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Abstract

Let V be an origin symmetric convex body in R", n > 2, of Gaussian
measure v, (V) > $. It is proved that for every choice u1,...,un of vectors
in the Euclidean unit ball By, there exist signs ¢; € {—1,1} with eju1 +
...+ enun € clogn V. The method used can be modified to give simple
proofs of several related results of J. Spencer and E.D. Gluskin.

1 Introduction

Let C,, denote the class of all origin symmetric convex bodies in R", n > 2. Follow-
ing W. Banaszczyk [2], for each pair U,V € C,, we define S(U, V') as the smallest
r > 0 satisfying the following condition: given wq,...,u, € U, there exist signs
€1,-.-,En € {—1,1} such that equ; + ... +epup€ rV.

Several “vector balancing” results, proved by various authors for quite different
purposes, can be described as estimates on (U, V') for specific choices of U, V, or
both of them:

(a) W. Banaszczyk [2] established a general lower bound for (U, V) in terms
of the volumes of U, V: for some absolute constant ¢ > 0, and for any U,V € C,,
one has

BU,V) > ey/n([U]/|V])H™.

(b) I. Bardny and V.S. Grinberg [5] show that S(U,U) < 2n for every U € Cp.
(c) The vector form of a well-known result of J. Beck and T. Fiala [6] states

that (B}, Q) < 2, where B} is the unit ball of ¢} and Q,, is the unit cube in R™.
(d) J. Spencer [11] and E.D. Gluskin [7] have proved independently that

B(Qn: Qn) < C\/ﬁ:

where ¢ > 0 is an absolute constant.

(e) We write B,, for the Euclidean unit ball in R™. Suppose that £ € C,
is an ellipsoid with principal semiaxes a1, ...,a,. W. Banaszczyk [3] proves that
B(Bn,E) = (a7 + ... +a,?)V/2



A standard reference for many of these results, especially those of them moti-
vated by combinatorial questions, is the book of J. Spencer [13].

J. Komlés conjectures that the sequence 8(B;,, @) is bounded. The best known
result on this problem (J. Spencer, [11]) states that 3(B,,Q,) = O(logn) as n —
0.

Closely related to the Komlds conjecture is recent work of W. Banaszczyk and
S.J. Szarek [4]. They define and study the quantity

n(L, V)
1.1 U, V) =sup ———=~
(1) a(U,V) = sup {2
where the supremum is taken over all lattices L in R™, u(L,V) is the covering
radius and A, (L,U) is the n-th successive minimum of L with respect to V and
U respectivelg. If ,, denotes the standard Gaussian measure on R™ with density
(2m)~"/2e=121"/2 where |z| is the Euclidean norm of z, the main result in [4] states
that

(1.2) a(B,,V) <6t

for every closed convex set V in R" with 7, (V) > %, where 6 is an absolute constant
defined by the equation v, ([—6/2,6/2]) = £. On the other hand, one can see that
a(U,V) < B(U,V) for every U,V € C,,. This motivates the question if a(B,,,V)
may be replaced by §(B,,V) in (1.2). More precisely, it is conjectured in [4] that
for some function f : (0,1) — R* and for all V € C,, one has 8(B,,V) < f(vo(V)).
This would imply in particular that 3(B,, @) = O(y/logn) as n — co.

The purpose of this note is to discuss upper bounds for 3(B,,, V) when V is an
arbitrary origin symmetric convex body in R". In §2 we give a simple proof of the
following fact:

Theorem 1. Let V € Cp, with v,(V) > 1. Then, 8(B,,V) <6 logn.

Theorem 1 and standard estimates involving Sidak’s lemma ([10], see also [7])
allow a reasonable upper bound for 5(B,,V) when V is a body with few faces (in
the terminology of [1]). As an example, consider the case of the intersection of N
strips defined by unit vectors in R”:

Theorem 2. Let V = {x € R" : [(z,2;)| <1, j=1,...,N}, where z; € B,,,j <
N, are N vectors spanning R™. Then,

B(B,, V) <9 logn /log(3N).

When V = @,,, the estimate given by Theorem 2 is worse than Spencer’s. In §3
we formulate a more precise version of Theorem 1, in which 5(B,,V) is bounded
in terms of the quantities infy v,.(V N H), r < n, where the inf is taken over all
r-dimensional subspaces of R™. Spencer’s logn-theorem is a consequence of this
Theorem 3 and of the fact that infg ,.(Q, N H) is roughly “of the order” of 27",



2 Proof of Theorems 1 and 2

For the proof of Theorem 1 we shall make use of two well known facts:

() IfV € Cp and & € R, then ~,(x + V) > e~1®*/24, (V). This is a simple
consequence of the symmetry of V' and the convexity of the exponential function.
(II) Consider the entropy function F(«) = —alog, a —(1—a)log,(1—a), on (0, 1).
If A is a subset of {—1,1}" with cardinality |A| > 2rF(*3) | 0 < 0 < 1, then we
can find ¢',e" € A with [{j <r: e} =¢€7}| < Or (D. Kleitman, [9]).

