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Abstract

We provide a generalization of John’s representation of the identity for
the maximal volume position of L inside K, where K and L are arbitrary
smooth convex bodies in R™. From this representation we obtain Banach-
Mazur distance and volume ratio estimates.

1 Introduction

The definition of the Banach-Mazur distance between symmetric convex bodies can
be extended to the non-symmetric case as follows [Gr]: Let K and L be two convex
bodies in R™. Their geometric distance is defined by

(1) d(K,L) =inf{ab: (1/b)L C K C aL}.

If 21,20 € R®, we consider the translates K — z; and L — z5 of K and L, and their
distance with respect to z1, 23,

(2) dzy (K, L) = inf{d(T(K — 21),L — 22)},

where the inf is taken over all invertible linear transformations 7' of R™. Finally,
we let z1, 22 vary and define

(3) d(K,L) =inf{d;, ., (K,L) : 21,22 € R"}.

John’s theorem [J] provides a first estimate for d(K, L). If K is any convex body
in R" and E is its maximal or minimal volume ellipsoid, then d, . (K, E) < n, where
z is the center of E. Actually, the distance between the simplex and the ball is equal
to n, and the simplex is the only body with this property [P]. It follows that the
distance between any two convex bodies is at most n?. Rudelson [R] has recently
proved that d(K,L) < cn*/3log® n for some absolute constants ¢, 3 > 0 (see also



recent work of Litvak and Tomczak-Jaegermann [LTJ]). A well-known theorem of
Gluskin [Gl] shows that d(K, L) can be of the order of n even for symmetric bodies
K and L.

In this paper we study the mazimal volume position of a body L inside K: we
say that L is of mazimal volume in K if L C K and, for every w € R" and every
volume preserving linear transformation T' of R, the affine image w + T'(L) of L
is not contained in the interior of K. A simple compactness argument shows that
for every pair of convex bodies K and L there exists an affine image L of L which
is of maximal volume in K.

Our main result is the following:

Theorem. Let L be of mazimal volume in K. If z € int(L), we can find contact
points v1, ..., vy of K —z and L — z, contact points uy, ..., un, of the polar bodies
(K — 2)° and (L — z)°, and positive reals A1, ..., A\m, such that: > A\ju; = o,
(uj,vj) =1, and

(4) Id:Z)\jUj@)Uj.

j=1

We shall prove the above fact under the assumption that both K and L are
smooth enough. The theorem may be viewed as a generalization of John’s rep-
resentation of the identity even in the case where L is the Euclidean unit ball.
This generalization was observed by V.D. Milman in the case where K and L are
o-symmetric and z = o (see [TJ], Theorem 14.5).

Using the theorem, we give a direct proof of the fact that d(K,L) < n when
both K and L are symmetric, and we obtain the estimate d(K, L) < 2n — 1 when
L is symmetric and K is any convex body (this was recently proved by Lassak [L]).

Note that the theorem holds true for any choice of z € int(L). In Section 3
we prove an extension to the case z € bd(L). Also, assuming that L is a polytope
and K has C? boundary with strictly positive curvature, we show that the center
z may be chosen so that > Aju; =0 =73 A\jv;.

Using the maximal volume position of L inside K, one can naturally extend the
notion of wolume ratio to an arbitrary pair of convex bodies. We define

(5) vi(K, L) = (%) g

where L is an affine image of L which is of maximal volume in K (by |- | we denote
n-dimensional volume). In Section 4, we prove the following general estimate:

Theorem. Let K and L be two convex bodies in R™. Then,

(6) vi(K,L) < n.



The same estimate can be given through K. Ball’s result on vr(K,D,,) and
vr(Dy, K), where D, is the Euclidean unit ball. Ball [Ba] proved that both
vr(K, Dy) and vr(D,, K) are maximal when K is the simplex S,,. It follows that

vr(K, L) < vr(K, Dy)vr(Dy, L) < vr(Sy, Dp)vr(Dy, Sp) = n.

