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Abstract

Let µ be a log-concave probability measure on Rn and for any N > n consider the random
polytope KN = conv{X1, . . . , XN}, where X1, X2, . . . are independent random points in Rn
distributed according to µ. We study the question if there exists a threshold for the expected
measure of KN . Our approach is based on the Cramer transform Λ∗µ of µ. We examine the
existence of moments of all orders for Λ∗µ and establish, under some conditions, a sharp threshold
for the expectation EµN [µ(KN )] of the measure of KN : it is close to 0 if lnN � Eµ(Λ∗µ) and close
to 1 if lnN � Eµ(Λ∗µ). The main condition is that the parameter β(µ) = Varµ(Λ∗µ)/(Eµ(Λ∗µ))2

should be small.

1 Introduction

We study the question how to obtain a threshold for the expected measure of a random polytope defined as
the convex hull of independent random points with a log-concave distribution. The general formulation of the
problem is the following. Given a log-concave probability measure µ on Rn, let X1, X2, . . . be independent
random points in Rn distributed according to µ and for any N > n define the random polytope

KN = conv{X1, . . . , XN}.

Then, consider the expectation EµN [µ(KN )] of the measure of KN , where µN = µ⊗ · · · ⊗µ (N times). This
is an affinely invariant quantity, so we may assume that µ is centered, i.e. the barycenter of µ is at the origin.

Given δ ∈ (0, 1) we say that µ satisfies a “δ-upper threshold” with constant %1 if

(1.1) sup{EµN [µ(KN )] : N 6 exp(%1n)} 6 δ

and that µ satisfies a “δ-lower threshold” with constant %2 if

(1.2) inf{EµN [µ(KN )] : N > exp(%2n)} > 1− δ.

Then, we define %1(µ, δ) = sup{%1 : (1.1) holds true} and %2(µ, δ) = inf{%2 : (1.2) holds true}. Our main
goal is to obtain upper bounds for the difference

%(µ, δ) := %2(µ, δ)− %1(µ, δ)

for any fixed δ ∈
(
0, 1

2

)
.

One may also consider a sequence {µn}∞n=1 of log-concave probability measures µn on Rn. Then, we
say that {µn}∞n=1 exhibits a “sharp threshold” if there exists a sequence {δn}∞n=1 of positive reals such that
δn → 0 and %(µn, δn)→ 0 as n→∞. This terminology may be used to describe a variety of results that have
been obtained for specific sequences of measures (in most cases, product measures or rotationally invariant
measures). In Section 2 we provide a non-exhaustive list of contributions to this topic; starting with the
classical work [14] of Dyer, Füredi and McDiarmid, which concerns the uniform measure on the cube, most
of them establish a sharp threshold.
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Our aim is to describe a general approach to the problem, working with an arbitrary log-concave prob-
ability measure µ on Rn. Our approach is based on the Cramer transform of µ. Recall that the logarithmic
Laplace transform of µ is defined by

Λµ(ξ) = ln
(∫

Rn
e〈ξ,z〉dµ(z)

)
, ξ ∈ Rn

and the Cramer transform of µ is the Legendre transform of Λµ, defined by

Λ∗µ(x) = sup
ξ∈Rn

{〈x, ξ〉 − Λµ(ξ)} , x ∈ Rn.

For every t > 0 we set
Bt(µ) := {x ∈ Rn : Λ∗µ(x) 6 t}

and for any x ∈ Rn we denote by H(x) the set of all half-spaces H of Rn containing x. Then we consider
the function ϕµ, called Tukey’s half-space depth, defined by

ϕµ(x) = inf{µ(H) : H ∈ H(x)}.

We refer the reader to the survey article of Nagy, Schütt and Werner [23] for an extensive and comprehensive
survey on Tukey’s half-space depth, with an emphasis on its connections with convex geometry, and many
references. From the definition of Λ∗µ one can easily check that for every x ∈ Rn we have ϕµ(x) 6 exp(−Λ∗µ(x))
(see Lemma 3.1 in Section 3 below). In particular, for any t > 0 and for all x /∈ Bt(µ) we have that
ϕµ(x) 6 exp(−t). A main idea, which appears in all the previous works on this topic, is to show that ϕµ is
almost constant on the boundary ∂(Bt(µ)) of Bt(µ). Our first main result shows that this is true, in general,
if µ = µK is the uniform measure on a centered convex body of volume 1 in Rn.

Theorem 1.1. Let K be a centered convex body of volume 1 in Rn. Then, for every t > 0 we have that

inf{ϕµK (x) : x ∈ Bt(µK)} > 1

10
exp(−t− 2

√
n).

This implies that
ωµK (x)− 5

√
n 6 Λ∗(x) 6 ωµK (x)

for every x ∈ Rn, where ωµK (x) = ln
(

1
ϕµK (x)

)
.

Theorem 1.1 may be viewed as a version of Cramér’s theorem (see [13]) for random vectors uniformly
distributed in convex bodies. We present the proof in Section 3. It exploits techniques from the theory of
large deviations and a theorem of Nguyen [25] (proved independently by Wang [31]; see also [16]) which is
exactly the ingredient that forces us to consider only uniform measures on convex bodies. It seems harder
to prove, if true, an analogous estimate for any centered log-concave probability measure µ on Rn; this is a
basic question that our work leaves open.

The second step in our approach is to consider, for any centered log-concave probability measure µ on
Rn, the parameter

(1.3) β(µ) =
Varµ(Λ∗µ)

(Eµ(Λ∗µ))2

provided that

‖Λ∗µ‖L2(µ) =
(
Eµ
(
(Λ∗µ)2

))1/2
<∞.

Roughly speaking, the plan is the following: provided that ϕµ is “almost constant” on ∂(Bt(µ)) for all t > 0
and that β(µ) = on(1), one can establish a “sharp threshold” for the expected measure of KN with

%2 ≈ %1 ≈ ‖Λ∗µ‖L1(µ) = Eµ(Λ∗µ).
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We make these ideas more precise in Section 5 where we also illustrate them with a number of examples.
Note that it is not clear in advance that Λ∗µ has bounded second or higher order moments, which is necessary
so that β(µ) would be well-defined. We study this question in Section 4 where we obtain an affirmative
answer in the case of the uniform measure on a convex body. In fact we cover the more general case of
κ-concave probability measures, κ ∈ (0, 1/n], which are supported on a centered convex body.

Theorem 1.2. Let K be a centered convex body of volume 1 in Rn. Let κ ∈ (0, 1/n] and let µ be a centered
κ-concave probability measure with supp(µ) = K. Then,∫

Rn
e
κΛ∗µ(x)

2 dµ(x) <∞.

In particular, for all p > 1 we have that Eµ
(
(Λ∗µ(x))p

)
<∞.

The method of proof of Theorem 1.2 gives in fact reasonable upper bounds for ‖Λ∗µ‖Lp(µ). In particular,
if we assume that µ = µK is the uniform measure on a centered convex body then we obtain a sharp two
sided estimate for the most interesting case where p = 1 or 2.

Theorem 1.3. Let K be a centered convex body of volume 1 in Rn, n > 2. Then,

c1n/L
2
µK 6 ‖Λ∗µK‖L1(µK) 6 ‖Λ∗µK‖L2(µK) 6 c2n lnn,

where LµK is the isotropic constant of the uniform measure µK on K and c1, c2 > 0 are absolute constants.

The left-hand side inequality of Theorem 1.3 follows easily from one of the main results in [9]. Both the
lower and the upper bound are of optimal order with respect to the dimension. This can be seen e.g. from
the example of the uniform measure on the cube or the Euclidean ball (see Section 5), respectively.

Besides Theorem 1.2, we show in Section 4 that Λ∗µ has finite moments of all orders in the following
cases:

(i) If µ is a centered probability measure on R which is absolutely continuous with respect to Lebesgue
measure or a product of such measures.

(ii) If µ is a centered log-concave probability measure on Rn and there exists a function g : [1,∞)→ [1,∞)
with limt→∞ g(t)/ ln(t + 1) = +∞ such that Z+

t (µ) ⊇ g(t)Z+
2 (µ) for all t > 2, where {Z+

t (µ)}t>1 is
the family of one-sided Lt-centroid bodies of µ.

Again, it seems harder to prove, if true, an analogous result for any centered log-concave probability measure
µ on Rn; this is a second basic question that our work leaves open.

In Section 5 we describe the approach to the main problem and show how one can use the previous
results to obtain bounds for %(µ, δ). We also clarify the role of the parameter β(µ). One would hope that
β(µ) is small as the dimension increases, e.g. β(µ) 6 c/

√
n. If so, then the next general result provides

satisfactory lower bounds for %1(µ, δ).

Theorem 1.4. Let µ be a centered log-concave probability measure on Rn. Assume that β(µ) < 1/8 and
8β(µ) < δ < 1. If n/L2

µ > c2 ln(2/δ)
√
δ/β(µ) where Lµ is the isotropic constant of µ, then

%1(µ, δ) >
(

1−
√

8β(µ)/δ
) Eµ(Λ∗µ)

n
.

