp)

−1 exp(−|x|p), where γp = Γ(1 + 1/p). Note that ν1 = ν. The product measure νnp = ν⊗np has density

(2γp)
−n exp(−‖x‖pp), where ‖x‖p = (

∑n
i=1 |xi|p)

1/p is the `np -norm.
Our aim in this section is to show that νp satisfies the Λ∗-condition.
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Theorem 4.1. For any p > 1 we have that − ln(νp[x,∞)) ∼ Λ∗νp(x) as x→∞. In other words,

(4.1) lim
x→+∞

− ln(νp[x,∞))

Λ∗νp(x)
= 1.

Proof of the case p = 1. We start with the case p = 1 which is simple because Λ∗ν can be computed explicitly.
A direct calculation shows that

Λ∗ν(x) =
√

1 + x2 − 1− ln

(√
1 + x2 + 1

2

)
, x ∈ R.

It follows that Λ∗ν(x) ∼ x as x → ∞. On the other hand, ν([x,∞)) = 1
2e
−x for all x > 0, which shows that

− ln(ν([x,∞)) = x+ ln 2, and hence − ln(ν[x,∞)) ∼ x as x→∞. Combining the above we immediately see
that (4.1) is satisfied for p = 1.

For the rest of this section we fix p > 1. Following [1] we say that a non-negative function f : R→ R is
regularly varying of index s ∈ R, and write f ∈ Rs, if lim

x→∞
f(λx)/f(x) = λs for every λ > 0. It is proved in

[1, Theorem 4.12.10] that if f ∈ Rs for some s > 0 then

− ln

(∫ ∞
x

e−f(t)dt

)
∼ f(x)

as x→∞. Let fp(x) = |x|p, x > 0. It is clear that fp ∈ Rp, and hence

− ln(νp[x,∞)) = − ln

(
(2γp)

−1

∫ ∞
x

e−fp(t)dt

)
= ln(2γp)− ln

(∫ ∞
x

e−fp(t)dt

)
∼ fp(x)

as x→∞. This proves the following.

Lemma 4.2. For every p > 1 we have that − ln(νp[x,∞)) ∼ xp as x→∞.

Lemma 4.2 shows that in order to complete the proof of the theorem we have to show that Λ∗νp(x) ∼ xp

as x→∞. Let gp(x) = x2 for 0 6 x < 1 and gp(x) = xp for x > 1. It is shown in [16] that for any p > 1 and
x ∈ R one has

Λ∗νp(x/c) 6 gp(|x|) 6 Λ∗νp(cx)

where c > 1 is an absolute constant.
For the proof of Λ∗νp(x) ∼ xp as x→∞ we shall apply the Laplace method; more precisely, we shall use

the next version of Watson’s lemma (see equation (2.34) in [17, Section 2.2]).

Proposition 4.3. Let S < a < T 6 ∞ and g, h : [S, T ] → R, where g is continuous with a Taylor series in a
neighborhood of a, and h is twice continuously differentiable and has its maximum at a and satisfies h′(a) = 0
and h′′(a) < 0. Assume also that the integral ∫ T

S

g(x)eth(x) dx

converges for large values of t. Then,∫ T

S

g(x)eth(x) dx ∼ g(a)

(
− 2π

th′′(a)

)1/2

eth(a) + eth(a)O(t−3/2)

as t→ +∞.

We apply Proposition 4.3 to get the next asymptotic estimate.
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Lemma 4.4. Let p > 1 and q be the conjugate exponent of p. Then, setting y = tq we have that

I(t) :=

∫ ∞
0

etx−x
p

dx ∼ y
1
p eyh(a)

[(
− 2π

yh′′(a)

)1/2

+O(y−3/2)

]

as t→ +∞, where h(s) = s− sp on [0,∞) and a = p−q/p.

Proof. We set x = λs and t = λp−1. Then,

I(t) = I(λp−1) = λ

∫ ∞
0

eλ
p(s−sp) ds.

Now, set y = λp = tq. Then,

I(t) = y1/p

∫ ∞
0

ey(s−sp)ds.

We have h′(s) = 1 − psp−1, therefore h attains its maximum at a = (1/p)
1
p−1 = p−q/p. Now, applying

Proposition 4.3 with g ≡ 1 we see that∫ ∞
0

eyh(s)ds ∼ eyh(a)

[(
− 2π

yh′′(a)

)1/2

+O(y−3/2)

]
,

and the lemma follows.

