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Abstract

Let K be an isotropic symmetric convex body in Rn. We show that a subspace F ∈ Gn,n−k of
codimension k = γn, where γ ∈ (1/

√
n, 1), satisfies

K ∩ F ⊆ c

γ

√
nLK(Bn2 ∩ F )

with probability greater than 1−exp(−
√
n). Using a different method we study the same question for the

Lq-centroid bodies Zq(µ) of an isotropic log-concave probability measure µ on Rn. For every 1 6 q 6 n
and γ ∈ (0, 1) we show that a random subspace F ∈ Gn,(1−γ)n satisfies Zq(µ) ∩ F ⊆ c2(γ)

√
q Bn2 ∩ F .

We also give bounds on the diameter of random projections of Zq(µ) and using them we deduce that if
K is an isotropic convex body in Rn then for a random subspace F of dimension (logn)4 one has that
all directions in F are sub-Gaussian with constant O(log2 n).

1 Introduction

A convex body K in Rn is called isotropic if it has volume |K| = 1, its center of mass is at the origin (we
call these convex bodies “centered”), and its inertia matrix is a multiple of the identity matrix: there exists
a constant LK > 0 such that

(1.1)

∫
K

〈x, θ〉2dx = L2
K

for every θ in the Euclidean unit sphere Sn−1. For every centered convex body K in Rn there exists an
invertible linear transformation T ∈ GL(n) such that T (K) is isotropic. This isotropic image of K is uniquely
determined up to orthogonal transformations. A well-known problem in asymptotic convex geometry asks
if there exists an absolute constant C1 > 0 such that

(1.2) Ln := max{LK : K is isotropic in Rn} 6 C1

for all n > 1 (see Section 2 for background information on isotropic convex bodies and log-concave probability
measures). Bourgain proved in [5] that Ln 6 c 4

√
n logn, and Klartag [19] improved this bound to Ln 6 c 4

√
n.

A second proof of Klartag’s bound appears in [21].
Recall that the inradius r(K) of a convex body K in Rn with 0 ∈ int(K) is the largest r > 0 for which

rBn2 ⊆ K, while the radius R(K) := max{‖x‖2 : x ∈ K} of K is the smallest R > 0 for which K ⊆ RBn2 . It
is not hard to see that the inradius and the radius of an isotropic convex body K in Rn satisfy the bounds
c1LK 6 r(K) 6 R(K) 6 c2nLK , where c1, c2 > 0 are absolute constants. In fact, Kannan, Lovász and
Simonovits [17] have proved that

(1.3) R(K) 6 (n+ 1)LK .

Radius of random sections of isotropic convex bodies. The first question that we discuss in this
article is to give sharp upper bounds for the radius of a random (n−k)-dimensional section of K. A natural
“guess” is that the following question has an affirmative answer.
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Question 1.1. There exists an absolute constant c0 > 0 with the following property: for every isotropic
convex body K in Rn and for every 1 6 k 6 n− 1, a random subspace F ∈ Gn,n−k satisfies

(1.4) R(K ∩ F ) 6 c0
√
n/k
√
nLK .

It was proved in [23] that if K is a symmetric convex body in Rn then a random F ∈ Gn,n−k satisfies

(1.5) R(K ∩ F ) 6 c(n/k)3/2M̃(K),

where c > 0 is an absolute constant and

(1.6) M̃(K) :=
1

|K|

∫
K

‖x‖2dx.

In the case of an isotropic convex body one has |K| = 1 and

(1.7) M̃(K) 6

(∫
K

‖x‖22dx
)1/2

=
√
nLK ,

therefore (1.5) implies that a random F ∈ Gn,n−k satisfies

(1.8) R(K ∩ F ) 6 c1(n/k)3/2
√
nLK ,

where c1 > 0 is an absolute constant.
Our first main result shows that one can have a bound of the order of γ−1

√
nLK when the codimension

k is greater than γn.

Theorem 1.2. Let K be an isotropic symmetric convex body in Rn and let 1 6 k 6 n − 1. A random
subspace F ∈ Gn,n−k satisfies

(1.9) R(K ∩ F ) 6
c0n

max{k,
√
n}
√
nLK

with probability greater than 1− exp(−
√
n), where c0 > 0 is an absolute constant.

The proof is given in Section 3. Note that Theorem 1.2 gives non-trivial information when k >
√
n. In

this case, writing k = γn for some γ ∈ (1/
√
n, 1) we see that

(1.10) R(K ∩ F ) 6
c0
γ

√
nLK

with probability greater than 1− exp(−
√
n) on Gn,(1−γ)n. The result of [23] establishes a γ−3/2-dependence

on γ = k/n.
A standard approach to Question 1.1 would have been to combine the low M∗-estimate with an upper

bound for the mean width

(1.11) w(K) :=

∫
Sn−1

hK(x) dσ(x),

of an isotropic convex body K in Rn, that is, the L1-norm of the support function of K with respect to
the Haar measure on the sphere. This last problem was open for a number of years. The upper bound
w(K) 6 cn3/4LK appeared in the Ph.D. Thesis of Hartzoulaki [16]. Other approaches leading to the same
bound can be found in Pivovarov [32] and in Giannopoulos, Paouris and Valettas [15]. Recently, E. Milman
showed in [26] that if K is an isotropic symmetric convex body in Rn then

(1.12) w(K) 6 c3
√
n(log n)2LK .
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In fact, it is not hard to see that his argument can be generalized to give the same estimate in the not
necessarily symmetric case. The dependence on n is optimal up to the logarithmic term. From the sharp
version of V. Milman’s low M∗-estimate (due to Pajor and Tomczak-Jaegermann [28]; see [2, Chapter 7] for
complete references) one has that, for every 1 6 k 6 n− 1, a subspace F ∈ Gn,n−k satisfies

(1.13) R(K ∩ F ) 6 c4
√
n/k w(K)

with probability greater than 1− exp(−c5k), where c4, c5 > 0 are absolute constants. Combining (1.13) with
E. Milman’s theorem we obtain the folowing estimate:

Let K be an isotropic symmetric convex body in Rn. For every 1 6 k 6 n − 1, a subspace
F ∈ Gn,n−k satisfies

(1.14) R(K ∩ F ) 6
c2n(log n)2LK√

k

with probability greater than 1− exp(−c3k), where c2, c3 > 0 are absolute constants.