We are able to give satisfactory upper bounds for %2(µ, δ) in the case where µ = µK is the uniform
measure on a centered convex body K of volume 1 in Rn.

Theorem 1.5. Let K be a centered convex body of volume 1 in Rn. Let β(µK) < 1/2 and 2β(µK) < δ < 1.
If n/L2

µK > c2 ln(2/δ)
√
δ/β(µK) then

%2(µK , δ) 6
(

1 +
√

8β(µK)/δ
) EµK (Λ∗µK )

n
.
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Combining these two results we see that, provided that β(µK) is small compared to a fixed δ ∈ (0, 1),
we have a threshold of the order

%(µK , δ) 6
c

n

√
VarµK (Λ∗µK )

δ
.

The above discussion leaves open a third basic question: to estimate

βn := sup{β(µ) : µ is a centered log-concave probability measure on Rn}.

We illustrate the method that we develop in this work with a number of examples. We consider first
the standard examples of the uniform measure on the unit cube and the Gaussian measure. As a direct
consequence of our results, in both cases we obtain a bound %(µ, δ) 6 c(δ)/

√
n for the threshold, where

c(δ) > 0 is a constant depending on δ. Finally, we examine the case of the uniform measure on the Euclidean
ball Dn of volume 1 in Rn and obtain the following sharp threshold.

Theorem 1.6. Let Dn be the centered Euclidean ball of volume 1 in Rn. Then, the sequence µn := µDn
exhibits a sharp threshold with %(µn, δ) 6 c√

δn
and e.g. in the case where n is even we have that

Eµn(Λ∗µn) =
(n+ 1)

2
Hn

2
+O(

√
n)

as n→∞, where Hm =
∑m
k=1

1
k .

2 Notation, background information and related literature

In this section we introduce notation and terminology that we use throughout this work, and provide back-
ground information on convex bodies and log-concave probability measures. We write 〈·, ·〉 for the standard
inner product in Rn and denote the Euclidean norm by | · |. In what follows, Bn2 is the Euclidean unit ball,
Sn−1 is the unit sphere, and σ is the rotationally invariant probability measure on Sn−1. Lebesgue measure
in Rn is also denoted by | · |. The letters c, c′, cj , c

′
j etc. denote absolute positive constants whose value may

change from line to line. Whenever we write a ≈ b, we mean that there exist absolute constants c1, c2 > 0
such that c1a 6 b 6 c2a.

We refer to Schneider’s book [29] for basic facts from the Brunn-Minkowski theory and to the book [2]
for basic facts from asymptotic convex geometry. We also refer to [10] for more information on isotropic
convex bodies and log-concave probability measures.

2.1 Log-concave probability measures

A convex body in Rn is a compact convex set K ⊂ Rn with non-empty interior. We say that K is centrally
symmetric if −K = K and that K is centered if the barycenter bar(K) = 1

|K|
∫
K
x dx of K is at the origin.

The Minkowski functional ‖ · ‖K of a convex body K in Rn with 0 ∈ int(K) is defined for all x ∈ Rn by
‖x‖K = inf{s > 0 : x ∈ sK} and the support function of K is the function

hK(x) = sup{〈x, y〉 : y ∈ K}, x ∈ Rn.

A Borel measure µ on Rn is called log-concave if µ(λA+(1−λ)B) > µ(A)λµ(B)1−λ for any compact subsets
A and B of Rn and any λ ∈ (0, 1). A function f : Rn → [0,∞) is called log-concave if its support {f > 0} is
a convex set in Rn and the restriction of ln f to it is concave. If f has finite positive integral then there exist
constants A,B > 0 such that f(x) 6 Ae−B|x| for all x ∈ Rn (see [10, Lemma 2.2.1]). In particular, f has
finite moments of all orders. It is known (see [6]) that if a probability measure µ is log-concave and µ(H) < 1
for every hyperplane H in Rn, then µ has a log-concave density fµ. We say that µ is even if µ(−B) = µ(B)
for every Borel subset B of Rn and that µ is centered if

bar(µ) :=

∫
Rn
〈x, ξ〉dµ(x) =

∫
Rn
〈x, ξ〉fµ(x)dx = 0
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for all ξ ∈ Sn−1. We shall use the fact that if µ is a centered log-concave probability measure on Rk then

(2.1) ‖fµ‖∞ 6 ekfµ(0).

This is a result of Fradelizi from [15]. Note that if K is a convex body in Rn then the Brunn-Minkowski
inequality implies that the indicator function 1K of K is the density of a log-concave measure, the Lebesgue
measure on K.

Given κ ∈ [−∞, 1/n] we say that a measure µ on Rn is κ-concave if

(2.2) µ((1− λ)A+ λB) > ((1− λ)µκ(A) + λµκ(B))1/κ

for all compact subsets A,B of Rn with µ(A)µ(B) > 0 and all λ ∈ (0, 1). The limiting cases are defined
appropriately. For κ = 0 the right hand side in (2.2) becomes µ(A)1−λµ(B)λ (therefore, 0-concave measures
are the log-concave measures). In the case κ = −∞ the right hand side in (2.2) becomes min{µ(A), µ(B)}.
Note that if µ is κ-concave and κ1 6 κ then µ is κ1-concave.

Next, let γ ∈ [−∞,∞]. A function f : Rn → [0,∞) is called γ-concave if

f((1− λ)x+ λy) > ((1− λ)fγ(x) + λfγ(y))1/γ

for all x, y ∈ Rn with f(x)f(y) > 0 and all λ ∈ (0, 1). Again, we define the cases γ = 0,+∞ appropriately.
Borell [7] studied the relation between κ-concave probability measures and γ-concave functions and showed
that if µ is a measure on Rn and the affine subspace F spanned by the support supp(µ) of µ has dimension
dim(F ) = n then for every −∞ 6 κ < 1/n we have that µ is κ-concave if and only if it has a non-negative
density ψ ∈ L1

loc(Rn, dx) and ψ is γ-concave, where γ = κ
1−κn ∈ [−1/n,+∞).

Let µ and ν be two log-concave probability measures on Rn. Let T : Rn → Rn be a measurable function
which is defined ν-almost everywhere and satisfies

µ(B) = ν(T−1(B))

for every Borel subset B of Rn. We then say that T pushes forward ν to µ and write T∗ν = µ. It is easy to
see that T∗ν = µ if and only if for every bounded Borel measurable function g : Rn → R we have∫

Rn
g(x)dµ(x) =

∫
Rn
g(T (y))dν(y).

If µ is a log-concave measure on Rn with density fµ, we define the isotropic constant of µ by

Lµ :=

(
supx∈Rn fµ(x)∫

Rn fµ(x)dx

) 1
n

[det Cov(µ)]
1

2n ,

where Cov(µ) is the covariance matrix of µ with entries

Cov(µ)ij :=

∫
Rn xixjfµ(x) dx∫

Rn fµ(x) dx
−
∫
Rn xifµ(x) dx∫
Rn fµ(x) dx

∫
Rn xjfµ(x) dx∫
Rn fµ(x) dx

.

We say that a log-concave probability measure µ on Rn is isotropic if it is centered and Cov(µ) = In, where

In is the identity n×n matrix. In this case, Lµ = ‖fµ‖1/n∞ . For every µ there exists an affine transformation
T such that T∗µ is isotropic. The hyperplane conjecture asks if there exists an absolute constant C > 0 such
that

Ln := max{Lµ : µ is an isotropic log-concave probability measure on Rn} 6 C

for all n > 1. Bourgain [8] established the upper bound Ln 6 c 4
√
n lnn; later, Klartag, in [21], improved this

estimate to Ln 6 c 4
√
n. In a breakthrough work, Chen [12] proved that for any ε > 0 there exists n0(ε) ∈ N

such that Ln 6 nε for every n > n0(ε). Very recently, Klartag and Lehec [22] showed that the hyperplane
conjecture and the stronger Kannan-Lovász-Simonovits isoperimetric conjecture hold true up to a factor that
is polylogarithmic in the dimension; more precisely, they achieved the bound Ln 6 c(lnn)4, where c > 0 is
an absolute constant.
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2.2 Known results

Several variants of the threshold problem have been studied, starting with the work of Dyer, Füredi and
McDiarmid who established in [14] a sharp threshold for the expected volume of random polytopes with
vertices uniformly distributed in the discrete cube En2 = {−1, 1}n or in the solid cube Bn∞ = [−1, 1]n. For
example, in the first case, if κ = 2/

√
e then for every ε ∈ (0, 1) one has

lim
n→∞

sup
{

2−nE|KN | : N 6 (κ− ε)n
}

= 0

and
lim
n→∞

inf
{

2−nE|KN | : N > (κ+ ε)n
}

= 1.

