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Abstract
We show that a random marginal πF (µ) of an isotropic log-concave prob-

ability measure µ on Rn exhibits better ψα-behavior. For a natural variant
ψ′α of the standard ψα-norm we show the following:

(i) If k ≤
√
n, then for a random F ∈ Gn,k we have that πF (µ) is a ψ′2-

measure. We complement this result by showing that a random πF (µ)
is, at the same time, supergaussian.

(ii) If k = nδ, 1
2
< δ < 1, then for a random F ∈ Gn,k we have that πF (µ)

is a ψ′α(δ)-measure, where α(δ) = 2δ
3δ−1

.

1 Introduction

The purpose of this note is to provide estimates on the ψα-behavior of random
marginals of log-concave probability measures. We show that random k–dimensional
projections of a high-dimensional measure of the log-concave class have better tail
properties than the original measure. We give precise quantitative estimates for ev-
ery 1 ≤ k < n. A typical k-dimensional marginal is ψ2 as long as k ≤

√
n; after this

critical value we still have non-trivial information (α is always greater than a simple
function of logn

log k ) in full generality. This observation may be viewed as a continua-
tion of the ideas and the tools that were developed in [17]. It is also parallel to the
philosophy behind Klartag’s proof of the central limit theorem for convex bodies in
[7] and [8] (see also [5] and [4]). A main ingredient in these works is the fact that
appropriate marginals of log-concave measures in power-type dimensions (k ' nε

for some ε > 0) are approximately spherically-symmetric. As Klartag proves in [9]
this phenomenon appears for a much wider class of probability measures and con-
stitutes the measure analogue of Dvoretzky’s theorem on approximately Euclidean
sections of high-dimensional convex bodies. Actually, Dvoretzky’s theorem plays a
crucial role in all these works, as well as in the present note.

Recall that a probability measure µ on Rn is called log-concave if for any Borel
sets A,B in Rn and any λ ∈ (0, 1),

(1.1) µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.
∗The second named author is partially supported by an NSF grant
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It is known (see [2]) that if µ is log-concave and if µ(H) < 1 for every hyperplane
H, then µ has a density f = fµ, with respect to the Lebesgue measure, which is
log-concave: log f is concave on its support {f > 0}.

We say that µ is isotropic if it is centered, i.e.

(1.2)
∫

Rn

〈x, θ〉f(x) dx = 0,

and satisfies the isotropic condition

(1.3)
∫

Rn

〈x, θ〉2f(x) dx = 1

for all θ ∈ Sn−1. Then, the isotropic constant of µ is defined by Lµ := f(0)1/n.
Let 1 ≤ α ≤ 2. We say that a direction θ ∈ Sn−1 is a ψα-direction for µ with

constant r > 0 if

(1.4) ‖〈·, θ〉‖ψα
≤ r‖〈·, θ〉‖2,

where

(1.5) ‖u‖ψα
= inf

{
t > 0 :

∫
Rn

exp ((|u(x)|/t)α) f(x) dx ≤ 2
}
.

We say that µ is a ψα measure with constant r > 0 if (1.4) holds true for every
θ ∈ Sn−1. It is well known that there exists an absolute constant C > 0 such that
every log-concave probability measure µ is ψ1 with constant C.

We study the ψα-behavior of marginals of µ. For every integer 1 ≤ k < n and
any F ∈ Gn,k, we consider the measure πF (µ) with density

(1.6) πF (f)(x) =
∫
x+F⊥

f(y) dy.

By the Prékopa–Leindler inequality (see [20]), πF (µ) is a log-concave probability
measure on F . As a simple consequence of Fubini’s theorem, one can check that if
µ is isotropic then πF (µ) is also isotropic.

For the study of marginals, we need a variant of the ψα norm. We start with
the well-known fact that ‖u‖ψα

' sup
{
‖u‖q

q1/α : q ≥ α
}

and recall that if µ is the
Lebesgue measure µK on an isotropic convex body K in Rn and if u is a linear
functional, then

(1.7) ‖u‖ψα
' sup
q≥α

‖u‖q
q1/α

' sup
α≤q≤n

‖u‖q
q1/α

.

