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Abstra
tLet K be a symmetri
 
onvex body in Rn . Given any � 2 ( 12 ; 1), wegive lower and upper bounds for the diameter of a random [�n℄-dimensionalse
tion of K. We are interested in a des
ription of the bounds whi
h mightbe useful from the 
omputational geometry point of view. Our approa
h isbased on the fun
tion M�K(r) = 1rM�(K \ rD) whi
h is easily 
omputable,and makes use of the low M�-estimate, a new 
onditional low M -estimateand Borsuk's antipodal theorem. In the 
ase of an �-regular body in M -position, the ratio of our bounds is independent of K and n.1 Introdu
tionLet K be a symmetri
 
onvex body in Rn . In this paper we study the followingquestion:Given any � 2 ( 12 ; 1), �nd an interval I = IK(�) = [r1; r2℄ where ri =ri(K;�); i = 1; 2, su
h that most of the [�n℄-dimensional se
tions of K have diam-eter in I and r2=r1 is as small as possible.One naturally has to make pre
ise the meaning of \most": we are interested inan estimate of the form�n;[�n℄ �E 2 Gn;[�n℄ : diam(K \ E) 2 I� � 1� h(�; n);for some fun
tion h tending as fast as possible to 0 when n!1, where Gn;k is theGrassmanian of k-dimensional subspa
es of Rn equipped with the Haar probabilitymeasure �n;k.We were led to the formulation of this question by dis
ussions with L. Lovaszand M. Simonovits on the 
omputational problems arising when one wants to de-termine the diameter of a symmetri
 
onvex body in Rn : it is known that it is1



impossible to give a good estimate of the diameter in less than exponential (in thedimension) time. Therefore, dealing with our question, we are at the same timeinterested in a des
ription of the bounds r1 and r2 whi
h might be useful from the
omputational geometry point of view.Our method is to push to its limit a well-known and 
ru
ial inequality of theasymptoti
 theory of �nite dimensional normed spa
es, the LowM�-estimate [M2℄,[PT℄, [Go℄. In order to des
ribe our approa
h we need to introdu
e a few relatednotions: IfW is a symmetri
 
onvex body in Rn we write k:kW for the norm indu
edto Rn by W and de�ne M(W ) = RSn�1 kxkW �(dx), where � is the rotationallyinvariant probability measure on the Eu
lidean unit sphere Sn�1. Also, if W o isthe polar body of W , let M�(W ) =M(W o) (this quantity has a natural geometri
meaning, being half of the mean width of W ). The Low M�-estimate states thatthere is a fun
tion f2 : (0; 1) ! (0; 1) { one 
an a
tually 
hoose f2(�) = 
2p1� �for some absolute 
onstant 
2 > 0 { su
h that for every W and every � 2 (0; 1),(1:1) diam(W \ E) � 2M�(W )f2(�)for most E 2 Gn;[�n℄.This essentially gives an upper bound for the diameter of the proportionalse
tions of an arbitrary bodyK: From (1.1) we easily dedu
e (Theorem 2.1) that forevery K and every � 2 (0; 1), if r > 0 satis�es the inequality 1rM�(K\rD) � f2(�)where D is the Eu
lidean unit ball in Rn , thendiam(K \ E) � 2rfor most E 2 Gn;[�n℄.It turns out that this appli
ation of the LowM�-estimate leads to bounds whi
hare \already exa
t": there exists a se
ond fun
tion f1 : (0; 1)! (0; 1) su
h that foreveryK and every � 2 ( 12 ; 1), if r > 0 satis�es the inequality 1rM�(K\rD) � f1(�),then diam(K \ E) � 2g(�)rfor most E 2 Gn;[�n℄ (Theorem 2.7). One 
an a
tually see that f1(�) and g(�) maybe 
hosen to be two absolute 
onstants 
1 and 
01 in (0; 1) (whi
h 
an be writtendown expli
itely and work for all � 2 ( 12 ; 1)). What is of importan
e is of 
oursethat both fun
tions f1 and f2 are independent of the body K and the dimension n.In view of the above, let us asso
iate to ea
h symmetri
 
onvex body K thefun
tion M�K : (0;1)! (0; 1℄ de�ned byM�K(r) = M�(K \ rD)r :The fun
tion M�K is onto (0; 1℄ and de
reasing, and if �1; �2 are the radii of theins
ribed and 
ir
ums
ribed balls of K, then M�K(r) = 1 on (0; �1℄ and M�K(r) =2



