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Abstract
Given two convex bodies 𝐾, 𝐿 in ℝ𝑛. The mean width
ratio of 𝐿 and 𝐾 is defined by wr(𝐿, 𝐾) = inf 𝑤(𝑇𝐿)

𝑤(𝐾)
,

where the infimum is over all linear transformations𝑇 of
ℝ𝑛 for which𝐾 ⊆ 𝑇(𝐿). For 𝐿 symmetric and𝐾 contain-
ing the origin not necessarily symmetric convex bodies
we show that wr(𝐿, 𝐾) ⩽ 𝑐

√
𝑛 log 𝑛, where 𝑐 > 0 is an

absolute constant.
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1 INTRODUCTION ANDMAIN RESULT

Let 𝐿 and 𝐾 be two convex bodies in ℝ𝑛. Themean width ratio of 𝐿 and 𝐾 is defined by

wr(𝐿, 𝐾) ∶= inf

{
𝑤(𝑇𝐿)

𝑤(𝐾)
∶ 𝑇 ∈ 𝐺𝐿(𝑛), 𝐾 ⊆ 𝑇(𝐿)

}
. (1.1)

(by 𝑤(𝐾) we denote the mean width of a convex body 𝐾)
Böröczky and Schneider in [3] proved that the minimal mean width of all simplices circum-

scribed about a convex body of given mean width attains its maximum precisely if the body is
a ball, thus the mean width ratio of a simplex and a convex body has upper bound 𝑐

√
𝑛
√
log 𝑛,

where 𝑐 > 0 is an absolute constant.
Schechtman and Schmuckenschläger in [11] showed that among all convex symmetric convex

bodies 𝐶 with maximal volume ellipsoid 𝐵𝑛
2
the unit cube 𝑄𝑛 = [−1, 1]𝑛 has the largest mean

width. It is straightforward to check that

wr(𝐶, 𝐵𝑛2 ) ⩽
√
𝑛.

© 2023 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.
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2 MARKESINIS

In this note, wewill discuss the following question: what is the upper bound for themeanwidth
ratio for every symmetric convex body𝐿 and𝐾 containing origin not necessarily symmetric convex
body in ℝ𝑛? Our main result provides an almost sharp affirmative answer.

Theorem 1.1. Let 𝐾 be a convex body containing origin (not necessarily symmetric) and 𝐿 be a
symmetric convex body in ℝ𝑛. Then, we have

wr(𝐿, 𝐾) ⩽ 𝑐
√
𝑛 log(1 + 𝑑𝐿),

where 𝑐 > 0 is an absolute constant and 𝑑𝐿 is the Banach–Mazur distance 𝑑(𝑋𝐿,𝓁
𝑛
2
). (See also

Section 2 for notation and background.)

The example of the ball and the cube shows that this estimate is optimal up to the
logarithmic term.
Our approach is presented in Section 3, the proof of the Theorem 1.1 is based on the method

of random orthogonal factorizations which was used for the first time by Jaegermann in [13] and
developed later by Benyamini and Gordon in [1] to estimate the Banach–Mazur distance between
two n-dimensional normed spaces. The cornerstone of the method is a special case of Chevet’s
inequality (see [14] §43) from Gaussian stochastic process theory.
In Section 4, we use additional information that one haswhen 𝐿 is an ellipsoid or parallelepiped

(centrally symmetric), and we obtain the following results:

(i) Let  be an ellipsoid and 𝐾 be a convex body in ℝ𝑛. Then, we have

wr( , 𝐾) ⩽ 𝑐
√
𝑛,

where 𝑐 > 0 is an absolute constant.
(ii) Let  be a parallelepiped and 𝐾 be a convex body in ℝ𝑛. Then, we have

wr( , 𝐾) ⩽ 𝑐
√
𝑛 log 𝑛,

where 𝑐 > 0 is an absolute constant.

Background information is provided in Section 2.

2 NOTATION AND PRELIMINARIES

Wework in ℝ𝑛, which is equipped with a Euclidean structure ⟨⋅, ⋅⟩. We denote by ‖ ⋅ ‖2 the corre-
sponding Euclidean norm, and write 𝐵𝑛

2
for the Euclidean unit ball and 𝑆𝑛−1 for the unit sphere.