Note that the upper bound of Theorem 1.2 has some advantages when compared to (1.14): If k is proportional
to n (say k > γn for some γ ∈ (1/

√
n, 1)) then Theorem 1.2 guarantees that R(K ∩ F ) 6 c(γ)

√
nLK for a

random F ∈ Gn,n−k. More generally, for all k > c6n
(logn)4 we have

(1.15)
c0n
√
n

max{k,
√
n}

6
c2n(log n)2

√
k

,

and hence the estimate of Theorem 1.2 is stronger than (1.14). Nevertheless, we emphasize that our bound
is not optimal and it would be very interesting to decide whether (1.4) holds true; this would be optimal for
all 1 6 k 6 n.

Radius of random sections of Lq-centroid bodies and their polars. In Section 4 we study the
diameter of random sections of the Lq-centroid bodies Zq(µ) of an isotropic log-concave probability measure
µ on Rn. Recall that a measure µ on Rn is called log-concave if µ(λA + (1 − λ)B) > µ(A)λµ(B)1−λ for
any compact subsets A and B of Rn and any λ ∈ (0, 1). A function f : Rn → [0,∞) is called log-concave
if its support {f > 0} is a convex set and the restriction of log f on it is concave. It is known that if a
probability measure µ is log-concave and µ(H) < 1 for every hyperplane H, then µ is absolutely continuous
with respect to the Lebesgue measure and its density fµ is log-concave; see [4]. Note that if K is a convex
body in Rn then the Brunn-Minkowski inequality implies that the indicator function 1K of K is the density
of a log-concave measure.

We say that a log-concave probability measure µ on Rn is isotropic if its barycenter bar(µ) is at the
origin and ∫

Rn
〈x, θ〉2 dµ(x) = 1

for all θ ∈ Sn−1. Note that the normalization is different from the one in (1.1); in particular, a centered
convex body K of volume 1 in Rn is isotropic if and only if the log-concave probability measure µK with
density x 7→ LnK1K/LK (x) is isotropic.

The Lq-centroid bodies Zq(µ), q > 1, are defined through their support function

(1.16) hZq(µ)(y) := ‖〈·, y〉‖Lq(µ) =

(∫
Rn
|〈x, y〉|qdµ(x)

)1/q

,

and have played a key role in the study of the distribution of linear functionals with respect to the measure µ.
For every 1 6 q 6 n we obtain sharp upper bounds for the radius of random sections of Zq(µ) of dimension
proportional to n, thus extending a similar result of Brazitikos and Stavrakakis which was established only
for q ∈ [1,

√
n].
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Theorem 1.3. Let µ be an isotropic log-concave probability measure on Rn and let 1 6 q 6 n. Then:

(i) If k = γn for some γ ∈ (0, 1), then, with probability greater than 1 − e−c4k, a random F ∈ Gn,n−k
satisfies

(1.17) R(Zq(µ) ∩ F ) 6 c5(γ)
√
q,

where c4 is an absolute constant and c5(γ) = O(γ−2 log5/2(c/γ)) is a positive constant depending only
on γ.

(ii) With probability greater than 1− e−n, a random U ∈ O(n) satisfies

(1.18) Zq(µ) ∩ U(Zq(µ)) ⊆ (c6
√
q)Bn2 ,

where c6 > 0 is an absolute constant.

The method of proof is based on estimates (from [26] and [11]) for the Gelfand numbers of symmetric
convex bodies in terms of their volumetric parameters; combining these general estimates with fundamental
(known) properties of the family of the centroid bodies Zq(µ) of an isotropic log-concave probability measure
µ we provide estimates for the minimal radius of a k-codimensional section of Zq(µ). Then, we pass to bounds
for the radius of random k-codimensional sections of Zq(µ) using known results from [12], [34] and [24]. We
conclude Section 4 with a discussion of the same questions for the polar bodies Z◦q (µ) of the centroid bodies
Zq(µ).

Using the same approach we study the diameter of random sections of convex bodies which have maximal
isotropic constant. Set

(1.19) L′n := max{LK : K is an isotropic symmetric convex body in Rn}.

It is known that Ln 6 cL′n for some absolute constant c > 0 (see [9, Chapter 3]). We prove the following:

Theorem 1.4. Assume that K is an isotropic symmetric convex body in Rn with LK = L′n. Then:

(i) A random F ∈ Gn,n/2 satisfies

(1.20) R(K ∩ F ) 6 c7
√
n

and

(1.21) LK∩F 6 c8

with probability greater than 1− e−c9n, where ci > 0 are absolute constants.

(ii) A random U ∈ O(n) satisfies

(1.22) K ∩ U(K) ⊆ (c10

√
n)Bn2 ,

with probability greater than 1− e−n, where c10 > 0 is an absolute constant.

The same arguments work if we assume that K has almost maximal isotropic constant, i.e. LK > βL′n
for some (absolute) constant β ∈ (0, 1). We can obtain similar results, with the constants ci now depending
only on β. It should be noted that Alonso-Gutiérrez, Bastero, Bernués and Paouris [1] have proved that
every convex body K has a section K ∩ F of dimension n− k with isotropic constant

(1.23) LK∩F 6 c

√
n

k
log
(en
k

)
.

For the proof of this result they considered an α-regular M -position of K. In Theorem 1.4 we consider
convex bodies in the isotropic position and the estimates (1.20) and (1.21) hold for a random subspace F .
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Radius of random projections of Lq-centroid bodies and sub-Gaussian subspaces of isotropic
convex bodies. Let K be a centered convex body of volume 1 in Rn. We say that a direction θ ∈ Sn−1 is
a ψα-direction (where 1 6 α 6 2) for K with constant b > 0 if

(1.24) ‖〈·, θ〉‖Lψα (K) 6 b‖〈·, θ〉‖2,

where

(1.25) ‖〈·, θ〉‖Lψα (K) := inf

{
t > 0 :

∫
K

exp
(
(|〈x, θ〉|/t)α

)
dx 6 2

}
.

Markov’s inequality implies that if K satisfies a ψα-estimate with constant b in the direction of θ then for
all t > 1 we have |{x ∈ K : |〈x, θ〉| > t‖〈·, θ〉‖2}| 6 2e−t

a/bα . Conversely, one can check that tail estimates of
this form imply that θ is a ψα-direction for K.