A similar result holds true for the expected volume of random polytopes with vertices uniformly distributed
in the cube Bn∞; the corresponding value of the constant κ is κ = 2π/eγ+1/2, where γ is Euler’s constant. In
the terminology of the introduction, this last result is equivalent to %(µBn∞ , δ) = Oδ(1) for any fixed value of

δ ∈
(
0, 1

2

)
.

Further sharp thresholds for the volume of various classes of random polytopes have been given. In
[18] a threshold for EµN |KN |/(2α)n was established for the case where Xi have independent identically
distributed coordinates supported on a bounded interval [−α, α] under some mild additional assumptions.
The articles [27] and [3], [4] address the same question for a number of cases where Xi have rotationally
invariant densities. Exponential in the dimension upper and lower thresholds are obtained in [17] for the
case where Xi are uniformly distributed in a simplex.

Upper and lower thresholds were obtained recently by Chakraborti, Tkocz and Vritsiou in [11] for some
general families of distributions. If µ is an even log-concave probability measure supported on a convex
body K in Rn and if X1, X2, . . . are independent random points distributed according to µ, then for any
n < N 6 exp(c1n/L

2
µ) we have that

(2.3)
EµN (|KN |)
|K|

6 exp
(
−c2n/L2

µ

)
,

where c1, c2 > 0 are absolute constants. A lower threshold is also established in [11] for the case where µ is
an even κ-concave measure on Rn with 0 < κ < 1/n, supported on a convex body K in Rn. If X1, X2, . . .
are independent random points in Rn distributed according to µ and KN = conv{X1, . . . , XN} as before,
then for any M > C and any N > exp

(
1
κ (log n+ 2 logM)

)
we have that

(2.4)
EµN (|KN |)
|K|

> 1− 1

M
,

where C > 0 is an absolute constant.
Analogues of these results in the setting of the present work were obtained in [9] for 0-concave, i.e.

log-concave, probability measures. There exists an absolute constant c > 0 such that if N1(n) = exp(cn/L2
n)

then
sup
µ

(
sup

{
EµN [µ(KN )] : N 6 N1(n)

})
−→ 0

as n → ∞, where the first supremum is over all log-concave probability measures µ on Rn. On the other
hand, if δ ∈ (0, 1) then,

inf
µ

(
inf
{
EµN

[
µ((1 + δ)KN )

]
: N > exp

(
Cδ−1 ln (2/δ)n lnn

)})
−→ 1

as n → ∞, where the first infimum is over all log-concave probability measures µ on Rn and C > 0 is an
absolute constant.

It should be noted that an exponential in the dimension lower threshold is not possible in full generality.
For example, in the case where Xi are uniformly distributed in the Euclidean ball one needs N > exp(cn lnn)
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points so that the volume of a random KN will be significantly large. Thus, apart from the constants
depending on δ, the lower threshold above is sharp. However, it provides a weak threshold in the sense that
we estimate the expectation EµN

(
µ(1 + δ)KN ) (for an arbitrarily small but positive value of δ) while we

would like to have a similar result for EµN
[
µ(KN )]. It is shown in [9] that there exists an absolute constant

C > 0 such that
inf
µ

(
inf
{
E
[
µ(KN )

]
: N > exp(C(n lnn)2u(n))

})
−→ 1

as n → ∞, where the first infimum is over all log-concave probability measures µ on Rn and u(n) is any
function with u(n)→∞ as n→∞.

3 Estimates for the half-space depth

Let µ be a centered log-concave probability measure on Rn with density f := fµ. Recall that the logarithmic
Laplace transform of µ on Rn is defined by

Λµ(ξ) = log
(∫

Rn
e〈ξ,z〉f(z)dz

)
.

It is easily checked by means of Hölder’s inequality that Λµ is convex and Λµ(0) = 0. Since bar(µ) = 0,
Jensen’s inequality shows that

Λµ(ξ) = log
(∫

Rn
e〈ξ,z〉f(z)dz

)
>
∫
Rn
〈ξ, z〉f(z)dz = 0

for all ξ. Therefore, Λµ is a non-negative function. One can check that the set A(µ) = {Λµ < ∞} is open
and Λµ is C∞ and strictly convex on A(µ).

We also define
Λ∗µ(x) = sup

ξ∈Rn
{〈x, ξ〉 − Λµ(ξ)} .

In other words, Λ∗µ is the Legendre transform of Λµ: recall that given a convex function g : Rn → (−∞,∞],
the Legendre transform L(g) of g is defined by

L(g)(x) := sup
ξ∈Rn
{〈x, ξ〉 − g(ξ)}.

The function Λ∗µ is called the Cramer transform of µ. For every t > 0 we define the convex set

Bt(µ) := {x ∈ Rn : Λ∗µ(x) 6 t}.

For any x ∈ Rn we denote by H(x) the set of all half-spaces H of Rn containing x. Then we define

ϕµ(x) = inf{µ(H) : H ∈ H(x)}.

The function ϕµ is called Tukey’s half-space depth. Our aim is to give upper and lower bounds for ϕµ(x)
when x ∈ ∂(Bt(µ)), t > 0.

Lemma 3.1. Let µ be a Borel probability measure on Rn. For every x ∈ Rn we have ϕµ(x) 6 exp(−Λ∗µ(x)).
In particular, for any t > 0 and for all x /∈ Bt(µ) we have that ϕµ(x) 6 exp(−t).

Proof. Let x ∈ Rn. We start with the observation that for any ξ ∈ Rn the half-space {z : 〈z − x, ξ〉 > 0} is
in H(x), therefore

ϕµ(x) 6 µ({z : 〈z, ξ〉 > 〈x, ξ〉}) 6 e−〈x,ξ〉Eµ
(
e〈z,ξ〉

)
= exp

(
− [〈x, ξ〉 − Λµ(ξ)]

)
,

and taking the infimum over all ξ ∈ Rn we see that ϕµ(x) 6 exp(−Λ∗µ(x)), as claimed.
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Next, we would like to obtain a lower bound for ϕµ(x) when x ∈ Bt(µ). In the case where µ = µK is the
uniform measure on a centered convex body K of volume 1 in Rn, our estimate is the following.

Theorem 3.2. Let K be a centered convex body of volume 1 in Rn. Then, for every t > 0 we have that

inf{ϕµK (x) : x ∈ Bt(µK)} > 1

10
exp(−t− 2

√
n).

The first part of the argument works for any centered log-concave probability measure µ with density f
on Rn. For every ξ ∈ Rn we define the probability measure µξ with density

fξ(z) = e−Λµ(ξ)+〈ξ,z〉f(z).

In the next lemma (see [10, Proposition 7.2.1]) we recall some basic facts for µξ.

Lemma 3.3. The barycenter of µξ is x = ∇Λµ(ξ) and Cov(µξ) = Hess (Λµ)(ξ).

Next, we set

σ2
ξ =

∫
Rn
〈z − x, ξ〉2dµξ(z).

Let t > 0. Since Bt(µ) is convex, in order to give a lower bound for inf{ϕµ(x) : x ∈ Bt(µ)} it suffices to give
a lower bound for µ(H), where H is any closed half-space whose bounding hyperplane supports Bt(µ). In
that case,

(3.1) µ(H) = µ({z : 〈z − x, ξ〉 > 0})

for some x ∈ ∂(Bt(µ)), with ξ = ∇Λ∗µ(x), or equivalently x = ∇Λµ(ξ) (see e.g. Theorem 23.5 and Corol-
lary 23.5.1 in [28]). Note that

µ({z : 〈z − x, ξ〉 > 0}) =

∫
Rn

1[0,∞)(〈z − x, ξ〉)f(z) dz(3.2)

= eΛµ(ξ)

∫
Rn

1[0,∞)(〈z − x, ξ〉)e−〈z,ξ〉 dµξ(z)

= eΛµ(ξ)e−〈x,ξ〉
∫
Rn

1[0,∞)(〈z − x, ξ〉)e−〈z−x,ξ〉 dµξ(z)

> e−Λ∗µ(x)

∫ ∞
0

σξe
−σξtµξ({z : 0 6 〈z − x, ξ〉 6 σξt}) dt.

From Markov’s inequality we see that

µξ({z : 〈z − x, ξ〉 > 2σξ}) 6
1

4
.

Moreover, since x is the barycenter of µξ, Grünbaum’s lemma (see [10, Lemma 2.2.6]) implies that

µξ({z : 〈z − x, ξ〉 > 0}) > 1

e
.

Therefore,

(3.3)

∫ ∞
0

σξe
−σξtµξ({z : 0 6 〈z − x, ξ〉 6 σξt}) dt >

∫ ∞
2

σξe
−σξt

(
1

e
− 1

4

)
dt >

4− e
4e

e−2σξ .

We would like now an upper bound for supξ σξ. We can have this when µ = µK is the uniform measure on
a centered convex body K of volume 1 on Rn, using a theorem of Nguyen [25] (proved independently by
Wang [31]; see also [16]).
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Theorem 3.4. Let ν be a log-concave probability measure on Rn with density g = exp(−p), where p is a
convex function. Then,

Varν(p) 6 n.

