
John's theorem for an arbitrary pair of
onvex bodiesA. Giannopoulos, I. Perissinaki and A. Tsolomitis
Abstra
tWe provide a generalization of John's representation of the identity forthe maximal volume position of L inside K, where K and L are arbitrarysmooth 
onvex bodies in Rn . From this representation we obtain Bana
h-Mazur distan
e and volume ratio estimates.1 Introdu
tionThe de�nition of the Bana
h-Mazur distan
e between symmetri
 
onvex bodies 
anbe extended to the non-symmetri
 
ase as follows [Gr℄: Let K and L be two 
onvexbodies in Rn . Their geometri
 distan
e is de�ned by(1) ~d(K;L) = inffab : (1=b)L � K � aLg:If z1; z2 2 Rn , we 
onsider the translates K � z1 and L� z2 of K and L, and theirdistan
e with respe
t to z1; z2,(2) dz1;z2(K;L) = inff ~d(T (K � z1); L� z2)g;where the inf is taken over all invertible linear transformations T of Rn . Finally,we let z1; z2 vary and de�ne(3) d(K;L) = inffdz1;z2(K;L) : z1; z2 2 Rng:John's theorem [J℄ provides a �rst estimate for d(K;L). IfK is any 
onvex bodyin Rn and E is its maximal or minimal volume ellipsoid, then dz;z(K;E) � n, wherez is the 
enter of E. A
tually, the distan
e between the simplex and the ball is equalto n, and the simplex is the only body with this property [P℄. It follows that thedistan
e between any two 
onvex bodies is at most n2. Rudelson [R℄ has re
entlyproved that d(K;L) � 
n4=3 log� n for some absolute 
onstants 
; � > 0 (see also1



re
ent work of Litvak and Tom
zak-Jaegermann [LTJ℄). A well-known theorem ofGluskin [Gl℄ shows that d(K;L) 
an be of the order of n even for symmetri
 bodiesK and L.In this paper we study the maximal volume position of a body L inside K: wesay that L is of maximal volume in K if L � K and, for every w 2 Rn and everyvolume preserving linear transformation T of Rn , the aÆne image w + T (L) of Lis not 
ontained in the interior of K. A simple 
ompa
tness argument shows thatfor every pair of 
onvex bodies K and L there exists an aÆne image ~L of L whi
his of maximal volume in K.Our main result is the following:Theorem. Let L be of maximal volume in K. If z 2 int(L), we 
an �nd 
onta
tpoints v1; : : : ; vm of K � z and L� z, 
onta
t points u1; : : : ; um of the polar bodies(K � z)Æ and (L � z)Æ, and positive reals �1; : : : ; �m, su
h that: P�juj = o,huj ; vji = 1, and(4) Id = mXj=1 �juj 
 vj :We shall prove the above fa
t under the assumption that both K and L aresmooth enough. The theorem may be viewed as a generalization of John's rep-resentation of the identity even in the 
ase where L is the Eu
lidean unit ball.This generalization was observed by V.D. Milman in the 
ase where K and L areo-symmetri
 and z = o (see [TJ℄, Theorem 14.5).Using the theorem, we give a dire
t proof of the fa
t that d(K;L) � n whenboth K and L are symmetri
, and we obtain the estimate d(K;L) � 2n� 1 whenL is symmetri
 and K is any 
onvex body (this was re
ently proved by Lassak [L℄).Note that the theorem holds true for any 
hoi
e of z 2 int(L). In Se
tion 3we prove an extension to the 
ase z 2 bd(L). Also, assuming that L is a polytopeand K has C2 boundary with stri
tly positive 
urvature, we show that the 
enterz may be 
hosen so that P�juj = o =P�jvj .Using the maximal volume position of L inside K, one 
an naturally extend thenotion of volume ratio to an arbitrary pair of 
onvex bodies. We de�ne(5) vr(K;L) = � jKjj~Lj � 1n ;where ~L is an aÆne image of L whi
h is of maximal volume in K (by j � j we denoten-dimensional volume). In Se
tion 4, we prove the following general estimate:Theorem. Let K and L be two 
onvex bodies in Rn . Then,(6) vr(K;L) � n:2