However, our proof is direct and might lead to a better estimate; it might be true
that vr(K, L) is always bounded by c\/n.
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2 The main theorem and distance estimates

We assume that R™ is equipped with a Euclidean structure (-,-), and denote the
corresponding Euclidean norm by | -|. We write D,, for the Euclidean unit ball,
and S™~! for the unit sphere.

If W is a convex body in R® and z € int(W), we define the radial function
pw (z,-) of W with respect to z by

(1) pw(z,0) =max{A>0:z+ X € W}

for # € S"~!, and extend this definition to R*\{z} by

@ pw (2,2) = 3w (2,0),

where 7 = z+t0,t >0and § € S* 1. If § € S™ !, we will write pw (2,6) instead
of pw(z,z + ) (this will cause no confusion).
The polar body W#* of W with respect to z € int(W) is the body

(3) Ws=W-2)°={yeR":(y,z—z) <lforallz € W}.

Let o denote the origin. Since pw (z,z) = pw—2 (0, — z), the support function
hw= of W#* satisfies

1
@ -2 = 2) = )
for all x € R*\{z}. Note that the definition of the polar set W#* makes sense for
z € bd(WW), but then W#* may be unbounded in some directions.
Recall that, if o € int(W), W is strictly convex and hw is continuously dif-
ferentiable, then Vhy () is the unique point on the boundary of W at which the
outer unit normal to W is 6, and Vhw (M) = Vhw () for all A > 0.



With these definitions, we have the following description of the maximal volume
position of L in K:

2.1. Lemma. Let K and L be two convexr bodies in R"*, with L, C K. Then, L
is of maximal volume in K if and only if, for every z € L, for every w € R® and
every volume preserving T, there exists § € S™~1 such that

(5) pK (z,z+w+T(pL(z,0)6)) <1 O

We assume that K is smooth enough: we ask that it is strictly convex and its
support function hg is twice continuously differentiable. Under this assumption,
we have that hg- is twice continuously differentiable for every z € int(K).

2.2. Lemma. Let L be of mazimal volume in K, and z € L Nint(K). Then,
for every w € R" and every S € L(R*,R") we can find § € S™ ' such that
pL(zae) = pK(Zae) and

trS
>

(6) hic- (w + pic(2,0)5(0))

n .

Proof: We follow the argument of [GM]. Let w € R* and S € L(R*,R"). If ¢ > 0
is small enough, then T. = (I +&S)/[det(I +&S)]'/™ is volume preserving, hence,
using (4) and Lemma 2.1 for 7. and ew, we find §. € S"~! such that

(7) hic- (2w + T (pu (2,0.)6.) ) > 1.

Since [det(I +£S)]Y/™ =1+ %5 4+ O(e?), we get

8 hi=|pr(2,0:)0: +cw +epr(2,0:)S(6- 21+€ﬂ+062.
n

Since L C K, we have hg-(pr(z,0:)0:) = pr(z,0:)/px(2z,6-) < 1, and the subad-
ditivity of hg- gives

trS
9) hice (w ¥ pL(z,QE)S(QE)) > 22 4 0(e).

n

By compactness, we can find g,, — 0 and # € S™! such that 6. — 6. Then,
taking limits in (9) we get

trS
>

(10) hic- (w -+ p1(2,6)5(9))

n )
and taking limits in (7) we see that hx-(pr(z,0)0) > 1, which forces pr(z,0) =
PK (Za 6) o

Making one more step, we obtain the following condition:



2.3. Lemma. Let L be of mazimal volume in K, and z € LNint(K). Then,
for every w € R™ and every T € L(R*,R") we can find § € S"' such that
pL(Zao) = pK(z,Q) and

(11) (Vhic-(6),w + pic(,0)T(0)) > =L

Proof: Let T € L(R*,R"), and define S = I +¢T, € > 0. By Lemma 2.2, we can
find 6. € S™~! such that px(z,6.) = pr(z,0-) and

tr(l +eT) 1 —l—sﬂ

(12)  huce (e + pic(,0.)6: + 2prc(z,0)T(6.)) > =

The left hand side is equal to
(13) hic=(prc(2,0:)0:) + e(Vhi=(0-),w + pr(2,0:)T(6.)) + O(e?)
= 14 &(Vhic- (0.), w + pic (2, 0.)T(.)) + O(=2).