Volume is denoted by | ⋅ |. We write 𝜔𝑛 for the volume of 𝐵𝑛2 and 𝜎 for the rotationally invariant
probability measure on 𝑆𝑛−1, and 𝜈 for the Haar probability measure on the orthogonal group
𝑂(𝑛).
The letters 𝑐, 𝑐′, 𝑐1, 𝑐2, etc. denote absolute positive constants which may change from line to

line. Whenever we write 𝑎 ≃ 𝑏, we mean that there exist absolute constants 𝑐1, 𝑐2 > 0 such that
𝑐1𝑎 ⩽ 𝑏 ⩽ 𝑐2𝑎.
A convex body in ℝ𝑛 is a compact convex subset 𝐾 of ℝ𝑛 with non-empty interior. We say that

𝐾 is symmetric or centrally symmetric if 𝑥 ∈ 𝐾 implies that −𝑥 ∈ 𝐾. The support function of a

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12788 by U

niversity O
f A

thens, W
iley O

nline L
ibrary on [29/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ON THEMEANWIDTH RATIO OF CONVEX BODIES 3

convex body 𝐾 is defined by ℎ𝐾(𝑦) = max{⟨𝑥, 𝑦⟩ ∶ 𝑥 ∈ 𝐾}, and the mean width of 𝐾 is given by

𝑤(𝐾) = ∫𝑆𝑛−1 ℎ𝐾(𝑢) 𝑑𝜎(𝑢).

The radius of 𝐾 is the quantity 𝑅(𝐾) = max{‖𝑥‖2 ∶ 𝑥 ∈ 𝐾}, that is, the smallest 𝑅 > 0 for which
𝐾 ⊆ 𝑅𝐵𝑛

2
. We define the polar body 𝐾◦ of 𝐾 by 𝐾◦ ∶= {𝑦 ∈ ℝ𝑛 ∶ ⟨𝑥, 𝑦⟩ ⩽ 1 for all 𝑥 ∈ 𝐾}.

Let 𝐾 a symmetric convex body in ℝ𝑛, then the Minkowski functional

‖𝑥‖𝐾 = inf {𝜆 ⩾ 0 ∶ 𝑥 ∈ 𝜆𝐾}

is a norm on ℝ𝑛 and 𝐾 is the unit ball of the normed space (ℝ𝑛, ‖ ⋅ ‖𝐾).
If 𝑋𝐾 and 𝑋𝐿 are two n-dimensional normed spaces their Banach–Mazur distance 𝑑(𝑋𝐾, 𝑋𝐿) is

defined by

𝑑(𝑋𝐾, 𝑋𝐿) = inf ||𝑇 ∶ 𝑋𝐾 → 𝑋𝐿|| ⋅ ||𝑇−1 ∶ 𝑋𝐿 → 𝑋𝐾||.
We write 𝑑𝐾 for the Banach–Mazur distance 𝑑(𝑋𝐾,𝓁

𝑛
2
).

Uryshon’s inequality (see [10], p. 6) states that

(|𝐾|
𝜔𝑛

) 1
𝑛

⩽ 𝑤(𝐾)

with equality if and only if 𝐾 is a ball.
The expectation of the norm of a convex body 𝐶 (on the sphere 𝑆𝑛−1) is denoted by𝑀(𝐶):

𝑀(𝐶) = ∫𝑆𝑛−1 ‖𝑥‖𝐶 𝑑𝜎(𝑥).
We write 𝛾𝑛 for the Gaussian measure in ℝ𝑛 which has the density function 𝑥 ↦

(
√
2𝜋)−𝑛 𝑒−‖𝑥‖22∕2, 𝑥 ∈ ℝ𝑛 with respect to Lebesgue measure.
Let 𝐿(𝓁𝑛

2
, 𝑋𝐶) denote the space of all linear operators from 𝓁𝑛

2
to 𝑋𝐶 . We define the 𝓁-norm of

an operator 𝑇 ∈ 𝐿(𝓁𝑛
2
, 𝑋𝐶) by

𝓁(𝑇) = 𝓁(𝑇, 𝐶) ∶=
(
∫ℝ𝑛

‖𝑇(𝑥)‖2
𝐶
𝑑𝛾𝑛(𝑥)

)1∕2

,

where 𝛾𝑛 is the standard Gaussian measure on ℝ𝑛. We also write 𝓁(𝑇−1(𝐶)) ∶= 𝓁(𝑇, 𝐶).
We say that 𝑇(𝐶) is in the 𝓁-position if 𝓁(𝑇(𝐶))𝓁((𝑇(𝐶))◦) is minimal over all 𝑇 ∈ 𝐺𝐿(𝑛) and

is equivalent to say that 𝑇(𝐶) is in the 𝓁-position if 𝑀(𝑇(𝐶))𝑤((𝑇(𝐶))◦) is minimal over all 𝑇 ∈

𝐺𝐿(𝑛) (see Lemma 3.1).