We proceed to study the asymptotic behavior of Λνp(t). Recall that

Λνp(t) = ln

(
cp

∫ ∞
−∞

etx−|x|
p

dx

)
,

where cp = (2Γ(1 + 1/p))−1. By the dominated convergence theorem,∫ 0

−∞
etx−|x|

p

dx −→ 0

as t→ +∞. Therefore, from Lemma 4.4,

cp

∫ ∞
−∞

etx−|x|
p

dx ∼ cp
∫ ∞

0

etx−x
p

dx ∼ cpy
1
p eyh(a)

[(
− 2π

yh′′(a)

)1/2

+O(y−3/2)

]
,

where h(s) = s− sp on [0,∞), a = p−q/p and y = tq. Now,

ln

(
cpy

1
p eyh(a)

[(
− 2π

yh′′(a)

)1/2

+O(y−3/2)

])
= ln cp +

1

p
ln y + yh(a) +O(ln y) ∼ yh(a).

It follows that Λνp(t) ∼ yh(a) = (p−q/p − p−q)tq, where q is the conjugate exponent of p. We rewrite this as
follows.

Lemma 4.5. Let p > 1 and q be the conjugate exponent of p. Then,

Λνp(t) ∼ p− 1

pq
tq as t→ +∞.

Lemma 4.5 allows us to determine the asymptotic behavior of Λ∗νp(x) as x → ∞. We need a lemma which
appears in [8] and [19].
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Lemma 4.6. Let q > 1, a > 0 and f : [a,∞) → R be a continuously differentiable function such that f ′ is
increasing on [a,∞) and f(t) ∼ tq as t→ +∞. Then, f ′(t) ∼ qtq−1 as t→ +∞.

Sketch of the proof. Let ε ∈ (0, 1). There exists b > a and η : [b,∞) → R such that |η(t)| 6 ε and
f(t) = tq(1 + η(t)) for all t > b. Since f ′ is increasing, for any s > 0 we have that

sf ′(t) 6
∫ t+s

t

f ′(u) du = f(t+ s)− f(t) =
(
(t+ s)q − tq

)
+
(
(t+ s)qη(t+ s)− tqη(t)

)
6 sq(t+ s)q−1 + 2ε(t+ s)q.

We set s =
√
εt. Then,

f ′(t) 6 qtq−1
(
(1 +

√
ε)q−1 + 2q−1

√
ε(1 +

√
ε)q
)

for all t > b. In the same way we see that

f ′(t) > qtq−1
(
(1−

√
ε)q−1 − 2q−1

√
ε
)

for all t > b/(1−
√
ε), and the lemma follows.

We also need the next simple lemma.

Lemma 4.7. Let a > 0 and f : [a,+∞) → R be a strictly increasing function. Assume that for some C > 0
and p > 1 we have f(x) ∼ Cxp as x → +∞, and that lim

y→+∞
f−1(y) = +∞. Then, f−1(y) ∼ (y/C)1/p as

y → +∞.

Proof. We may write f(x) = Cxpg(x) for some function g : [a,+∞) → R with lim
x→+∞

g(x) = 1. Then, for

sufficiently large x we have that x =
(
f(x)
C · 1

g(x)

)1/p

. It follows that, for sufficiently large y,

f−1(y) =

(
y

C

1

g(f−1(y))

)1/p

,

and the lemma follows because lim
y→+∞

f−1(y) = +∞ and lim
x→+∞

g(x) = 1.

Proof of the case p > 1 in Theorem 4.1. Now, we can show that

(4.2) Λ∗νp(x) ∼ xp

as x → ∞. We know that Λ∗νp(x) = xh(x) − Λνp(h(x)) where h(x) = (Λ′νp)−1(x). From Lemma 4.5 and
Lemma 4.6 we see that Λ′νp(t) ∼ p−(q−1)tq−1, and Lemma 4.7 implies that

h(x) ∼ px
1
q−1 = pxp−1,

using also the fact that (p− 1)(q − 1) = 1. It follows that

Λ∗νp(x)

xp
=
h(x)

xp−1
−

Λνp(h(x))

xp
=
h(x)

xp−1
−

Λνp(h(x))

h(x)
p
p−1

(
h(x)

1
p−1

x

)p
−→ p− p− 1

pq
· pq = 1

as x→∞. This proves (4.2) and completes the proof of the theorem.
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[18] S. Nagy, C. Schütt and E. M. Werner, Halfspace depth and floating body, Stat. Surv. 13 (2019), 52–118.

[19] F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics. Academic Press
[Harcourt Brace Jovanovich, Publishers], New York-London, 1974. xvi+572 pp.

[20] P. Pivovarov, Volume thresholds for Gaussian and spherical random polytopes and their duals, Studia Math. 183
(2007), no. 1, 15–34.

[21] D. Stroock, Probability Theory. An Analytic View, Cambridge Univ. Press, Cambridge, 1993.

Keywords: threshold, random polytopes, convex bodies, half-space depth, Cramer transform.
2020 MSC: Primary 60D05; Secondary 60E15, 62H05, 52A22, 52A23.

Minas Pafis: Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupo-
lis 157-84, Athens, Greece.
E-mail: mipafis@math.uoa.gr

18


	Introduction
	Background and auxiliary results
	Proof of the main theorem
	Threshold for the p-measures