Therefore,

(14) (Vhi=(0:),w + pK(2,0:)T'(0:)) > n + O(e).

Choosing again €, — 0 such that 8. — 6 € S, we see that px(z,0) = pr(2,6)
and 6 satisfies (11). |

Lemma 2.3 and a separation argument give us a generalization of John’s rep-
resentation of the identity:

2.4. Theorem. Let K be smooth enough, L be of mazimal volume in K, and
z € LNint(K). There exist m < n? +n + 1 vectors 0y,...,0,, € S* 1 such that
P (2,85) = pr(2,0;) and A1, ..., A > 0, such that:

(i) > AjVhg=(8;) = o,
(i) Id = 3 Ni[(Vhi=(05)) ® (pK (z,8;)0;)].

Proof: We identify the affine transformations of R" with points in R’ nand
consider the set

(15) C= co{[Vth () ® pic(2,0)8] + Vhi-(0) : 0 € S™ 1, pc(2,0) = pL(z,e)}.

Then, C is a compact convex set with the Euclidean metric, and we claim that
Id/n € C. If not, there exist w € R* and T € L(R™, R") such that

(16) (Id/n, T +w) > <[Vth (6) ® pic(z,0)8] + Vhi-(0),T + w>

whenever pg(z,6) = pr(z,0). But, (16) is equivalent to

a7) EL S (Vhuc- ), w + pic (=, OT(O)),



and this contradicts Lemma 2.3.
Carathéodory’s theorem shows that we can find m < n? +n + 1 and positive
reals A, ..., Am, such that

m

(18) 1d =3 i (IVhi-(05) © pic (2,681 + Vhic- (65) ).
j=1
for 61,...,0,, € S"! with pk(z,6;) = pr(z,6;). This completes the proof. |

Remark. Assume that L is also smooth enough. Let # € S™! be such that
pr(z,0) = pr(z,6). Observe that

(19) (Vhi=(8),pr(2,0)0) = pi(z,0)hk-(8) = 1.

Also, x = Vhyp-(6) is the unique point of L* for which (z,0) = hp-(0) = hk-(0).
Since (Vhi=(0),0) = hk-(0) and Vhg-(0) € K* C L?, we must have

(20) Vhic-(8) = Vhy-(6).

Hence, the theorem can be stated in the following form:

2.5. Theorem. Let K and L be smooth enough, and L be of mazimal volume in
K. For every z € int(L), we can find contact points v1,...,vy, of K —z and L — z,
contact points wi, ..., uy of K* and L?, and positive reals A1, ..., Ay, such that:
Yo Aju; = o, (uj,v;) =1, and

(21) Id = Z)\juj D ;. O

Jj=1

Remark. The analogue of the Dvoretzky-Rogers lemma [DR] in the context of
Theorem 2.5 is the following: If F' is a k-dimensional subspace of R" and Pp
denotes the orthogonal projection onto F, then there exists j € {1,...,m} such

that
k

n

(Pr(uj), Pp(vj)) >

This can be easily checked, since

k =trPp = Z)\j<PF(Uj):PF(UJ'))’

j=1
and - A =n.

As an application of Theorem 2.4, we give a direct proof of the fact that the
diameter of the Banach-Mazur compactum is bounded by n:

2.6. Proposition. Let K and L be symmetric convexr bodies in R™. Then,
d(K,L) <mn.



Proof: We may assume that K and L satisfy our smoothness hypotheses, and that
K is symmetric about o. Let L; be an affine image of L which is of maximal volume
in K.

Claim: L, is also symmetric about o.

