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Abstract

We provide extensions of geometric inequalities about sections and projections of convex bodies to
the setting of integrable log-concave functions. Namely, we consider suitable generalizations of the affine
and dual affine quermassintegrals of a log-concave function f and obtain upper and lower estimates for
them in terms of the integral ||f||1 of f, we give estimates for sections and projections of log-concave
functions in the spirit of the lower dimensional Busemann-Petty and Shephard problem, and we extend
to log-concave functions the affirmative answer to a variant of the Busemann-Petty and Shephard
problems, proposed by V. Milman. The main goal of this article is to show that the assumption of
log-concavity leads to inequalities in which the constants are of the same order as that of the constants
in the original corresponding geometric inequalities.

1 Introduction

In this article we present extensions of some geometric inequalities about sections and projections of con-
vex bodies to the setting of integrable log-concave functions. Various extensions of this type have been given
for even more general classes of functions but our aim is to show that the assumption of log-concavity leads
to much better constants, namely of the order of the constants in the corresponding geometric inequalities.
We say that a function f : R™ — [0,400) is log-concave if f = e~ % where ¢ : R” — (—00,00] is convex
and lower semicontinuous. We also say that f is a geometric log-concave function if it is log-concave and
[/l = f(0) = 1. We denote by F(R™) the class of log-concave integrable functions on R™ and by Fo(R™)
the class of geometric log-concave integrable functions. Let f € F(R™). Given E € G, , where Gy, i, is the
Grassmann manifold of k-dimensional subspaces of R", the “section” of f with E is the restriction f ‘ g of f
onto E and the “projection” or “shadow” of f onto E is the function

Ppf(x) :==max{f(y):y€x+E*}, zcE

where E is the orthogonal subspace of E.

We start with a very brief description of our results. First we consider suitable generalizations of the
affine and dual affine quermassintegrals of a log-concave function f and provide upper and lower estimates
for them in terms of the integral

[fllh= | [flz)de
R™

of f. Then, we extend to log-concave functions the affirmative answer to a variant of the Busemann-Petty
and Shephard problems, proposed by V. Milman. We also provide estimates for sections of log-concave
functions in the spirit of the lower dimensional Busemann-Petty problem, and estimates for projections of
log-concave functions in the spirit of the lower dimensional Shephard problem. More information about each



of these questions, and about the classical geometric counterparts of our results, is provided separately in
the corresponding sections of the article.

In Section |3| we consider the affine and dual affine quermassintegrals of log-concave integrable functions.
Recall that for every convex body K or, more generally, for any bounded Borel set in R™, and for any
1 <k <n—1, the k-th dual affine quermassintegral of K is defined by

1
kn

U (K) = (/G |KmEL|"dyn,k(E)> ,

where | - | denotes volume in the appropriate dimension and v, j is the Haar probability measure on G, .
We consider the following natural generalization of Wy, for a log-concave integrable function:

\Ijk(f) = </G f’EL|§Lan,k(E)> .

Our estimates for Wy (f) are the following.

Theorem 1.1. Let f : R™ — [0, 400) be a geometric log-concave integrable function. Then,

c n—k n—k
mllflh’“" < Ui(f) < Vellfll*

for every 1 < k < n—1, where ¢y, := min{L,, \/n/k/log(en/k)} and ¢ > 0 is an absolute constant.

In the statement above, L,, = max{L; : f € F(R™)} where Ly is the isotropic constant of f, and it is
known that L,, = O(y/logn) (see Section [2| for background information).

Next, recall that for every convex body K or, more generally, for any bounded Borel set in R™, and for
any 1 < k < n—1, the k-th affine quermassintegral of K is defined by

(I)k(K) = (/G |PE(K)|7n dV'rt,k(E))

We generalize the definition of ®; as follows: for any log-concave integrable function we set

L
kn

1/n

(1) wuin) = ([ @uminra)

where R;(f) = {z : f(z) > t}, t > 0. We note at this point that if f = Lx is the indicator function of a
convex body K in R™ then @ (1x) = P (K) for all 1 < k < n —1 (as we explain in Section [3} this follows
from the observation that Pg(R:(f)) = Ri(Prlk) = Pr(K) for all 0 < t < 1 and R;(Prlg) = @ for all
t > 1). Therefore, our definition of @k (f) in generalizes the definition of the k-th affine quermassintegral
of a convex body. We obtain the following estimates.

Theorem 1.2. Let f : R™ — [0, +00) be a geometric log-concave integrable function. Then,

ek FIF < Bk(f) < ca/n ks | FIIT

for every 1 < k <n—1, where ¢, = min {log n, %\/log(en/k/’)} and cy,ce > 0 are absolute constants.



In Section 4] we study a variant of the Busemann-Petty and Shephard problems, proposed by V. Milman
in the setting of convex bodies: If K and T are origin-symmetric convex bodies in R that satisfy |Pe. (K)| <
|T N &L for all € € S"~L) does it follow that |K| < |T|? Giannopoulos and Koldobsky proved in [21] that
the answer to this question (and in fact to the lower dimensional analogue of the question) is affirmative.
Moreover, one can relax the symmetry assumption and even the assumption of convexity for T: If K is a
convex body in R” and T is a bounded Borel subset of R™ such that | Pg(K)| < |TNE| for some 1 < k <n—1
and for all £ € G, n—i, then |K| < |T).

We extend this result to log-concave integrable functions.

Theorem 1.3. Let f,g : R" — [0,+00) be geometric log-concave integrable functions such that, for some
1<k<n-—1, we have that
1Peflly < llglgllh  for all E € Grpor.

Then,

n!

(0= ]

Using Stirling’s formula we check that the constant n!/[(n — k)!]7* that appears in (T.2) is of the order
kn
of C'n=F.
In Section [5| we extend to log-concave integrable functions a number of inequalities related to the

Busemann-Petty problem and the slicing problem. They all follow from the next general inequality about
the Radon transform on convex sets.

(1.2) [FATTEES g1l

Theorem 1.4. Let f,g : R™ — [0,00) be non-negative integrable functions such that f is log-concave with
f(0) >0 and ||g]lec = g(0) = 1. If K is a convez body in R™ and T is a compact subset of R™ with 0 € KNT,
then

)n < (CBn,k)k max f(O)_l fKnE f(.%‘) dx

1.3
3 Bl T Jopa(e) dr

(f(o)_l [y fx)d
Jr9(x) dx

where B, = min {Ln, Vn/k (log(en/k))%} and ¢ > 0 is an absolute constant.