It is well-known that every θ ∈ Sn−1 is a ψ1-direction for K with an absolute constant C. An open
question is if there exists an absolute constant C > 0 such that every K has at least one sub-Gaussian
direction (ψ2-direction) with constant C. It was first proved by Klartag in [20] that for every centered
convex body K of volume 1 in Rn there exists θ ∈ Sn−1 such that

(1.26) |{x ∈ K : |〈x, θ〉| > ct‖〈·, θ〉‖2}| 6 e
− t2

[log(t+1)]2a

for all t > 1, where a = 3 (equivalently, ‖〈·, θ〉‖Lψ2
(K) 6 C(log n)a‖〈·, θ〉‖2). This estimate was later improved

by Giannopoulos, Paouris and Valettas in [14] and [15] (see also [13]) who showed that the body Ψ2(K) with
support function y 7→ ‖〈·, y〉‖Lψ2

(K) has volume

(1.27) c1 6

(
|Ψ2(K)|
|Z2(K)|

)1/n

6 c2
√

log n.

From (1.27) it follows that there exists at least one sub-Gaussian direction for K with constant b 6 C
√

log n.
Brazitikos and Hioni in [7] proved that if K is isotropic then logarithmic bounds for ‖〈·, θ〉‖Lψ2

(K) hold
true with probability polynomially close to 1: For any a > 1 one has

‖〈·, θ〉‖Lψ2
(K) 6 C(log n)3/2 max

{√
log n,

√
a
}
LK

for all θ in a subset Θa of Sn−1 with σ(Θa) > 1− n−a, where C > 0 is an absolute constant.
Here, we consider the question if one can have an estimate of this type for all directions θ of a subspace

F ∈ Gn,k of dimension k increasing to infinity with n. We say that F ∈ Gn,k is a sub-Gaussian subspace for
K with constant b > 0 if

(1.28) ‖〈·, θ〉‖Lψα (K) 6 b‖〈·, θ〉‖2

for all θ ∈ SF := Sn−1∩F . In Section 5 we show that if K is isotropic then a random subspace of dimension
(log n)4 is sub-Gaussian with constant b ' (log n)2. More precisely, we prove the following.

Theorem 1.5. Let K be an isotropic convex body in Rn. If k ' (log n)4 then there exists a subset Γ of Gn,k
with νn,k(Γ) > 1− n−(logn)3 such that

(1.29) ‖〈·, θ〉‖Lψ2
(K) 6 C(log n)2LK

for all F ∈ Γ and all θ ∈ SF , where C > 0 is an absolute constant.

An essential ingredient of the proof is the good estimates on the radius of random projections of the
Lq-centroid bodies Zq(K) of K, which follow from E. Milman’s sharp bounds on their mean width w(Zq(K))
(see Theorem 5.1).
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2 Notation and preliminaries

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote the corresponding Euclidean
norm by ‖ · ‖2, and write Bn2 for the Euclidean unit ball, and Sn−1 for the unit sphere. Volume is denoted
by | · |. We write ωn for the volume of Bn2 and σ for the rotationally invariant probability measure on Sn−1.
We also denote the Haar measure on O(n) by ν. The Grassmann manifold Gn,k of k-dimensional subspaces
of Rn is equipped with the Haar probability measure νn,k. Let k 6 n and F ∈ Gn,k. We will denote the
orthogonal projection from Rn onto F by PF . We also define BF = Bn2 ∩ F and SF = Sn−1 ∩ F .

The letters c, c′, c1, c2 etc. denote absolute positive constants whose value may change from line to line.
Whenever we write a ' b, we mean that there exist absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a.
Also if A,D ⊆ Rn we will write A ' D if there exist absolute constants c1, c2 > 0 such that c1A ⊆ D ⊆ c2A.

Convex bodies. A convex body in Rn is a compact convex subset A of Rn with nonempty interior. We
say that A is symmetric if A = −A. We say that A is centered if the center of mass of A is at the origin,
i.e.

∫
A
〈x, θ〉 dx = 0 for every θ ∈ Sn−1.

The volume radius of A is the quantity vrad(A) = (|A|/|Bn2 |)
1/n

. Integration in polar coordinates shows
that if the origin is an interior point of A then the volume radius of A can be expressed as

(2.1) vrad(A) =

(∫
Sn−1

‖θ‖−nA dσ(θ)

)1/n

,

where ‖θ‖A = min{t > 0 : θ ∈ tA}. The radial function of A is defined by ρA(θ) = max{t > 0 : tθ ∈ A},
θ ∈ Sn−1. The support function of A is defined by hA(y) := max

{
〈x, y〉 : x ∈ A

}
, and the mean width of A

is the average

(2.2) w(A) :=

∫
Sn−1

hA(θ) dσ(θ)

of hA on Sn−1. The radius R(A) of A is the smallest R > 0 such that A ⊆ RBn2 . For notational convenience
we write A for the homothetic image of volume 1 of a convex body A ⊆ Rn, i.e. A := |A|−1/nA.

The polar body A◦ of a convex body A in Rn with 0 ∈ int(A) is defined by

(2.3) A◦ :=
{
y ∈ Rn : 〈x, y〉 6 1 for all x ∈ A

}
.

The Blaschke-Santaló inequality states that if A is centered then |A||A◦| 6 |Bn2 |2, with equality if and only
if A is an ellipsoid. The reverse Santaló inequality of J. Bourgain and V. Milman [6] states that there exists
an absolute constant c > 0 such that

(2.4) (|A||A◦|)1/n > c/n

whenever 0 ∈ int(A).
For every centered convex body A of volume 1 in Rn and for every q ∈ (−n,∞) \ {0} we define

(2.5) Iq(A) =

(∫
A

‖x‖q2dx
)1/q

.

As a consequence of Borell’s lemma (see [9, Chapter 1]) one has

(2.6) Iq(A) 6 c1qI2(A)

for all q > 2.
For basic facts from the Brunn-Minkowski theory and the asymptotic theory of convex bodies we refer

to the books [33] and [2] respectively.
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Log-concave probability measures. Let µ be a log-concave probability measure on Rn. The density of
µ is denoted by fµ. We say that µ is centered and we write bar(µ) = 0 if, for all θ ∈ Sn−1,

(2.7)

∫
Rn
〈x, θ〉dµ(x) =

∫
Rn
〈x, θ〉fµ(x)dx = 0.

The isotropic constant of µ is defined by

(2.8) Lµ :=

(
supx∈Rn fµ(x)∫

Rn fµ(x)dx

) 1
n

[det Cov(µ)]
1
2n ,

where Cov(µ) is the covariance matrix of µ with entries

(2.9) Cov(µ)ij :=

∫
Rn xixjfµ(x) dx∫

Rn fµ(x) dx
−
∫
Rn xifµ(x) dx∫
Rn fµ(x) dx

∫
Rn xjfµ(x) dx∫
Rn fµ(x) dx

.