The same estimate 
an be given through K. Ball's result on vr(K;Dn) andvr(Dn;K), where Dn is the Eu
lidean unit ball. Ball [Ba℄ proved that bothvr(K;Dn) and vr(Dn;K) are maximal when K is the simplex Sn. It follows thatvr(K;L) � vr(K;Dn)vr(Dn; L) � vr(Sn; Dn)vr(Dn; Sn) = n:However, our proof is dire
t and might lead to a better estimate; it might be truethat vr(K;L) is always bounded by 
pn.A
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tion 3.2 The main theorem and distan
e estimatesWe assume that Rn is equipped with a Eu
lidean stru
ture h�; �i, and denote the
orresponding Eu
lidean norm by j � j. We write Dn for the Eu
lidean unit ball,and Sn�1 for the unit sphere.If W is a 
onvex body in Rn and z 2 int(W ), we de�ne the radial fun
tion�W (z; �) of W with respe
t to z by(1) �W (z; �) = maxf� > 0 : z + �� 2Wgfor � 2 Sn�1, and extend this de�nition to Rnnfzg by(2) �W (z; x) = 1t �W (z; �);where x = z + t�, t > 0 and � 2 Sn�1. If � 2 Sn�1, we will write �W (z; �) insteadof �W (z; z + �) (this will 
ause no 
onfusion).The polar body W z of W with respe
t to z 2 int(W ) is the body(3) W z = (W � z)Æ = fy 2 Rn : hy; x� zi � 1 for all x 2 Wg:Let o denote the origin. Sin
e �W (z; x) = �W�z(o; x� z), the support fun
tionhW z of W z satis�es(4) hW z (x� z) = 1�W (z; x)for all x 2 Rnnfzg. Note that the de�nition of the polar set W z makes sense forz 2 bd(W ), but then W z may be unbounded in some dire
tions.Re
all that, if o 2 int(W ), W is stri
tly 
onvex and hW is 
ontinuously dif-ferentiable, then rhW (�) is the unique point on the boundary of W at whi
h theouter unit normal to W is �, and rhW (��) = rhW (�) for all � > 0.3



With these de�nitions, we have the following des
ription of the maximal volumeposition of L in K:2.1. Lemma. Let K and L be two 
onvex bodies in Rn , with L � K. Then, Lis of maximal volume in K if and only if, for every z 2 L, for every w 2 Rn andevery volume preserving T , there exists � 2 Sn�1 su
h that(5) �K�z; z + w + T (�L(z; �)�)� � 1: 2We assume that K is smooth enough: we ask that it is stri
tly 
onvex and itssupport fun
tion hK is twi
e 
ontinuously di�erentiable. Under this assumption,we have that hKz is twi
e 
ontinuously di�erentiable for every z 2 int(K).2.2. Lemma. Let L be of maximal volume in K, and z 2 L \ int(K). Then,for every w 2 Rn and every S 2 L(Rn ;Rn ) we 
an �nd � 2 Sn�1 su
h that�L(z; �) = �K(z; �) and(6) hKz�w + �K(z; �)S(�)� � trSn :Proof: We follow the argument of [GM℄. Let w 2 Rn and S 2 L(Rn ;Rn ). If " > 0is small enough, then T" = (I + "S)=[det(I + "S)℄1=n is volume preserving, hen
e,using (4) and Lemma 2.1 for T" and "w, we �nd �" 2 Sn�1 su
h that(7) hKz�"w + T"(�L(z; �")�")� � 1:Sin
e [det(I + "S)℄1=n = 1 + " trSn +O("2), we get(8) hKz��L(z; �")�" + "w + "�L(z; �")S(�")� � 1 + " trSn +O("2):Sin
e L � K, we have hKz(�L(z; �")�") = �L(z; �")=�K(z; �") � 1, and the subad-ditivity of hKz gives(9) hKz�w + �L(z; �")S(�")� � trSn +O("):By 
ompa
tness, we 
an �nd "m ! 0 and � 2 Sn�1 su
h that �"m ! �. Then,taking limits in (9) we get(10) hKz�w + �L(z; �)S(�)� � trSn ;and taking limits in (7) we see that hKz(�L(z; �)�) � 1, whi
h for
es �L(z; �) =�K(z; �). 2Making one more step, we obtain the following 
ondition:4



