
On some ve
tor balan
ing problemsA. GiannopoulosAbstra
tLet V be an origin symmetri
 
onvex body in Rn , n � 2, of Gaussianmeasure 
n(V ) � 12 . It is proved that for every 
hoi
e u1; : : : ; un of ve
torsin the Eu
lidean unit ball Bn, there exist signs "j 2 f�1; 1g with "1u1 +: : : + "nun 2 
 log n V . The method used 
an be modi�ed to give simpleproofs of several related results of J. Spen
er and E.D. Gluskin.1 Introdu
tionLet Cn denote the 
lass of all origin symmetri
 
onvex bodies in Rn, n � 2. Follow-ing W. Banasz
zyk [2℄, for ea
h pair U; V 2 Cn we de�ne �(U; V ) as the smallestr > 0 satisfying the following 
ondition: given u1; : : : ; un 2 U , there exist signs"1; : : : ; "n 2 f�1; 1g su
h that "1u1 + : : :+ "nun2 rV .Several \ve
tor balan
ing" results, proved by various authors for quite di�erentpurposes, 
an be des
ribed as estimates on �(U; V ) for spe
i�
 
hoi
es of U , V , orboth of them:(a) W. Banasz
zyk [2℄ established a general lower bound for �(U; V ) in termsof the volumes of U; V : for some absolute 
onstant 
 > 0, and for any U; V 2 Cn,one has �(U; V ) � 
pn(jU j=jV j)1=n:(b) I. B�ar�any and V.S. Grinberg [5℄ show that �(U;U) � 2n for every U 2 Cn.(
) The ve
tor form of a well-known result of J. Be
k and T. Fiala [6℄ statesthat �(Bn1 ; Qn) � 2, where Bn1 is the unit ball of `n1 and Qn is the unit 
ube in Rn .(d) J. Spen
er [11℄ and E.D. Gluskin [7℄ have proved independently that�(Qn; Qn) � 
pn;where 
 > 0 is an absolute 
onstant.(e) We write Bn for the Eu
lidean unit ball in Rn. Suppose that E 2 Cnis an ellipsoid with prin
ipal semiaxes a1; : : : ; an. W. Banasz
zyk [3℄ proves that�(Bn; E) = (a�21 + : : :+ a�2n )1=2. 1



A standard referen
e for many of these results, espe
ially those of them moti-vated by 
ombinatorial questions, is the book of J. Spen
er [13℄.J. Koml�os 
onje
tures that the sequen
e �(Bn; Qn) is bounded. The best knownresult on this problem (J. Spen
er, [11℄) states that �(Bn; Qn) = O(log n) as n !1. Closely related to the Koml�os 
onje
ture is re
ent work of W. Banasz
zyk andS.J. Szarek [4℄. They de�ne and study the quantity(1:1) �(U; V ) = supL �(L; V )�n(L;U)where the supremum is taken over all latti
es L in Rn , �(L; V ) is the 
overingradius and �n(L;U) is the n-th su

essive minimum of L with respe
t to V andU respe
tively. If 
n denotes the standard Gaussian measure on Rn with density(2�)�n=2e�jxj2=2, where jxj is the Eu
lidean norm of x, the main result in [4℄ statesthat(1:2) �(Bn; V ) � ��1;for every 
losed 
onvex set V in Rn with 
n(V ) � 12 , where � is an absolute 
onstantde�ned by the equation 
1([��=2; �=2℄) = 12 . On the other hand, one 
an see that�(U; V ) � �(U; V ) for every U; V 2 Cn. This motivates the question if �(Bn; V )may be repla
ed by �(Bn; V ) in (1.2). More pre
isely, it is 
onje
tured in [4℄ thatfor some fun
tion f : (0; 1)! R+ and for all V 2 Cn one has �(Bn; V ) � f(
n(V )).This would imply in parti
ular that �(Bn; Qn) = O(plogn) as n!1.The purpose of this note is to dis
uss upper bounds for �(Bn; V ) when V is anarbitrary origin symmetri
 