We say that a log-concave probability measure µ on Rn is isotropic if bar(µ) = 0 and Cov(µ) is the identity
matrix. Note that a centered convex body K of volume 1 in Rn is isotropic, i.e. it satisfies (1.1), if and only
if the log-concave probability measure µK with density x 7→ LnK1K/LK (x) is isotropic. Note that for every
log-concave measure µ on Rn one has

(2.10) Lµ 6 κLn,

where κ > 0 is an absolute constant (a proof can be found in [9, Proposition 2.5.12]).
We will use the following sharp result on the growth of Iq(K), where K is an isotropic convex body in

Rn, proved by Paouris in [29] and [30].

Theorem 2.1 (Paouris). There exists an absolute constant δ > 0 with the following property: if K is an
isotropic convex body in Rn, then

(2.11)
1

δ

√
nLK =

1

δ
I2(K) 6 I−q(K) 6 Iq(K) 6 δI2(K) = δ

√
nLK

for every 1 6 q 6
√
n.

For every q > 1 and every y ∈ Rn we set

(2.12) hZq(µ)(y) =

(∫
Rn
|〈x, y〉|qdµ(x)

)1/q

.

The Lq-centroid body Zq(µ) of µ is the symmetric convex body with support function hZq(µ). Note that µ
is isotropic if and only if it is centered and Z2(µ) = Bn2 . If K is an isotropic convex body in Rn we define
Zq(K) = LKZq(µK). From Hölder’s inequality it follows that Z1(K) ⊆ Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for all
1 6 p 6 q 6∞, where Z∞(K) = conv{K,−K}. Using Borell’s lemma, one can check that

(2.13) Zq(K) ⊆ c1
q

p
Zp(K)

for all 1 6 p < q. In particular, if K is isotropic, then R(Zq(K)) 6 c1qLK . One can also check that if K is
centered, then Zq(K) ⊇ c2Z∞(K) for all q > n.

It was shown by Paouris [29] that if 1 6 q 6
√
n then

(2.14) w
(
Zq(µ)

)
' √q,

and that for all 1 6 q 6 n,

(2.15) vrad(Zq(µ)) 6 c1
√
q.
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Conversely, it was shown by B. Klartag and E. Milman in [21] that if 1 6 q 6
√
n then

(2.16) vrad(Zq(µ)) > c2
√
q.

This determines the volume radius of Zq(µ) for all 1 6 q 6
√
n. For larger values of q one can still use the

lower bound:

(2.17) vrad(Zq(µ)) > c2
√
q L−1

µ ,

obtained by Lutwak, Yang and Zhang in [25] for convex bodies and extended by Paouris and Pivovarov in
[31] to the class of log-concave probability measures.

Let µ be a probability measure on Rn with density fµ with respect to the Lebesgue measure. For every
1 6 k 6 n− 1 and every E ∈ Gn,k, the marginal of µ with respect to E is the probability measure πE(µ) on
E, with density

(2.18) fπE(µ)(x) =

∫
x+E⊥

fµ(y)dy.

It is easily checked that if µ is centered, isotropic or log-concave, then πE(µ) is also centered, isotropic or
log-concave, respectively. A very useful observation is that:

(2.19) PF
(
Zq(µ)

)
= Zq

(
πF (µ)

)
for every 1 6 k 6 n− 1 and every F ∈ Gn,n−k.

If µ is a centered log-concave probability measure on Rn then for every p > 0 we define

(2.20) Kp(µ) := Kp(fµ) =

{
x :

∫ ∞
0

rp−1fµ(rx) dr >
fµ(0)

p

}
.

From the definition it follows that Kp(µ) is a star body with radial function

(2.21) ρKp(µ)(x) =

(
1

fµ(0)

∫ ∞
0

prp−1fµ(rx) dr

)1/p

for x 6= 0. The bodies Kp(µ) were introduced in [3] by K. Ball who showed that if µ is log-concave then, for
every p > 0, Kp(µ) is a convex body.

If K is isotropic then for every 1 6 k 6 n− 1 and F ∈ Gn,n−k, the body Kk+1(πF⊥(µK)) satisfies

(2.22) |K ∩ F |1/k '
LKk+1(π

F⊥ (µK))

LK
.

For more information on isotropic convex bodies and log-concave measures see [9].

3 Random sections of isotropic convex bodies

The proof of Theorem 1.2 is based on Lemma 3.1 and Lemma 3.2 below. They exploit some ideas of Klartag
from [18].

Lemma 3.1. Let K be an isotropic convex body in Rn. For every 1 6 k 6 n − 1 there exists a subset
A := A(n, k) of Gn,n−k with νn,n−k(A) > 1− e−

√
n that has the following property: for every F ∈ A,

(3.1) |{x ∈ K ∩ F : ‖x‖2 > c1
√
nLK}| 6 e−(k+

√
n)|K ∩ F |,

where c1 > 0 is an absolute constant.
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Proof. Integration in polar coordinates shows that for all q > 0

(3.2)

∫
Gn,n−k

∫
K∩F

‖x‖k+q
2 dx dνn,n−k(F ) =

(n− k)ωn−k
nωn

∫
K

‖x‖q2dx =
(n− k)ωn−k

nωn
Iqq (K),

and an application of Markov’s inequality shows that a random F ∈ Gn,n−k satisfies

(3.3)

∫
K∩F

‖x‖k+q
2 dx 6

(n− k)ωn−k
nωn

(eIq(K))q

with probability greater than 1− e−q.
Fix a subspace F ∈ Gn,n−k which satisfies (3.3). From (2.22) we have

(3.4) |K ∩ F |1/k > c2
LKk+1(π

F⊥ (µK))

LK
>

c3
LK

where c2, c3 > 0 are absolute constants. A simple computation shows that

(3.5)
(n− k)ωn−k

nωn
6 (c4

√
n)k

for an absolute constant c4 > 0. Using also (2.11) with q =
√
n we get

1

|K ∩ F |

∫
K∩F

‖x‖k+
√
n

2 dx 6
1

|K ∩ F |
(n− k)ωn−k

nωn
(eI√n(K))

√
n(3.6)

6 (c5LK)k(c4
√
n)k(eδ

√
nLK)

√
n 6 (c6

√
nLK)k+

√
n,

where c6 > 0 is an absolute constant. It follows that

(3.7) |{x ∈ K ∩ F : ‖x‖2 > ec6
√
nLK}| 6 e−(k+

√
n)|K ∩ F |.

and the lemma is proved with c1 = ec6. 2

The next lemma comes from [18].

Lemma 3.2 (Klartag). Let A be a symmetric convex body in Rm. Then, for any 0 < ε < 1 we have

(3.8) |{x ∈ A : ‖x‖2 > εR(A)}| > 1

2
(1− ε)m|A|.