[Let z be the center of L. Then Ly = 2z — L; C K and the symmetry of K
shows that L, — 2z C K. It follows that
(22) i:Ll_z:Wng
and L; — z is o-symmetric. If z # o, we obtain a contradiction as follows: we
define a linear map T which leaves 21 unchanged and sends z to (1 + a)z, where
0 < a<|z|>/hr,—~(2). One can easily check that T'(L; —2) C co(L1, L1 —22) C K
and |T(Ly — z)| = (1 + «)|L1| > |L1|]

We write L for Ly. Let z € R and choose z = w = oand T'(y) = (Vhpo(z),y)z
in Lemma 2.3. Then there exists # € S™! such that pk (0,0) = pr(0,80) and

hio(z
(23) (Vhics 6), (Vhis (@), pr(0,0)0)z) > LT()
But, Vhpe(z) € L° and pr(0,60)0 € L. Since L is o-symmetric, we have
24 [(Vhie(x),pL(0,0)0)] < 1.

Using now the o-symmetry of K and the fact that Vhgo(0) € K°, from (23) and
(24) we get

hpo
(25) hice () > (8.
n
Therefore, L° C nK°, and this shows that K C nL. O

We now assume that L is symmetric and K is any convex body:

2.7. Proposition. Let L be a symmetric convex body and K be any convexr body
in R*. Then, d(K,L) < 2n—1.

Proof: We may assume that L is of maximal volume in K and L is symmetric about
0.
o(y) for all

Let d > 0 be the smallest positive real for which hro(y) < dhg
t L C K show that

y € R®. Then, duality, the symmetry of L and the fact tha
hi(—z) < dhL( x) = dhr(z) < dhg(x) for every x € R™.

We define T'(y) = (nVhro(z),y)r and w = vx where v € [0,n) is to be
determined. From Lemma 2.3, there exists § € S™~! such that pg(0,6) = pL(0,6)
and

n{Vhre(z),x)

(26)  (Vho(0), 72 + n(Thi (2), pr(0,0)0)7) > -

= hLo (:U)



Since Vhpe(x) € L°, pr(0,0)0 € L and L is o-symmetric, we have
[(Vhie (), pr(0,0)0)] <1,

therefore

(27) 7 =1 <y +1(Vhee(2), pr(0,0)8) < v +n.

Let s = (Vhpe(x), pr(0,0)8). Since Vhgo(z) € K°, from (26) and (27) we get

(28) hre(z) < (v + n)hke(z),

if y+ns >0, and

(29) hie(z) < (n = 7)dhge(2),

if v+ ns < 0. It follows that

(30) hre(z) < max{y + n, (n — 7)d}hie (x).

This shows that d < max{y + n, (n — 7)d}, and choosing v =n(d — 1)/(d + 1) we
get d < 2n — 1. Hence, L° C (2n — 1) K° and the result follows. a

3 Choice of the center

In this section we study the case where L is a polytope with vertices vy,...,vn,
and K has C? boundary with strictly positive curvature (K € C3). Then, we can
strengthen Theorem 2.5 in the following sense:

3.1. Theorem. Let L be of mazimal volume in K. Then, there exists z €
L\{vy,...,un} for which we can find Ay, ...,An >0, and uy,...,uy € bd(K?) so
that:

1. Y Ajuj =o, Z%vj =z.

2. (uj,v;—z)=1forallj=1,...,N.

3. Id= Z;Vzl Aju; ®vj.

Proof: We may assume that o € int(L). By Theorem 2.4 and our hypotheses about
K, for every z € Ly := L\ {vy,...,un} there exist representations of the form

N
Id = Z)\juj vy,
j=1
where A\; > 0, u; € bd(K~?) with (u;,v;—2) =1, and Z;\Ll Aju; = o. Note that the
representation of the identity follows from Theorem 2.4 because of the condition
N
Zj:l )\j’u]’ = 0.



We define a set-function ¢ on Ly, setting ¢(z) to be the set of all points
(1/n) Zjvzl Ajvj € L which come from such representations (with respect to z).

The set ¢(z) is clearly non-empty, convex and closed.
Let s € (0,1). We define ¢5 on Ly with ¢5(z) = s¢(z), and g5 : Ly — Rt with

(1) 9s(2) =d(z,94(2)) = inf{|z —w| : w € ¢5(2)}.
It is easily checked that ¢ is upper semi-continuous and g is lower semi-continuous.
3.2. Lemma. For every s € (0,1), there exists z € sL such that z € ¢(z).