Proof of Theorem 3.2. Set µ := µK . Since f(z) = 1K(z), the density fξ of µξ is proportional to e〈ξ,z〉1K(z).
Using the fact that

Eµξ(〈ξ, z〉) = 〈∇Λµ(ξ), ξ〉 = 〈x, ξ〉,

from Theorem 3.4 we get that

σ2
ξ = Eµξ(〈z − x, ξ〉)2 = Varµξ(〈ξ, z〉) 6 n.

Then, combining (3.1), (3.2) and (3.3), for any bounding hyperplane H of Bt(µ) we have

µ(H) > e−Λ∗µ(x)

∫ ∞
0

σξe
−σξtµξ(0 6 〈z − x, ξ〉 6 σξt) dt

>
4− e

4e
e−Λ∗µ(x)−2σξ >

1

10
exp(−t− 2

√
n),

as claimed.

Theorem 3.2 shows that if K is a centered convex body of volume 1 in Rn then

10ϕµK (x) > exp(−Λ∗µK (x)− 2
√
n)

for all x ∈ Rn. Setting

(3.4) ωµK (x) = ln

(
1

ϕµK (x)

)
and taking into account Lemma 3.1 we have the next two-sided estimate.

Corollary 3.5. Let K be a centered convex body of volume 1 in Rn. Then, for every x ∈ int(K) we have
that

(3.5) ωµK (x)− 5
√
n 6 Λ∗µK (x) 6 ωµK (x).

Note. A basic question that arises from the results of this section is whether an analogue of (3.5) holds true
for any centered log-concave probability measure µ on Rn. This would allow us to apply the next steps of
the procedure that our approach suggests to all log-concave probability measures.

4 Moments of the Cramer transform

As explained in the introduction, we would like to know for which centered log-concave probability measures
µ on Rn we have that Λ∗µ has finite moments of all orders. Our first result provides an affirmative answer
in the case where µ = µK is the uniform measure on a centered convex body K of volume 1 in Rn. In fact,
the next theorem covers a more general case.

Theorem 4.1. Let K be a centered convex body of volume 1 in Rn. Let κ ∈ (0, 1/n] and let µ be a centered
κ-concave probability measure with supp(µ) = K. Then,∫

Rn
e
κΛ∗µ(x)

2 dµ(x) <∞.

In particular, for all p > 1 we have that Eµ
(
(Λ∗µ(x))p

)
<∞.
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The proof of Theorem 4.1 is based on the next lemma, which is proved in [11, Lemma 7] in the symmetric
case.

Lemma 4.2. Let K be a centered convex body of volume 1 in Rn. Let κ ∈ (0, 1/n] and let µ be a centered
κ-concave probability measure with supp(µ) = K. Then,

(4.1) ϕµ(x) > e−2κ(1− ‖x‖K)1/κ

for every x ∈ K, where ‖x‖K is the Minkowski functional of K.

Sketch of the proof. We modify the argument from [11, Lemma 7] to cover the not necessarily symmetric
case. First, consider the case 0 < κ < 1/n. Let X be a random vector distributed according to µ. Given

θ ∈ Sn−1 let b = hK(θ) and a = hK(−θ). If gθ is the density of 〈X, θ〉 then g
κ

1−κ
θ is concave on [−a, b],

therefore

gθ(t) > gθ(0)

(
1− t

b

) 1−κ
κ

for all t ∈ [0, b]. It follows that, for every 0 < s < b,

P(〈X, θ〉 > s) =

∫ b

s

gθ(t) dt > gθ(0)

∫ b

s

(
1− t

b

) 1−κ
κ

dt = κgθ(0)b
(

1− s

b

) 1
κ

.

Note that gθ is a centered log-concave density. Therefore, gθ(0) > e−1‖gθ‖∞ by (2.1) and ‖gθ‖∞b >
P(〈X, θ〉 > 0) > e−1 by Grünbaum’s lemma [10, Lemma 2.2.6], which implies that gθ(0)b > e−2. It follows
that

P(〈X, θ〉 > s) =

∫ b

s

gθ(t) dt > e−2κ
(

1− s

b

) 1
κ

.

Now, let x ∈ K. Then 〈x, θ〉 6 ‖x‖KhK(θ) = ‖x‖Kb, therefore

P(〈X, θ〉 > 〈x, θ〉) > P(〈X, θ〉 > ‖x‖Kb) > e−2κ (1− ‖x‖K)
1
κ .

For the case κ = 1/n recall that a 1/n-concave measure is κ-concave for every κ ∈ (0, 1/n). This means that
(4.1) holds true for all κ ∈ (0, 1/n) and letting κ→ 1/n we obtain the result.

Proof of Theorem 4.1. From Lemma 3.1 we know that ϕµ(x) 6 exp(−Λ∗µ(x)), or equivalently,

e
κΛ∗µ(x)

2 6
1

ϕµ(x)κ/2

for all x ∈ K. From Lemma 4.2 we know that

ϕµ(x) > e−2κ(1− ‖x‖K)1/κ

for every x ∈ K. It follows that∫
K

e
κΛ∗µ(x)

2 dµ(x) 6 (e2/κ)κ/2
∫
K

1

(1− ‖x‖K)1/2
dµ(x).

Recall that the cone probability measure νK on the boundary ∂(K) of a convex body K with 0 ∈ int(K) is
defined by

νK(B) =
|{rx : x ∈ B, 0 6 r 6 1}|

|K|
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for all Borel subsets B of ∂(K). We shall use the identity∫
Rn
g(x) dx = n|K|

∫ ∞
0

rn−1

∫
∂(K)

g(rx) dνK(x) dr

which holds for every integrable function g : Rn → R (see [24, Proposition 1]). Let f denote the density of
µ on K. We write∫

K

1

(1− ‖x‖K)1/2
dµ(x) =

∫
Rn

f(x)

(1− ‖x‖K)1/2
1K(x) dx

= n|K|
∫ ∞

0

rn−1

∫
∂(K)

f(ry)

(1− ‖ry‖K)1/2
1K(ry) dνK(y) dr

= n|K|
∫ 1

0

rn−1

√
1− r

∫
∂(K)

f(ry) dνK(y) dr

6 n|K|‖f‖∞
∫ 1

0

rn−1

√
1− r

dr = n|K|B(n, 1/2)‖f‖∞ 6 c
√
n‖f‖∞ < +∞,

and the proof is complete.

In the case of the uniform measure µ = µK on a centered convex body K of volume 1 in Rn we see that∫
K

(
Λ∗µK (x)/2n

)p
dx 6 (c1p)

p

∫
K

e
Λ∗µK

(x)

2n dx 6 (c2p)
p
√
n,

where c1, c2 > 0 are absolute constants. This gives the following estimate for the moments of Λ∗µK :

‖Λ∗µK‖Lp(µK) 6 cpn1+ 1
2p

for all p > 1. However, essentially repeating the argument that we used for Theorem 4.1 we may obtain
sharp estimates in the most interesting case p = 1 or 2. We need the next lemma.

Lemma 4.3. Let Hn = 1 + 1
2 + · · ·+ 1

n . Then,∫ 1

0

rn−1 ln(1− r) dr = − 1

n
Hn

and ∫ 1

0

rn−1 ln2(1− r) dr =
1

n
H2
n −

1

n

n∑
k=1

1

k2
.

Proof. We consider the beta integral

B(x, y) =

∫ 1

0

rx−1(1− r)y−1 dr

and differentiate it with respect to y. Then, the desired integrals are equal to

∂

∂y
B(x, y)

∣∣∣
y=1

and
∂2

∂2y
B(x, y)

∣∣∣
y=1

.

We have
∂

∂y
B(x, y) = B(x, y)

(
Γ′(y)

Γ(y)
− Γ′(x+ y)

Γ(x+ y)

)
= B(x, y)

(
ψ(y)− ψ(x+ y)

)
,
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where ψ(y) = Γ′(y)
Γ(y) is the digamma function. Moreover,

∂2

∂2y
B(x, y) = B(x, y)

(
(ψ(y)− ψ(x+ y))2 − (ψ′(y)− ψ′(x+ y))

)
.

Recall (see e.g. [1]) that

ψ(n+ 1)− ψ(1) = Hn :=

n∑
k=1

1

k
and ψ′(n) =

∞∑
k=n

1

k2

for all n > 1. Therefore,∫ 1

0

rn−1 ln(1− r) dr = B(n, 1)
(
ψ(1)− ψ(n+ 1)

)
= − 1

n
Hn,

and ∫ 1

0

rn−1 ln2(1− r) dr = B(n, 1)
(
(ψ(1)− ψ(n+ 1))2 − (ψ′(1)− ψ′(n+ 1)

)
=

1

n
H2
n −

1

n

n∑
k=1

1

k2
,

as claimed.