onvex body in Rn . In x2 we give a simple proof of thefollowing fa
t:Theorem 1. Let V 2 Cn, with 
n(V ) � 12 . Then, �(Bn; V ) � 6 logn:Theorem 1 and standard estimates involving Sid�ak's lemma ([10℄, see also [7℄)allow a reasonable upper bound for �(Bn; V ) when V is a body with few fa
es (inthe terminology of [1℄). As an example, 
onsider the 
ase of the interse
tion of Nstrips de�ned by unit ve
tors in Rn :Theorem 2. Let V = fx 2 Rn : jhx; zjij � 1; j = 1; : : : ; Ng, where zj 2 Bn; j �N; are N ve
tors spanning Rn. Then,�(Bn; V ) � 9 lognplog(3N):When V = Qn, the estimate given by Theorem 2 is worse than Spen
er's. In x3we formulate a more pre
ise version of Theorem 1, in whi
h �(Bn; V ) is boundedin terms of the quantities infH 
r(V \ H); r � n, where the inf is taken over allr-dimensional subspa
es of Rn. Spen
er's logn-theorem is a 
onsequen
e of thisTheorem 3 and of the fa
t that infH 
r(Qn \H) is roughly \of the order" of 2�r.2



2 Proof of Theorems 1 and 2For the proof of Theorem 1 we shall make use of two well known fa
ts:(I) If V 2 Cn and x 2 Rn , then 
n(x + V ) � e�jxj2=2
n(V ): This is a simple
onsequen
e of the symmetry of V and the 
onvexity of the exponential fun
tion.(II) Consider the entropy fun
tion F (�) = �� log2 ��(1��) log2(1��), on (0; 12 ):If A is a subset of f�1; 1gr with 
ardinality jAj � 2rF ( 1��2 ); 0 < � < 1; then we
an �nd "0; "00 2 A with jfj � r : "0j = "00j gj � �r (D. Kleitman, [9℄).Lemma 2.1. Let V 2 Cn, n � 7, with 
n(V ) � 12 ; and u1; : : : ; ur 2 Bn; 7 � r � n:There exists a subset � of f1; : : : ; rg with j�j � r2 , and signs "j 2 f�1; 1g; j 2 �,su
h that Xj2� "juj 2 4V:Proof: For every " = ("1; : : : ; "r) 2 f�1; 1gr we write L(") = "1u1 + � � �+ "rur: Bythe parallelogram law,(2:1) Ave"jL(")j2 = rXj=1 juj j2 � r:Consider the sets L(")4 + V; " 2 f�1; 1gr: Using fa
t (I) and the arithmeti
{geometri
 means inequality, we obtain(2:2) ZRn "X" �L(")4 +V (y)# 
n(dy) =X" 
n�L(")4 + V ��  X" e� jL(")j232 ! 
n(V ) � 2re�Ave"jL(")j232 
n(V )� 2(1� 132 log 2� 17 )r � 2F ( 14 )r:It follows that for some subset A of f�1; 1gr with 
ardinality jAj � 2F ( 14 )r we musthave(2:3) \"2A�L(")4 + V � 6= ;:Using Kleitman's result we �nd a pair "0; "00 2 A for whi
h:jfj � r : "0j = "00j gj � r2 and L("0)� L("00)4 2 2V:Setting � = fj � r : "0j 6= "00j g and "j = "0j�"00j2 ; j 2 �, we 
on
lude the proof. 23