We define

(1.8) ‖u‖ψ′α = sup
α≤q≤n

‖u‖q
q1/α

.
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It is clear that ‖u‖ψ′α ≤ c‖u‖ψα
. In view of (1.7) this is a natural definition of a

“ψα-norm” when one studies the behavior of linear functionals with respect to a
log-concave measure on Rn; see, for example, the applications in Section 4.

Our first result provides estimates on the ψ′α-behavior of random marginals of
µ.

Theorem 1.1. Let µ be an isotropic log-concave probability measure on Rn.

(i) If k ≤
√
n then there exists Ak ⊆ Gn,k with measure νn,k(Ak) > 1 −

exp(−c
√
n) such that, for every F ∈ Ak, πF (µ) is a ψ′2-measure with constant

C, where C > 0 is an absolute constant.

(ii) If k = nδ, 1
2 < δ < 1 then there exists Ak ⊆ Gn,k with measure νn,k(Ak) >

1 − exp(−ck) such that, for every F ∈ Ak, πF (µ) is a ψ′α(δ)-measure with
constant C, where α(δ) = 2δ

3δ−1 and C > 0 is an absolute constant.

We next consider the question whether, in the case 1 ≤ k ≤
√
n, random

marginals πF (µ) of an isotropic log-concave probability measure µ on Rn are su-
pergaussian (in the terminology of [19]). If ν is an isotropic log-concave probability
measure on Rk, a direction θ ∈ Sk−1 is called supergaussian for ν with constant
r > 0 if, for all 1 ≤ t ≤

√
k
r ,

(1.9) ν ({x : |〈x, θ〉| ≥ t}) ≥ e−r
2t2 .

The minimum of the set of r > 0 for which (1.9) holds true is called the supergaus-
sian constant of ν in the direction of θ and is denoted by sgν(θ). It was proved in
[19] that if K is an isotropic convex body in Rk, then a random direction is super-
gaussian for νK with a constant O(LK) (the same question had been considered by
Pivovarov [21] for the class of 1-unconditional bodies). We prove the following.

Theorem 1.2. Let µ be an isotropic log-concave probability measure on Rn. If
k ≤

√
n, then there exists Bk ⊆ Gn,k with measure νn,k(Bk) > 1− exp(−c

√
n) such

that, for every F ∈ Bk, πF (µ) is a supergaussian measure with constant c, where
c > 0 is an absolute constant: this means that

(1.10) inf
θ∈SF

sgπF (µ)(θ) ≥ c.

The paper is organized as follows. In Section 2 we introduce background ma-
terial on Lq–centroid bodies; these play a central role in our approach. The proof
of the two main results is presented in Section 3. Generalizations, applications and
further remarks are collected in Section 4.

Notation and Preliminaries. We work in Rn, which is equipped with a Euclidean
structure 〈·, ·〉. We denote by ‖ · ‖2 the corresponding Euclidean norm, and write
Bn2 for the Euclidean unit ball, and Sn−1 for the unit sphere. Volume is denoted
by | · |. We write σ for the rotationally invariant probability measure on Sn−1.
The Grassmann manifold Gn,k of k-dimensional subspaces of Rn is equipped with
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the Haar probability measure νn,k. We also write Ã for the homothetic image of
volume 1 of a compact set A ⊆ Rn, i.e. Ã := A

|A|1/n .
The letters c, c′, c1, c2 etc. denote absolute positive constants which may change

from line to line. Whenever we write a ' b, we mean that there exist absolute
constants c1, c2 > 0 such that c1a ≤ b ≤ c2a. We refer to [14], [6] and [18]
for information on isotropic convex bodies and to the books [15] and [20] for the
asymptotic theory of finite dimensional normed spaces.

A convex body in Rn is a compact convex subset C of Rn with non-empty
interior. We say that C is symmetric if x ∈ C implies that −x ∈ C. We say that C
is centered if

∫
C
〈x, θ〉 dx = 0 for every θ ∈ Sn−1. The support function hC : Rn → R

of C is defined by hC(x) = max{〈x, y〉 : y ∈ C}. For each −∞ < p <∞, p 6= 0, we
define the p-mean width of C by

(1.11) wp(C) =
(∫

Sn−1
hpC(θ)σ(dθ)

)1/p

.