Proof: Assume otherwise. Since ¢s(z) C sL for all z € Ly, this means that gs(z) > 0
on Ly. We set r = (1 + s)/2, and consider the restriction of ¢, onto rL. Since
gs is lower-semicontinuous, there exists ¢ = ¢(r,s) > 0 such that g4(z) > ¢ for all
z €rL.

On the other hand, ¢, is upper-semicontinuous, convex-valued with bounded
range. Therefore, ¢ admits approximate continuous selections: By a result of Beer
[Be] (see also [RW], pp. 195), for every ¢ > 0 there exists a continuous function
h. : rL — R" so that

(2) d(h:(z),s¢(2)) < e.

Let ¢ = ¢(r,s) > 0 be such that sL + ¢D,, C rL. Letting ¢ = (1/2) min{q, ¢} we
find continuous h : rL — rL satisfying (2). Brower’s theorem shows that h has a
fixed point z € rL. But then,

q < d(z,59(2)) = d(h(2), s6(2)) <e,
which is a contradiction. This completes the proof. |

We apply Lemma 3.2 for a sequence s, € (0,1) with s, — 1. For each k we
find 2z, € spL and )\g-k) > 0 such that

N
(3) Id=3"2Mul® @ o;,
j=1

)

where ugk) € bd(K**) is uniquely determined by (ug.’c , 05 — 2zk) = 1, and

N )\(k) N
(4) 2k = Sy Z jT'Uj , Z )\;k)ugk) =o.
=1 =1

Passing to a subsequence, we may assume that z — z € L. If z is not one of the

vertices of L, then ug-k) — uj, where u; € bd(K*?) and (uj,v; — 2z) = 1. Passing to

further subsequences we may assume that )\gk) — Aj > 0. Since s;; — 1, (3) and
(4) imply

N
(5) Id:Z)\jUj(@Uj,

j=1



and

Ny N
(6) z= Z Fjvj ) Z Aju; = o.
j=1 j=1

This is exactly the assertion of the Theorem, provided that we have proved the
following:

3.3. Claim. Let s € (0,1) with sp — 1, and zx € spd(zx). If zx — 2, then

Z¢{’U17"'7’UN}'

Proof: We assume that z;, satisfy (3) and (4) and z; — v1. Our assumptions
about K imply that K* is unbounded only in the direction of N(v;), where N (v;)
is the unit normal vector to K at vy. For large k, zp is away from wvs,...,vn,
therefore ug-k) — uj, j = 2,...,N, where u; is the unique point in bd(K"*) for
which (uj,v; —2) = 1.

Since (ug-k)),j > 2 is bounded and Z;\;l Aj =n, (4) shows that
N
k), (k k), (k
TR IRV
j=2

remains bounded. Hence, passing to a subsequence we may assume that ,\§’“>u§’“) —
(k)

wy, and A;" — Aj for all j =1,..., N. This means that
N
(7) Id:w1 ®111+Z/\juj®vj,
j=2
and
N oy N
= 2. g —
(8) Ul—znv] , w1+Z)\Ju]—o.
Jj=1 Jj=2
Since v is a vertex of L, we must have Ay = ... = Ay = 0. Then, w; = o, and (7)
takes the form Id = 0, which is a contradiction. O

Actually, the argument we used for the proof of Claim 3.3 shows the following
extension of Theorem 2.4:

3.4. Proposition. Let K, L be smooth enough and assume that L is of mazimal
volume inside K. For every z € bd(K) Nbd(L), there exist mo <m < n?+n+1,
contact points vi,...,vm of K and L, contact points uy,...,Um, of K* and L?,
and non-negative numbers A1,..., Amg, Qmo+1,-- -3 Qm S0 that:

1. (uj,v; —z)y=1 forall j =1,2,...,my,
2. {(ajN(z),vj —z) =0 forallj =mo +1,...,m,

10



8. Id = 377" Njuj @ v+ N(2) ® (350,011 @5v5),
where N (z) is the unit normal vector of K at z.

Sketch of the proof: Let z € bd(K) Nbd(L), and consider a sequence z € int(L)
(
J
of K and L, and contact points ug-k) of K** and L** so that Zjvzl /\g.k)u;k) = o,
(ugk),v](-k) —zky = land Id = Ejvzl )\;k)u;k) ® v](.k). We may assume that N =
n?+n+1 for all k.