2.3. Lemma. Let L be of maximal volume in K, and z 2 L \ int(K). Then,for every w 2 Rn and every T 2 L(Rn ;Rn ) we 
an �nd � 2 Sn�1 su
h that�L(z; �) = �K(z; �) and(11) hrhKz(�); w + �K(z; �)T (�)i � trTn :Proof: Let T 2 L(Rn ;Rn ), and de�ne S" = I + "T , " > 0. By Lemma 2.2, we 
an�nd �" 2 Sn�1 su
h that �K(z; �") = �L(z; �") and(12) hKz ("w + �K(z; �")�" + "�K(z; �")T (�")) � tr(I + "T )n = 1 + " trTn :The left hand side is equal to(13) hKz(�K(z; �")�") + "hrhKz(�"); w + �K(z; �")T (�")i+O("2)= 1 + "hrhKz(�"); w + �K(z; �")T (�")i+O("2):Therefore,(14) hrhKz(�"); w + �K(z; �")T (�")i � trTn +O("):Choosing again "m ! 0 su
h that �"m ! � 2 Sn�1, we see that �K(z; �) = �L(z; �)and � satis�es (11). 2Lemma 2.3 and a separation argument give us a generalization of John's rep-resentation of the identity:2.4. Theorem. Let K be smooth enough, L be of maximal volume in K, andz 2 L \ int(K). There exist m � n2 + n + 1 ve
tors �1; : : : ; �m 2 Sn�1 su
h that�K(z; �j) = �L(z; �j) and �1; : : : ; �m > 0, su
h that:(i) P�jrhKz(�j) = o,(ii) Id =P�j [(rhKz(�j))
 (�K(z; �j)�j)℄.Proof: We identify the aÆne transformations of Rn with points in Rn2+n, and
onsider the set(15) C = 
on[rhKz(�) 
 �K(z; �)�℄ +rhKz (�) : � 2 Sn�1; �K(z; �) = �L(z; �)o:Then, C is a 
ompa
t 
onvex set with the Eu
lidean metri
, and we 
laim thatId=n 2 C. If not, there exist w 2 Rn and T 2 L(Rn ;Rn ) su
h that(16) hId=n; T + wi > D[rhKz(�)
 �K(z; �)�℄ +rhKz (�); T + wEwhenever �K(z; �) = �L(z; �). But, (16) is equivalent to(17) trTn > hrhKz (�); w + �K(z; �)T (�)i;5



and this 
ontradi
ts Lemma 2.3.Carath�eodory's theorem shows that we 
an �nd m � n2 + n + 1 and positivereals �1; : : : ; �m su
h that(18) Id = mXj=1 �j�[rhKz(�j)
 �K(z; �j)�j ℄ +rhKz(�j)�;for �1; : : : ; �m 2 Sn�1 with �K(z; �j) = �L(z; �j). This 
ompletes the proof. 2Remark. Assume that L is also smooth enough. Let � 2 Sn�1 be su
h that�K(z; �) = �L(z; �). Observe that(19) hrhKz(�); �K(z; �)�i = �K(z; �)hKz(�) = 1:Also, x = rhLz(�) is the unique point of Lz for whi
h hx; �i = hLz(�) = hKz(�).Sin
e hrhKz (�); �i = hKz(�) and rhKz(�) 2 Kz � Lz, we must have(20) rhKz(�) = rhLz(�):Hen
e, the theorem 
an be stated in the following form:2.5. Theorem. Let K and L be smooth enough, and L be of maximal volume inK. For every z 2 int(L), we 
an �nd 
onta
t points v1; : : : ; vm of K� z and L� z,
onta
t points u1; : : : ; um of Kz and Lz, and positive reals �1; : : : ; �m, su
h that:P�juj = o, huj ; vji = 1, and(21) Id = mXj=1 �juj 
 vj : 2Remark. The analogue of the Dvoretzky-Rogers lemma [DR℄ in the 
ontext ofTheorem 2.5 is the following: If F is a k-dimensional subspa
e of Rn and PFdenotes the orthogonal proje
tion onto F , then there exists j 2 f1; : : : ;mg su
hthat hPF (uj); PF (vj)i � kn:This 
an be easily 
he
ked, sin
ek = trPF = mXj=1 �jhPF (uj); PF (vj)i;and P�j = n.As an appli
ation of Theorem 2.4, we give a dire
t proof of the fa
t that thediameter of the Bana
h-Mazur 
ompa
tum is bounded by n:2.6. Proposition. Let K and L be symmetri
 