We discuss several consequences of Theorem[I.4]in Section[5} In particular, we obtain a lower estimate for
the sup-norm of the Radon transform which sharpens Koldobsky’s slicing inequality for arbitrary functions
(see [30]) under the log-concavity assumption.

Theorem 1.5. Let f € Fo(R™). Then, for every 1 < k < n— 1 we have that

k
n

[ s@de < @,01K1E  max [ fa)an.

In Section [6] we obtain a Shephard-type estimate for log-concave integrable functions. Let 1 <k <n—1
and let S, 1 be the smallest constant .S > 0 with the following property: For every pair of convex bodies K
and T in R" that satisfy |Pg(K)| < |Pg(T)| for all E € Gy, _k, one has that |K|"% < 5% |T|"+". The final
(negative) answer to the classical Shephard’s problem is the fact that S, ; ~ \/n (see Section |§| for more

details and references). General estimates for S,  were obtained in [2I] where it was shown that if

S'n,k = min{ ﬁ In (ne_"k> ,lnn}



n—k n—k

then S, 5 < (clgn,k) # . In particular, S, < C® if ﬁ is bounded. We provide a third estimate,
namely that S, < +/n for all n and k, which is consistent with the estimate for S, ; and better than the

previous ones if k& < n/logn. Our main goal is to obtain an analogue of the above estimates for S,, 5, for
geometric log-concave integrable functions.

Theorem 1.6. Let f,g € Fo(R") and1 < k < n—1. Assume that |R,(Pgf)| < |Ri(Prg)| for all E € Gy p—k
and 0 <t < 1. Then,

n—k k n—k
Il < Snxllgll™

Theorem [I.0] extends the known Shephard-type estimates for convex bodies. To see this, we note that if
f =1k and g = 17 are the indicator functions of two convex bodies K and T in R™ then the assumption
in Theorem is equivalent to the assumption |Pg(K)| < |Pg(T)| in the original Shephard’s problem.

We close this introductory section with a few comments on some of the main tools that are used for the
proofs of the above results. A very fruitful idea in order to study the geometric properties of a log-concave
function f on R™ with f(0) > 0 is to use the family of bodies K, (f), introduced by K. Ball in [3]. In Section
we recall their definition: K,(f) is the star body with radial function

PK, () (@) = <f(10) /Ooo prP= 1 f(ra) dr)

for z # 0. The log-concavity of f implies that the bodies K,(f) are convex. Direct computation shows that

1/p

1
|[Kn(f)] = 70) Jen f(z)dx

and

K_i(f) N E| = ﬁ /E f(x),dz

forany 1 <k <n-1and E € G, ,_. Moreover (see Lemma and Lemma , one can compare the
volumes of |K,,_;(f)| and |K,(f)|. These facts allow us to translate computations involving sections of f to
computations about the sections of the convex body K, _x(f) and exploit what is known in the setting of
convex bodies. This idea is used in the proof of Theorem and Theorem

In order to study the projections of a log-concave function f on R™ we use mixed integrals of functions.
If f1,..., fn : R™ = [0, 00) are bounded integrable functions such that R.(f;) = {f; > t} is a compact convex
set for all 1 < j < n and ¢ > 0, their mixed integral (see [38]) is defined by

Vi foreoond) = [ C VR, Blfo)se s Relf)) dt,

where V(R (f1), Ri(f2),- .., Ri(fn)) is the classical mixed volume of the sets R;(f;). The k-th quermassin-
tegral of f is defined as Wy (f) = V((f,n — k), (1y,k)). Direct computation shows that

and

Wilf) = /G 1Pe(f)s vk (E).

Wn—k

n,n—k

Moreover, the quermassintegrals Wy (f) can be compared via Aleksandrov-type inequalities (see (4.3])). These
facts allow us to translate computations involving projections of f to computations about the quermassin-



tegrals of the convex bodies R;(f) and exploit what is known in the setting of convex bodies. This idea is
used in the proof of Theorem [I.2] and Theorem [I.3

2 Background information and auxiliary results

We write (-, -) for the standard inner product in R™ and |- | for the Euclidean norm. Lebesgue measure in
R™ is also denoted by |-|. We denote the Euclidean unit ball and unit sphere by BY and S™~! respectively, and
write o for the rotationally invariant probability measure on S"~!. We define w,, = |B¥|. The Grassmann
manifold G, ; of k-dimensional subspaces of R" is equipped with the Haar probability measure v, . The
letters ¢, ¢, ¢;, c} etc. denote absolute positive constants whose value may change from line to line.

A convex body in R™ is a compact convex set K C R™ with non-empty interior. We say that K is
centrally symmetric if —K = K and that K is centered if the barycenter bar(K) = ‘17| f  Tdr of K is at
the origin. If K is a convex body with 0 € int(K') then the radial function gx of K is defined for all = # 0
by ox(xz) = sup{t > 0: tz € K} and the support function of K is defined by hg(x) = sup{(z,y) : y € K}
for all x € R™. The polar body K° of a convex body K in R™ with 0 € int(K) is the convex body

K°:={yeR": (z,y) <lforallze K}.

A convex body K in R™ is called isotropic if it has volume 1, it is centered, and its inertia matrix is a
multiple of the identity matrix. This is equivalent to the fact that there exists a constant Ly > 0, the
isotropic constant of K, such that

|wazmy=[3m@%x=Li

for all £ € S™~ 1.

A Borel measure p on R” is called log-concave if u(AA + (1 — \)B) = u(A)*u(B)!=* for any pair of
compact sets A and B in R™ and any A € (0,1). A function f : R™ — [0,00) is called log-concave if its
support {f > 0} is a convex set in R™ and the restriction of In f to it is concave. If f has finite positive
integral then there exist constants A, B > 0 such that f(x) < Ae~Bl?| for all z € R” (see [0, Lemma 2.2.1]).
In particular, f has finite moments of all orders. A result of Borell [6] shows that if a probability measure
p is log-concave and p(H) < 1 for every hyperplane H in R™, then p has a log-concave density f,. We say
that u is even if u(—B) = u(B) for every Borel subset B of R™ and that p is centered if

bar() 1= [ (. €auta) = [ (2.8, (2)dz =0

for all £ € S"~!. Fradelizi has shown in [I7] that if y is a centered log-concave probability measure on R*
then

(2.1) | fulloo < € £,(0).