M�(K)=r on [�2;1). Now, we 
an qualitatively des
ribe our main result in termsof M�K as follows:General Statement: There exist three fun
tions f1; f2 and g : (0; 1) ! (0; 1)su
h that the following holds: Given a symmetri
 
onvex body K in Rn and any� 2 ( 12 ; 1), let ri = ri(K;�); i = 1; 2; be the solutions of the equations(1:2) M�K(r) = fi(�); i = 1; 2;in r. Then, we havediam(K \E) 2 [2g(�)r1(K;�); 2r2(K;�)℄;for all E 2 Ln;k, where Ln;k is a subset of Gn;k of measure �n;k(Ln;k) � 1�h(�; n),k = [�n℄, and h(�; n)! 0 exponentially fast as n!1.Note that the simplest example of the Eu
lidean unit ball D in Rn shows thatthe fun
tion g is really needed in the statement above: we have M�D(r) = 1r on[1;1), hen
e for any fun
tion f1 : (0; 1) ! (0; 1) and for any �, the solution ofM�D(r) = f1(�) in r will be greater than 1 while obviously diam(D \ E) = 2 forevery E 2 Gn;[�n℄.The use of the fun
tionM�K meets the requirement of an e�e
tive determinationof the bounds r1 and r2 in our original question. The reason is that, for any sym-metri
 
onvex body K, one 
an \
ompute" with high probabilityM�K(r) e�e
tivelyto any given degree of a

ura
y: The empiri
al distribution method (des
ribed ina similar setting e.g in [BLM℄) shows that given any Æ and � in (0; 1), a random
hoi
e of N = [
 log( 2Æ )�2 ℄ + 1 points x1; : : : ; xN in Sn�1 satis�es(1:3) jM�(K \ rD) � 1N NXi=1 kxik(K\rD)o j < �M�(K \ rD)with probability ex
eeding 1 � Æ, where 
 > 0 is an absolute 
onstant. One 
antherefore assume that M�K(r) 
an be easily determined for every r. Sin
e M�K isde
reasing, one 
an then solve the equation M�K(r) = � for any given � < 1. Thenumber of steps needed depends, for example, on a rough estimate of the ratio�2=�1 of the radii of the 
ir
ums
ribed and the ins
ribed ball of K.A se
ond point whi
h is of interest is that our general statement(1:4) 2g(�)(M�K)�1(f1(�)) � diam(K \ E) � 2(M�K)�1(f2(�))may be viewed as an asymptoti
 formula 
onne
ting the diameter of a random [�n℄-dimensional se
tion of K with a quite simple average parameter of K. Comparewith the following result obtained re
ently in [MS2℄: Let k = k(K) be the largestinteger for whi
h�n;k �fE 2 Gn;k : M(K)2 jxj � kxkK � 2M(K)jxj for all x 2 Eg� > 1� 1n:3



It is a well-known fa
t [M1℄ that k � 
n( M(K)diam(Ko))2 for some absolute 
onstant
 > 0. Rather surprisingly, it is observed in [MS2℄ that the reverse inequality isalso true: k(K) ' n( M(K)diam(Ko) )2. Again, proving a basi
 inequality to be exa
t givesrise to an asymptoti
 formula 
onne
ting the lo
al stru
ture of an arbitrary bodyK with some of its global parameters. It is an important dire
tion to enri
h thislist of high dimensional formulas.The main part of the paper is organized as follows: In Se
tion 2.1 we give theproof of the general statement with an exa
t des
ription of the fun
tions f1; f2and g, 
orresponding to one among many interpretations of the requirement thath(�; n)! 0 fast as n!1. Our argument for the lower bound makes use of a new\
onditional low M -estimate". We also make use of Borsuk's antipodal theoremin an essential way, and this is what for
es us to restri
t ourselves to the 
ase� 2 ( 12 ; 1).What is interesting is of 
ourse the ratio r2=r1 and this makes it 
lear that thedependen
e of (M�K)�1 on f1(�) and f2(�) for a given � is quite important. InSe
tion 2.2 we give an example of an ellipsoid with highly in
omparable semiaxeswhi
h shows that the behavior of (M�K)�1 
an be very irregular: the interval I maybe huge even if the ratio f2(�)=f1(�) is very 
lose to 1. This indi
ates that one
annot expe
t a 
ompletely satisfa
tory answer with this \one step" determinationof I .On the other hand, what seems to 
ause problems in our approa
h is not thegeometry of the body K but the fa
t that K may be in a very bad \position" (likethe ellipsoid in our example), in whi
h 
ase even the question doesn't make mu
hsense. In fa
t, our original goal 
an be a
hieved if we allow a linear transformationin order to bring the body K in some kind of a more \regular" position. In Se
tion2.3 we assume that K is in M -position with parameter � (in the terminology of[Pi℄), and we show that for every � 2 ( 12 ; 1) and for most E 2 Gn;[�n℄(1:5) diam(K \ E) ' (M�K)�1(12p1� �)up to  �(�), where  � : (0; 1) ! R+ is a �xed fun
tion depending only on �.Sin
e every body K has an aÆne image whi
h is in M -position, in this regular butgeneral enough 
ase (1.4) be
omes a real asymptoti
 formula with f1(�) = f2(�) =12p1� �.We use the standard notation from [MS1℄: In pari
ular, j:j is a �xed Eu
lideannorm, the L�evy median of k:kW on Sn�1 is denoted by m or m(W ), the boundaryof W is denoted by bd(W ), jN j denotes the 
ardinality of a �nite set N , and theletter 
 is reserved for absolute positive 
onstants.A
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2 Upper and lower bounds for the diameter of arandom proportional se
tion2.1. Let us agree that a property of a random k-dimensional se
tion of the bodyK in Rn is one that holds for all se
tions K \ E with E in a subset Ln;k of Gn;kof measure �n;k(Ln;k) � 1� �n, where � = �( kn ) 2 (0; 1). There is nothing spe
i�
about this 
hoi
e of the fun
tion h in our general statement: we want to examinemore 
losely the dependen
e on the other parameters involved in the problem, inparti
ular the ratio f2( kn )=f1( kn ). Obvious modi�
ations of the arguments givenbelow lead to various other possible estimates depending on what is of interest inea
h 
ase.The upper bound for diam(K \ E) is a well-known 
onsequen
e of the lowM�-estimate [M2℄, [PT℄, [Go℄. We give the statement in the spirit of our presentdis
ussion with a brief sket
h of the estimates involved in the proof:Theorem 2.1 Let � 2 (0; 1) and " 2 (0; 1). There exist n0 = n0("; �) and � =�("; �) 2 (0; 1) with the following property: for every symmetri
 