onvex bodies in Rn . Then,d(K;L) � n. 6



Proof: We may assume that K and L satisfy our smoothness hypotheses, and thatK is symmetri
 about o. Let L1 be an aÆne image of L whi
h is of maximal volumein K.Claim: L1 is also symmetri
 about o.[Let z be the 
enter of L1. Then L1 = 2z � L1 � K and the symmetry of Kshows that L1 � 2z � K. It follows that(22) ~L = L1 � z = L1 + (L1 � 2z)2 � K;and L1 � z is o-symmetri
. If z 6= o, we obtain a 
ontradi
tion as follows: wede�ne a linear map T whi
h leaves z? un
hanged and sends z to (1 + �)z, where0 < � < jzj2=hL1�z(z). One 
an easily 
he
k that T (L1�z) � 
o(L1; L1�2z) � Kand jT (L1 � z)j = (1 + �)jL1j > jL1j.℄We write L for L1. Let x 2 Rn and 
hoose z = w = o and T (y) = hrhLÆ(x); yixin Lemma 2.3. Then there exists � 2 Sn�1 su
h that �K(o; �) = �L(o; �) and(23) DrhKÆ(�); hrhLÆ(x); �L(o; �)�ixE � hLÆ(x)n :But, rhLÆ(x) 2 LÆ and �L(o; �)� 2 L. Sin
e L is o-symmetri
, we have(24) jhrhLÆ(x); �L(o; �)�ij � 1:Using now the o-symmetry of K and the fa
t that rhKÆ(�) 2 KÆ, from (23) and(24) we get(25) hKÆ(x) � hLÆ(x)n :Therefore, LÆ � nKÆ, and this shows that K � nL. 2We now assume that L is symmetri
 and K is any 
onvex body:2.7. Proposition. Let L be a symmetri
 
onvex body and K be any 
onvex bodyin Rn . Then, d(K;L) � 2n� 1.Proof: We may assume that L is of maximal volume in K and L is symmetri
 abouto. Let d > 0 be the smallest positive real for whi
h hLÆ(y) � dhKÆ(y) for ally 2 Rn . Then, duality, the symmetry of L and the fa
t that L � K show thathK(�x) � dhL(�x) = dhL(x) � dhK(x) for every x 2 Rn .We de�ne T (y) = hnrhLÆ(x); yix and w = 
x, where 
 2 [0; n) is to bedetermined. From Lemma 2.3, there exists � 2 Sn�1 su
h that �K(o; �) = �L(o; �)and(26) DrhKÆ(�); 
x+ nhrhLÆ(x); �L(o; �)�ixE � nhrhLÆ(x); xin = hLÆ(x):7