3 PROOF OF THE THEOREM

Our first tool is a simple fact about the 𝓁-functional 𝐿 ↦ 𝓁(𝐿).
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4 MARKESINIS

Lemma 3.1. Let 𝐿 be a symmetric convex body in ℝ𝑛. Then

𝑤(𝐿◦) ⩽
𝑐√
𝑛
𝓁(𝐿) (3.1)

Proof. We apply the Cauchy–Schwartz inequality to get

∫ℝ𝑛
‖𝑥‖𝐿 𝛾𝑛(𝑑𝑥) ⩽ 𝓁(̌)

and then use integration in polar coordinates. □

Our second tool is Chevet’s inequality in the spirit of Benyamini and Gordon (see [1]).

Lemma 3.2. Let 𝐿 and 𝐾 be two symmetric convex bodies in ℝ𝑛. Then,

∫𝑂(𝑛) ‖𝑈 ∶ 𝑋𝐾 → 𝑋𝐿‖𝑑𝜈(𝑈) ⩽ 𝑐𝑜(𝑅(𝐾)𝑀(𝐿) + 𝑅(𝐿◦)𝑀(𝐾◦))

⩽
𝑐√
𝑛
(𝑅(𝐾)𝓁(𝐿) + 𝑅(𝐿◦)𝓁(𝐾◦)),

where 𝑐𝑜, 𝑐 > 0 are absolute constants.

We will also use the following lemma:

Lemma 3.3. For any symmetric convex body 𝐾 in ℝ𝑛 , we have

𝑅(𝐾) ⩽ 𝑐1
√
𝑛𝑤(𝐾), (3.2)

where 𝑐1 > 0 is an absolute constant.

Proof. Let 𝑥0 ∈ 𝐾 such that ‖𝑥0‖2 = 𝑅(𝐾) and note that

𝑤(𝐾) = ∫𝑆𝑛−1 max
𝑥∈𝐾

|⟨𝑥, 𝜃⟩|𝑑𝜎(𝜃) ⩾ ∫𝑆𝑛−1 |⟨𝑥0, 𝜃⟩|𝑑𝜎(𝜃)
= ‖𝑥0‖2 ∫𝑆𝑛−1 |⟨𝑒1, 𝜃⟩|𝑑𝜎(𝜃).

Then, (3.2) follows from the fact that ∫ |⟨𝑒1, 𝜃⟩|𝑑𝜎(𝜃) ≃ 𝑛−1∕2. □

The first step for the proof of the Theorem 1.1 is the following proposition:

Proposition 3.4. Let 𝐿 and 𝐾 be two symmetric convex bodies in ℝ𝑛. Then, we have

wr(𝐿, 𝐾) ⩽ 𝑐
√
𝑛𝑀(𝑇𝐿)𝑤(𝑇𝐿),

where 𝑐 > 0 is an absolute constant and 𝑇𝐿 is in 𝓁-position.
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ON THEMEANWIDTH RATIO OF CONVEX BODIES 5

Proof. Recall that

wr(𝐿, 𝐾) ∶= inf

{
𝑤(𝑇𝐿)

𝑤(𝐾)
∶ 𝑇 ∈ 𝐺𝐿(𝑛), 𝐾 ⊆ 𝑇(𝐿)

}
.

Let 𝑇 ∈ 𝐺𝐿(𝑛) such that 𝑇𝐿 is in 𝓁-position. We apply Lemma 3.2 with 𝑇𝐿 instead of 𝐿:

∫𝑂(𝑛) ‖𝑈 ∶ 𝑋𝐾 → 𝑋𝑇𝐿‖𝑑𝜈(𝑈) ⩽ 𝑐2(𝑅(𝐾)𝑀(𝑇𝐿) + 𝑅((𝑇𝐿)◦)𝑀(𝐾◦))

⩽ 𝑐3
√
𝑛(𝑤(𝐾)𝑀(𝑇𝐿) + 𝑤((𝑇𝐿)◦)𝑀(𝐾◦)),

where we have also used (3.2). Taking into account the fact that𝑤((𝑇𝐿)◦) = 𝑀(𝑇𝐿) and𝑀(𝐾◦) =

𝑤(𝐾), we get

∫𝑂(𝑛) ‖𝑈 ∶ 𝑋𝐾 → 𝑋𝑇𝐿‖𝑑𝜈(𝑈) ⩽ 2𝑐3
√
𝑛𝑀(𝑇𝐿)𝑤(𝐾).