Note that w(C) := w1(C) is the mean width of C. The radius of C is the quantity
R(C) = max{‖x‖2 : x ∈ C} and, if the origin is an interior point of C, the polar
body of C is C◦ := {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ C}. If K is a convex body in Rn
then the Brunn-Minkowski inequality implies that the measure µK with density 1K̃
is log-concave. The usual definition of an isotropic convex body is the following:
a convex body K of volume 1 in Rn is called isotropic if it has center of mass at
the origin and Z2(K) = LKB

n
2 for some constant LK > 0 (the definition of the

Lq-centroid bodies Zq(K) is given in the next section). One can check that K is
isotropic if and only if the log-concave measure LnKµL−1

K K is isotropic.

Acknowledgement. We would like to thank the referee for useful comments
regarding the presentation of this paper.

2 Basic formulas

2.1. Let µ be a log-concave probability measure on Rn with a log-concave density
f . For every q ≥ 1 and y ∈ Rn we define

(2.1) hZq(µ)(y) :=
(∫

Rn

|〈x, y〉|qf(x) dx
)1/q

.

The integral is finite for every q ≥ 1, by the log-concavity of µ. We define the
Lq-centroid body Zq(µ) of µ to be the centrally symmetric convex set with support
function hZq(µ).

Lq–centroid bodies were introduced in [11]. The normalization and notation
was different (see also [12] where an Lq affine isoperimetric inequality was proved).
We follow the normalization and notation of [17]. If K is a convex body of volume
1, we also write Zq(K) instead of Zq(µK).

4



It is a simple consequence of Hölder’s inequality that Zp(µ) ⊆ Zq(µ) for all
1 ≤ p ≤ q <∞. On the other hand, Borell’s lemma (see [15]) implies that

(2.2) Zq(µ) ⊆ c0
q

p
Zp(µ)

for all 1 ≤ p < q < ∞, where c0 ≥ 1 is an absolute constant. For additional
information on Lq–centroid bodies, we refer to [17] and [18].

2.2. Let µ be a log-concave probability measure on Rn with a log-concave density
f , and let 1 ≤ k ≤ n and F ∈ Gn,k. Fubini’s theorem shows that, for every q ≥ 1
and θ ∈ SF ,

(2.3)
∫

Rn

|〈x, θ〉|qdµ(x) =
∫
F

|〈x, θ〉|qdπF (µ)(x).

Since hPF (Zq(µ))(θ) = hZq(µ)(θ) for all θ ∈ SF , it follows that

(2.4) PF (Zq(µ)) = Zq(πF (µ)).

2.3. Let µ be a log-concave centered probability measure on Rn. For every q > −n,
q 6= 0, we define the quantities Iq(µ) by

(2.5) Iq(µ) :=
(∫

Rn

‖x‖q2 dµ(x)
)1/q

.

The following fact is proved in [18]: For every 1 ≤ q ≤ n/2,

(2.6) I−q(µ) '
√
n/q w−q(Zq(µ))

and

(2.7) Iq(µ) '
√
n/q wq(Zq(µ)).

2.4. Let C be a symmetric convex body in Rn. Define k∗(C) as the largest positive
integer k ≤ n for which a random k-dimensional projection of C is 4-Euclidean:
this can be made precise if we ask, for example, that the measure of the set of
F ∈ Gn,k which satisfy

(2.8)
1
2
W (C)(Bn2 ∩ F ) ⊆ PF (C) ⊆ 2W (C)(Bn2 ∩ F )

is greater than n
n+k . The parameter k∗(C) is determined by the parameters w(C)

and R(C): There exist absolute constants c1, c2 > 0 such that

(2.9) c1n
w(C)2

R(C)2
≤ k∗(C) ≤ c2n

w(C)2

R(C)2

for every symmetric convex body C in Rn. The lower bound appears in Milman’s
proof of Dvoretzky’s theorem (see [13]) and the upper bound was proved in [16].
The following Lemma is proved in [10]:
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Lemma 2.1. Let C be a symmetric convex body in Rn. Then,
(i) wq(C) ' w(C) for all q ≤ k∗(C).
(ii) wq(C) '

√
q/nR(C) for all k∗(C) ≤ q ≤ n.