Remark 2.2. Instead of Kleitman's result, in the �nal step of the proof of Lemma2.1, one may use the Sauer{Shelah lemma or an even simpler argument based onthe 
omputation of the 
ardinality of a neighborhood of a point in f�1; 1gr. Thiswould only a�e
t the value of the 
onstant in the statement.Proof of Theorem 1: We �rst observe that if 
n(V ) � 12 , and if �Bn is the largestorigin symmetri
 ball ins
ribed in V , then V is 
ontained in a symmetri
 strip ofwidth 2�, hen
e 
1([��; �℄) � 
n(V ) � 12 . It follows that � > 12 , that is, 12Bn � V .Case 1: If 2 � n � 6, then �(Bn; V ) � �(Bn; 12Bn) = 2pn < 6 logn.Case 2: If n � 7, we use an indu
tive argument. For the �rst step, set r0 = n andapply Lemma 2.1 to �nd �1 � f1; : : : ; ng with j�1j � n2 , and signs "j 2 f�1; 1g; j 2�1, so that Pj2�1 "juj 2 4V . Then, de�ne �1 = �
1 and r1 = j�1j � r02 = n2 .If �k�1; rk�1 = j�k�1j have been de�ned for some k � 2 and if rk�1 � 7, then,using Lemma 2.1 again, we �nd �k � �k�1 with j�kj � rk�12 and "j 2 f�1; 1g; j 2�k , with Pj2�k "juj 2 4V . We de�ne �k = �k�1n�k; rk = j�k j � rk�12 � n2k , and
ontinue in the same way until, for some k0, rk0 < 7. The number of steps neededdoes not ex
eed log2(n6 ) + 1 : if rk > 6 then 2k < n6 . At this point we 
hoose"j ; j 2 �k0 , with Pj2�k0 "juj 2 prk0 Bn � 2p6 V .The 
hoi
e of signs Sk0k=1f"j : j 2 �kg [ f"j : j 2 �k0g satis�es(2:4) nXj=1 "juj 2 h4�log2(n6 ) + 1�+ 2p6i V � 6 logn V;and this 
ompletes the proof. 2Remark 2.3. Theorem 1 and a standard argument (see [11℄) show that if V 2 Cnwith 
n(V ) � 12 , and if u1; : : : ; um 2 Bn;m � n, then there exist signs "j 2 f�1; 1gsu
h that "1u1 + : : :+ "mum 2 12 logn V .There is nothing spe
ial about assuming that 
n(V ) � 12 . If 
n(V ) = � 2 (0; 1),one 
an �nd 
(�) su
h that �(Bn; V ) � 
(�) logn. Moreover, the symmetry andthe 
ompa
tness of V are also not so important: if, say, V is any 
losed 
onvex setin Rn with 
n(V ) � 34 , then(2:5) �(Bn; V ) � �(Bn; V \ (�V )) � 
 logn:Remark 2.4. It is easy to see that if the ve
tors u1; : : : ; un 2 Bn are orthogonaland if V is a 
entered 
ube in Rn with 
n(V ) � 12 , then there exist signs "j for whi
h"1u1 + : : : + "nun 2 
V . A 
areful examination of the proof of (1.2) in [4℄ showsthat the same is true for an arbitrary 
losed 
onvex set V in Rn with 
n(V ) � 12 .Remark 2.5. Let V be a symmetri
 
onvex set in Rn ; n � 2. If x 2 R, we writeVx = f(x1; : : : ; xn�1) 2 Rn�1 : (x1; : : : ; xn�1; x) 2 V g:4



From the log-
on
avity of 
n�1 and the symmetry of V , one easily dedu
es thath(x) = 
n�1(Vx) is an even log-
on
ave fun
tion on fx : 
n�1(Vx) > 0g, hen
e itattains its maximum value at 0. It follows that(2:6) 
n(V ) = ZRh(x)
1(dx) � 
n�1(V \ e?n );where e?n = fx 2 Rn : xn = 0g. Indu
tion and the rotational invarian
e of theGaussian measure show that whenever H;H1 are subspa
es of Rn with H � H1,then 
H1(V \H1) � 
H(V \H) (by 
H we denote 
dimH on H).Another useful remark is that the set Is(h) = fx 2 R : h(x) � sg is a symmetri
interval in R (possibly the empty set) for every s > 0.Using these observations one 
an give a proof of Sid�ak's lemma starting fromthe following lemma:Lemma 2.6. Let K be a symmetri
 
onvex set in Rn ; n � 1; and Vz = fx 2 Rn :jhx; zij � 1g; z 2 Rn . Then
n(K \ Vz) � 
n(K) 
n(Vz):Proof: If n = 1 the inequality is trivially true sin
e K \ Vz is either K or Vz, and
1 is a probability measure. Let n � 2. By the rotational invarian
e of 
n we mayassume that z = 1�en; � > 0. Then,(2:7) 
n(K \ Vz) = Z ��� h(x)
1(dx) = Z 10 
1(Is(h) \ [��; �℄)ds� �Z 10 
1(Is(h))ds� 
1([��; �℄) = 
n(K) 
n(Vz): 2Let �(x) = q 2� R x0 e�t2=2dt; x � 0. A simple indu
tive argument based onLemma 2.6 provides a proof ofSid�ak's Lemma: Let zj 2 Rn ; j � N; and Vj = fx : jhx; zjij � 1g. Then,(2:8) 
n(\j�N Vj) � NYj=1 
n(Vj) = NYj=1�(1=jzj j): 2We in
lude this proof of Lemma 2.6 be
ause of its simpli
ity. The possibility ofdedu
ing Sid�ak's lemma in su
h an easy way be
ame known to several people moreor less at the same time (see e.g [14℄ where a mu
h harder non-symmetri
 versionof Lemma 2.6 is proved). The 
onne
tion of Sid�ak's lemma with �(Bn; V ) is 
lear:given any V 2 Cn, we solve the equation 
n(�V ) = 12 in �, and then apply Theorem1 to obtain �(Bn; V ) � 
� logn. If V is an interse
tion of strips, we 
an easily �nd5