Thus, there exists 𝑈 ∈ 𝑂(𝑛) such that 𝑈(𝐾) ⊆ 𝛼𝑇(𝐿), where

𝛼 = 2𝑐3
√
𝑛𝑀(𝑇𝐿)𝑤(𝐾).

Consider the operator 𝑆 ∶= 𝛼𝑈−1𝑇 ∈ 𝐺𝐿(𝑛). Then, we have 𝐾 ⊆ 𝑆(𝐿) and in addition

wr(𝐿, 𝐾) ⩽
𝑤(𝑆𝐿)

𝑤(𝐾)
= 𝛼

𝑤(𝑇𝐿)

𝑤(𝐾)

= 𝑐4
√
𝑛𝑀(𝑇𝐿)𝑤(𝑇𝐿).

Our next step is to extend Proposition 3.4 in the nonsymmetric case for 𝐾. □

Proposition 3.5. Let 𝐾 be a convex body containing origin (not necessarily symmetric) and 𝐿 be a
symmetric convex body in ℝ𝑛. Then we have

wr(𝐿, 𝐾) ⩽ 𝑐
√
𝑛𝑀(𝑇𝐿)𝑤(𝑇𝐿),

where 𝑐 > 0 is an absolute constant and 𝑇𝐿 is in 𝓁-position.

Proof. Let𝐾 be a convex body containing origin (not necessarily symmetric) and 𝐿 be a symmetric
convex body in ℝ𝑛. It is easy to check that 𝑤(𝐾 − 𝐾) = 2𝑤(𝐾). By Proposition 3.4, there exists
𝑇1 ∈ 𝐺𝐿(𝑛) such that 𝐾 − 𝐾 ⊆ 𝑇1(𝐿) and

𝑤(𝑇1(𝐿))

𝑤(𝐾 − 𝐾)
⩽ 𝑐

√
𝑛𝑀(𝑇𝐿)𝑤(𝑇𝐿) (3.3)

where 𝑇𝐿 is in 𝓁-position. Apparently, 𝐾 ⊆ 𝐾 − 𝐾 ⊆ 𝑇1(𝐿), therefore,

wr(𝐿, 𝐾) ⩽
𝑤(𝐾 − 𝐾)

𝑤(𝐾)

𝑤(𝑇1(𝐿))

𝑤(𝐾 − 𝐾)
⩽ 2𝑐

√
𝑛𝑀(𝑇𝐿)𝑤(𝑇𝐿). □
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6 MARKESINIS

In order to prove Theorem 1.1 by Proposition 3.5, we need an upper bound of the quantity
𝑀(𝑇𝐿)𝑤(𝑇𝐿) when 𝑇𝐿 is in 𝓁-position.
Figiel andTomczak in [4] using a general result of Lewis [7] about trace dual norms of operators,

proved that for every 𝐶 symmetric convex body there exists 𝑆 ∈ 𝐿(𝓁𝑛
2
, 𝑋𝐶) such that

𝓁(𝑆(𝐶))𝓁((𝑆(𝐶))◦) ⩽ 𝑛 𝐾(𝑋𝐶), (3.4)

where 𝐾(𝑋𝐶) is the K-convexity constant of 𝑋𝐶 (see [10], p. 20) on the other hand, an important
inequality of Pisier [9] states that

𝐾(𝑋𝐶) ⩽ 𝑐1 log (𝑑𝐶 + 1) (3.5)

for every 𝐶, where 𝑐1 is an absolute constant. An immediate outcome of (3.4) and (3.5) is the
following lemma:

Lemma 3.6. Let 𝐿 be a symmetric convex body in ℝ𝑛. There exists an invertible linear image 𝑆(𝐿)
such that

𝓁(𝑆(𝐿))𝓁((𝑆(𝐿))◦) ⩽ 𝑐𝑛 log(1 + 𝑑𝐿), (3.6)

where 𝑐 > 0 is an absolute constant.