Proof. Let x0 ∈ A such that ‖x0‖2 = R(A) and define v = x0/‖x0‖2. We consider the set A+ defined as

(3.9) A+ := {x ∈ A : 〈x, v〉 > 0}.

Since A is symmetric, we have |A+| = |A|/2. Note that

(3.10) {x ∈ A : ‖x‖2 > εR(A)} ⊇ εx0 + (1− ε)A+.

Therefore,

(3.11) |{x ∈ A : ‖x‖2 > εR(A)}| > |εx0 + (1− ε)A+| = (1− ε)m|A+| = 1

2
(1− ε)m|A|,

as claimed. 2

Proof of Theorem 1.2. Let K be an isotropic symmetric convex body in Rn. Applying Lemma 3.1 we
find a subset A of Gn,n−k with νn,n−k(A) > 1− e−

√
n such that, for every F ∈ A,

(3.12) |{x ∈ K ∩ F : ‖x‖2 > c1
√
nLK}| 6 e−(k+

√
n)|K ∩ F |.
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We distinguish two cases:

Case 1. If k > n/3 then choosing ε0 = 1− e− 1
3 we get

(3.13)
1

2
(1− ε0)n−k|K ∩ F | = 1

2
e−

n−k
3 |K ∩ F | > e−

n−k
3 −1|K ∩ F | > e−(k+

√
n)|K ∩ F |,

because k +
√
n > n−k

3 + 1. By Lemma 3.2 and (3.12) we get that

(3.14) |{x ∈ K ∩ F : ‖x‖2 > ε0R(K ∩ F )}| > |{x ∈ K ∩ F : ‖x‖2 > c1
√
nLK}|,

therefore

(3.15) R(K ∩ F ) < c2
√
nLK ,

where c2 = ε−1
0 c1 > 0 is an absolute constant.

Case 2. If k 6 n/3 then we choose ε1 = k+
√
n

6(n−k) . Note that ε1 < 1/2. Using the inequality 1 − t > e−2t on

(0, 1/2) we get

(3.16)
1

2
(1− ε1)n−k|K ∩ F | = 1

2

(
1− k +

√
n

6(n− k)

)n−k
|K ∩ F | > e−

k+
√
n

3 −1|K ∩ F | > e−(k+
√
n)|K ∩ F |,

because 2(k+
√
n)

3 > 1. By Lemma 3.2 this implies that

(3.17) |{x ∈ K ∩ F : ‖x‖2 > ε1R(K ∩ F )}| > |{x ∈ K ∩ F : ‖x‖2 > c1
√
nLK}|,

therefore

(3.18) ε1R(K ∩ F ) < c1
√
nLK ,

which, by the choice of ε1 becomes

(3.19) R(K ∩ F ) <
c3n

max{k,
√
n}
√
nLK

for some absolute constant c3 > 0. This completes the proof of the theorem (with a probability estimate
1− e−

√
n for all 1 6 k 6 n− 1). 2

Remark 3.3. It is possible to improve the probability estimate 1 − e−
√
n in the range k > γn, for any

γ ∈ (1/
√
n, 1). This can be done with the help of known results that demonstrate the fact that the existence

of one s-dimensional section with radius r implies that random m-dimensional sections, where m < s, have
radius of “the same order”. This was first observed in [12], [34] and, soon after, in [24]. Let us recall this
last statement.

Let A be a symmetric convex body in Rn and let 1 6 s < m 6 n− 1. If R(A∩F ) 6 r for some
F ∈ Gn,m then a random subspace E ∈ Gn,s satisfies

(3.20) R(A ∩ E) 6 r
( c2n

n−m

) n−s
2(m−s)

with probability greater than 1− 2e−(n−s)/2, where c2 > 0 is an absolute constant.

We apply this result as follows. Let k = γn >
√
n and set t = δn, where δ ' γ/ log(1 + 1/γ). From the proof

of Theorem 1.2 we know that there exists E ∈ Gn,n−t such that

(3.21) R(K ∩ E) 6
c1n

t

√
nLK ,
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where c1 > 0 is an absolute constant. Applying (3.20) with s = n− k and m = n− t we see that a random
subspace F ∈ Gn,n−k satisfies

(3.22) R(K ∩ F ) 6
(c2
δ

) 3
2

R(K ∩ E) = c3(γ)
√
nLK

with probability greater than 1− 2e−k/2, where c3(γ) = O((γ−1 log(1 + 1/γ))
3
2 ).

Remark 3.4. It is also possible to give lower bounds of the order of
√
nLK for the diameter of (n − k)-

dimensional sections, provided that the codimension k is small. Integration in polar coordinates shows
that

(3.23)

∫
K

‖x‖−q2 dx =
nωn

(n− k)ωn−k

∫
Gn,n−k

∫
K∩F

‖x‖k−q2 dx dνn,n−k(F )

for every 1 6 k 6 n− 1 and every 0 < q < n. It follows that

(3.24)

∫
Gn,n−k

∫
K∩F

‖x‖k−q2 dx dνn,n−k(F ) =
(n− k)ωn−k

nωn
I−q−q (K),

and an application of Markov’s inequality shows that a random F ∈ Gn,n−k satisfies

(3.25)

∫
K∩F

‖x‖k−q2 dx 6
(n− k)ωn−k

nωn
(e/I−q(K))q

with probability greater than 1− e−q. Assuming that q > k, for any F ∈ Gn,n−k satisfying (3.25) we have

(3.26) |K ∩ F |R(K ∩ F )k−q 6
∫
K∩F

‖x‖k−q2 dx 6
(n− k)ωn−k

nωn
(e/I−q(K))q,

which implies

(3.27) R(K ∩ F ) >

(
nωn

(n− k)ωn−k

) 1
q−k

|K ∩ F |
1

q−k

(
I−q(K)

e

) q
q−k

>

(
c1√
nLK

) k
q−k

(c2I−q(K))
q
q−k .

If k 6
√
n then we may choose q = 2

√
n and use the fact that I−2

√
n(K) > c3

√
nLK by Theorem 2.1, to get:

Proposition 3.5. Let K be an isotropic convex body in Rn. For every 1 6 k 6
√
n there exists a subset A

of Gn,n−k with νn,n−k(A) > 1− e−
√
n such that, for every F ∈ A,

(3.28) R(K ∩ F ) > c
√
nLK ,

where c > 0 is an absolute constant.