(iii) wq(C) ' R(C) for all q ≥ n.

2.5. We define

(2.10) q∗(µ) := max{k ≤ n : k∗(Zk(µ)) ≥ k}.

Then, the main result of [18] states that, for every centered log-concave probability
measure µ on Rn, one has

(2.11) I−q(µ) ' Iq(µ)

for every 1 ≤ q ≤ q∗(µ). In particular, for all q ≤ q∗(µ) one has Iq(µ) ≤ CI2(µ),
where C > 0 is an absolute constant.

Assuming that µ is isotropic, one can check that q∗(µ) ≥ c
√
n, where c > 0 is

an absolute constant (for a proof, see [17]). Thus, using (2.7), one has

(2.12) Iq(µ) ≤ CI2(µ) for every q ≤
√
n.

3 Ψα-estimates for marginals

Let µ be an isotropic log-concave probability measure on Rn. We first prove The-
orem 1.1(i) and Theorem 1.2.
3.1. The case k ≤

√
n. From (2.2) we see that Zq(µ) ⊆ cqZ2(µ) for all q ≥ 2.

Since µ is isotropic, we have Z2(µ) = Bn2 , and hence, R(Zq(µ)) ≤ cq for all q ≥ 1.
Let d(q) = n

w2(Zq(µ))
R2(Zq(µ)) and D(µ) = {q ≥ 2 : q ≤ d(q)}. Let q0 be the maximum

of the set of q ≥ 2 for which [2, q] ⊆ D(µ). Then, by the continuity of d(q), we have
q0 = d(q0). In particular, from Lemma 2.1 and (2.7) we have

(3.1) w(Zq0(µ)) ' wq0(Zq0(µ)) '
√
q0/n Iq0(µ) ≥ c1

√
q0.

It follows that

(3.2) q0 = n
w2(Zq0(µ))
R2(Zq0(µ))

≥ c21nq0
q20

=
c21n

q0
,

and hence q0 ≥ c1
√
n. By the definition of q0, for all q ≤ c

√
n we have q ≤ d(q),

and the previous argument, applied for q, shows that

(3.3) w(Zq(µ)) ≥ c2
√
q and k∗(Zq(µ)) ≥ c2n/q.

Now, let k ≤
√
n. From (2.12) we see that for every 1 ≤ q ≤ k we have Iq(µ) ≤

CI2(µ) = C
√
n, and hence, by (2.7),

(3.4) w(Zq(µ)) ≤ wq(Zq(µ)) ≤ C
√
q.

6



Then, if we fix q ≤ k, Dvoretzky’s theorem (see [15]) shows that

(3.5)
1
2
w(Zq(µ))(Bn2 ∩ F ) ⊆ PF (Zq(µ)) ⊆ 2w(Zq(µ))(Bn2 ∩ F )

for all F in a subset Bk,q of Gn,k of measure

(3.6) νn,k(Bk,q) ≥ 1− e−c3k∗(Zq(µ)) ≥ 1− e−c4
√
n.

Applying this argument for q = 2i, i = 1, . . . log2 k, and taking into account the
fact that, from (2.2), Zp(µ) ⊆ Zq(µ) ⊆ 2c0Zp(µ) if p < q ≤ 2p, we conclude that
there exists Bk ⊂ Gn,k with νn,k(Bk) ≥ 1 − e−c5

√
n such that, for every F ∈ Bk

and every 1 ≤ q ≤ k,

(3.7)
1
2
w(Zq(µ))(Bn2 ∩ F ) ⊆ Zq(πF (µ)) = PF (Zq(µ)) ⊆ 2w(Zq(µ))(Bn2 ∩ F ).