Passing to subsequences we may assume that )\;k) — A; and vj(.k) — v; as

k — oo, where A\; > 0 and v; are contact points of K and L. We may also assume

with z; — z. Applying Theorem 2.4, for each k we find A k) > 0, contact points

o

that there exists mg < N such that ugk) — uj if j < my, and |u§.k)| — 00 if j > my.
Let N(z) be the unit normal vector to K at z. It is not hard to see that for all
j > myg, the angle between ugk) and N (z) tends to zero as k — oo. Using the fact

that Z;\Ll )\;k)ug-k) = o, we then see that for large k

k k k k k k
9) max NP < 30 N uP =1 30 AP,
Jj>mo Jj<mo

and this quantity remains bounded, since all )\;k) and ug-k)
Therefore, we may also assume that )\;k)ugk) — a;N(2), j > myg.
Passing to the limit we check that (uj,v; —2z) =1, j < mo, and

(j < myg) converge.

mo N
(10) Id = Z /\j’LLj ®v; + N(Z) ® Z Q;V;
j=1 j=mo+1

Finally, (a;N(2),v; — z) = limy, )\;k) (ug.k), v](-k) — zp) = limy, )\;k) = 0 for all j > my,

and Z;nzol Ajuj + (Z;.V:mOH a;)N(z) = o. Ignoring all j’s for which a; = 0, we
conclude the proof. O

4 Volume ratio

In this Section we give an estimate for the volume ratio of two convex bodies:
4.1. Theorem. Let L be of mazimal volume in K. Then, (|K|/|L))"/" < n.

Proof: Without loss of generality we may assume L is a polytope and K € C’i, and
using Theorem 3.1 we may assume that o € L Nint(K), and

m
(].) Id:Z)\jUj@’Uj,
j=1

11



where \; > 0, u1,...,u, € bd(K°), vq,...,v, are contact points of K and L,
(ujsvj) = 1, and 370, Aju; = o = 3750, Aju;. This last condition shows that
m>n+ 1.

Since uj; € K°, j =1,...,m, we have the inclusion
(2) KCU:=A{x:(z,u;) <1l,j=1,...,m}.

Observe that U is a convex body, because ) Aju; = o. On the other hand, v; € L,
j=1,...,m. Therefore,

(3) LDV :=co{vi,...,0m}-
It follows that
|K|

(4) 5] Ul
IL] |V
We define 9; € R*** by
~ n .
(5) ’Uj:n—_'_l(—’l}],l) 5 _7:1,...,m.

Then, we can estimate |V| using the reverse form of the Brascamp-Lieb inequality
(see [Bar]):

4.2. Lemma. Let
. det (Z;nzl )\jOljUj &® Uj)
qu = inf x
m J
Hj:l a;
Then, the volume of V satisfies the inequality

n+1 ~
V] > (”Zl> Vs

n!

1 aj >0, j:1,2,...,m}.

(6)

Proof: Let
inf{> ", a; : ay>0and v =3 ;" a;0;} ,ifsuch a; exist
Nv(:l?) =
400 , otherwise.
Let also C' = co{—wv1, —va,...,—0ny}.

Claim: If x = (y,r) for somey € R* and r € R, then

n+1

(7) e ™M@ < ypereyxpsoye v "

12



[If r < 0 then Ny (z) = +o0o and the inequality is true. Otherwise, let a; > 0
be such that = >°/" | @;0; and Y ;" a; = Ny(z). Then, it is immediate that
Ny(z) =2y > 0and y = 25 57" ai(—v;) € rC. From this (7) follows ]

Integrating the inequality (7) we get

n+1
/ e M@ g <t [ L V.
Rn+1 - n+1

We now set d; = ”TH)\J' and apply the reverse form of the Brascamp-Lieb

inequality to the left hand side integral:

m
/ e MW@ gy = / sup H e % dx
Rn+1 Rn+1 ;>0 j=1

e=Yjly oY

d.
— —aj;/d; ) ’
e .
/Rn+1 s ] ( X{a;20}

2 ity i
d.