Remark 3.6. Choosing k = bn/2c in Theorem 1.2 we see that if K is an isotropic symmetric convex body
in Rn then a subspace F ∈ Gn,dn/2e satisfies

(3.29) R(K ∩ F ) 6 c1
√
nLK

with probability greater than 1−2 exp(−c2n), where c1, c2 > 0 are absolute constants. A standard argument
that goes back to Krivine (see [2, Proposition 8.6.2]) shows that there exists U ∈ O(n) such that

(3.30) K ∩ U(K) ⊆ (c3
√
nLK)Bn2 ,

where c3 > 0 is an absolute constant. In fact, one can prove an analogue of (3.30) for a random U ∈ O(n)
using a result of Vershynin and Rudelson (see [34, Theorem 1.1]): There exist absolute constants γ0 ∈ (0, 1/2)
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and c1 > 0 with the following property: if A and D are two symmetric convex bodies in Rn which have
sections of dimensions at least k and n − 2γ0k respectively whose radius is bounded by 1, then a random
U ∈ O(n) satisfies

(3.31) R(A ∩ U(D)) 6 c
n/k
1

with probability greater than 1− e−n. As an application, setting D = A and k = n/2 one has the following
(see [8]). If

(3.32) rA := min{R(A ∩ F ) : dim(F ) = d(1− γ0)ne}

then R(A ∩ U(A)) 6 c2rA with probability greater than 1− e−n with respect to U ∈ O(n).
Choosing k = bγ0n/2c in Theorem 1.2 we see that if K is an isotropic symmetric convex body in Rn

then

(3.33) rK 6 c4
√
nLK

for some absolute constant c4 > 0. This gives that a random U ∈ O(n) satisfies

(3.34) K ∩ U(K) ⊆ (c5
√
nLK)Bn2 ,

with probability greater than 1− e−n, where c5 > 0 is an absolute constant.

4 Minimal and random sections of the centroid bodies of isotropic
log-concave measures

In this section we discuss the case of the Lq-centroid bodies Zq(µ) of an isotropic log-concave probability
measure µ on Rn. Our method will be different from the one in the previous section.

In view of (3.20) we can give an upper bound for the radius of a random k-codimensional section of a
symmetric convex body A in Rn if we are able to give an upper bound for the radius of some t-codimensional
section of A, where t� k. This leads us to the study of the Gelfand numbers ct(A), which are defined by

(4.1) ct(A) = min{R(A ∩ F ) : F ∈ Gn,n−t}

for every t = 0, . . . , n − 1. It was proved in [11] that if A is a symmetric convex body in Rn then, for any
t = 1, . . . , bn/2c there exists F ∈ Gn,n−2t such that

(4.2) A ∩ F ⊆ c1
n

t
log
(
e+

n

t

)
wt(A)Bn2 ∩ F,

where

(4.3) wt(A) := sup{vrad(A ∩ E) : E ∈ Gn,t}.

In other words,

(4.4) c2t(A) 6 c1
n

t
log
(
e+

n

t

)
wt(A).

This is a refinement of a result of V. Milman and G. Pisier from [27], where a similar estimate was obtained,
with the parameter wt(A) replaced by (the larger one)

(4.5) vt(A) := sup{vrad(PE(A)) : E ∈ Gn,t}.

We shall apply this method to the bodies Zq(µ). The main additional ingredient is the next fact, which
combines results of Paouris and Klartag (see [26] or [9, Chapter 5] for precise references):
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Theorem 4.1. Let µ be a centered log-concave probability measure on Rn. Then, for all 1 6 t 6 n and
q > 1 we have

(4.6) vt(Zq(µ)) = sup{vrad(PE(Zq(µ))) : E ∈ Gn,t} 6 c0

√
q

t
max{√q,

√
t} max
E∈Gn,t

det Cov(πE(µ))
1
2t ,

where c0 > 0 is an absolute constant.

We apply Theorem 4.1 as follows: for every 1 6 t 6 n/2 and every E ∈ Gn,t we have that πE(µ) is

isotropic, and hence det Cov(πE(µ))
1
2t = 1. Then,

(4.7) wt(Zq(µ)) 6 vt(Zq(µ)) 6 c0

√
q

t
max{√q,

√
t}.

From (4.4) we get

Lemma 4.2. Let µ be an isotropic log-concave probability measure on Rn and let 1 6 t 6 bn/2c and
1 6 q 6 n. Then,

(4.8) c2t(Zq(µ)) 6 c2
n

t
log
(
e+

n

t

)√q

t
max{√q,

√
t},

where c2 > 0 is an absolute constant. 2

Let k > 4 and let t < k/2. From Lemma 4.2 we know that there exists E ∈ Gn,n−2t such that

(4.9) R(Zq(µ) ∩ E) 6 c2
n

t
log
(
e+

n

t

)√q

t
max{√q,

√
t},

where c2 > 0 is an absolute constant. Applying (3.20) with s = n− k and m = n− 2t we see that a random
subspace F ∈ Gn,n−k satisfies

(4.10) R(Zq(µ) ∩ F ) 6
(c2n
t

) k
2(k−2t)

R(Zq(µ) ∩ E) 6
(c3n
t

) 3
2 + t

k−2t

log
(
e+

n

t

)√q

t
max{√q,

√
k}

with probability greater than 1− 2e−k/2, where c3 > 0 is an absolute constant. In particular, if k = γn we
can choose t = γn/ log(c/γ), for c > e2, to get the following.

Theorem 4.3. Let µ be an isotropic log-concave probability measure on Rn and let γ ∈ (0, 1) and 1 6 q 6 n.
If k > γn then a random subspace F ∈ Gn,n−k satisfies

(4.11) R(Zq(µ) ∩ F ) 6 c(γ)
√
q

with probability greater than 1 − 2e−γn/2, where c(γ) = O(γ−2 log5/2(c/γ)) is a positive constant depending
only on γ.

Next, we apply (3.31): choosing t = γ0n/2 in (4.8) we see that

(4.12) rZq(µ) = cγ0n(Zq(µ)) 6 c4
√
q

for every 1 6 q 6 n, where c4 = c4(γ0) > 0 is an absolute constant. Therefore, we have:

Theorem 4.4. Let µ be an isotropic log-concave probability measure on Rn and let 1 6 q 6 n. Then, a
random U ∈ O(n) satisfies

(4.13) Zq(µ) ∩ U(Zq(µ)) ⊆ (c
√
q)Bn2 ,

with probability greater than 1− e−n, where c > 0 is an absolute constant.
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Note that Theorem 1.3 summarizes the contents of Theorem 4.3 and Theorem 4.4.