an upper bound for � using (2.8). As an example, let us see what happens if allthe strips have width 2:Proof of Theorem 2: Let � � 1. Using the standard estimate�(x) � 1� e�x2=2 � exp(�2e�x2=2) (x � 1);we obtain 
n(�V ) � [�(�)℄N � exp(�2Ne��2=2):It is 
lear that 
hoosing � =r2 log� 2Nlog 2�, we get 
n(�V ) � 12 . Therefore, Theo-rem 1 implies that�(Bn; V ) = ��(Bn; �V ) � 6p2 lognplog(3N): 2Finally, let us mention one slightly more deli
ate appli
ation of the method:Proposition 2.7. Let zj 2 Rn , j � N , with jzj j � 1=plog(j + 1). If V = fx :jhx; zjij � 1; j � Ng, then �(Bn; V ) � 
 logn;where 
 > 0 is an absolute 
onstant. 2Note that the statement is independent of N .3 A general upper bound for �(Bn; V )When V is a parallelepiped in Rn whi
h 
ontainsBn, the estimate given by Theorem2 is: �(Bn; V ) = O �(logn)3=2� as n ! 1. Spen
er's result for the 
ube 
an bere
overed by a more pre
ise version of Theorem 1 whi
h we now des
ribe:De�nition: If V 2 Cn; 
 2 (0; 1), and r 2 f1; : : : ; ng, we de�ne'(V; 
; r) = minf� > 0 : infH 
r(�V \H) � 2�
rg;where the inf is over all r-dimensional subspa
es of Rn . Note that '(V; 
; r) is wellde�ned sin
e, for every H , 
r(�V \H) � 
n(�V ).Our way to estimate �(Bn; V ) depends on an iteration s
heme (similar to theone in the proof of Theorem 1), based on the following Lemma:Lemma 3.1. Let V 2 Cn; r � n, and u1; : : : ; ur 2 Bn. We 
an �nd a subset � off1; : : : ; rg with j�j � r2 , and signs "j 2 f�1; 1g; j 2 �, for whi
hXj2� "juj 2 4 '(V; 17 ; r)V:6



Proof: We may 
learly assume that u1; : : : ; ur are linearly independent. Considerthe subspa
e H = spanfu1; : : : ; urg and set � = '(V; 17 ; r); L(") = "1u1 + : : : +"rur; " 2 f�1; 1gr. We estimate(3:1) X" 
H �L(")4 + (�V \H)� � 2F ( 14 )r;and, exa
tly as in Lemma 2.1, we �nd � � f1; : : : ; rg; j�j � r2 , and a sequen
e ofsigns "j 2 f�1; 1g; j 2 �, with(3:2) Xj2� "juj 2 4�V \H: 2Theorem 3. Let V 2 Cn, and  l = � n2l � ; l = 0; 1; : : : Then,�(Bn; V ) � 8 [log2 n℄Xl=0 '(V; 121 ;  l):Proof: Suppose that u1; : : : ; un 2 Bn. We set �0 = f1; : : : ; ng; r0 = n; �0 = ;, andfollowing the proof of Theorem 1 (with Lemma 3.1 playing now the role of Lemma2.1), for k � 1 we 
hoose �k; �k; rk:(i) �k � �k�1; j�kj � j�k�1j2 , and there exist "j 2 f�1; 1g; j 2 �k , withXj2�k "juj 2 4 '(V; 17 ; rk�1)V(ii) �k = �k�1n�k; rk = j�k j.This pro
edure exhausts f1; : : : ; ng in a �nite number of steps: for some m �[log2 n℄ + 1, we will have rm = 0.Ea
h rk ; k = 0; : : : ;m�1, lies in an interval of the form ( l+1;  l℄ ; l = 0; : : : ; [log2 n℄,and at most two of them are in the same interval. If  l+1 < rk �  l, then it iseasy to see that '(V; 17 ; rk) � '(V; 121 ;  l): noti
e that if dimH = rk and H1 is any l-dimensional subspa
e of Rn with H � H1, then 
H1(�V \ H1) � 2� l21 impliesthat 
H(�V \H) � 
H1(�V \H1) � 2� l=37 � 2� rk7 . It follows that(3:3) mXk=0'(V; 17 ; rk) � 2 [log2 n℄Xl=0 '(V; 121 ;  l):Therefore, the sequen
e of signs "j 
hosen in our m steps satis�esnXj=1 "juj 2 248 [log2 n℄Xl=0 '(V; 121 ;  l)35V: 27