@ﬂ(/oooe—tdt> ]:\/D_;,.

vV

From this (6) follows. i

We now turn to find an upper bound for |U|: as above, let d; = ”T'H)\j and set
i = (—uj,2) forj=1,...,m.

4.3. Lemma. The volume of U satisfies the inequality

1 (n+1)ntt
< -\ 7
®) U< =
where
dicusiis & s
9) Dﬁ:inf{det(z §0 8 O W) >0}.
Haj]

Proof: We apply the Brascamp-Lieb inequality [BL] (see also [Bar]) in the spirit of
K. Ball’s proof of the fact that among all convex bodies having the Euclidean unit
ball as their ellipsoid of maximal volume, the regular simplex has maximal volume
[Ba].

For each j =1,...,m, define f; : R — [0,00) by f;(t) = eftX[o,oo) (t), and set

(10) F(z) =[] fiGaj,a))% , e R
j=1
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The Brascamp-Lieb inequality gives

(11) /Rn+1F($)d$ < \/1)_& ﬁ </Rfj>dj = ;)ﬁ.
j=1

As in [Ba], writing ¢ = (y,r) € R” x R, we see that F(z) = 0if r < 0. When r > 0,
we have F(z) # 0 precisely when y € (r/n)U, and then, taking into account the
facts that ) Aju; = o and ) d; = n+ 1, we see that F' is independent of y and
equal to

(12) F(x) = exp(—r(n + 1)/n).

It follows from (11) that

1 > T\ nln
> - T — | —n"
1) = /0 exp(=r(n+1)/m) (=) |Uldr = U=
Combining the two lemmata, we get
K] n"
14 — < .
(1 IL| = vDaDs

Observe that 4;, 0; and d; satisfy (@;,0;) = 1, j = 1,...,m. Using the fact that

Yoy Ajuj =0 =311, Ajuj, we check that

Id=>"dji; ® ;.

j=1
Thus, in order to finish the proof of Theorem 4.1 it suffices to prove the following
proposition.

4.4. Proposition. Let A\1,...,\py, > 0, uy, ... Uy and vy, ..., v, be vectors satis-
fying (uj,v;) =1 for all j=1,...m and

(15) Id=>"Xu; ®v;.

j=1

Then DD, > 1.

Proof: For I C {1,2,...,m} we use the notation A\; = [[,c; Ai, ar = [[;c; s, and
for I's with cardinality n, we write Uy = det (u; : 4 € I) and V; = det (v; : 4 € I).

Moreover, we write (AU); for det (Aju; 1@ € I).
Applying the Cauchy-Binet formula we have

(16) det | Y Noguj@v; | = Y ar(VAU)I(VAV)L.

j=1 [I|=n
J 1C{1,2,...,m}
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But S (VAU);(VAV)r = det (27:1 Aju;j ®'Uj) = det(Id) = 1. Hence, applying
the arithmetic-geometric means inequality to the right side of (16) we deduce that

> a(VAU)(VAV) > 11 VARV

| I|=n |I|=n
ICc{1,2,...,m} I1C{1,2,...,m}

— ﬁ Sienr=n (VAU I(VAV)1
- Q;j .
Jj=1

Observe now that the exponent of «; in the above product equals A;:

Yo (VWA = Y (VAU =Y (VAU)I(VAV):

J€I, |I|l=n | Il=n Jj¢I, |Il=n
m
= det Z )\jU,j Quj | — det([ — )\j’u]' (9 ’Uj)
j=1
= /\j7

since (uj,v;) = 1. Thus, we have shown that

(17) det (Z Ajojuj @ ’Uj) > H a;‘j.