Note that if K is a convex body in R™ then the Brunn-Minkowski inequality implies that the indicator
function 1 of K is the density of a log-concave measure, the Lebesgue measure on K.
Let 1 and v be two Borel measures on R™. If T': R™ — R™ is a measurable function which is defined
v-almost everywhere and satisfies
u(B) = v(T7(B))

for every Borel subset B of R™ then we say that T pushes forward v to p and write T,v = u. It is easy to



see that T,v = p if and only if for every bounded Borel measurable function g : R® — R we have

[ s@du@) = [ o @)avty).
If 11 is a log-concave measure on R™ with density f,, we define the isotropic constant of ;1 by

n

(3 Wrern Ful@)\ " 1 o5
b <fRnfu<x>dx> ldet Cov{yu)]2+,

where Cov(u) is the covariance matrix of p with entries

Cov(p); = Jon wiifu(@)dz [ @ifu(@) do [ @ fu(@) do
v Jan fulz) dw Jon fu(@)dz [on fu(z)de

We say that a log-concave probability measure u on R™ is isotropic if it is centered and Cov(u) = I,,, where

I,, is the identity n x n matrix. In this case, L, = ||fu\|(1x/>n It is known that for every p there exists an

affine transformation T" such that T, u is isotropic. The hyperplane conjecture asks if there exists an absolute
constant C' > 0 such that

Ly, :=max{L, : p is an isotropic log-concave probability measure on R"} < C

for all n > 1. Bourgain proved in [§] that L, < ¢1+/nlogn, and Klartag [26] improved this bound to
L, < ca/n. After a breakthrough work of Chen [13] who proved that for any € > 0 there exists ng(e) € N
such that L, < n® for every n > no(e), and then polylogarithmic bounds for L,, obtained by Klartag and
Lehec [28] and then by Jambulapati, Lee and Vempala in [25], the best to date known bound L,, < c5+/logn
is due to Klartag [27].

As mentioned in the introduction, a main tool in our work is the family of K,-bodies of a function,
introduced by K. Ball in [3]. Given a measurable function f : R™ — [0, 00) with f(0) > 0, for any p > 0 we
define the set
f (0)}

(2:2) Ky (f) = {x e [ " syt > L0

From the definition it follows that the radial function of K,(f) is given by

(23 @) = (555 | o st ) v

for x # 0. It was proved by K. Ball that if f is also log-concave and integrable then, for every p > 0, K,(f)
is a convex set.
Let 0 < p < g. The next two lemmas establish inclusions between K,(f) and K (f).

Lemma 2.1. Let f: R" — [0,00) be a bounded measurable function such that f(0) > 0. If 0 < p < q, then

(2.4) K,(f) € (']{(”(;‘j) )

Proof. For any x # 0 consider the function f, : [0,00) — [0,00) with f,(r) = f(rz). It is known that the



function

G(p) = (IIfllloo /0 T o ) dr)l/p

is increasing on (0,00). A proof may be found in [9, Lemma 2.2.4]; note that the log-concavity of f is not
required for the argument. Applying this fact one can check (see [, Proposition 2.5.7]) that

o) > (Ml )
P, (*) = iy Py (1) ()

for all 0 < p < ¢, and the lemma follows if we also note that || f5||cc < || f]lco- O

Lemma 2.2. Let f: R™ — [0,00) be a log-concave function such that f(0) > 0. If 0 < p < g, then

(2.5) Lo D™ o (1) € Ky().

Proof. For any z # 0 consider the log-concave function f, : [0,00) — [0, 00) with f,(r) = f(rz). It is known

that the function
- 1 - p—1 d e
ro) = (g [, @)

is decreasing on (0,00). A proof may be found in [9, Theorem 2.2.3]. Applying this fact one can check (see
[9, Proposition 2.5.7]) that
[(q+1)'/4
Py(n (@) S 5, )7 (0 (@)
forall 0 < p <gq. L]

We shall use the fact that

(26) K= [ erantorae

n

_ %/S f(10)/0°° L (r€) dr dé = ﬁ/ f (@) da.

Similarly, for any 1 <k <n—1and F € G, ,_; we see that

1 n—=k
d
—= /SnilnE PK, (&))" dE

L /S" INnE .f(l ) /OO(n - k)lrn_k_lf(ré-) ar dé_

/f ) dz.

We will also briefly consider s-concave measures. We say that a measure  on R™ is s-concave for some
—o0o<s< 1/nif

(2.7) Kok (f) N E|

(2.8) H(1 = NA+AB) > (1 N (A) + A (B))

for any pair of compact sets A, B in R™ with p(A)u(B) > 0 and any A € (0,1). We can also consider
the limiting cases s = 0, where the right-hand side in (2.8)) should be understood as u(A)'~*u(B)*, and



s = —oo, where the right-hand side in (2.8)) becomes min{u(A), u(B)}. Note that 0-concave measures are
the log-concave measures and that if p is s-concave and s’ < s then p is also s’-concave.
A function f:R™ — [0,00) is called y-concave for some v € [—o0, o0] if

FIL =Nz +Xy) = (1= N (@) + A ()Y

for all z,y € R™ with f(x)f(y) > 0 and all A € (0,1). One can also define the cases v = 0, 400 appropriately.
Borell [7] showed that if x4 is a measure on R™ and the affine subspace F' spanned by the support supp(u) of
w has dimension dim(F') = n then for every —oo < s < 1/n we have that p is s-concave if and only if it has
a non-negative density f € Ll _(R",dz) and f is y-concave, where v = —— € [~1/n,+00).

We shall extend some of our results to densities of s-concave measures with s € (—o00,0). Note that
these classes of functions are strictly larger than the class of log—conclave functions. Let p be s-concave for
1 s

concave, where —— = ——— or equivalently,
« 1—sn

some s € (—00,0). Then, the density f of p is —

L
1

a=n—-—>n.
s

Assume that f(0) > 0 and, for any 0 < p < «, define the star body K,(f) as in (2.2). It is proved in [I§]
that one has an analogue of Lemma [2.2} For any 0 < p < ¢ < «,

(qB(qva B q))l/q K (f),

29) Kalf) (pB(p,a —p))1/r ="

where B(z,y) = II:((?JI;(::))

is the Beta function. Note that if a > ¢ + 1 then

g _ (aBlg.a—a)"" q

c1— < < co—
p  (pB(p,o—p))t/» p

where ¢1, co > 0 are absolute constants. This follows from [18, Lemma 11].