Sin
e rhLÆ(x) 2 LÆ, �L(o; �)� 2 L and L is o-symmetri
, we havejhrhLÆ(x); �L(o; �)�ij � 1;therefore(27) 
 � n � 
 + nhrhLÆ(x); �L(o; �)�i � 
 + n:Let s = hrhLÆ(x); �L(o; �)�i. Sin
e rhKÆ(x) 2 KÆ, from (26) and (27) we get(28) hLÆ(x) � (
 + n)hKÆ(x);if 
 + ns � 0, and(29) hLÆ(x) � (n� 
)dhKÆ(x);if 
 + ns < 0. It follows that(30) hLÆ(x) � maxf
 + n; (n� 
)dghKÆ(x):This shows that d � maxf
 + n; (n� 
)dg, and 
hoosing 
 = n(d � 1)=(d+ 1) weget d � 2n� 1. Hen
e, LÆ � (2n� 1)KÆ and the result follows. 23 Choi
e of the 
enterIn this se
tion we study the 
ase where L is a polytope with verti
es v1; : : : ; vN ,and K has C2 boundary with stri
tly positive 
urvature (K 2 C2+). Then, we 
anstrengthen Theorem 2.5 in the following sense:3.1. Theorem. Let L be of maximal volume in K. Then, there exists z 2Lnfv1; : : : ; vNg for whi
h we 
an �nd �1; : : : ; �N � 0, and u1; : : : ; uN 2 bd(Kz) sothat:1. P�juj = o; P �jn vj = z.2. huj ; vj � zi = 1 for all j = 1; : : : ; N .3. Id =PNj=1 �juj 
 vj .Proof: We may assume that o 2 int(L). By Theorem 2.4 and our hypotheses aboutK, for every z 2 L0 := L n fv1; : : : ; vNg there exist representations of the formId = NXj=1 �juj 
 vj ;where �j � 0, uj 2 bd(Kz) with huj ; vj�zi = 1, andPNj=1 �juj = o. Note that therepresentation of the identity follows from Theorem 2.4 be
ause of the 
onditionPNj=1 �juj = o. 8



We de�ne a set-fun
tion � on L0, setting �(z) to be the set of all points(1=n)PNj=1 �jvj 2 L whi
h 
ome from su
h representations (with respe
t to z).The set �(z) is 
learly non-empty, 
onvex and 
losed.Let s 2 (0; 1). We de�ne �s on L0 with �s(z) = s�(z), and gs : L0 ! R+ with(1) gs(z) = d(z; �s(z)) = inffjz � wj : w 2 �s(z)g:It is easily 
he
ked that �s is upper semi-
ontinuous and gs is lower semi-
ontinuous.3.2. Lemma. For every s 2 (0; 1), there exists z 2 sL su
h that z 2 �s(z).Proof: Assume otherwise. Sin
e �s(z) � sL for all z 2 L0, this means that gs(z) > 0on L0. We set r = (1 + s)=2, and 
onsider the restri
tion of �s onto rL. Sin
egs is lower-semi
ontinuous, there exists q = q(r; s) > 0 su
h that gs(z) � q for allz 2 rL.On the other hand, �s is upper-semi
ontinuous, 
onvex-valued with boundedrange. Therefore, �s admits approximate 
ontinuous sele
tions: By a result of Beer[Be℄ (see also [RW℄, pp. 195), for every " > 0 there exists a 
ontinuous fun
tionh" : rL! Rn so that(2) d(h"(z); s�(z)) < ":Let 
 = 
(r; s) > 0 be su
h that sL + 
Dn � rL. Letting " = (1=2)minfq; 
g we�nd 
ontinuous h : rL ! rL satisfying (2). Brower's theorem shows that h has a�xed point z 2 rL. But then,q � d(z; s�(z)) = d(h(z); s�(z)) < ";whi
h is a 
ontradi
tion. This 
ompletes the proof. 2We apply Lemma 3.2 for a sequen
e sk 2 (0; 1) with sk ! 1. For ea
h k we�nd zk 2 skL and �(k)j � 0 su
h that(3) Id = NXj=1 �(k)j u(k)j 
 vj ;where u(k)j 2 bd(Kzk) is uniquely determined by hu(k)j ; vj � zki = 1, and(4) zk = sk NXj=1 �(k)jn vj ; NXj=1 �(k)j u(k)j = o:Passing to a subsequen
e, we may assume that zk ! z 2 L. If z is not one of theverti
es of L, then u(k)j ! uj , where uj 2 bd(Kz) and huj ; vj � zi = 1. Passing tofurther subsequen
es we may assume that �(k)j ! �j � 0. Sin
e sk ! 1, (3) and(4) imply(5) Id = NXj=1 �juj 
 vj ;9