From (3.3) and (3.4) we have w(Zq(µ)) ' √
q for all q ≤

√
n. Therefore, the last

formula can be written in the form

(3.8) hZq(πF (µ))(θ) '
√
q

for all F ∈ Bk, θ ∈ SF and 1 ≤ q ≤ k.
From the inequality

(3.9) sup
1≤q≤k

‖〈·, θ〉‖Lq(πF (µ))√
q

= sup
1≤q≤k

hZq(πF (µ))(θ)√
q

≤ C, θ ∈ SF

we immediately get Theorem 1.1(i).
Next, we give the proof of Theorem 1.2, following an argument which essentially

appears in [19]. Using the fact that

(3.10) hZ2q(πF (µ))(θ) ≤ 2c0hZq(πF (µ))(θ),

and applying the Paley-Zygmund inequality P (g(x) ≥ tqE (g)) ≥ (1 − tq)2 [E (g)]2

E (g2)

for the function g(x) = |〈x, θ〉|q, we see that, for every q ≥ 1 and every θ ∈ SF ,

(3.11) [πF (µ)]
({

x ∈ F : |〈x, θ〉| ≥ 1
2
hZq(πF (µ))(θ)

})
≥ e−c6q.

Then, (3.8) gives

(3.12) [πF (µ)] ({x ∈ F : |〈x, θ〉| ≥ c7
√
q}) ≥ e−c6q

for every 1 ≤ q ≤ k and every θ ∈ SF .
There exists an absolute constant c8 > 0 such that if 1 ≤ t ≤ c8

√
k we can

write t in the form t := c7
√
q for some q ≤ k. Then, a direct application of (3.12)

gives

(3.13) [πF (µ)]({x ∈ Rn : |〈x, θ〉| ≥ t}| ≥ e−c9t
2
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for all θ ∈ SF . This implies that sgπF (µ)(θ) ≥ c for all θ ∈ SF , where c > 0 is an
absolute constant. 2

It remains to prove Theorem 1.1(ii).

3.2. The case k >
√
n. Fix k = nδ, where δ ∈

(
1
2 , 1
)
, and let 1 ≤ q ≤ k. We first

prove the following Lemma.

Lemma 3.1. Let µ be an isotropic log-concave probability measure on Rn. For
every 1 ≤ k ≤ n and 1 ≤ q ≤ k,

(3.14)

(∫
Gn,k

Rk(Zq(πF (µ))) dνn,k(F )

)1/k

' wk(Zq(µ)).

Proof. Using Lemma 2.1 and the identity (2.4), we see that, for every F ∈ Gn,k,

(3.15) R(Zq(πF (µ)) ' wk(Zq(πF (µ))) = wk(PF (Zq(µ))).

Therefore,(∫
Gn,k

Rk(Zq(πF (µ))) dνn,k(F )

)1/k

'

(∫
Gn,k

wkk(PF (Zq(µ))) dνn,k(F )

)1/k

=

(∫
Gn,k

∫
SF

hkPF (Zq(µ))(θ) dσF (θ) dνn,k(F )

)1/k

,

where σF is the rotationally invariant probability measure on the sphere SF :=
Sn−1 ∩ F . Since

(3.16) hPF (Zq(µ))(θ) = hZq(µ)(θ), θ ∈ SF ,

and

(3.17)
∫
Gn,k

∫
SF

hkZq(µ)(θ) dσF (θ) dνn,k(F ) =
∫
Sn−1

hkZq(µ)(θ) dσ(θ) = wkk(Zq(µ)),

we get the result. 2

The next Lemma gives some bounds for wk(Zq(µ)).

Lemma 3.2. Let µ be an isotropic log-concave probability measure on Rn. If k =
nδ, δ ∈

(
1
2 , 1
)

and 1 ≤ q ≤ k, then

(3.18) wk(Zq(µ)) ≤ c3q
1/α(δ),

where α(δ) = 2δ
3δ−1 .
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Proof. Let 1 ≤ q ≤ k. We distinguish two cases:
(i) Assume that k ≤ n/q. Then, we have q ≤ n/q and (3.3) shows that k∗(Zq(µ)) ≥
cn/q. Therefore, k ≤ ck∗(Zq(µ)) and, taking into account (2.2), one can check that

(3.19) wk(Zq(µ)) ' w(Zq(µ)) ≤ wq(Zq(µ)) ' √
q.