We refer to the classical monograph of Schneider [40] for the theory of convex bodies and to the books
[1] and [9] for more information on asymptotic geometric analysis, isotropic convex bodies and log-concave
probability measures. The study of classes of functions from a geometric point of view is a rapidly developing
area of research; it is presented in [2] Chapter 9] where the reader may find a detailed exposition of the main
ideas and several important functional inequalities that have been established.

3 Affine and dual affine quermassintegrals

The following inequality about sections of convex bodies was proved by Busemann and Straus [I1], and
independently by Grinberg [24]. If K is a convex body in R™ then, for any 1 <k <n—1,

(3.1) / K 0 E["dvy i (B) < & | K|,
Gn,k ’ wn

Following Grinberg’s argument one can check that this inequality is still true if we consider any bounded
Borel set K in R™. This more general form appears in [20, Section 7]. Grinberg also observed that the
integral in the left-hand side of is invariant under volume preserving linear transformations of K.

Let 1 < k < n—1. For every convex body K, or more generally for any bounded Borel set in R”, the



k-th dual affine quermassintegral of K is defined by

Uy (K) = (/G |K N EX” dun,k(E)>

Grinberg’s inequality shows that if K is a bounded Borel set in R™ and By is the centered Euclidean ball
with |Bg| = |K| then

L
kn

wﬁfk ﬁ n—k n—k
2) wi(1) < wi(Br) = (2 ) 7 1K) < valR|

n—k
(the last inequality follows from the fact that 1 < w,_p/wn" < €¥/2; see [31, Lemma 2.1] for a proof).
Assuming that K is a centered convex body in R™ there are two lower bounds on ¥ (K), proved in [I4]:
one has that

(3.3) U (K) > —| K|

- wn,k

1
2

where ), = min {Ln, (% log(en/ k)) We consider the following natural generalization of Wy for a

non-negative bounded and integrable function f : R™ — [0, +00):

Wi(f) = ( /G f|EL|?dvn7k<E>> -

Our aim is to give upper and lower bounds for ¥ (f) in terms of ||f||;. A functional version of (3.1) is
established in [I5]: if 1 < m < n—1 and f is a non-negative, bounded and integrable function on R™ then

flallt Wy,
(3.4) [ I ) < S

It follows that

() = ( /G T |H||?dun,n_k<H>>

L

1

1 1
kn kn

£ 1ll2
< 1M / MalE g, )
ey TAmlE
Wy,

T nok n—k
<AL (Sa2) T 1A = Ve
n

n—k
In the next theorem we give an independent proof of the estimate Wy (f) < \/€||f||één||f||1’“” . Moreover, we

show that if f is log-concave then a reverse inequality is also true.

Theorem 3.1. Let f: R™ — [0,400) be a bounded integrable function. Then,

Wi (f) < Vel FIL I

If f is also assumed to be log-concave and f(0) > 0 then

Wi(f) > wiﬂownnfnfﬁ
n,k



where ¢ > 0 is an absolute constant.

Proof. Applying (2.7) we write

wf)(/G (F(O)[Kn—i(F) N H)" dory i ( ) Vo Kni(f))
o
)

< VO 115 = Vet (4 o f') a1

P d) —
<veropt (W) T (WY gy iy

using in the last steps (3.2)) for the star body K,_x(f), Lemma [2.1] and (2.6).
For the lower bound, we apply (2.7)) to write

L
kn

U(f) = (/G (fO)EKn—r(f) N H[)" an,n—k(H)> = F(0)F k(K k(f))

© o) e T )] oot
Z Gl OF B = 5= F0) <|Kn T3] )
o= R (I e [m-BE
Z 0 O (f(O)) o e T O

using in the last steps (3.3) for the convex body K, _x(f), Lemma and (2.6). From Stirling’s formula
one may check that there exists a constant ¢; > 0 such that, foralln >2and 1 <k <n—1,

n—k
—k)F T(n—k+1)mF\ "
(3.5) Rl _ (Lln—k+ D77 > e
Therefore,
c/ 1 n—k
Ui(f) = " FO) =[£Il
n,k
with ¢/ = cje. O

Note. For any s € (—00,0), using (2.9) we can modify the proof of Theorem [3.1|and extend it to the densities
of s-concave measures.

Theorem 3.2. Let s € (—00,0) and let f: R™ — [0,00) be a non-negative integrable function which is the
density of an s-concave measure . Then,

c L n:nk n n:zk
SO < () < VellFIIL AL
5n7];g)swn,k
where )
5 _ (B9

((n—k)B(n—k,k—1/s))"%

and ¢ > 0 is an absolute constant.

10



Sketch of the proof. Note that the upper bound holds for any bounded integrable function f. For the lower
bound we note that

Kn(f) g 6n,k,sKn—k(f)
by (2.9) and then, as in the proof of Theorem we write

1

(f(())‘ank(f) N H|)n an,nk(H)> n = f(O)E\Pk(ank(f))

c % nek ¢ 1 (Kn k(f)> -
> SO K (N = S0 (T ()

¢ i L (™ e a s
Z gl © 555;5( ) 2, o

O

Let 1 < k < n—1. For every convex body K, or more generally for any bounded Borel set in R", the
k-th affine quermassintegral of K is defined by

(I)k(K) = (/G |PE(K)|7n dV'rt,k(E))

Lutwak [35] conjectured that, among all convex bodies of volume 1, the affine quermassintegrals are mini-

L
kn

mized in the case of the Euclidean ball D,, of volume 1 and maximized in the case of the regular simplex S,
of volume 1 in R™:

(3.6) Pi(Dn) < Op(K) < Px(Sn),

for every convex body K of volume 1 in R™ and every 1 < k < n—1. Note that (3.6]) for £ = 1 it is equivalent
to Blaschke-Santal6 inequality and Mahler’s conjecture, and that for K = n — 1 it is equivalent to Zhang’s
inequality [42]. It is known that for every convex body K in R™,

(3.7) e/nfk|K|v < ®y(K) <

for some absolute constants ¢y, ca > 0, where ¢,, ;, := min {log n,n/k+/log(en/k) } The bounds on the right-

hand side of (3.7 were proved in [14]. The second bound is better when & is proportional to n. The left-hand
side inequality was proved in [39]. The recent work of E. Milman and Yehudayoff [36] establishes the sharp
lower bound ®(D,,) < ®;(K) and verifies this part of Lutwak’s conjecture, including a characterization of

the equality cases, for all values of k =1,...,n — 1: ellipsoids are the only local minimizers with respect to
the Hausdorff metric.