onvex body K inRn , n � n0, we 
an �nd a set Ln;k � Gn;k, where k = [�n℄, of measure �n;k(Ln;k) �1� �n, su
h that diam(K \ E) � 2r for every E 2 Ln;k, where r is the solution ofthe equation M�K(r) = (1� ")p1� �:Sket
h of the proof: De�ne as = p2�( s+12 )=�( s2 ). One 
an 
he
k that an�kan �(n�k�1n )1=2, and this implies that for n � n0("; �) we have(2:1) (1� "2 )an�kan(1� ")p1� � � 1 + "2 :Suppose that r satis�es the equation M�(K\rD)r = (1� ")p1� �. Then, Gordon'sproof of the low M�-estimate [Go, Corollary 3.4℄ shows that(2:2) kxkK\rD � (1� "2 )an�kanM�(K \ rD) jxj � 1 + "2r jxj; x 2 Efor all E in a subset Ln;k of Gn;k of measure �n;k(Ln;k) � 1 � 72exp(� 172a2n�k"2).Sin
e kxkK\rD = maxfkxkK ; 1r jxjg, this shows that a
tually(2:3) kxkK � 1r jxj; x 2 E;for every E 2 Ln;k, and this 
ompletes the proof sin
e �n;k(Ln;k) � 1 � �n("; �)(observe that a2n�k ' n� k). 2Our lower bound is based on a 
onditional low M -estimate. We start with thefollowing geometri
 lemma: 5



Lemma 2.2 Let W be a symmetri
 
onvex body in Rn su
h that W � D. Considerthe fun
tion k:kW on Sn�1 and denote its median by m. Then, for every R > 1mwe have �R(W \ RSn�1) � 1� �R(B(�2 + �0));where �0 2 (0; �2 ) is de�ned bysin �0 = mR �[R2 � 1℄ 12 � [(1=m)2 � 1℄ 12� :Here, �R denotes the rotationally invariant probability measure on RSn�1, whileB(�2 + �0) is a 
ap of angular radius �2 + �0 in RSn�1.Proof: Let A =W 
\ 1mSn�1 and 
onsider an arbitrary point � on the boundary ofA. We then 
learly have that � 2 bd(W ). If H(�) is any hyperplane that supportsW at �, let Æ = PH(�)(o) be the orthogonal proje
tion of the origin o onto H(�).Assume �rst that the points o; � and Æ determine a two-dimensional plane �(�).Write �; 
 for the points in �(�) where the lines Æ� and o� meet RSn�1. Let alsoy � 1 be the distan
e from o to Æ. If � = d�o
; ' = do�Æ, and � = do�Æ, we have� = '� �, therefore sin � = sin' 
os �� 
os' sin �, and simple trigonometry showsthat(2:4) sin � = y1=m [R2 � y2℄ 12R � [(1=m)2 � y2℄ 121=m yR= myR �[R2 � y2℄ 12 � [(1=m)2 � y2℄ 12� :We easily 
he
k that this is an in
reasing fun
tion of y on [1; 1m ℄, and this showsthat(2:5) sin � � mR �[R2 � 1℄ 12 � [(1=m)2 � 1℄ 12 � = sin �0:If this is not the 
ase, then we a
tually have that H(�) is uniquely determined and� = Æ. Let 
 be the point where o� meets RSn�1, and for any two-dimensionalplane �(�) 
ontaining o� write � for the point where the line in �(�) perpendi
ularto o� at � meets RSn�1. If � = d�o
, we readily see that(2:6) sin � = [R2 � (1=m)2℄ 12R � sin �0:Observe that, in both 
ases, H(�) separates the 
ap B(
; �0) in RSn�1 from W .Sin
e the points 
 = 
(�); � 2 bd(A), form the boundary of (Rm)A, we 
on
ludethat W \ ((Rm)A)�0 = ;, where((Rm)A)�0 = fz 2 RSn�1 : z 2 B(x; �0) for some x 2 (Rm)Ag:On the other hand, by the de�nition of the median m we have �1=m(A) � 12 andhen
e �R((Rm)A) � 12 . From the isoperimetri
 inequality on the sphere RSn�16