Lemma 2.1. Let V € C,,, n > 7, with v, (V) > %, and uy,...,u. € By, 7<r <n.
There exists a subset o of {1,...,r} with |o| > %, and signs e; € {—1,1}, j € o,
such that

Zsjuj € 4V.

j€o

Proof: For every € = (e1,...,&r) € {—1,1}" we write L(e) = eyuy + - - - + £,up. By
the parallelogram law,

(2.1) Ave.|L(e)|* = Z luj|* <.
j=1

Consider the sets @ +V, e € {-1,1}". Using fact (I) and the arithmetic—
geometric means inequality, we obtain

(2.2) /R lz XLg;qV(y)] Tuldy) =D 7 (? N V>

g

)2 veg )2
. (ZG_L(””) Ya(V) > 27, (V)

> 2(173212,;27%)7’ > QF(%)T.

It follows that for some subset A of {—1,1}" with cardinality |.A| > 2¥(2)" we must
have

(2.3) N <? + V) # 0.

e€EA
Using Kleitman’s result we find a pair &', ¢” € A for which:

L(e") — L(")

2V.
1 €

[{j<riei=el}| gg and

!

Setting o ={j <r: &) #¢j}andg; = %, Jj € o, we conclude the proof. O



Remark 2.2. Instead of Kleitman’s result, in the final step of the proof of Lemma
2.1, one may use the Sauer—Shelah lemma or an even simpler argument based on
the computation of the cardinality of a neighborhood of a point in {—1,1}". This
would only affect the value of the constant in the statement.

Proof of Theorem 1: We first observe that if 7, (V') > %, and if pB,, is the largest
origin symmetric ball inscribed in V, then V is contained in a symmetric strip of
width 2p, hence v1([—p, p]) > 7 (V) > . It follows that p > 1, that is, B, C V.

Case 1: If 2 < n < 6, then B(B,,V) < B(By,, $B,) = 2¢/n < 6logn.

Case 2: If n > 7, we use an inductive argument. For the first step, set rp = n and
apply Lemma 2.1 to find oy C {1,...,n} with |oy| > %, and signs €; € {—1,1},j €
o1, so that Zjeal gjuj € 4V. Then, define 7y = of and ry = 1| < B = §.

If 74—1,7x—1 = |Tk—1| have been defined for some k > 2 and if r;,_; > 7, then,
using Lemma 2.1 again, we find o C 731 with |og| > 252 and ¢; € {-1,1},j €
ox, with -, eju; € 4V. We define 7, = 751 \ok, e = 7| < el < &, and
continue in the same way until, for some kg, 71, < 7. The number of steps needed
does not exceed log, () + 1 : if 7 > 6 then 2k < &- At this point we choose
€5, € Thy, With 3o;c, €juj € \/Tkg Bn C2V6 V.

The choice of signs U20:1{5j 1j€or}U{ej:j € Ty} satisties

- n
. u; (= C
(2.4) ;le eju; € [4 (logz(G) + 1) + 2\/6] V C6lognV,
and this completes the proof. O

Remark 2.3. Theorem 1 and a standard argument (see [11]) show that if V € C,
with v, (V) > &, and if wy, ..., up € By, m > n, then there exist signs ¢; € {—1,1}
such that e;u1 + ... + e, € 12logn V.

There is nothing special about assuming that v, (V) > 1. If 7,,(V) = a € (0,1),
one can find ¢(a) such that (B,,V) < c¢(a)logn. Moreover, the symmetry and
the compactness of V' are also not so important: if, say, V is any closed convex set
in R with v, (V) > 2, then

Remark 2.4. It is easy to see that if the vectors uy,...,u, € B, are orthogonal
and if V' is a centered cube in R™ with v, (V) > %, then there exist signs ¢; for which
€1u1 + ... + epupn € cV. A careful examination of the proof of (1.2) in [4] shows
that the same is true for an arbitrary closed convex set V in R with 7, (V) > L.

Remark 2.5. Let V' be a symmetric convex set in R”,n > 2. If z € R, we write

Ve ={(z1,...,0p1) ER" i (2, ... 2p1,2) €V}



From the log-concavity of 7,1 and the symmetry of V', one easily deduces that
h(z) = yp—1(Vy) is an even log-concave function on {z : y,-1(V;) > 0}, hence it
attains its maximum value at 0. It follows that

(2.6) (V) = / h(e) (d2) < yor (V N6,

where e} = {z € R* : x,, = 0}. Induction and the rotational invariance of the
Gaussian measure show that whenever H, H; are subspaces of R” with H C Hy,
then vy, (V N Hy) <yg(VNH) (by yu we denote Yaimu on H).