Theorem 4.4. Let K be a centered convex body of volume 1 in Rn, n > 2. Let κ ∈ (0, 1/n] and let µ be a
centered κ-concave probability measure with supp(µ) = K. Then,

Eµ(Λ∗µ) 6
(
Eµ[(Λ∗µ)2]

)1/2
6
c lnn

κ
‖f‖1/2∞ ,

where c > 0 is an absolute constant and f is the density of µ.

Proof. Following the proof of Theorem 4.1 we write∫
K

(
Λ∗µ(x)

)2
dµ(x) 6

∫
K

ln2

(
e2

κ

1

(1− ‖x‖K)1/κ

)
dµ(x).

If f is the density of µ on K and νK is the cone measure of K, using the inequality ln2(ab) 6 2(ln2 a+ ln2 b)
where a, b > 0, we may write

1

2

∫
K

ln2

(
e2

κ

1

(1− ‖x‖K)1/κ

)
dµ(x)− ln2

(
e2

κ

)
6
∫
Rn
f(x) ln2

(
1

(1− ‖x‖K)1/κ

)
1K(x) dx

= n|K|
∫ ∞

0

rn−1

∫
∂(K)

f(ry) ln2

(
1

(1− ‖ry‖K)1/κ

)
1K(ry) dνK(y) dr

=
n

κ2

∫ 1

0

rn−1 ln2(1− r)
∫
∂(K)

f(ry) dνK(y) dr

6
n

κ2
‖f‖∞

∫ 1

0

rn−1 ln2(1− r) dr.

Since 1 6
∫
K
f(x) dx 6 ‖f‖∞, using also Lemma 4.3 we get∫

K

(
Λ∗µ(x)

)2
dµ(x) 6

2n

κ2

(
1

n
H2
n −

1

n

n∑
k=1

1

k2

)
‖f‖∞ + 2 ln2

(
e2

κ

)

6

(
2H2

n

κ2
+ 2 ln2(e2/κ)

)
‖f‖∞ 6

c1 ln2 n

κ2
‖f‖∞,

where c1 > 0 is an absolute constant. This completes the proof.
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Our next result concerns the one-dimensional case. Let µ be a centered probability measure on R which
is absolutely continuous with respect to Lebesgue measure and consider a random variable X, on some
probability space (Ω,F , P ), with distribution µ, i.e., µ(B) := P (X ∈ B), B ∈ B(R). We define

α+ = α+(µ) := sup {x ∈ R : µ([x,∞)) > 0}) and α− = α−(µ) := sup {x ∈ R : µ((−∞,−x])) > 0}).

Thus, −α−, α+ are the endpoints of the support of µ. Note that we may have α± = +∞. We define
Iµ = (−α−, α+). Recall that

Λ∗µ(x) := sup{tx− Λµ(t) : t ∈ R}, x ∈ R.

In fact, since tx − Λµ(t) < 0 for t < 0 when x ∈ [0, α+), we have that Λ∗µ(x) = sup{tx − Λµ(t) : t > 0}
in this case, and similarly Λ∗µ(x) := sup{tx − Λµ(t) : t 6 0} when x ∈ (−α−, 0]. One can also check that
Λ∗µ(α±) = +∞. See [18, Lemma 2.8] for the case α± < +∞. In the case α± = ±∞, the convexity and
monotonicity properties of Λ∗µ imply again that lim

t→±∞
Λ∗µ(t) = +∞.

Proposition 4.5. Let µ be a centered probability measure on R which is absolutely continuous with respect
to Lebesgue measure. Then, ∫

Iµ

eΛ∗µ(x)/2dµ(x) 6 4,

where Iµ = supp(µ). In particular, for all p > 1 we have that∫
Iµ

(Λ∗µ(x))p dµ(x) < +∞.

Proof. Let F (x) = µ(−∞, x]. For any x ∈ [0, α+) and t > 0 we have

min{F (x), 1− F (x)} = ϕµ(x) 6 e−Λ∗µ(x).

It follows that ∫
Iµ

eΛ∗µ(x)/2dµ(x) 6
∫
Iµ

1√
min{F (x), 1− F (x)}

f(x) dx(4.2)

6
∫
Iµ

1√
F (x)

f(x) dx+

∫
Iµ

1√
1− F (x)

f(x) dx.

Write f for the density of µ with respect to Lebesgue measure. Then, (1 − F )′(x) = −f(x), which implies
that ∫ α+

0

1√
1− F (x)

f(x) dx 6 −
∫ α+

0

1√
1− F (x)

(1− F )′(x)dx = −2
√

1− F (x)
∣∣∣α+

0
= 2
√

1− F (0)

since F (α+) = 1. In the same way we check that∫ 0

−α−

1√
1− F (x)

f(x) dx 6 −
∫ 0

−α−

1√
1− F (x)

(1− F )′(x)dx = −2
√

1− F (x)
∣∣∣0
−α−

= 2− 2
√

1− F (0).

This shows that ∫
Iµ

1√
1− F (x)

f(x) dx 6 2.

In a similar way we obtain the same upper bound for the second summand in (4.2) and the result follows.
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Proposition 4.5 can be extended to products. Let µi, 1 6 i 6 n be centered probability measures on R,
all of them absolutely continuous with respect to Lebesgue measure. If µ = µ1⊗· · ·⊗µn then Iµ =

∏n
i=1 Iµi

and we can easily check that

Λ∗µ(x) =

n∑
i=1

Λ∗µi(xi)

for all x = (x1, . . . , xn) ∈ Iµ, which implies that∫
Iµ

eΛ∗µ(x)/2dµ(x) =

n∏
i=1

(∫
Iµi

eΛ∗µi
(xi)/2dµi(xi)

)
6 4n.

In particular, for all p > 1 we have that ∫
Iµ

(Λ∗µ(x))p dµ(x) < +∞.

We close this section with one more case where we can establish that Λ∗µ has finite moments of all
orders. We consider an arbitrary centered log-concave probability measure on Rn but we have to impose
some conditions on the growth of its one-sided Lt-centroid bodies Z+

t (µ). Recall that for every t > 1, the
one-sided Lt-centroid body Z+

t (µ) of µ is the convex body with support function

hZ+
t (µ)(y) =

(
2

∫
Rn
〈x, y〉t+fµ(x)dx

)1/t

,

where a+ = max{a, 0}. If µ is isotropic then Z+
2 (µ) ⊇ cBn2 for an absolute constant c > 0. One can also

check that if 1 6 t < s then(
2

e

) 1
t−

1
s

Z+
t (µ) ⊆ Z+

s (µ) ⊆ c1
(

2e− 2

e

) 1
t−

1
s s

t
Z+
t (µ).

For a proof of these claims see [19]. The condition we need is that the family of the one-sided Lt-centroid
bodies grows with some mild rate as t → ∞ (note that the assumption in the next proposition can be
satisfied only for log-concave probability measures µ with support supp(µ) = Rn).

Proposition 4.6. Let µ be a centered log-concave probability measure on Rn. Assume that there exists an
increasing function g : [1,∞)→ [1,∞) with limt→∞ g(t)/ ln(t+ 1) = +∞ such that Z+

t (µ) ⊇ g(t)Z+
2 (µ) for

all t > 2. Then, ∫
Rn
|Λ∗µ(x)|pdµ(x) < +∞

for every p > 1.

Proof. We use the following fact, proved in [9, Lemma 4.3]: If t > 1 then for every x ∈ 1
2Z

+
t (µ) we have

ϕµ(x) > e−c1t,

where c1 > 1 is an absolute constant. Since Λ∗µ(x) 6 ln 1
ϕµ(x) , this shows that Λ∗µ(x) 6 c1t for all x ∈ 1

2Z
+
t (µ).

In other words,

(4.3)
1

2
Z+
t/c1

(µ) ⊆ Bt(µ), t > c1.

Since limt→∞ g(t) = +∞, there exists t0 > c1 such that µ
(
g(t0/c1)

2 Z+
2 (µ)

)
> 2/3. From Borell’s lemma [10,

Lemma 2.4.5] we know that, for all t > t0,

1− µ
(
g(t/c1)

2
Z+

2 (µ)

)
6 e−c2g(t/c1)/g(t0/c1),
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where c2 > 0 is an absolute constant. We write∫
Rn
|Λ∗µ(x)|pdµ(x) =

∫ ∞
0

ptp−1µ({x : Λ∗µ(x) > t}) dt = p

∫ ∞
0

tp−1(1− µ(Bt(µ))) dt.

From (4.3) it follows that

1− µ(Bt(µ)) 6 1− µ
(

1

2
Z+
t/c1

(µ)

)
6 1− µ

(
g(t/c1)

2
Z+

2 (µ)

)
6 e−c2g(t/c1)/g(t0/c1)

for all t > t0. Since limt→∞ g(t)/ ln(t+ 1) = +∞, there exists tp > t0 such that

(p− 1) ln(t) 6
c2

2g(t0/c1)
g(t/c1)

for all t > tp. Assume that p > 2. Then, from the previous observations we get

p

∫ ∞
tp

tp−1(1− µ(Bt(µ))) dt 6 p

∫ ∞
tp

tp−1
(

1− µ
(
g(t/c1)

2 Z+
2 (µ)

))
dt

6 p

∫ ∞
tp

tp−1t−2(p−1) dt = p

∫ ∞
tp

t−(p−1) dt <∞.