Proof of Theorem 1.1. By Proposition 3.5, we have

wr(𝐿, 𝐾) ⩽ 𝑐
√
𝑛𝑀(𝑇𝐿)𝑤(𝑇𝐿),

where 𝑐 > 0 is an absolute constant and 𝑇𝐿 is in 𝓁-position. Lemma 3.6 combinedwith Lemma 3.1
and the definition of 𝓁-position gives the following estimation

𝑀(𝑇𝐿)𝑤(𝑇𝐿) ⩽ 𝑀(𝑆𝐿)𝑤(𝑆𝐿) ⩽ 𝑐 log(1 + 𝑑𝐿),

thus

wr(𝐿, 𝐾) ⩽ 𝑐
√
𝑛 log(1 + 𝑑𝐿). □

Remark 3.7. For every symmetric convex body 𝐶 in ℝ𝑛, we have 𝑑𝐶 ⩽
√
𝑛 by John’s Theorem [6],

therefore Theorem 1.1 implies that

wr(𝐿, 𝐾) ⩽ 𝑐
√
𝑛 log 𝑛.

Remark 3.8. An analogue of Theorem 1.1 for volume ratio was established in [5]: If 𝐾 and 𝐿 are
two convex bodies in ℝ𝑛 then

vr(𝐿, 𝐾) ∶= inf

( |𝐿||𝑇(𝐾)|
)1∕𝑛

⩽ 𝑐
√
𝑛 log 𝑛, (3.7)
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ON THEMEANWIDTH RATIO OF CONVEX BODIES 7

where the infimum is taken over all affine transformations 𝑇 of ℝ𝑛 for which 𝑇(𝐾) ⊆ 𝐿 and 𝑐 > 0

is an absolute constant.
The width ratio as defined in (1.1) is not invariant under 𝑇 ∈ 𝐺𝐿(𝑛) as volume ratio in (3.7) (for

affine transformations); it depends on the position of 𝐾. We discuss an alternative definition for
the mean width ratio at the end of Section 4.

4 SPECIAL CASES OF THEMEANWIDTH RATIO

In this section, we study some special cases for the mean width ratio and we examine the
sharpness of Propositions 3.4, 3.5, and Theorem 1.1.

4.1 Mean width ratio when 𝑳 =  is an ellipsoid

We deduce from Proposition 3.5 the following consequence:

Corollary 4.0.1. Let  be an ellipsoid (centrally symmetric) and𝐾 be convex body inℝ𝑛 containing
the origin. Then, we have

wr( , 𝐾) ⩽ 𝑐
√
𝑛,

where 𝑐 > 0 is an absolute constant.

Proof. By Proposition 3.5, we have

wr( , 𝐾) ⩽ 𝑐
√
𝑛𝑀(𝑇)𝑤(𝑇), (4.1)

where 𝑐 > 0 is an absolute constant and 𝑇 is the 𝓁-position of the ellipsoid  , thus by the
definition of the 𝓁-position note that

𝑀(𝑇)𝑤(𝑇) ⩽ 𝑀
(
𝐵𝑛2

)
𝑤
(
𝐵𝑛2

)
= 1. (4.2)

(4.1) and (4.2) show that

wr( , 𝐾) ⩽ 𝑐
√
𝑛. □

Remark 4.1. The example of the inscribed regular simplex Δ𝑛 in the Euclidean unit ball 𝐵𝑛2 shows
that this estimate is optimal up to the

√
log 𝑛. According to Böröczky in [2], we have 𝑤(Δ𝑛) ∼

4

√
2 log 𝑛

𝑛
as 𝑛 → ∞ and hence,

wr(𝐵𝑛2 , Δ𝑛) ⩽
𝑤(𝐵𝑛

2
)

𝑤(Δ𝑛)
⩽ 𝑐

√
𝑛

log 𝑛
,

where 𝑐 > 0 is an absolute constant. Note that if we replace Δ𝑛 with 𝐵𝑛
1
the inscribed regular

cross-polytope in the Euclidean unit ball 𝐵𝑛
2
we get the same upper bound.
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8 MARKESINIS

4.2 Mean width ratio when 𝑳 =  is a parallelepiped

Let  be a parallelepiped (centrally symmetric) and 𝐾 be a convex body in ℝ𝑛 containing origin.
Theorem 1.1 yields that

wr( , 𝐾) ⩽ 𝑐
√
𝑛 log(1 + 𝑑 ) ⩽ 𝑐

√
𝑛 log 𝑛, (4.3)

where 𝑐 > 0 is an absolute constant.