Another useful remark is that the set I;(h) = {z € R : h(z) > s} is a symmetric
interval in R (possibly the empty set) for every s > 0.

Using these observations one can give a proof of Siddk’s lemma starting from
the following lemma:

Lemma 2.6. Let K be a symmetric conver set in R*, n>1, and V. = {z € R" :
[(z,z)| <1},z € R*. Then

YK NV2) 2> 7 (K) ya(V2).

Proof: If n =1 the inequality is trivially true since K NV, is either K or V,, and
v1 is a probability measure. Let n > 2. By the rotational invariance of 7,, we may
assume that z = %en, A > 0. Then,

A 00
(2.7) (K NV;) = /,A h(z)1 (dx) :/0 N (s (h) N[=A, A])ds

> ([ ds) (-3 = () 2a(12). O

Let ®(z) = \/gfow e ¥’/2dt, z > 0. A simple inductive argument based on
Lemma 2.6 provides a proof of

Siddk’s Lemma: Let z; € R?,j < N, and V; = {x : |(z, 2;)| < 1}. Then,

N N
(2.8) () Vi) 2 [T vi) = [T @/lz). ©

J<N Jj=1 Jj=1
We include this proof of Lemma 2.6 because of its simplicity. The possibility of
deducing Sidak’s lemma in such an easy way became known to several people more
or less at the same time (see e.g [14] where a much harder non-symmetric version
of Lemma 2.6 is proved). The connection of Siddk’s lemma with S(By, V) is clear:
given any V € C,, we solve the equation v, (uV) = % in u, and then apply Theorem
1 to obtain (B, V) < culogn. If V is an intersection of strips, we can easily find



an upper bound for p using (2.8). As an example, let us see what happens if all
the strips have width 2:

Proof of Theorem 2: Let > 1. Using the standard estimate
o(z) >1- e /2 > exp(—2e*$2/2) (z > 1),

we obtain .
(V) > [@(u)]" > exp(—2Ne /).

It is clear that choosing p = 4/2log (13?2)7 we get v, (uV) > &. Therefore, Theo-

rem 1 implies that
B(Bn,V) = uf(By, uV) < 6v2logn 1/log(3N). O

Finally, let us mention one slightly more delicate application of the method:

Proposition 2.7. Let z; € R, j < N, with |z;| < 1/y/log(j +1). If V = {z :
[(z,2j)| <1, j < N}, then
B(Bn,V) < clogn,

where ¢ > 0 is an absolute constant. O

Note that the statement is independent of V.

3 A general upper bound for 5(B,,V)

When V is a parallelepiped in R which contains B,,, the estimate given by Theorem
2 is: B(B,,V) = O ((logn)*/?) as n — co. Spencer’s result for the cube can be
recovered by a more precise version of Theorem 1 which we now describe:

Definition: If V € C,,c € (0,1), and r € {1,...,n}, we define

e(V,e,r) =min{p > 0: i%f%(pV NH)>2"°"},

where the inf is over all r-dimensional subspaces of R". Note that ¢(V,¢,r) is well
defined since, for every H, v,.(pV N H) > v, (pV).

Our way to estimate 5(By, V) depends on an iteration scheme (similar to the
one in the proof of Theorem 1), based on the following Lemma:

Lemma 3.1. Let V € Cp,,r <n, and uy,...,u, € B,. We can find a subset o of

{1,...,r} with |o| > %, and signs e; € {—1,1},j € o, for which

1
Zsjuj €4 p(V, ?,’I“)V.
jEo



Proof: We may clearly assume that ug,...,u, are linearly independent. Consider
the subspace H = span{uy,...,u,} and set p=o¢V,+r),LEe) =eus +...+
ertiy, € € {—1,1}". We estimate

(3.1) 27 (— + meH)> > oF(D)r

and, exactly as in Lemma 2.1, we find ¢ C {1,...,r},|o| > £, and a sequence of
signs €; € {—1,1}, j € o, with

(3.2) Zejuj €4pVNH. O
jEo

Theorem 3. LetV € C,, and ¢ = [2—"1] ,1=0,1,... Then,

[log, n]

BB V) <8 Y oV, got)

=0

Proof: Suppose that uy,...,u, € B,. We set 7o = {1,...,n}, 70 = n,00 = 0, and
following the proof of Theorem 1 (with Lemma 3.1 playing now the role of Lemma
2.1), for k > 1 we choose oy, 7y, Tk:

(i) ok C Tr—1, |ok| > @, and there exist ¢; € {—1,1},j € oy, with

1
Z Ejuj € 4 (p(V, ?,rk_l)V

JjEork

(11) Tk = kal\Uk;Tk = |Tk|

This procedure exhausts {1,...,n} in a finite number of steps: for some m <
[log, n] + 1, we will have r,, = 0.