This proves the result for p > 2 and then from Hölder’s inequality it is clear that the assertion of the
proposition is also true for all p > 1.

Note. It is not hard to construct examples of log-concave probability measures, even on the real line, for
which supp(µ) = Rn but the assumption of Proposition 4.6 is not satisfied. Consider for example a measure
µ on R with density f(x) = c · exp(−p) where p is an even convex function rapidly increasing to infinity, e.g.

p(t) = et
2

.
However, this does not exclude the possibility that for every centered log-concave probability measure µ

on Rn the function Λ∗µ has finite second or higher moments.

5 Threshold for the measure: the approach and examples

For any log-concave probability measure µ on Rn we define the parameter

(5.1) β(µ) =
Varµ(Λ∗µ)

(Eµ(Λ∗µ))2

provided that
‖Λ∗µ‖L2(µ) = (E(Λ∗µ)2)1/2 <∞.

One of the main results in [9] states that if µ is a log-concave probability measure on Rn then∫
Rn
ϕµ(x) dµ(x) 6 exp

(
−cn/L2

µ

)
,

where c > 0 is an absolute constant. In fact, the proof of this estimate starts with Lemma 3.1 and follows
from the next stronger result: If n > n0 then∫

Rn
exp(−Λ∗µ(x)) dµ(x) 6 exp

(
−cn/L2

µ

)
where Lµ is the isotropic constant of µ and c > 0, n0 ∈ N are absolute constants. Then, Jensen’s inequality
implies that

e−Eµ(Λ∗µ) 6
∫
Rn

exp(−Λ∗µ(x)) dµ(x) 6 exp
(
−cn/L2

µ

)
.

We will need this lower bound for Eµ(Λ∗µ).
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Lemma 5.1. Let µ be a log-concave probability measure on Rn, n > n0. Then,

E(Λ∗µ) > cn/L2
µ,

where Lµ is the isotropic constant of µ and c > 0, n0 ∈ N are absolute constants.

We will also need a number of observations in the case µ = µK where K is a centered convex body of
volume 1 in Rn. The next lemma provides a lower bound for Var(Λ∗µK ).

Lemma 5.2. Let K be a centered convex body of volume 1 in Rn. Then,

Var(Λ∗µK ) > c/L4
µK ,

where c > 0 is an absolute constant.

Proof. Borell has proved in [5, Theorem 1] that if T is a convex body in Rn and f is a non-negative, bounded
and convex function on T , not identically zero and with min(f) = 0, then the function

Φf (p) = ln
[
(n+ p)‖f‖pp

]
is convex on [0,∞). Consider a centered convex body K of volume 1 in Rn. Applying Borell’s theorem for
the function Λ∗µK on rK, r ∈ (0, 1) and the triple p = 0, 1 and 2, and finally letting r → 1−, we see that

(n+ 1)2‖Λ∗µK‖
2
L1(µK) 6 n(n+ 2)‖Λ∗µK‖

2
L2(µK),

which implies that

Var(Λ∗µK ) >
1

n(n+ 2)
‖Λ∗µK‖

2
L1(µK).

Then, taking into account Lemma 5.1 we obtain the result.

Recall the definition of ωµK = ln(1/ϕµK ) in (3.4) and consider the parameter

(5.2) τ(µK) =
VarµK (ωµK )

(EµK (ωµK ))2
.

The next lemma shows that we can estimate β(µK) if we can compute τ(µK).

Lemma 5.3. Let K be a centered convex body of volume 1 in Rn. Then,

β(µK) =
(
τ(µK) +O(L2

µK/
√
n)
) (

1 +O(L2
µK/
√
n)
)
.

Proof. From Corollary 3.5 we know that if K is a centered convex body of volume 1 in Rn then for every
x ∈ int(K) we have that ωµK (x) − 5

√
n 6 Λ∗µK (x) 6 ωµK (x). Writing Λ∗µK = ωµK + h where ‖h‖∞ 6 5

√
n

we easily see that
VarµK (Λ∗µK ) = VarµK (ωµK ) +O(

√
nEµK (Λ∗µK ))

where X = O(Y ) means that |X| 6 cY for an absolute constant c > 0. Lemma 5.1 and the fact that
EµK (ωµK ) = EµK (Λ∗µK ) +O(

√
n) imply that

EµK (ωµK )

EµK (Λ∗µK )
= 1 +O(L2

µK/
√
n).

Taking also into account the fact that L2
µK/
√
n = O((lnn)8/

√
n) = o(1) we get

EµK (ωµK ) ≈ EµK (Λ∗µK ).
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Combining the above we see that

β(µK) =
VarµK (Λ∗µK )

(EµK (Λ∗µK ))2
=

VarµK (ωµK ) +O(
√
nEµK (Λ∗µK ))

(EµK (ωµK ))2

(
EµK (ωµK )

EµK (Λ∗µK )

)2

=

(
VarµK (ωµK )

(EµK (ωµK ))2
+O

(
L2
µK/
√
n
)) (

1 +O
(
L2
µK/
√
n
))2

=
(
τ(µK) +O

(
L2
µK/
√
n
)) (

1 +O
(
L2
µK/
√
n
))
,

as claimed.

Recall that Bt(µ) = {x ∈ Rn : Λ∗µ(x) 6 t}, where Λ∗µ is the Cramer transform of µ. A version of the
next lemma appeared originally in [14].

Lemma 5.4. Let t > 0. For every N > n we have

EµN (µ(KN )) 6 µ(Bt(µ)) +N exp(−t).

We use the lemma in the following way. Let m := Eµ(Λ∗µ). Then, for all ε ∈ (0, 1), from Chebyshev’s
inequality we have that

µ({Λ∗µ 6 m− εm}) 6 µ({|Λ∗µ −m| > εm}) 6
Eµ|Λ∗µ −m|2

ε2m2
=
β(µ)

ε2
.

Equivalently,

µ(B(1−ε)m(µ)) 6
β(µ)

ε2
.

Let δ ∈ (β(µ), 1). We distinguish two cases:

(i) If β(µ) < 1/8 and 8β(µ) < δ < 1 then, choosing ε =
√

2β(µ)/δ we have that

µ(B(1−ε)m(µ)) 6
δ

2
.

Then, from Lemma 5.4 we see that

sup{EµN (µ(KN )) : N 6 e(1−2ε)m} 6 µ(B(1−ε)m(µ)) + e(1−2ε)me−(1−ε)m

6
δ

2
+ e−εm 6 δ,

provided that εm > ln(2/δ). Since m > c1n/L
2
µ, this condition is satisfied if n/L2

µ > c2 ln(2/δ)
√
δ/β(µ). By

the choice of ε we conclude that

%1(µ, δ) >
(

1−
√

8β(µ)/δ
) Eµ(Λ∗µ)

n
.

(ii) If 1/8 6 β(µ) < 1 and β(µ) < δ < 1 then, choosing ε =
√

2β(µ)
β(µ)+δ we have that

µ(B(1−ε)m(µ)) 6
β(µ) + δ

2
.

Then, exactly as in (i), we see that

sup{EµN (µ(KN )) : N 6 e(1−
√
ε)m} 6 β(µ) + δ

2
+ e(1−

√
ε)me−(1−ε)m 6

β(µ) + δ

2
+ e−(

√
ε−ε)m 6 δ,
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provided that

(5.3) (
√
ε− ε)m > ln

(
2

δ − β(µ)

)
.

Note that 1 > ε >
√
β(µ) > 1

2
√

2
, and hence

√
ε− ε =

√
ε

(1 +
√
ε)(1 + ε)

(1− ε2) > c′1(1− ε2) = c′1
δ − β(µ)

δ + β(µ)
> c′2(δ − β(µ)),

where c′i > 0 are absolute constants. Since m > c1n/L
2
µ, we see that if n/L2

µ > c2
δ−β(µ) ln

(
2

δ−β(µ)

)
then (5.3)

is satisfied. Therefore, we conclude that

%1(µ, δ) >

(
1− 4

√
2β(µ)

β(µ) + δ

)
Eµ(Λ∗µ)

n
.

We summarize the above in the next theorem.

Theorem 5.5. Let µ be a log-concave probability measure on Rn.

(i) Let β(µ) < 1/8 and 8β(µ) < δ < 1. If n/L2
µ > c2 ln(2/δ)

√
δ/β(µ) then

%1(µ, δ) >
(

1−
√

8β(µ)/δ
) Eµ(Λ∗µ)

n
.

(ii) Let 1/8 6 β(µ) < 1 and β(µ) < δ < 1. If n/L2
µ > c2

δ−β(µ) ln
(

2
δ−β(µ)

)
then

%1(µ, δ) >

(
1− 4

√
2β(µ)

β(µ) + δ

)
Eµ(Λ∗µ)

n
.