Remark 4.5. We can study the same question for the polar body Z◦q (µ) of Zq(µ). Note that

(4.14) wt(Z
◦
q (µ)) := sup{vrad(Z◦q (µ) ∩ E) : E ∈ Gn,t} ' [inf{vrad(PE(Zq(µ))) : E ∈ Gn,t}]−1

by duality and by the Bourgain-Milman inequality. For any 1 6 t 6 n− 1 and any symmetric convex body
A in Rn define

(4.15) v−t (A) = inf{vrad(PE(A)) : E ∈ Gn,t}.

In the case A = Zq(µ) this parameter has been studied in [11]:

Lemma 4.6. Let µ be an isotropic log-concave probability measure on Rn. For any q > 1 and 1 6 k 6 n− 1
we have:

(4.16) v−k (Zq(µ)) > c1

√
min(q,

√
k).

If we assume that supn Ln 6 α then we have

(4.17) v−k (Zq(µ)) >
c2
α

√
min(q, k)

These estimates are leading to the next bounds on the minimal radius of a k-codimensional section of
Z◦q (µ). The following theorem is also from [11].

Theorem 4.7. Let µ be an isotropic log-concave probability measure on Rn. For any q > 1 and 1 6 k 6 n−1
we have:

(i) There exists F ∈ Gn,n−k such that:

(4.18) PF (Zq(µ)) ⊇ 1

Rk,q
Bn2 ∩ F and hence R(Z◦q (µ) ∩ F ) 6 Rk,q,

where

(4.19) Rk,q = min

{
1, c3

1

min(q1/2, k1/4)

n

k
log
(
e+

n

k

)}
.

(ii) If we assume that supn Ln 6 α then there exists F ∈ Gn,n−k such that:

(4.20) PF (Zq(µ)) ⊇ 1

Rk,q,α
Bn2 ∩ F and hence R(Z◦q (µ) ∩ F ) 6 Rk,q,α,

where

(4.21) Rk,q,α = min

{
1, c4α

1√
min(q, k)

n

k
log
(
e+

n

k

)}
.

Assuming that q 6
√
n and choosing k = γ0n we see from (4.18) and (4.19) that

(4.22) cγ0n(Z◦q (µ)) 6 c1(γ0)
1
√
q

where c1(γ0) > 0 is an absolute constant. Then, we apply (3.20) with s = n/2 and m = (1 − γ0)n to get
that a random subspace E ∈ Gn,n/2 satisfies

(4.23) R(Z◦q (µ) ∩ E) 6 c3 · cγ0n(Z◦q (µ)) 6 c2(γ0)
1
√
q
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with probability greater than 1 − 2e−n/4, where c2(γ0) > 0 is an absolute constant. As usual, this implies
that a random U ∈ O(n) satisfies

(4.24) Z◦q (µ) ∩ U(Z◦q (µ)) ⊆ c
√
q
Bn2 ,

with probability greater than 1 − e−n, where c > 0 is an absolute constant. This estimate appears in [22]
(and a second proof is given in [8]).

Assuming that supn Ln 6 α we may apply the same reasoning for every 1 6 q 6 n: choosing k = γ0n
we see from (4.20) and (4.21) that

(4.25) cγ0n(Z◦q (µ)) 6 c1(γ0)
α
√
q
,

where c1(γ0) > 0 is an absolute constant. Then, we apply (3.20) with s = n/2 and m = (1 − γ0)n to get
that a random subspace E ∈ Gn,n/2 satisfies

(4.26) R(Z◦q (µ) ∩ E) 6 c3 · cγ0n(Z◦q (µ)) 6 c2(γ0)
α
√
q

with probability greater than 1−2e−n/4, where c2(γ0) > 0 is an absolute constant. Finally, this implies that
a random U ∈ O(n) satisfies

(4.27) Z◦q (µ) ∩ U(Z◦q (µ)) ⊆ cα
√
q
Bn2 ,

with probability greater than 1− e−n, where c > 0 is an absolute constant.

4.1 Random sections of bodies with maximal isotropic constant

Starting with an isotropic symmetric convex body K in Rn we can use the method of this section in order
to estimate the quantities

(4.28) ct(K) = min{R(K ∩ F ) : F ∈ Gn,n−t}

for every t = 0, . . . , n− 1. From (2.22) we have

(4.29) |K ∩ E|
1
n−t 6 c2

LKk+1(π
E⊥ (µK))

LK
6
c3Ln−t
LK

for every E ∈ Gn,t, therefore

(4.30) wt(K) 6 c4
√
t

(
c3Ln−t
LK

)n−t
t

.

Assume that K has maximal isotropic constant, i.e. LK = L′n (the same argument works if we assume
that LK is almost maximal, i.e. LK > βL′n for some absolute constant β ∈ (0, 1)). It is known that
Ln−t 6 c1Ln 6 c2L

′
n for all 1 6 t 6 n− 1, where c1, c2 > 0 are absolute constants. Therefore, we get:

Lemma 4.8. Let K be an isotropic symmetric convex body in Rn such that LK = L′n, and let 1 6 t 6 bn/2c.
Then,

(4.31) c2t(K) 6 c
n−t
t

1

n√
t

log
(
e+

n

t

)
,

where c > 0 is an absolute constant.
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Then, we apply (3.20) with s = n/2 and m = (1 − γ0)n to get that a random subspace E ∈ Gn,n/2
satisfies

(4.32) R(K ∩ E) 6 c3 · cγ0n(K) 6 c1(γ0)
√
n

with probability greater than 1− 2e−n/4, where c1(γ0) > 0 is an absolute constant.
Also, since cγ0n(K) 6 c(γ0)

√
n, we may apply (3.31) to get:

Theorem 4.9. Let K be an isotropic symmetric convex body in Rn with LK = L′n. A random U ∈ O(n)
satisfies

(4.33) K ∩ U(K) ⊆ (c3
√
n)Bn2 ,

with probability greater than 1− e−n, where c3 > 0 is an absolute constant.

We can also prove the local analogue of this fact: random proportional sections of a body with maximal
isotropic constant have bounded isotropic constant.

Theorem 4.10. Let K be an isotropic symmetric convex body in Rn with LK = L′n. A random F ∈ Gn,n/2
satisfies

(4.34) LK∩F 6 c4

with probability greater than 1− e−c5n, where c4, c5 > 0 are absolute constants.