and(6) z = NXj=1 �jn vj ; NXj=1 �juj = o:This is exa
tly the assertion of the Theorem, provided that we have proved thefollowing:3.3. Claim. Let sk 2 (0; 1) with sk ! 1, and zk 2 sk�(zk). If zk ! z, thenz =2 fv1; : : : ; vNg.Proof: We assume that zk satisfy (3) and (4) and zk ! v1. Our assumptionsabout K imply that Kv1 is unbounded only in the dire
tion of N(v1), where N(v1)is the unit normal ve
tor to K at v1. For large k, zk is away from v2; : : : ; vN ,therefore u(k)j ! uj , j = 2; : : : ; N , where uj is the unique point in bd(Kv1) forwhi
h huj ; vj � zi = 1.Sin
e (u(k)j ); j � 2 is bounded and PNj=1 �j = n, (4) shows thatj�(k)1 u(k)1 j = j NXj=2 �(k)j u(k)j jremains bounded. Hen
e, passing to a subsequen
e we may assume that �(k)1 u(k)1 !w1, and �(k)j ! �j for all j = 1; : : : ; N . This means that(7) Id = w1 
 v1 + NXj=2 �juj 
 vj ;and(8) v1 = NXj=1 �jn vj ; w1 + NXj=2 �juj = o:Sin
e v1 is a vertex of L, we must have �2 = : : : = �N = 0. Then, w1 = o, and (7)takes the form Id = 0, whi
h is a 
ontradi
tion. 2A
tually, the argument we used for the proof of Claim 3.3 shows the followingextension of Theorem 2.4:3.4. Proposition. Let K;L be smooth enough and assume that L is of maximalvolume inside K. For every z 2 bd(K) \ bd(L), there exist m0 � m � n2 + n+ 1,
onta
t points v1; : : : ; vm of K and L, 
onta
t points u1; : : : ; um0 of Kz and Lz,and non-negative numbers �1; : : : ; �m0 , �m0+1; : : : ; �m so that:1. huj ; vj � zi = 1 for all j = 1; 2; : : : ;m0,2. h�jN(z); vj � zi = 0 for all j = m0 + 1; : : : ;m,10



3. Id =Pm0j=1 �juj 
 vj +N(z)
 (Pmj=m0+1 �jvj),where N(z) is the unit normal ve
tor of K at z.Sket
h of the proof: Let z 2 bd(K) \ bd(L), and 
onsider a sequen
e zk 2 int(L)with zk ! z. Applying Theorem 2.4, for ea
h k we �nd �(k)j � 0, 
onta
t pointsv(k)j of K and L, and 
onta
t points u(k)j of Kzk and Lzk so thatPNj=1 �(k)j u(k)j = o,hu(k)j ; v(k)j � zki = 1 and Id = PNj=1 �(k)j u(k)j 
 v(k)j . We may assume that N =n2 + n+ 1 for all k.Passing to subsequen
es we may assume that �(k)j ! �j and v(k)j ! vj ask !1, where �j � 0 and vj are 
onta
t points of K and L. We may also assumethat there exists m0 � N su
h that u(k)j ! uj if j � m0, and ju(k)j j ! 1 if j > m0.Let N(z) be the unit normal ve
tor to K at z. It is not hard to see that for allj > m0, the angle between u(k)j and N(z) tends to zero as k ! 1. Using the fa
tthat PNj=1 �(k)j u(k)j = o, we then see that for large k(9) maxj>m0 j�(k)j u(k)j j � j Xj>m0 �(k)j u(k)j j = j Xj�m0 �(k)j u(k)j j;and this quantity remains bounded, sin
e all �(k)j and u(k)j (j � m0) 
onverge.Therefore, we may also assume that �(k)j u(k)j ! �jN(z), j > m0.Passing to the limit we 
he
k that huj ; vj � zi = 1, j � m0, and(10) Id = m0Xj=1 �juj 
 vj +N(z)
0� NXj=m0+1�jvj1A :Finally, h�jN(z); vj � zi = limk �(k)j hu(k)j ; v(k)j � zki = limk �(k)j = 0 for all j > m0,and Pm0j=1 �juj + (PNj=m0+1 �j)N(z) = o. Ignoring all j's for whi
h �j = 0, we
on
lude the proof. 24 Volume ratioIn this Se
tion we give an estimate for the volume ratio of two 
onvex bodies:4.1. Theorem. Let L be of maximal volume in K. Then, (jKj=jLj)1=n � n.Proof: Without loss of generality we may assume L is a polytope and K 2 C2+, andusing Theorem 3.1 we may assume that o 2 L \ int(K), and(1) Id = mXj=1 �juj 
 vj ;11