(ii) Assume that k > n/q. From Lemma 2.1 we have that wk(Zq(µ)) ' w(Zq(µ))
if k ≤ k∗(Zq(µ)) and wk(Zq(µ)) '

√
k/nR(Zq(K)) if k ≥ k∗(Zq(µ)). Since q ≤ k,

using (3.4) we get that wk(Zq(K)) ≤ f(q, k), where f(q, k) ≤ c
√
q if q ≤ k ≤

k∗(Zq(µ)) and f(q, k) ≤ cq
√
k/n if k ≥ k∗(Zq(µ)). Note that k∗(Zq(µ)) ≥ n/k. So

we get that

(3.20) f(q, k) ≤ c
√
q if q ≤ n/k and f(q, k) ≤ q

√
k/n if n/k ≤ q.

We want q1−
1
α

√
k ≤ C

√
n for all q ≤ k. This will be true if k

3
2−

1
α ' n1/2. Since

k = nδ, the optimal value of α is

(3.21) α(δ) =
2δ

3δ − 1
.

From (i) we check that (3.18) holds true for k ≤ n/q as well. This proves the
Lemma. 2

Proof of Theorem 1.1(ii). We apply Markov’s inequality for q = 2i, i = 1, . . . log2 k
in Lemma 3.1, and taking into account the fact that Zp(µ) ⊆ Zq(µ) ⊆ cZp(µ) if
p < q ≤ 2p, we conclude that

(3.22) sup
1≤q≤k

R(Zq(πF (µ)))
wk(Zq(µ))

≤ C,

where C > 0 is an absolute constant, for all F in a subset Ak of Gn,k with measure
νn,k(Ak) ≥ 1− (log2 k)e−2k ≥ 1− e−k.

Now, we are using the estimates from Lemma 3.2; for every F ∈ Ak we have

(3.23) ‖〈·, θ〉‖ψ′
α(δ)

= sup
1≤q≤k

‖〈·, θ〉‖Lq(πF (µ))

q1/α(δ)
≤ C1 sup

1≤q≤k

R(Zq(πF (µ)))
wk(Zq(µ))

≤ C2

for all θ ∈ SF , where C2 > 0 is an absolute constant. 2

4 Further remarks and applications

4.1. Assume that µ is a ψβ measure with constant r > 0 for some β ∈ (1, 2). Then,
the argument of Section 3 leads to the following generalization of Theorem 1.1.

Theorem 4.1. Let β ∈ (1, 2) and let µ be an isotropic log-concave probability
measure on Rn which is ψβ with constant r > 0.
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(i) If k ≤ n
β
2 then there exists Ak ⊆ Gn,k with measure νn,k(Ak) > 1 −

exp(−cn
β
2 ) such that, for every F ∈ Ak, πF (µ) is a ψ′2-measure with constant

C(r).

(ii) If k = nδ, β
2 < δ < 1 then there exists Ak ⊆ Gn,k with measure νn,k(Ak) >

1 − exp(−ck) such that, for every F ∈ Ak, πF (µ) is a ψ′α(δ,β)-measure with

constant C(r), where α(δ, β) = 2βδ
(2δ−β)+βδ .

4.2. The estimate for α(δ, β) in Theorem 4.1 is optimal in the following sense: let
µ be an isotropic log-concave probability measure on Rn which is ψβ and has the
property that there exists θ ∈ Sn−1 such that hZq(µ)(θ) ' q

1
β for all 1 ≤ q ≤ n.

Then, Lemma 2.1 shows that for k = nδ ≥ n
β
2 we have

(4.1) wk(Zk(µ)) '
√
k/nR(Zk(µ)) '

√
k/n k

1
β = k

1
α(β,δ) .

Then, using (3.17) and the Paley-Zygmund inequality we can check that there exists
Ak ⊆ Gn,k with measure νn,k(Ak) > exp(−ck) such that, for every F ∈ Ak there
exists θ ∈ SF such that hZk(µ)(θ) ≥ ck

1
α(β,δ) .