Remark 5.6. Paouris and Valettas have proved in [26, Theorem 5.6] that if µ is a log-concave probability
measure on Rn and p is a convex function on Rn then

(5.4) µ
({
x : p(x) < M(p)− t‖p−M(p)‖L1(µ)

})
6

1

2
exp(−t/16)

for all t > 0, where M(p) is a median of p with respect to µ. Consider the parameter

β̃(µ) =
‖Λ∗µ − E(Λ∗µ)‖L2(µ)

M(Λ∗µ)
.

Recall that Λ∗µ is convex and set M = M(Λ∗µ). Since

‖Λ∗µ −M(Λ∗µ)‖L1(µ) 6 ‖Λ∗µ − E(Λ∗µ)‖L1(µ) 6 ‖Λ∗µ − E(Λ∗µ)‖L2(µ),

from (5.4) we see that

(5.5) µ
({
x : Λ∗µ(x) < (1− tβ̃(µ))M

})
6

1

2
exp(−t/16)

for every t > 0. This shows that

µ(B(1−tβ̃(µ))M (µ)) 6
δ

4
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if t > 16 ln(2/δ). Then, from Lemma 5.4 we see that

sup{EµN (µ(KN )) : N 6 e(1−2tβ̃(µ))M} 6 µ(B(1−tβ̃(µ))M (µ)) + e(1−2tβ̃(µ))Me−(1−tβ̃(µ))M

= µ(B(1−tβ̃(µ))M (µ)) + e−tβ̃(µ)M 6
δ

4
+ e−tβ̃(µ)M 6 δ,

provided that tβ̃(µ)M > ln(2/δ). Now, we restrict our attention to the case where µ = µK is the uniform
measure on a centered convex body K of volume 1 in Rn. Then, Lemma 5.2 shows that

β̃(µK)M(Λ∗µK ) = ‖Λ∗µK − E(Λ∗µK )‖L2(µ) > c1/L
2
µK

where c1 > 0 is an absolute constant. Choosing t = c2L
2
µK ln(2/δ) we get

(5.6) %1(µK , δ) >
(

1− c3L2
µK ln(2/δ)β̃(µK)

)M(Λ∗µK )

n
.

A natural question is to examine how close E(Λ∗µ) and M(Λ∗µ) are. This would allow us to compare (5.6)
with Theorem 5.5 at least in the case of the uniform measure on a convex body. From [10, Lemma 2.4.10]
we know that

1

2
‖Λ∗µ − E(Λ∗µ)‖L2(µ) 6 ‖Λ∗µ −M(Λ∗µ)‖L2(µ) 6 3‖Λ∗µ − E(Λ∗µ)‖L2(µ)

for any Borel probability measure µ on Rn. Therefore, if we assume that β(µK) 6 η for some small enough
η ∈ (0, 1), we see that

M(Λ∗µ) > ‖Λ∗µ‖2 − 3
√
η‖Λ∗µ‖1 > (1− 3

√
η)E(Λ∗µ).

This gives a variant of Theorem 5.5 with a much better dependence on δ.

Theorem 5.7. Let K be a centered convex body of volume 1 in Rn and let δ ∈ (0, 1) and η ∈ (0, 1/9). If
β(µK) 6 η and c3L

2
µK ln(2/δ)β̃(µK) < 1 then

%1(µ, δ) >
(

1− c3L2
µK ln(2/δ)β̃(µK)

)
(1− 3

√
η)

E(Λ∗µK )

n
.

For the proof of the lower threshold we need a basic fact that plays a main role in the proof of all the
lower thresholds that have been obtained so far. It is stated in the form below in [11, Lemma 3]. For a proof
see [14] or [18, Lemma 4.1].

Lemma 5.8. For every Borel subset A of Rn we have that

1− µN (KN ⊇ A) 6 2

(
N

n

)(
1− inf

x∈A
ϕµ(x)

)N−n
.

Therefore,

E [µ(KN )] > µ(A)

(
1− 2

(
N

n

)(
1− inf

x∈A
ϕµ(x)

)N−n)
.

In order to apply Lemma 5.8 we note that if m := Eµ(Λ∗µ) then as before, for all ε ∈ (0, 1), from
Chebyshev’s inequality we have that

µ({Λ∗µ > m+ εm}) 6 µ({|Λ∗µ −m| > εm}) 6 β(µ)

ε2
.

If β(µ) < 1/2 and 2β(µ) < δ < 1 then, choosing ε =
√

2β(µ)/δ we have that

µ(B(1+ε)m(µ)) > 1− δ

2
.
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Therefore, we will have that
%2(µ, δ) 6 (1 + 2ε)m/n

if our lower bound for infx∈B(1+ε)m(µ) ϕµ(x) gives

(5.7) 2

(
N

n

)(
1− inf

x∈B(1+ε)m(µ)
ϕµ(x)

)N−n
6
δ

2

for all N > N0 := exp((1 + 2ε)m). Recall that in the case of the uniform measure on a centered convex body
of volume 1, Theorem 3.2 shows that

inf
x∈B(1+ε)m(µK)

ϕµK (x) >
1

10
exp(−(1 + ε)m− 2

√
n).

We require that n and m are large enough so that 1/2n < δ/2 and 2
√
n 6 εm

2 . Using also the fact that(
N
n

)
6 e−1

(
eN
n

)n
we see that (5.7) will be satisfied if we also have(

2eN

n

)n
e−

N−n
10 e−(1+3ε/2)m

< 1.

Setting x := N/n we see that this last is equivalent to

e(1+3ε/2)m <
x− 1

10 ln(2ex)
.

One can now check that if N > exp((1 + 2ε)m) then all the restrictions are satisfied if we assume that
n/L2

µK > c2 ln(2/δ)
√
δ/β(µK). In this way we get the following.

Theorem 5.9. Let β, δ > 0 with 2β < δ < 1. If K is a centered convex body of volume 1 in Rn with
β(µK) = β and n/L2

µK > c2 ln(2/δ)
√
δ/β then

%2(µK , δ) 6
(

1 +
√

8β/δ
) EµK (Λ∗µK )

n
.

An estimate analogous to the one in Theorem 5.5 (ii) is also possible but we shall not go through the
details. From the discussion in this section it is clear that our approach is able to provide good bounds for
the threshold %(µ, δ) if the parameter β(µ) is small, especially if β(µ) = on(1) as the dimension increases.
We illustrate this with a number of examples.

Example 5.10 (Uniform measure on the cube). Let µCn be the uniform measure on the unit cube Cn =[
− 1

2 ,
1
2

]n
. Since µCn = µC1

⊗ · · · ⊗ µC1
we have

VarµCn (Λ∗µCn ) = nVarµC1
(Λ∗µC1

) and EµCn (Λ∗µCn ) = nEµC1
(Λ∗µC1

).

Therefore,

β(µCn) =
VarµCn (Λ∗µCn )

(EµCn (Λ∗µCn ))2
=
β(µC1)

n
−→ 0.

as n → ∞. Then, Theorem 5.5 and Theorem 5.9 show that for any δ ∈ (0, 1) there exists n0(δ) such that,
for any n > n0,

%1(µCn , δ) >

(
1−

√
8βµCn
δ

)
E(Λ∗µCn )

n
>

(
1− c1√

δn

)
E(Λ∗µC1

)

and

%2(µCn , δ) 6

(
1 +

√
8βµCn
δ

)
E(Λ∗µCn )

n
6

(
1 +

c2√
δn

)
E(Λ∗µC1

),
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which shows that
%(µCn , δ) 6

c√
δn
,

where c > 0 is an absolute constant. This estimate provides a sharp threshold for the measure of a random
polytope KN with independent vertices uniformly distributed in Cn. It provides a direct proof of the result
of Dyer, Füredi and McDiarmid in [14] with a stronger estimate for the “width of the threshold”.

Example 5.11 (Gaussian measure). Let γn denote the standard n-dimensional Gaussian measure with

density fγn(x) = (2π)−n/2e−|x|
2/2, x ∈ Rn. Note that γn = γ1 ⊗ · · · ⊗ γ1, and hence we may argue as in the

previous example. We may also use direct computation to see that

Λγn(ξ) = log
(∫

Rn
e〈ξ,z〉fγn(z)dz

)
=

1

2
|ξ|2

for all ξ ∈ Rn and

Λ∗γn(x) = sup
ξ∈Rn

{〈x, ξ〉 − Λγn(ξ)} =
1

2
|x|2

for all x ∈ Rn. It follows that

Bt(γn) = {x ∈ Rn : Λ∗γn(x) 6 t} = {x ∈ Rn : |x| 6
√

2t} =
√

2tBn2 .