Now, for any v, d; > 0 we have

det (Z Ajviug @ ’LLj) det (Z Ajdjv; @ 'Uj)

Jj=1 Jj=1

= Z 1 (VAU)} Z S (VAV).

|[I|=n |[I|=n

By the Cauchy-Schwarz inequality this is greater than

(Z AI\/W—61U1V1> :

[I|=n
Apply now (17) to get
det (E}L Ayt ® uj) det (z;?";l ;80 ® Uj)
H}Zl V?j HT:l ‘53)'\j

completing the proof. |

>1

)
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Remark. A different argument shows that vr(K, S,,) < ¢y/n for every convex body
K in R™, where ¢ > 0 is an absolute constant.

Without loss of generality we may assume that K is of maximal volume in D,,.
Then, John’s theorem gives us A1, ..., A > 0 and contact points uq, - .., Uy, of K
and D,, such that

Id = Z/\juj D uj.
j=1

The Dvoretzky-Rogers lemma [DR] shows that we can choose uy, ..., u, among the
u;’s so that

=2,...,n.

n—i+1\Y7? ,
_— 1
n )

|Pspan{us:s<i}iui| > <

Therefore, the simplex S = co{o,uy,...,u,} has volume

18 (n—i+1\? 1
> = nmer s -
151> n! g( n ) (nlnn)t/2’

and S C K C D,,. It follows that

|Dn| 1/n (n')l/Zn\/ﬁ\/E
wios < () < g

< cy/n.

This supports the question if vr(K, L) is always bounded by ¢y/n.

References

[Ba] K.M. Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math.
Soc. (2) 44 (1991), 351-359.

[Bar] F. Barthe, Inégalités de Brascamp-Lieb et convexité, C. R. Acad. Sci. Paris 324
(1997), 885-88S.

[Be] G. Beer, Approximate selections for upper semicontinuous convex valued multifunc-
tions, J. Appr. Theory 39 (1983), 172-184.

[BL] H.J. Brascamp and E.H. Lieb, Best constants in Young’s inequality, its converse and
its generalization to more than three functions, Adv. in Math. 20 (1976), 151-173.

[DR] A. Dvoretzky and C.A. Rogers, Absolute and unconditional convergence in normed
linear spaces, Proc. Nat. Acad. Sci. USA 36 (1950), 192-197.

[Gl] E.D. Gluskin, The diameter of the Minkowski compactum is approximately equal
to n, Funct. Anal. Appl. 15 (1981), 72-73.

16



[Gr] B. Griinbaum, Measures of symmetry for convex sets, Proceedings of Symposia in
Pure Mathematics, Convexity VII (1963), 233-270.

[GM] A.A. Giannopoulos and V.D. Milman, Extremal problems and isotropic positions
of convex bodies, Israel J. Math. (to appear) .

[J] F. John, Extremum problems with inequalities as subsidiary conditions, Courant
Anniversary Volume, New York, 1948, pp. 187-204.

[L] M. Lassak, Approximation of convex bodies by centrally symmetric bodies, Geom.
Dedicata 72 (1998), 63-68.

[LTJ] A. Litvak and N. Tomczak-Jaegermann, Random aspects of the behavior of high-
dimensional convex bodies, Preprint.

[P] O. Palmon, The only convex body with extremal distance from the ball is the
simplex, Israel J. of Math. 80 (1992), 337-349.

[R] M. Rudelson, Distances between non-symmetric convex bodies and the MM™-
estimate, Preprint.

[RW] R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Grundlehren der mathe-
matischen Wissenschaften 317, Springer (1998).

[TJ] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite Dimensional Opera-
tor Ideals, Pitman Monographs 38 (1989), Pitman, London.

A.A. GIANNOPOULOS: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRETE, IRAK-
LION, GREECE. E-mail: apostolo@myrtia.math.uch.gr

I. PERISSINAKI: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRETE, IRAKLION,
GREECE. E-mail: irinip@itia.math.uch.gr

A. TsoLoMmITiS: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF THE AEGEAN, SAMOS,
GREECE. E-mail: atsol@iris.math.aegean.gr

17