Eachrg, £k =0,...,m—1, liesin an interval of the form (¢;+1,¢;], I =0,...,[log, n],
and at most two of them are in the same interval. If ¢ 1 < ri < 1y, then it is

easy to see that (V1 = k) <oV, %,1/);): notice that if dimH = r and H; is any

i;-dimensional subspace of R with H C Hl, then vg, (pV N Hy) > 2_% implies

that va(pV N H) > vyu, (pV N Hy) > > 9 > 27 It follows that
m 1 [log, n] 1

(33) doeVizr) <2 30 @V, or.th).
k=0 =0

Therefore, the sequence of signs €; chosen in our m steps satisfies

[logy n]

Jz:sju] { Z V, ,1/)1} .o



We shall apply Theorem 3 in the case where V = @,,:

Lemma 3.2. For some absolute constant ¢ > 0, and for every r < n, one has
P(Qn, 37,7) < ¢

Proof: Let H be an r-dimensional subspace of R”. Let also {wi,...,w,} be an
orthonormal basis of H, and W be the n X r matrix with columns wj;, j < r. Then,
for every ¢ > 0,

V(eQnNH) =7 {z €R : |{(xg,W¥e;)| <c,i=1,...,n}),

where {¢;};<n is the standard orthonormal basis of R".

Claim. If t1,...,t, > 0, then

(3.4) ﬁq>< ) T

i=1
where 6 > 0 is an absolute constant.

[Proof of the claim: We may assume that t; < ... < t; <1 < tg41 < < tn

WesetS—Z (2 and Aj = {i <n: 27 1<t <2i},5=1,2,... Note that
|4;] <

22] 2

We have the estimates:

(3.5) H<I> < ) > exp (—2.2836_%) > exp (—4it?> > e 48

6 I q>( ) . (\/%%yj . [(\/%) 2_22]2]5

I€EA;
and hence

(3.7) II H@( ) {( 7re/2)_ = 2—2?1127!—2]5.

Jj i€A;

From (3.5) and (3.7) it follows that
[T+ (i) ~10= (3) I 12 () =2
i=1 j i€A;
for some absolute constant § > 0.]
By Sidék’s lemma we have v, (cQ,NH) > [, ® (‘W—Eez‘) ,andsince Y | [W*e;|? =
i, lwj]* = r, our claim provides the inequality

(3-8) Yr(cQnNH) > 27 oz > 27

co



if ¢ = ¢(d) > 0 has been chosen large enough (independent of n and r). a

As a consequence of Theorem 3 and Lemma 3.2 one has Spencer’s estimate on
the Komlés conjecture:

Corollary 3.3. 5(B,,Q,) = O(logn) as n — oo.

Remark 3.4. J. Spencer [11] and E.D. Gluskin [7] have proved that 8(Q,,Q,) =
O(y/n) as n — oo, which is clearly optimal. The basic step towards this theorem
is to prove the following;:

Claim. If uy,...,u, € Qn,r < n, then there exist a subset o of {1,...,7} with
cardinality |o| > 6r and a choice of signs ¢;, j € o, such that

(3.9) ZEJ'U]' € c/ry/log(2n/r) Q.,,

jeo
where 6 € (0,1) and ¢ > 0 are absolute constants.

A modification of the proof of Lemma 2.1 gives a simple proof of this fact:
define K = {z € R" : [(z,W¥*e;)| < 1, i < n} where W is the n x r matrix with
columns uj,j < r. Note that [W*e;| < /r,i = 1,...,r. Choosing an absolute
constant ¢ > 0 large enough and using Siddk’s lemma one has the inequality

> (e + evrlog@n/r) K) > 28,

where 8 = 6(c) € (0,1) is some other absolute constant. The rest is as in Lemma
2.1: we find € € {—1,0,1}" with |{j : €; # 0} > 8r, and € € c\/r+/log(2n/r) K.

This is equivalent to the claim, and an inductive argument analogous to the
one in [7], [11] leads to the Spencer—Gluskin theorem. In this case, our method may
be viewed as a (simplified) variation of Gluskin’s method where Sidék’s lemma was
used for volume estimates and then combined with Minkowski’s theorem from the
geometry of numbers.

Another modification of Lemma 2.1, now combined with the binary blocks
decomposition used by B.S. Kashin in [8], can give the following stronger result of
J. Spencer [12]:

“If u1,...,un € Qn, then there exist signs €; € {—1,1} for which

t
max || E gjujlloo < evn
t<n .
<n
where ¢ > 0 is an absolute constant.”
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