where �j > 0, u1; : : : ; um 2 bd(KÆ), v1; : : : ; vm are 
onta
t points of K and L,huj ; vji = 1, and Pmj=1 �juj = o = Pmj=1 �jvj . This last 
ondition shows thatm � n+ 1.Sin
e uj 2 KÆ, j = 1; : : : ;m, we have the in
lusion(2) K � U := fx : hx; uji � 1; j = 1; : : : ;mg:Observe that U is a 
onvex body, be
auseP�juj = o. On the other hand, vj 2 L,j = 1; : : : ;m. Therefore,(3) L � V := 
ofv1; : : : ; vmg:It follows that(4) jKjjLj � jU jjV j :We de�ne ~vj 2 Rn+1 by(5) ~vj = nn+ 1(�vj ; 1) ; j = 1; : : : ;m:Then, we 
an estimate jV j using the reverse form of the Bras
amp-Lieb inequality(see [Bar℄):4.2. Lemma. LetD~v = inf(det�Pmj=1 �j�jvj 
 vj�Qmj=1 ��jj : �j > 0; j = 1; 2; : : : ;m):Then, the volume of V satis�es the inequality(6) jV j � �n+ 1n �n+1 pD~vn! :Proof: LetNV (x) =8<: inf fPmi=1 �i : �i � 0 and x =Pmi=1 �i~vig , if su
h �i exist+1 , otherwise.Let also C = 
of�v1;�v2; : : : ;�vmg.Claim: If x = (y; r) for some y 2 Rn and r 2 R, then(7) e�NV (x) � �fy2rCg�fr�0ge�n+1n r:12



[If r < 0 then NV (x) = +1 and the inequality is true. Otherwise, let �i � 0be su
h that x = Pmi=1 �i~vi and Pmi=1 �i = NV (x). Then, it is immediate thatNV (x) = n+1n r � 0 and y = nn+1Pmi=1 �i(�vi) 2 rC. From this (7) follows.℄Integrating the inequality (7) we getZRn+1 e�NV (x) dx � n!� nn+ 1�n+1 jV j:We now set dj = n+1n �j and apply the reverse form of the Bras
amp-Liebinequality to the left hand side integral:ZRn+1 e�NV (x) dx = ZRn+1 sup�j�0x=Pmj=1 �j ~vj mYj=1 e��j dx= ZRn+1 supx=Pmj=1 �j ~vj mYj=1�e��j=dj�f�j�0g�dj� pD~v mYj=1�Z 10 e�t dt�dj =pD~v:From this (6) follows. 2We now turn to �nd an upper bound for jU j: as above, let dj = n+1n �j and set~uj = ��uj ; 1n� for j = 1; : : : ;m.4.3. Lemma. The volume of U satis�es the inequality(8) jU j � 1pD~u (n+ 1)n+1n!n ;where(9) D~u = inf�det(P dj�j ~uj 
 ~uj)Q�djj ;�j > 0�:Proof: We apply the Bras
amp-Lieb inequality [BL℄ (see also [Bar℄) in the spirit ofK. Ball's proof of the fa
t that among all 
onvex bodies having the Eu
lidean unitball as their ellipsoid of maximal volume, the regular simplex has maximal volume[Ba℄.For ea
h j = 1; : : : ;m, de�ne fj : R ! [0;1) by fj(t) = e�t�[0;1)(t), and set(10) F (x) = mYj=1 fj(h~uj ; xi)dj ; x 2 Rn+1 :13