Remark 4.2. We can easily prove that the upper bound is optimal up to the logarithmic in the
dimension term. It can actually be seen that wr(𝑄𝑛, 𝐵

𝑛
2
) ≃

√
𝑛 where 𝑄𝑛 = [−1, 1]𝑛 is the unit

cube. It is straightforward to check that wr(𝑄𝑛, 𝐵
𝑛
2
) ⩽

√
𝑛. For the lower bound note that for any

𝑇 ∈ 𝐺𝐿(𝑛) such that 𝐵𝑛
2
⊆ 𝑇(𝑄𝑛), Uryshon’s inequality gives

𝑤(𝑇𝑄𝑛)

𝑤(𝐵𝑛
2
)

⩾

(|𝑇𝑄𝑛||𝐵𝑛
2
|
)1∕𝑛

⩾ vr(𝑄𝑛).

The result follows from the fact that

vr(𝑄𝑛) ∶= inf

{(|𝑇𝑄𝑛||𝐵𝑛
2
|
)1∕𝑛

∶ 𝑇 ∈ 𝐺𝐿(𝑛), 𝑇(𝑄𝑛) ⊇ 𝐵𝑛2

}
≃
√
𝑛.

Note that by Proposition 3.5, we get the following corollary which improves (4.3) by a
√
log 𝑛.

Corollary 4.2.1. Let  be a parallelepiped and 𝐾 be a convex body in ℝ𝑛. Then, we have

wr( , 𝐾) ⩽ 𝑐
√
𝑛 log 𝑛,

where 𝑐 > 0 is an absolute constant.

Proof. By Proposition 3.5, we have

wr( , 𝐾) ⩽ 𝑐
√
𝑛𝑀(𝑇)𝑤(𝑇), (4.4)

where 𝑐 > 0 is an absolute constant and 𝑇 is the 𝓁-position of the parallelepiped  , thus by the
definition of the 𝓁-position, we get

𝑀(𝑇)𝑤(𝑇) ⩽ 𝑀(𝑄𝑛)𝑤(𝑄𝑛) ⩽ 𝑐
√
log 𝑛. (4.5)

By (4.4) and (4.5) follows that

wr( , 𝐾) ⩽ 𝑐
√
𝑛
√
log 𝑛. □
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ON THEMEANWIDTH RATIO OF CONVEX BODIES 9

Remark 4.3. The width ratio as defined in (1.1) is not invariant under 𝑇 ∈ 𝐺𝐿(𝑛); it depends on
the position of 𝐾. An alternative definition would be to set

wr′(𝐶, 𝐾) = inf

{
𝑤(𝑇𝐶)

𝑤(𝑆𝐾)
∶ 𝑇, 𝑆 ∈ 𝐺𝐿(𝑛), 𝑆(𝐾) ⊆ 𝑇(𝐶)

}
.

However, one can easily check that then the definition is not interesting since

wr′(𝑄𝑛, 𝐵
𝑛
2 ) ≃ 1.

To see this, we first check that for every 𝑇 ∈ 𝐺𝐿(𝑛) one has

𝑤(𝑇𝐵𝑛2 ) ≃

(
1

𝑛

𝑛∑
𝑗=1

‖𝑇(𝑒𝑗)‖22
)1∕2

,

while

𝑤(𝑇𝑄𝑛) ≃
1√
𝑛

𝑛∑
𝑗=1

‖𝑇(𝑒𝑗)‖2.
We define a diagonal operator 𝑇 = diag(𝑎1, … , 𝑎𝑛) ∈ 𝑆𝐿(𝑛) with 𝑎𝑖 = 1∕𝑛 for all 𝑖 = 1, … , 𝑛 − 1

and 𝑎𝑛 = 𝑛𝑛−1. Then,

𝑛∑
𝑗=1

‖𝑇(𝑒𝑗)‖2 = 1 + 𝑛𝑛−1(
(𝑛 − 1)∕𝑛2 + 𝑛2(𝑛−1)

)1∕2
(

𝑛∑
𝑗=1

‖𝑇(𝑒𝑗)‖22
)1∕2

⩽
(
1 +

1

𝑛𝑛−1

)( 𝑛∑
𝑗=1

‖𝑇(𝑒𝑗)‖22
)1∕2

.

It follows that wr′(𝑄𝑛, 𝐵
𝑛
2
) ⩽ 𝑐 for an absolute constant 𝑐 > 0.
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