4.3. For every p ≥ 1 we consider the convex body Kp(µ) (introduced by K. Ball in
[1]) with gauge function

(4.2) ‖x‖Kp(µ) :=
(

p

fµ(0)

∫ ∞

0

fµ(rx)rp−1dr

)−1/p

.

Let 1 ≤ k < n and F ∈ Gn,k. For θ ∈ SF we define

(4.3) ‖θ‖Bk+1(µ,F ) := ‖θ‖Kk+1(πF (µ)).

For all 1 ≤ q ≤ k < n and F ∈ Gn,k, one has (see [18] and [3])

(4.4) fπF (µ)(0)
1
kZq(πF (µ)) ' fµ(0)

1
nZq(B̃k+1(µ, F )).

If µ is isotropic, then B̃k+1(µ, F ) is an isotropic convex body in F . In particular,
the case q = 2 of (4.4) shows that

(4.5) fπF (µ)(0)
1
k ' fµ(0)

1
nLBk+1(µ,F ).

Since the ψα and ψ′α norms are equivalent for convex bodies, as an immediate
consequence of the above formulas we get the following version of Theorem 4.1:

Theorem 4.2. Let β ∈ (1, 2) and let µ be an isotropic log-concave probability
measure on Rn which is ψβ with constant r > 0.

(i) If k ≤ n
β
2 then there exists Ak ⊆ Gn,k with measure νn,k(Ak) > 1 −

exp(−cn
β
2 ) such that, for every F ∈ Ak, B̃k+1(µ, F ) is a ψ2-body with con-

stant C(r).
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(ii) If k = nδ, β
2 < δ < 1 then there exists Ak ⊆ Gn,k with measure νn,k(Ak) >

1− exp(−ck) such that, for every F ∈ Ak, B̃k+1(µ, F ) is a ψα(δ,β)-body with
constant C(r), where α(δ, β) = 2βδ

(2δ−β)+βδ .

4.4. It was mentioned in §2.5 that if µ is an isotropic log-concave probability
measure on Rn, then I−q(µ) ' Iq(µ) for every 1 ≤ q ≤ q∗(µ). If µ is a ψβ-measure,
then q∗(µ) ≥ cn

β
2 . This gives the lower bound

(4.6) I−q(µ) ≥ c
√
n

for all q ≤ n
β
2 . Using the results of this note, we can give some non-trivial lower

bounds for I−q(µ) when q � n
β
2 . Let f be the density of µ. We start with a

formula from [18, Proposition 4.6]: taking into account (4.5) we see that, for every
1 ≤ k < n,

(4.7) I−k(µ) '
√
n

(∫
Gn,k

LkBk+1(µ,F )dνn,k(F )

)− 1
k

.

Then, what we need is an upper bound for the quantity

(4.8)
∫
Gn,k

LkBk+1(µ,F ) dνn,k(F )

in the case k = nδ, δ ∈
(
β
2 , 1
)
. We now use the following fact (see [6, Theorem

2.5.4]): If α ∈ (1, 2] and C is an isotropic convex body in Rk which is ψα with
constant r > 0, then

(4.9) LC ≤ cr
α
2 k

2−α
4 log k.

From Lemma 3.2 we know that, for every 1 ≤ q ≤ k, we have wk(Zq(µ)) ≤ cq1/α∗ ,
where α∗ = 2βδ

(2δ−β)+βδ .
Then, the argument of Lemma 3.1 shows that the probability thatR(Zq(Bk+1(µ, F ))) >

csq1/α∗ is less than s−k. It follows that, for every s ≥ 1 we have

(4.10) sup
θ∈SF

‖〈·, θ〉‖ψα∗ (Bk+1(µ,F )) ≤ c1s

on a subset Bk,s of Gn,k of measure νn,k(Bk,s) ≥ 1− s−k. Therefore,

(4.11) LBk+1(µ,F ) ≤ c2s
α∗
2 k

2−α∗
4 log k

for all F ∈ Bk,s. Set m(k) = c2k
2−α∗

4 log k. Then, we can estimate the integral
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(4.7) as follows:∫
Gn,k