The Bras
amp-Lieb inequality gives(11) ZRn+1 F (x)dx � 1pD~u mYj=1�ZRfj�dj = 1pD~u :As in [Ba℄, writing x = (y; r) 2 Rn �R, we see that F (x) = 0 if r < 0. When r � 0,we have F (x) 6= 0 pre
isely when y 2 (r=n)U , and then, taking into a

ount thefa
ts that P�juj = o and P dj = n + 1, we see that F is independent of y andequal to(12) F (x) = exp(�r(n+ 1)=n):It follows from (11) that(13) 1pD~u � Z 10 exp(�r(n+ 1)=n)� rn�n jU jdr = jU j n!n(n+ 1)n+1 : 2Combining the two lemmata, we get(14) jKjjLj � nnpD~uD~v :Observe that ~uj , ~vj and dj satisfy h~uj ; ~vji = 1, j = 1; : : : ;m. Using the fa
t thatPmj=1 �juj = o =Pmj=1 �jvj , we 
he
k thatId = mXj=1 dj ~uj 
 ~vj :Thus, in order to �nish the proof of Theorem 4.1 it suÆ
es to prove the followingproposition.4.4. Proposition. Let �1; : : : ; �m > 0, u1; : : : um and v1; : : : ; vm be ve
tors satis-fying huj ; vji = 1 for all j = 1; : : :m and(15) Id = mXj=1 �juj 
 vj :Then DuDv � 1.Proof: For I � f1; 2; : : : ;mg we use the notation �I = Qi2I �i, �I =Qi2I �i, andfor I 's with 
ardinality n, we write UI = det (ui : i 2 I) and VI = det (vi : i 2 I).Moreover, we write (�U)I for det (�iui : i 2 I).Applying the Cau
hy-Binet formula we have(16) det0� mXj=1 �j�juj 
 vj1A = XjIj=nI�f1;2;:::;mg �I(p�U)I(p�V )I :14



But P(p�U)I(p�V )I = det�Pmj=1 �juj 
 vj� = det(Id) = 1. Hen
e, applyingthe arithmeti
-geometri
 means inequality to the right side of (16) we dedu
e thatXjIj=nI�f1;2;:::;mg �I(p�U)I(p�V )I � YjIj=nI�f1;2;:::;mg �(p�U)I (p�V )II= mYj=1�Pj2I;jIj=n(p�U)I(p�V )Ij :Observe now that the exponent of �j in the above produ
t equals �j :Xj2I; jIj=n(p�U)I(p�V )I = XjIj=n(p�U)I(p�V )I �Xj 62I; jIj=n(p�U)I (p�V )I= det0� mXj=1 �juj 
 vj1A� det(I � �juj 
 vj)= �j ;sin
e huj ; vji = 1. Thus, we have shown that(17) det0� mXj=1 �j�juj 
 vj1A � mYj=1��jj :Now, for any 
j ; Æj > 0 we havedet0� mXj=1 �j
juj 
 uj1A det0� mXj=1 �jÆjvj 
 vj1A= XjIj=n 
I (p�U)2I XjIj=n ÆI(p�V )2I :By the Cau
hy-S
hwarz inequality this is greater than0�XjIj=n�Ip
IÆIUIVI1A2 :Apply now (17) to getdet�Pmj=1 �j
juj 
 uj�Qmj=1 
�jj det �Pmj=1 �jÆjvj 
 vj�Qmj=1 Æ�jj � 1;
ompleting the proof. 215



Remark. A di�erent argument shows that vr(K;Sn) � 
pn for every 
onvex bodyK in Rn , where 
 > 0 is an absolute 
onstant.Without loss of generality we may assume that K is of maximal volume in Dn.Then, John's theorem gives us �1; : : : ; �m > 0 and 
onta
t points u1; : : : ; um of Kand Dn su
h that Id = mXj=1 �juj 
 uj :The Dvoretzky-Rogers lemma [DR℄ shows that we 
an 
hoose u1; : : : ; un among theuj 's so that jPspanfus:s<ig?uij � �n� i+ 1n �1=2 ; i = 2; : : : ; n:Therefore, the simplex S = 
ofo; u1; : : : ; ung has volumejSj � 1n! nYi=2�n� i+ 1n �1=2 = 1(n!nn)1=2 ;and S � K � Dn. It follows thatvr(K;Sn) � � jDnjjSj �1=n � (n!)1=2npnp�[�(n2 + 1)℄1=n� 
pn:This supports the question if vr(K;L) is always bounded by 
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