Recall that given a non-negative measurable function f : R® — [0,00) and E € G, x, the orthogonal
projection of f onto E is the function Pgrf : E — [0, 00) defined by

(Pef)(z) =sup{f(y+z):y € E"}.

It is not hard to check that
Ry(Pgf) = Pe(R:(f))
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for every t > 0, where, for a bounded non-negative integrable function g on R", we set R;(g) = {x : g(z) > t}.
Note also that if f = 1k where K is a compact subset of R", then Ppf = 1p, (k).

Assume that for every t > 0 the set R:(f) is compact. A definition of the k-th affine quermassintegral
of f was proposed in [16]: for every 1 <k <n —1 let

L
kn

B),(f) = /Ooocbmt(f»)dt: /Ooo (/G |PE<Rt<f>>—"dun,k<E>> dt.

One can check that if f,.(z) := f(z/r) for r > 0 and (f o T)(z) = f(T~(x)) for T € GL(n) then

Ri(foT)=T(R(f)) and Ri(f;)=rRi(f)

for any t > 0. From the 1-homogeneity and the affine invariance of the usual affine quermassintegrals, we
check that

(3-8) O3 (fr) =r@4(f) and  @p(foT) = Pi(f)

for any 1 < k < n— 1 and any affine volume preserving transformation 7" and r > 0. It was proved in [I6],
Theorem 5.5] that ®,.(f) > ®,.(f*), where f* is the symmetric decreasing rearrangement of f.
We consider the following variant of ®/ (f):

1/n

Bl f) = ( / m(%(Rt(f)))"dt)

Note that (3.8) continues to hold with ® (f) replaced by ®(f) and that

([ @) .

/0"" </ck PE(Rt(ﬂK))l‘”dvn,k(@) dt

1 1/n
3

1
= /(/ |PE(K)|”dz/n,k(E)> dt = Oy (K)
0 Gn,k

for every convex body K in R™. Moreover, if f is a geometric log-concave integrable function then R;(f) = @
for all ¢ > 1, and hence

D (1g)

1/n

1 1 1/n
o) = [ wmmas ([ @@ora) o)
0 0
by Hélder’s inequality. We shall prove a two-sided estimate for ®5(f).

Theorem 3.3. Let f: R™ — [0, +00) be a bounded integrable function such that Ri(f) is a compact convex
set for allt > 0. Then,

erv/nfk | FIIF < Ou(f) < cav/nfkvn sl FIT

for every 1 <k <n—1, where c1,co > 0 are absolute constants.
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Proof. Note that
1/n

- “1/k
By (f) = / (/G PE<Rt<f>>|-"dun,k<E>> dt

From (3.7) we know that

—~1/k
crv/n/kIR(f)] < (/ IPE(Rt(f))”an,k(E)> < o/ kb k| Re(f)]

n.k

for any function f such that R;(f) is a compact convex set for all ¢ > 0. Since

([ i) = ([ s o) =i

we immediately obtain the result. O

Note. For any log-concave integrable function f : R™ — [0, +00) it is clear that R:(f) = {f > ¢} is compact
and convex for all ¢ > 0 (we easily see that R;(f) is bounded using the fact that there exist constants
A, B > 0 such that f(z) < Ae™ 517l for all z € R"; see [0, Lemma 2.2.1]). Therefore, Theorem holds true
for all f € F(R™).

4 Sections versus projections
In this section we present a proof of the following more general version of Theorem [I.3]

Theorem 4.1. Let f : R™ — [0,400) be a geometric log-concave integrable function and g : R™ — [0, 4+00)
be a bounded integrable function with ||g|lco = 1. Assume that for some 1 < k < n— 1 we have that

IPeflly < gzl forall E€Gppn.

Then,
n!

f < 7/,1/ g .
1911 < e ol

The proof makes use of the notion of mixed integrals of functions, introduced in [38] (see also [5]). First,
recall the definition of mixed volumes. By a classical theorem of Minkowski, if K;,..., K,, are non-empty,
compact convex subsets of R”, then the volume of A\ K; + --- + A\, K, is a homogeneous polynomial of
degree n in A; > 0. One can write

MK+ A Kl = Y V(E, K)o Ny

where the coefficients V (K, , ..., K;, ) are invariant under permutations of their arguments. The coefficient
V(Ki,...,K;,) is the mixed volume of K;,,..., K, . In particular, if K and T are two convex bodies in R™

then the function |K + AT is a polynomial in A € [0, 00):

n

KT =Y (Z) Vo w5, T) A,

k=0

13



where V,,_(K,T) = V((K,n — k), (T,k)) is the k-th mixed volume of K and T' (we use the notation (7 k)
for the k-tuple (T,...,T)). If T = BY then we set Wi (K) := V,_,(K,BY) = V((K,n — k), (B%,k)); this
is the k-th quermassintegral of K. Kubota’s integral formula expresses the quermassintegral Wy (K) as an
average of the volumes of (n — k)-dimensional projections of K:

(4.1) Wi(K) = —n /G |\Pe(K)|dvpni(E).

Wn—k

n,n—k
Aleksandrov’s inequalities (see [40]) imply that if we set
Wi (K)\ * 1 k
(42) QMM=<°H%)=</ UMKM%MD>,
Gn,k

Wn, Wk

then k — Qg (K) is decreasing.