LkBk+1(µ,F ) dνn,k(F ) =
∫ ∞

0

ktk−1νn,k(F : LBk+1(µ,F ) ≥ t) dt

≤ mk(k) +
∫ ∞

m(k)

ktk−1νn,k(F : LBk+1(µ,F ) ≥ t) dt

= mk(k)
[
1 +

∫ ∞

1

ks
(k−1)α∗

2 νn,k(F : LBk+1(µ,F ) ≥ m(k)s
α∗
2 ) dt

]
≤ mk(k)

[
1 +

kα∗
2

∫ ∞

1

s
(k−1)α∗

2 s
α∗
2 −1s−kds

]
= mk(k)

[
1 +

kα∗
2

∫ ∞

1

s−1−k(1−α∗
2 )ds

]
' mk(k) '

(
k

2−α∗
4 log k

)k
.

Inserting this information into (4.7) we get

(4.12) I−k(µ) ≥ c
√
n

k
2−α∗

4 log k
≥ c

log n
n

1
2−

δ(2−α∗)
4 .

Using our estimate for α∗ = α(δ, β), we finally get the following:

Theorem 4.3. Let β ∈ [1, 2] and let µ be an isotropic log-concave probability
measure on Rn, which is a ψβ-measure with constant r > 0.

1. If k ≤ n
β
2 , then I−k(µ) ≥ c(r)

√
n.

2. If k = nδ for some δ ∈
(
β
2 , 1
)
, then

(∗) I−k(µ) ≥ c(r)
n

(1−δ)(2δ−β)+βδ
2[(2δ−β)+βδ]

log n
.

Final remark. In Theorem 4.3, we can actually obtain a stronger estimate. For
an isotropic convex body C in Rs, let C1 = C ∩ (4

√
sLC)Bs2 and C = C̃1. For any

F ∈ Gn,k we consider the body Bk+1(K,F ) and, using the estimates from Lemma
3.2, we observe that

(i) h
Zq(Bk+1(K,F ))

(θ) ≤ c
√
qLBk+1(K,F ), for 1 ≤ q ≤

(
n
k

)β ,
(ii) h

Zq(Bk+1(K,F ))
(θ) ≤ c

√
k
nq

1
βLBk+1(K,F ), for

(
n
k

)β ≤ q ≤ n
β
2 ,

(iii) h
Zq(Bk+1(K,F ))

(θ) ≤ c
√
kLBk+1(K,F ), for n

β
2 ≤ q ≤ k.

This implies that Bk+1(K,F ) is a ψ2-body with constant O(n
2δ−β

4 ). Inserting this
information in the proof of Theorem 4.3, and using the fact – proved in [3] – that
if C is a ψ2 body with constant r then LC ≤ cr

√
log(er) in the place of (4.9), one

can prove the following fact: Let β ∈ [1, 2] and let µ be an isotropic log-concave
probability measure on Rn, which is a ψβ-measure with constant r > 0.
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(i) If k ≤ n
β
2 , then I−k(µ) ≥ cr

√
n.

(ii) If k = nδ for some δ ∈
(
β
2 , 1
)
, then

(∗∗) I−k(µ) ≥ cr
n

1
2−

2δ−β
4√

log
(
(crn)

2δ−β
4

) .
Using this result, we can also slightly improve the small probability estimate

µ
(
{x ∈ Rn : ‖x‖2 ≤ cε

√
n}
)
≤ ε

√
n

from [18]. Using (∗∗) one can show that if µ is an isotropic log-concave measure in
Rn then, for every ε ∈ (0, 1),

(4.13) µ
(
{x ∈ Rn : ‖x‖2 ≤ cε

√
n}
)
≤ ε

√
n min

{
1, εn

δ(ε,n)
}
,

where δ(ε, n) = log(ε−2)
logn − log log n. We omit the detailed proofs of these assertions;

we would also like to mention that these estimates are optimal up to our current
knowledge on LK and a logarithmic in the dimension term.
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