Note that if x ∈ ∂(Bt(γn)) then

ϕγn(x) =
1√
2π

∫ ∞
√

2t

e−u
2/2du >

c√
t
e−t

for all t > 1 (see [20, p. 17] for a refined form of the lower bound that we use). By the standard concentration
estimate for the Euclidean norm with respect to γn (see [30, Theorem 3.1.1]), we have ‖ |x| −

√
n ‖ψ2 6 C,

where C > 0 is an absolute constant, or equivalently, for any s > 0,

γn({x ∈ Rn : | |x| −
√
n | > s

√
n}) 6 2 exp(−cs2n),

where c > 0 is an absolute constant. This shows that

max{γn((1− s)
√
nBn2 ), 1− γn((1 + s)

√
nBn2 )} 6 2 exp(−cs2n)

for every s ∈ (0, 1). Let ε ∈ (0, 1/2). Applying Lemma 5.4 with t = (1− ε)n/2 and N 6 exp((1/2− ε)n) we
see that

EγNn (γn(KN )) 6 γn(
√

(1− ε)nBn2 ) + exp(−εn/2)

6 2 exp(−cε2n) + exp(−εn/2),

using the fact that
√

1− ε 6 1− ε/2. It follows that, for any δ ∈ (0, 1), if we choose ε = c1
√

ln(4/δ)/
√
n we

have
sup

{
EγNn

(
γn(KN )

)
: N 6 e(

1
2−ε)n

}
6 δ,

and hence

%1(γn, δ) >
1

2
−
c1
√

ln(4/δ)√
n

.

Now, let N > exp((1/2 + ε)n). Applying Lemma 5.8 with A = Bt(γn) where t = (1 + ε)n/2, we see that
γn(Bt(γn)) = γn(

√
(1 + ε)nBn2 ) > 1− 2 exp(−cε2n), because

√
1 + ε > 1 + ε/3. We also have

2

(
N

n

)(
1− inf

x∈Bt(γn)
ϕγn(x)

)N−n
6

(
2eN

n

)n
exp

(
−c(N − n)√

n
e−(1+ε)n/2

)
.
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Let δ ∈ (0, 1). We choose ε = c2
√

ln(4/δ)/
√
n and insert these estimates into Lemma 5.8. Arguing as in the

proof of (5.7) we see that if n > n0(δ) then

inf
{
EγNn

(
γn(KN )

)
: N > e(

1
2 +ε)n

}
> 1− δ,

and hence

%2(γn, δ) 6
1

2
+
c2
√

ln(4/δ)√
n

.

Combining the above we get

%(γn, δ) 6
C
√

ln(4/δ)√
n

,

where C > 0 is an absolute constant.

We close this article with the example of the uniform measure on the Euclidean ball. It was proved in
[3] that if ε ∈ (0, 1) and KN = conv{x1, . . . , xN} where x1, . . . , xN are random points independently and
uniformly chosen from Bn2 then

lim
n→∞

sup

{
E|KN |
|Bn2 |

: N 6 exp

(
(1− ε)

(
n+ 1

2

)
lnn

)}
= 0

and

lim
n→∞

inf

{
E|KN |
|Bn2 |

: N > exp

(
(1 + ε)

(
n+ 1

2

)
lnn

)}
= 1.

We shall obtain a similar conclusion with the approach of this work (the estimate below is in fact stronger
since it sharpens the width of the threshold from O(1) to O(1/

√
n)).

Theorem 5.12. Let Dn be the centered Euclidean ball of volume 1 in Rn. Then, the sequence µn := µDn
exhibits a sharp threshold with %(µn, δ) 6 c√

δn
and e.g. if n is even then we have that

Eµn(Λ∗µn) =
(n+ 1)

2
Hn

2
+O(

√
n)

as n→∞, where Hm =
∑m
k=1

1
k .

Proof. Note that if K is a centered convex body in Rn and r > 0 then Λ∗µrK (x) = Λ∗µK (x/r) for all x ∈ Rn,
where µrK is the uniform measure on rK. It follows that

1

|rK|

∫
rK

[Λ∗µrK (x)]pdx =
1

|K|

∫
K

[Λ∗µK (x)]pdx

for every p > 0 and r > 0. This shows that in order to compute β(µDn) it suffices to compute the ratio

β(µDn) + 1 =

1
|Bn2 |

∫
Bn2

Λ∗(x)2dx(
1
|Bn2 |

∫
Bn2

Λ∗(x)dx
)2

where Λ∗ := Λ∗µBn2
. Having in mind Lemma 5.3 we start by computing τ(µBn2 ). Set ω := ωµBn2

. Then,

ω(x) = ln(1/ϕ(x)) where ϕ(x) = F (|x|),

F (r) = cn

∫ 1

r

(1− t2)
n−1

2 dt, r ∈ [0, 1]
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and cn = π−1/2Γ(n2 + 1)/Γ(n+1
2 ). From [3, Lemma 2.2] we know that

F (r) = (1− r2)
n+1

2 h(r, n),

where

(5.8)
1√

2π(n+ 2)
6 h(r, n) 6

1

r
√

2πn

for all r ∈ (0, 1]. We assume that n is even (the case where n is odd can be treated in a similar way). Using
polar coordinates we compute

1

|Bn2 |

∫
Bn2

ω(x) dx = −n
∫ 1

0

rn−1 ln(F (r)) dr

= −n
∫ 1

0

rn−1 ln((1− r2)
n+1

2 ) dr − n
∫ 1

0

rn−1 ln (h(r, n)) dr.

The leading term is the first one and one can compute it explicitly. After making the change of variables
r2 = u, we get

−n
∫ 1

0

rn−1 ln((1− r2)
n+1

2 ) dr = −n(n+ 1)

2

∫ 1

0

rn−1 ln(1− r2) dr(5.9)

= −n(n+ 1)

4

∫ 1

0

u
n−2

2 ln(1− u) du =
n(n+ 1)

2n
Hn

2
,

using also Lemma 4.3. For the second term we recall from (5.8) that 0 6 − ln(h(r, n)) 6 1
2 ln(2π(n+ 2)) 6

c1 lnn, and hence

−n
∫ 1

0

rn−1 ln (h(r, n)) dr 6 c1 lnn

∫ 1

0

nrn−1dr = c1 lnn.

Therefore,

(5.10)
1

|Bn2 |

∫
Bn2

ω(x) dx =
n+ 1

2
Hn

2
+O(lnn).

Using again polar coordinates we write

1

|Bn2 |

∫
Bn2

(ω(x))2dx = n

∫ 1

0

rn−1 ln2(F (r)) dr

= n

∫ 1

0

rn−1 ln2((1− r2)
n+1

2 ) dr + n

∫ 1

0

rn−1 ln2(h(r, n)) dr

+ 2n

∫ 1

0

rn−1 ln((1− r2)
n+1

2 ) ln(h(r, n)) dr,

As before, the leading term is the first one and we can compute it explicitly. After making the change of
variables r2 = u, we get

n

(
n+ 1

2

)2 ∫ 1

0

rn−1 ln2(1− r2) dr = n
(n+ 1)2

8

∫ 1

0

u
n−2

2 ln2(1− u) du

= n
(n+ 1)2

8

 2

n
H2

n
2
− 2

n

n/2∑
k=1

1

k2

 .
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On the other hand, from (5.8) we see that if h(r, n) 6 1 then 0 6 − ln(h(r, n)) 6 1
2 ln(2π(n + 2)) 6 c1 lnn,

while if h(r, n) > 1 then 0 6 ln(h(r, n)) 6 ln(1/r). Therefore, ln2(h(r, n)) 6 c2(lnn)2+ln2(r) for all r ∈ (0, 1].
It follows that

n

∫ 1

0

rn−1 ln2(h(r, n)) dr 6 c3(lnn)2 + n

∫ 1

0

rn−1 ln2 r dr 6 c4(lnn)2.

Using again the fact that ln(h(r, n)−1) 6 c1 lnn as well as (5.9), we check that

2n

∫ 1

0

rn−1 ln((1− r2)
n+1

2 ) ln(h(r, n)) dr 6
n(n+ 1)

2n
Hn

2
· c1 lnn 6 c5n(lnn)2.

From these estimates we have

(5.11)
1

|Bn2 |

∫
Bn2

(ω(x))2 dx =
(n+ 1)2

4
H2

n
2

+O(n(lnn)2).

From (5.10) and (5.11) we finally get

τ(µBn2 ) = O

(
n(lnn)2

n2H2
n
2

)
= O(1/n).

Then, Lemma 5.3 and a simple computation show that

β(µDn) =
(
τ(µBn2 ) +O(L2

µBn2
/
√
n)
)(

1 +O(L2
µBn2

/
√
n)
)

= O(1/
√
n),

because LµBn2
≈ 1. Finally, note that by the estimate (3.5) in Corollary 3.5 we have

Eµn(Λ∗µn) =
1

|Bn2 |

∫
Bn2

ω(x) dx+O(
√
n) =

(n+ 1)

2
Hn

2
+O(

√
n)

as n→∞.

Note. The above discussion leaves open the following basic question: to estimate

β∗n := sup{β(µK) : K is a centered convex body of volume 1 in Rn}

or, more generally,

βn := sup{β(µ) : µ is a centered log-concave probability measure on Rn}.
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