In [38] the definition of mixed volumes was extended to the setting of functions. Given a bounded
integrable function f : R™ — [0, 00) recall that R:(f) = {f >t} for every t > 0. If f1,..., fr : R™ = [0, 00)
are bounded integrable functions such that R,(f;) is bounded and convex for all 1 < j < n and all ¢t > 0,
their mixed integral is defined by

V(fiofoveeof)i= [ VR Rulfa)e o Ralh)
where we agree that V(R:(f1), R¢(f2), ..., Re(fn)) =0 if R(f;) = @ for some 1 < j < n. Note that
V(ond) = [ = 0lde= 5]
0

The k-th quermassintegral of f is defined as

V. Milman and Rotem proved in [38] that if u(z) = e~1*l then for every log-concave function f with
1
£(0) = || fllec =1 the function k — (Wi(f)/Wi(u))™=F, 0 < k <n —1is increasing. In particular,
n—k W,
l[ullx Wi(u)

foralll1<k<n—1.
It is not hard to compute ||u||; and, more generally, Wy (u). Note that, by the definition,

Wie(w) = V(s — k), (Lpg, k) = /Ooo V(Re(u),.., Ru(u), Re(Lpg). .., Re(Lpy ) dt

1

/V(Rt(u),...,Rt(u),Bg,...,BS)dt:/ e V(Re-s(u), ..., Re-s(u), BY,...,By)ds
0 0
)

675V(ng,...,ng,B;,...,BS)ds:wn/ s"Re=3ds = (n — k)\w,,
0

and similarly
lulh = V(u,...,u) = nlw,.
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Therefore, (4.3)) takes the form

(4.4) Il < L W),
n—k)lwy

Proof of Theorem[L.1] Using the assumption and Kubota’s formula we write
Wi / V((R(f)n — ), (Ri(BE). b)) di

_ / / VPR A ()

Wn—k

,n—

_ w“:ik /G - ( /O | Ry(Ps f))|dt> v nw(E)
o /G ( /0 T Pof(a) > t}dt) v n(E)

W
e
Wn—k Grn—k

wn
<2 [ gl gl dvnnn(B).

n,n—=k

From the proof of Theorem [3.I] we see that

(4.5) /G 9] Il dvm i (B) < ( /G

Wn—k —k Wn—k
<R gk gl = 2

1/n
Hg‘Equ dl/n,n—k(E)>

n,n— n,n—=k

< = kgl
wn" wn"
Combining the above with (4.4) we get
n—k n—k n—k
n—k nl) = nl) ™= Wy, Wp— nl) ™= n—k
I < T () < AT S oyt ()
(n—k)lwy (n — k)lwy Wn—k ™ (n —k)!
This proves the theorem. O

5 Sections of log-concave functions

The classical Busemann-Petty problem [10] asks if for any pair of origin-symmetric convex bodies K, T in
R™ that satisfy

(5.1) [KNer<ITne

for all ¢ € S"~1 it follows that |K| < |T|. It is known that the answer is affirmative if n < 4, and it is negative
if n > 5 (the history of the problem is presented in the books of Koldobsky [29] and Gardner [19]). The
isomorphic Busemann-Petty problem, posed in [37], asks whether the inequalities (5.1) imply |K| < C |T,
where C' is an absolute constant.

The lower dimensional Busemann-Petty problem is the following question: Let 1 < &k < n — 1 and let
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Bn i be the smallest constant 8 > 0 with the following property: For every pair of centered convex bodies
K and T in R" that satisfy

(5.2) IKNF|<|TNF|
for all F' € Gy, r,—, one has

n—k

n—k
(5.3) K| < pF|TI = .

Then, one may ask if it is true that there exists an absolute constant C' > 0 such that 3, ; < C for all
n and k. The following bounds are known for the constants f, ;. For every 1 < k < n — 1 we have
Bn.k < 1L, where ¢; > 0 is an absolute constant and we also have the bound G, 5 < CQW (log(en/k))%
where ¢; > 0 is an absolute constant (which is stronger for codimensions k that are proportional to n).
In fact, the last upper bound follows from the inequality 5, 1 < dovr (K, BP}), where dov. (K, BP}) is the
outer volume ratio distance from K to the class BP} of k-intersection bodies in R”, and the estimate
dove (K, BP}) < cmlng/z(en/k) obtained in [33].

An extension of the Busemann-Petty problem to arbitrary measures in place of volume was considered
in [43]. Let K, T be origin-symmetric convex bodies in R™, and let f be a locally integrable non-negative
function on R™. Suppose that for every £ € 7!

(5.4) /K LS /T @

where integration is with respect to Lebesgue measure on £*. Does it necessarily follow that

(5.5) /K F@)dz < sn /T f(w)da

where the constant s, does not depend on f, K,T?7 It was proved in [43] that, for any strictly positive
function f, if one asks for such an inequality with constant 1 then the solution is the same as in the case of
volume (where f = 1): affirmative if n < 4 and negative if n > 5. However, it was proved in [32] that the
answer to the isomorphic question is affirmative, namely s,, < /n. It is not known whether the \/n estimate
is optimal.

A lower dimensional version of inequality was also proved in [30]. If K is a star body in R™, f is a
continuous non-negative function on K, and 1 < k < n — 1, then

(5.6) / f@)de < C% (dow (K, BPY)E [KIF™  max / F@) da,

K E€Gnn—k JKknE
where C' is an absolute constant. This inequality is an immediate consequence of the following more general
result that was proved in [22].

Theorem 5.1. Let K and T be star bodies in R™, let 0 < k < n be an integer, and let f,g be non-negative
continuous functions on K and T, respectively, so that ||g||sc = g(0) = 1. Then,

fo(x),dx < n (dovr(KuBPZ))k max fKﬂEf(m)d‘r

(5.7) __ < .
(J79(@) dz) - [K|w T K BECnn-r [pnp 9(7) dx

We shall obtain an analogue of Theorem with improved constants, under the assumption that f is
log-concave.
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Theorem 5.2. Let f,g : R" — [0,00) be non-negative integrable functions such that f is log-concave with
f(0) > 0 and ||g]lec = g(0) = 1. If K is a convez body in R™ and T is a compact subset of R™ with 0 € KNT,
then

F0)™! [ f(x) da
(5:8) ( ng(I;) dx

where ¢ > 0 is an absolute constant.