Proof. It was proved in [10] (see also [9, Lemma 6.3.5]) that if LK = L′n then

(4.35) |K ∩ F | 1n > c6

for every Gn,n/2, where c6 > 0 is an absolute constant. Since R(K ∩ F ) 6 c3
√
n for a random F ∈ Gn,n/2,

for all these F we get

(4.36)
n

2
L2
K∩F 6

1

|K ∩ F |1+ 2
n

∫
K∩F

‖x‖22dx 6
1

|K ∩ F | 2n
R2(K ∩ F ) 6 c−2

6 c23n,

which implies that

(4.37) LK∩F 6 c4,

where c4 =
√

2c−1
6 c3. 2

5 Sub-Gaussian subspaces

In this section we prove Theorem 1.5. We will use E. Milman’s estimates [26] on the mean width w(Zq(K))
of the Lq-centroid bodies Zq(K) of an isotropic convex body K in Rn.

Theorem 5.1 (E. Milman). Let K be an isotropic convex body in Rn. Then, for all q > 1 one has

(5.1) w(Zq(K)) 6 c1 log(1 + q) max

{
q log(1 + q)√

n
,
√
q

}
LK

where c1 > 0 is an absolute constant.

We also use the next fact on the diameter of k-dimensional projections of symmetric convex bodies (see
[2, Proposition 5.7.1]).
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Proposition 5.2. Let D be a symmetric convex body in Rn and let 1 6 k < n and α > 1. Then there exists
a subset Γn,k ⊂ Gn,k with measure νn,k(Γn,k) > 1 − e−c2α2k such that the orthogonal projection of D onto
any subspace F ∈ Γn,k satisfies

(5.2) R(PF (D)) 6 c3αmax{w(D), R(D)
√
k/n},

where c2 > 0, c3 > 1 are absolute constants.

Combining Proposition 5.2 with Theorem 5.1 and the fact that R(Zq(K)) 6 cqLK , we get:

Lemma 5.3. Let K be an isotropic convex body in Rn. Given 1 6 q 6 n define k0(q) by the equation

(5.3) k0(q) = log2(1 + q) max{log2(1 + q), n/q}.

Then, for every 1 6 k 6 k0(q), a random F ∈ Gn,k satisfies

(5.4) R(PF (Zq(K))) 6 c1α log(1 + q) max

{
q log(1 + q)√

n
,
√
q

}
LK

with probability greater than 1− e−c2α2k0(q), where c1, c2 > 0 are absolute constants.

Proof. Since R(Zq(K)) 6 cqLK we see that

R(Zq(K))
√
k0(q)√

n
6

cq√
n

log(1 + q) max

{
log(1 + q),

√
n
√
q

}
LK(5.5)

= c log(1 + q) max

{
q log(1 + q)√

n
,
√
q

}
LK .

From Theorem 5.1 we have an upper bound of the same order for w(Zq(K)). Then, we apply Proposition
5.2 for Zq(K). 2

Remark 5.4. Note that if 1 6 s 6 k then the conclusion of Proposition 5.2 continues to hold for a random
F ∈ Gn,s with the same probability on Gn,s; this is an immediate consequence of Fubini’s theorem and of
the fact that R(PH(D)) 6 R(PF (D)) for every s-dimensional subspace H of a k-dimensional subspace F of
Rn.

Proof of Theorem 1.5. We define q0 by the equation

(5.6) q0 log2(1 + q0) = n.

Note that q0 ' n/(log n)2 and log(1 + q0) ' log n. For every 2 6 q 6 q0 we have q log2(1 + q) 6 n, therefore

(5.7) k0(q) =
n log2(1 + q)

q
>
c1n log2(1 + q0)

q0

for some absolute constant c1 > 0, because q 7→ log2(1 + q)/q is decreasing for q > 4. It follows that

(5.8) k0(q) > c1 log4(1 + q0) > c2(log n)4

for all 2 6 q 6 q0.
Now, we fix α > 1 and define

(5.9) k0 = c1 log4(1 + q0).
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Using Lemma 5.3 and Remark 5.4, for every q 6 q0 we can find a set Γq ⊆ Gn,k0 with νn,k0(Γq) > 1−e−cα2k0

such that

(5.10) R(PF (Zq(K))) 6 c3α log(1 + q) max

{
q log(1 + q)√

n
,
√
q

}
LK 6 c3α

√
q log(1 + q)LK

for all F ∈ Gn,k0 . If Γ :=
⋂blog2 q0c
s=1 Γ2s , then

(5.11) νn,k0
(
Gn,k0 \ Γ

)
6 νn,k0

(
Gn,k0 \

blog2 nc⋂
s=1

Γ2s

)
6 c(log n)e−cα

2k0 6
1

nlog3 n

if α ' 1 is chosen large enough. Then for every F ∈ Γ, for all θ ∈ SF and for every 1 6 s 6 blog2 q0c we
have

(5.12)
hZ2s (K)(θ)√

2s
=
hPF (Z2s (K))(θ)√

2s
6 c3α log(1 + 2s)LK 6 c4α(log n)LK .

Taking into account the fact that if 2s 6 q < 2s+1 then

(5.13)
hZq(K)(y)
√
q

6
hZ2s+1 (K)(y)

2s/2
=
√

2
hZ2s+1 (K)(y)

2(s+1)/2
,

we see that

(5.14)
hZq(K)(y)
√
q

6 c5α(log n)LK

for every F ∈ Γ, for all θ ∈ SF and for every 2 6 q 6 q0.
Next, observe that if q0 6 q 6 n then we may write

hZq(K)(y)
√
q

6
c6q

q0

hZq0 (K)(y)
√
q

=
c6
√
q

√
q0

hZq0 (K)(y)
√
q0

6
c6
√
n

√
q0

hZq0 (K)(y)
√
q0

(5.15)

= c6 log(1 + q0)
hZq0 (K)(y)
√
q0

6 c7(log n)
hZq0 (K)(y)
√
q0

,

and hence

(5.16)
hZq(K)(y)
√
q

6 c7α(log n)2LK

for every F ∈ Γ, for all θ ∈ SF and for every q0 6 q 6 n.
Recall that Ψ2(K) is the convex body with support function hΨ2(K)(y) = ‖〈·, y〉‖Lψ2

(K). One also has

(5.17) hΨ2(K)(y) ' sup
q>2

hZq(K)(y)
√
q

' sup
26q6n

hZq(K)(y)
√
q

because hZq(K)(y) ' hZn(K)(y) for all q > n. Then, (5.14) and (5.16) and the fact that α ' 1 show that

(5.18) ‖〈·, θ〉‖Lψ2
(K) 6 C(log n)2LK

for every F ∈ Γ and for all θ ∈ SF , where C > 0 is an absolute constant. 2
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