We shall apply Theorem 3 in the 
ase where V = Qn:Lemma 3.2. For some absolute 
onstant 
 > 0, and for every r � n, one has'(Qn; 121 ; r) � 
.Proof: Let H be an r-dimensional subspa
e of Rn . Let also fw1; : : : ; wrg be anorthonormal basis of H , and W be the n� r matrix with 
olumns wj ; j � r. Then,for every 
 > 0,
r(
Qn \H) = 
r (fx 2 Rr : jhx;W �eiij � 
; i = 1; : : : ; ng) ;where feigi�n is the standard orthonormal basis of Rn .Claim. If t1; : : : ; tn > 0, then(3:4) nYi=1�� 1ti� � 2�ÆPni=1 t2i ;where Æ > 0 is an absolute 
onstant.[Proof of the 
laim: We may assume that t1 � : : : � ts � 1 < ts+1 � : : : � tn.We set S = Pni=1 t2i ; and Aj = fi � n : 2j�1 < ti � 2jg; j = 1; 2; : : : Note thatjAj j � S22j�2 .We have the estimates:(3:5) sYi=1�� 1ti� � exp �2 sXi=1 e� 12t2i ! � exp �4 sXi=1 t2i! � e�4S:(3:6) Yi2Aj �� 1ti� � �p2=�e 12j�jAj j � ��p2=�e� 122j�2 2� j22j�2 �Sand hen
e(3:7) Yj Yi2Aj �� 1ti� � ��p�e=2��P1j=1 122j�2 2�P1j=1 j22j�2 �S :From (3.5) and (3.7) it follows thatnYi=1�� 1ti� = sYi=1�� 1ti� Yj Yi2Aj �� 1ti� � 2�ÆS ;for some absolute 
onstant Æ > 0.℄By Sid�ak's lemma we have 
r(
Qn\H) �Qni=1 �� 
jW�eij�, and sin
ePni=1 jW �eij2 =Pri=1 jwj j2 = r, our 
laim provides the inequality(3:8) 
r(
Qn \H) � 2�Æ r
2 � 2� r218



if 
 = 
(Æ) > 0 has been 
hosen large enough (independent of n and r). 2As a 
onsequen
e of Theorem 3 and Lemma 3.2 one has Spen
er's estimate onthe Koml�os 
onje
ture:Corollary 3.3. �(Bn; Qn) = O(log n) as n!1.Remark 3.4. J. Spen
er [11℄ and E.D. Gluskin [7℄ have proved that �(Qn; Qn) =O(pn) as n ! 1, whi
h is 
learly optimal. The basi
 step towards this theoremis to prove the following:Claim. If u1; : : : ; ur 2 Qn; r � n, then there exist a subset � of f1; : : : ; rg with
ardinality j�j � �r and a 
hoi
e of signs "j ; j 2 �, su
h that(3:9) Xj2� "juj 2 
prplog(2n=r) Qn;where � 2 (0; 1) and 
 > 0 are absolute 
onstants.A modi�
ation of the proof of Lemma 2.1 gives a simple proof of this fa
t:de�ne K = fx 2 Rr : jhx;W �eiij � 1; i � ng where W is the n � r matrix with
olumns uj ; j � r. Note that jW �eij � pr; i = 1; : : : ; r. Choosing an absolute
onstant 
 > 0 large enough and using Sid�ak's lemma one has the inequalityX" 
r("+ 
prplog(2n=r) K) � 2F ( �2 )r;where � = �(
) 2 (0; 1) is some other absolute 
onstant. The rest is as in Lemma2.1: we �nd " 2 f�1; 0; 1gr with jfj : "j 6= 0gj � �r, and " 2 
prplog(2n=r) K.This is equivalent to the 
laim, and an indu
tive argument analogous to theone in [7℄, [11℄ leads to the Spen
er{Gluskin theorem. In this 
ase, our method maybe viewed as a (simpli�ed) variation of Gluskin's method where Sid�ak's lemma wasused for volume estimates and then 
ombined with Minkowski's theorem from thegeometry of numbers.Another modi�
ation of Lemma 2.1, now 
ombined with the binary blo
ksde
omposition used by B.S. Kashin in [8℄, 
an give the following stronger result ofJ. Spen
er [12℄:\If u1; : : : ; un 2 Qn, then there exist signs "j 2 f�1; 1g for whi
hmaxt�n k tXj=1 "jujk1 � 
pnwhere 
 > 0 is an absolute 
onstant."A
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