)n < (cBun)*  max FO) [ (@) d

E€Gnn-r  [pop9(z)de

Proof. The function fx = f - 1k is log-concave, with fx(0) = f(0). From (2.6) and (2.7) we immediately
get

(59) PO, )| = [ f(a) da
and, forany 1 <k<n—1and E € Gy pn—p,
(5.10) FONKas(f)NEl = [ fa)da.
KNE
Similarly, for the function gr = g - 17, using also the assumption that g7(0) = 1, we check that
(5.11) Kalgr)| = [ g@)de and [Koron) 0Bl = [ gla)ds
T TNE

for every € Gy, p—i. Now, let

d
7 F .= f(0) and " F:= max Jop (@) T
E€Gn [pnp9(x)de

From (5.10) and (5.11)) we see that
ITKn—i(fx) N E| < [oKn—k(97) N E|

for all E € Gy, 5,—k. Therefore,

n—=k n—=k

=Kk (fr)| 7

n—k

_ n—k
< BEploKn_klgr)| ™ = BE 1 0" ¥ Knok(gr) ™ .

TR Kk (fx)|

This shows that i
K-k (fr)] < 7778, %" 0" [ Kn—k(gr)|-

We apply Lemma [2.2] to write

[(n — k)=

(5.12) e — K, (fx) € Kn—k(fx)

and Lemma [2.1] together with the assumption that g(0) = [|g]joc = 1 to write

(5.13) Ko ilgr) € (”j(”(;) T Kalgr) = Kulor).
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Taking into account (2.6) and (5.11)) we get
K, n! nk|K.
f (0) [Kn(fx)| < WT | Kk (fx)l

n! .
T T 0| K (gr)

n' — n— 7
ng b kQ |K (97)]

n! 7k Py /

= mro" x)dx
[(n—k‘)']w Bnk: 0 Tg( )
_"7!f( 0)" weF kgn Ak n/ (z) dzx
D S
Using Stirling’s formula we see that
n! < knk
S C‘IL* y
[t~ )]

and combining the above we get
fo(x)dx = k n—k —k fK Efw)dx
( e o) IO e = O @0t ol

as claimed. O

Let f € Fo(R™) (more generally, assume that f is log-concave with f(0) = 1). Given a measurable
function g : R™ — [0, 00) with ||g|lcc = g(0) = 1 and a pair (K,T) where K is a convex body, T is compact
and 0 € K NT, we may apply Theorem [5.2] to get

(ff: )n (cBn k)" (/f df”) max M

Moreover, if we assume that f € Fo(R") then

/ f(z) d < |K].
K

The same inequality holds true, by Jensen’s inequality, if f is log-concave and centered with f(0) = 1.
Combining the above we get an analogue of Theorem involving the volume of K.

Corollary 5.3. Let f € Fo(R™) and let g be a non-negative measurable function such that ||g|l = g(0) = 1.
If K is a convez body in R™ and T is a compact subset of R™ with 0 € K NT, then

fK— ’ < Jknp f(2) de
(5.14) o) )= < (Bp)F| K| BB Jrop 9(@) dz”

where ¢ > 0 is an absolute constant.

Theorem has a number of consequences if we make a specific choice of g and/or T'. First, we can
obtain a comparison theorem for the Radon transform. If, in addition to the conditions of Corollary we
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assume that

for all E € Gy, 5, then we get

n—k

/f < (Bp) K| (/Tg(x)dm) !

This is a sharpening (in the log-concave setting) of a result established in [34].
From Corollary we also obtain the next lower estimate for the sup-norm of the Radon transform.

Theorem 5.4. Let f € Fo(R™). Then, for every 1 < k < n— 1 we have that

[ f@)de < @8, 1K1 e [ fwyds

where ¢ > 0 is an absolute constant.

Proof. The theorem follows directly from Corollary if we choose T'= B and g = 1. We get

n—k k
k k
By, K|» max x) dx
[ s@de < e ) max [ p)
n—k
and recall that w,™ /w,_x <1 (see [31, Lemma 2.1]). O

Theorem is a sharpening (in the log-concave setting) of Koldobsky’s slicing inequality for arbitrary
functions from [30]. The terminology comes from the slicing problem of Bourgain asking if there exists an
absolute constant C'; > 0 such that for every n > 1 and every centered convex body K in R" one has

(5.15) K| < C; max |[KnNé&d.
gesn—1

It is well-known that this problem is equivalent to the question if L, < C. Consider the best constant
oy, i, > 0 with the following property: For every centered convex body K in R™ one has

(5.16) K| < ag K| max KN E]
The lower dimensional slicing problem asks if there exists an absolute constant a > 0 such that o, < a for
all n and k. Theorem [5 n states that a more general inequality than ) holds for geometric log-concave
functions, with a constant oy, = O(Ly,).

Another application of Corollary is a mean value inequality for the Radon transform. Given f €
Fo(R™), if we choose K =T and g = 1 we get

1
\ n T~ 11 dx.
K|/ Ut O KB o, @

Finally, choosing f = 1 and g = 1 in Theorem [5.2] we see that if K is a convex body and T is a compact
subset of R™ with 0 € K NT then,

n—k
K|\ K N E|
2 < (e :
(|T| (cBo k)", max TNE|

19



forevery 1 < k< n—1.

Note. For any s € (—00,0), using (2.9) we can modify the proof of Theorem [5.2] and extend it (together
with all its consequences) to the den81tles of s-concave measures. An extension of Corollary 5.3 n in the same
spirit, but with a less direct proof, was obtained in [41].

Theorem 5.5. Let s € (—00,0) and let f,g: R™ — [0,00) be non-negative integrable functions such that f
is the density of an s-concave measure p, f(0) >0 and ||g|lcc = g(0) = 1. If K is a convex body in R™ and
T is a compact subset of R™ with 0 € K NT, then

)

fmr{&funu)”k gorge SO ey f@)do
(5.17) ( fT g(z) dx S On s, EeGin_k meE g(z) dx

where )
(nB(n,—1/5))%

((n—k)B(n — k,k — 1/s)) 7%

5n,k,s =

Sketch of the proof. We consider the functions fx = f-1x and gr = g-17. Note that fx is (—1/«a)-concave,
where @ =n — 1 > n. From (2.9) we get

(518) Kn(fK) - 6n,k:,sank(fK)a

and Lemma [2.1] together with the assumption that g(0) = ||g[lec = 1 gives

(5.19) Ko x(gr) C (H;(II(;) T Kn(gr) = Kn(gr)-
Let
Qn—k — max fKﬂE f(x) dx

Taking into account (2.6) and (5.11]) we get
ko ko
/ f(x FO) K (i) < 03 ge,s f (0) [ i (f5)| < f(0)” 7R 0 i By 1" 0" [ K1 (97)]
—__k_on n 11.k n
<ﬂ®“*%mgmﬂwﬂ=ﬂ)“k%mﬁﬁ9/ﬁ@Mﬂ
T

It follows that

(fK f(x) dx)”,jk < f(o)—ﬁ(;n;k k Qn—k :f(o)—%én—k k max fKﬂEf l‘) dx

ng(Z‘) dr n,k,s”n,k n,k,s”n,k BEGn s meEg(x) dx
as claimed. O

Remark 5.6. We close this section by mentioning the next result from [I2] which provides a different general
estimate for the Busemann-Petty problem in the case where f = g is an even log-concave density: If K is a
symmetric convex body in R™ and T is a compact subset of R™ such that

(5.20) /KnE f(z)dx < . f(z)dx
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for all £ € G, 5,—k, then

(5.21) /Kf(:c) dz < (ckLn_k)k/Tf(x) dz,

where ¢ > 0 is an absolute constant.

6 Projections of log-concave functions

In this section we obtain a functional inequality related to the classical Shephard problem. The original
question is the following: Let K and T" be two centrally symmetric convex bodies in R™ such that |Pe. (K)| <
|Pe(T)| for every £ € S™~!. Does it follow that |K| < |T'|? Although the answer is affirmative if n =
2 (simply because the assumptions imply that K C T), it is negative in higher dimensions as shown,
independently, by Petty who gave an explicit counterexample in R3, and by Schneider for all n > 3. It is
natural to ask for the order of growth (as n — o0o) of the best constant S, for which the assumptions of
Shephard’s problem imply that | K| < S, |L|. Recall that the projection body IIK of a convex body K is the
centrally symmetric convex body whose support function is defined by

huk () = |Per (K)|, g€ s
An argument which is based on the identity
V(K,.. KIT=V(T,... TIK)

as well as on John’s theorem and the fact that ellipsoids are projection bodies, shows that if K and T are
two centrally symmetric convex bodies in R" such that [Per (K)| < |Pes (T)| for every £ € S~ then
VRl

This shows that S,, < ¢14/n for some absolute constant ¢; > 0. In fact, a result of K. Ball [4] shows that,
conversely, there exists an absolute constant ¢y > 0 such that S, > cay/n. We refer to [2, Section 4.6.2] for
a concise, but more detailed, exposition of all the above and references.

In view of the above, one may consider the next lower dimensional Shephard problem. Let 1 <k <n—1
and let S, ; be the smallest constant .S > 0 with the following property: For every pair of convex bodies K
and T in R" that satisfy |Pg(K)| < |Pg(T)| for all E € G, n_g, one has that | K| < S |T|"%". Goodey
and Zhang [23] proved that S, > 1if n —k > 1. General estimates for S, ; were obtained in [21]: If K
and T are two convex bodies in R™ such that |Pg(K)| < |Pg(T)| for every E € Gy, n—k, then

(6.1) K

1 5 1
|K|" < c1Snp T,
where ¢; > 0 is an absolute constant, and

S'mk = min{\/%ln (ﬁ) ,lnn} .

It follows that S, < (clgn,k)%k, and in particular that S, , < O if ﬁ is bounded.
The next lemma provides a third estimate for S, ;, which is reasonably good if k is small.

Lemma 6.1. For every 1 < k < n —1 we have that S, ; < /n.
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Proof. We use inductively the following claim. For any 1 < s < n — 1 let a,,_s be the best positive constant
1
with the property that |Pg(K)| < an—s|Pe(T)| = |Pe(a,-:T)| for all E € G, n—s. Then,

n—s+1 n—st1

(62) p—st1 < Oénigs (Tl — S+ 1)m

To see this, consider any F' € G, —s+1. Note that if E € Gy, —s and F C E then Pg(Pr(K)) = Pg(K)
and Pg(Pr(T)) = Pg(T). Since the assumption is true for all 1-codimensional subspaces of F, from (6.1])
we see that

[Po(F)| 755 < (0= s+ 1)F|Pp(ag )| 777 = (n = s + 1) Zap | Pr(T)| =5,

n—s+1
therefore |Prp(K)| < «,".° (n — s+ 1)2<" =) PF( )| for all F € Gy n—s+1. Assume that a,_, = 1, ie.
|Pe(K)| < |Pg(T)| for all E € Gy, p—j. From we see that a,_j1s < szl(n -k —|—j)2(ﬁ’fkk++fil>, and in

particular,

k
Hn*kJr] 2(77 k+7 1) <nQEJ 1 n— k+] T <n2('n k)

This means that | K| < R |T|, therefore

K" <nb 7)™

which shows that Sy, < v/n. O

~n—k
Note. It is not hard to check that if k£ < logn then v/n < S, %, and hence, in order to estimate .Sy, j in this
range it is preferable to use the upper bound of Lemma

Our goal is to obtain an analogue of the above estimates for S, ;, in the setting of geometric log-concave
integrable functions. Our substitute for the assumption that all k-codimensional projections of K gave
smaller volume than the corresponding projections of T' is the following: we consider f,g € Fo(R™) such
that, for some 1 <k <n—1and for all E € G,, ,_ and ¢t > 0 we have that

(6.3) |Re(Ppf)| < |Ri(Prg)|.

Recall that can be equivalently written as |Pg(R:(f))| < |Pr(Ri(g))|- Moreover, if f =1k and g = 11
are the indicator functions of two convex bodies in R™ then for every 0 < ¢t < 1 we have that R;(Pglk) =
Pg(K) and Ry(Pglr) = Pg(K), and hence is equivalent to the assumption |Pg(K)| < |Pg(T)| in
Shephard’s problem.

Theorem 6.2. Let f,g € Fo(R") and1 < k < n—1. Assume that |R,(Pgf)| < |Ri(Prg)| for all E € Gy, p—k
and 0 <t < 1. Then,

n—k k n—k
I < Sugllgll ™

Proof. The assumption |R;(Pgf)| < |Ri(Pgrg)| for all E € G, ,,—, implies that |R.(f)] < S "|Rt( )| for
all 0 <t < 1 by the definition of S;, ;. Then,

£l = / Ra(f)ldt < S]F / Rilg)ldt = 5% gl
and the result follows. O
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