(see [FLM℄ or [MS1℄) it follows that �R(((Rm)A)�0 ) � �R(B(�2 + �0)), and thismeans that(2:7) �R(W \RSn�1) � 1� �R(B(�2 + �0)): 2This Lemma shows that if m is 
lose to 1, and if R is 
hosen suitably large,then a big part ofW stays inside RD. In the next Lemma we make the dependen
eon the various parameters more pre
ise in order to extra
t se
tions of W of (any)proportional dimension inside RD:Lemma 2.3 Let � 2 (0; 1) and k = [�n℄. There exists n0 = n0(�) for whi
h thefollowing holds: If � < 1 and " � "0(�; �) = 25 [ 12 ( �3 )�℄ 21�� , then for every symmetri

onvex body W in Rn , n � n0, with W � D and m(W ) � 1 � ", we 
an �ndLn;k � Gn;k of measure �n;k(Ln;k) � 1� �k, su
h thatW \ E � 5(3� ) �1�� 2 11��D \ Efor every E 2 Ln;k.Proof: We assume from the beginning that " < 12 . Let R = R(�; �) be a fun
tionof � and � to be determined, and de�ne �0 by the equation sin �0 = mR ([R2 � 1℄ 12 �[(1=m)2 � 1℄ 12 ). This is an in
reasing fun
tion of m, therefore(1) sin �0 � (1� ")[1� 1R2 ℄ 12 � 1R ["(2� ")℄ 12 � 
1, provided that, say, R � 2.A 
omputation analogous to the one in (2.4) shows that(2) 
os �0 � [1� 1R2 ℄ 12 [1�m2℄ 12 + mR � p2"+ 1R .Let Jn = R �=20 
osn�2 t dt. By Lemma 2.2 we know that(2:8) �R(W \ RSn�1) � 12Jn Z �2�0 
osn�2 t dt � 12Jn(n� 1) 
osn�1 �0sin �0 ;and sin
e Jn � 
2=pn, we arrive at(2:9) �R(W \ RSn�1) � 
3pn [p2"+ 1R ℄n�1:Consider now a 45R -net N on Sk�1. This 
an be done with jN j � (1+ 52R)k � [3R℄k.A standard argument shows that if(2:10) jN j�R(W \RSn�1) � �k;then there exists Ln;k � Gn;k with �n;k(Ln;k) � 1 � �k su
h that for every E 2Ln;k there exists a 45 -net of E \ RSn�1 disjoint from W . This means that if7



x 2 E \ RSn�1, we 
an �nd y 2 RSn�1 for whi
h kykW � 1 and jx � yj � 45 ,therefore kxkW � kykW � kx� ykW � 1� 45 = 15R jxjor, equivalently,(2:11) W \ E � 5RD \ E:For n large enough, our 
ondition on "; �; and R thus be
omes:(2:12) �p2"+ 1R�n�1 [3R℄k � �k :Let � = kn�1 . Then, (2.10) will be true if(2:13) p2"R� + 1R1�� � (�3)�:Choose R = 2 11�� ( 3� ) �1�� . If " � "0(�; �) and if n is large enough (in whi
h 
asewe may pra
ti
ally assume that � = �), then one 
an easily 
he
k that (2.13) issatis�ed. 2Remark 2.4 Observe that our method 
annot produ
e R smaller than ( 3� ) �1�� evenif we are allowed to 
hoose " arbitrarily 
lose to 0 (this follows immediately from(2.13)). It is not 
lear if a better argument might give that R("; �; �)! 1 as "! 0for every �xed � 2 (0; 1).Using Lemma 2.3 we 
an easily prove the following 
onditional lowM -estimate:Theorem 2.5 Let � < 1, � 2 (0; 1) and K be a symmetri
 
onvex body in Rn ,n � n0(�; �). Find r > 0 for whi
hM(
o(rK [D)) = 1� 13 [12(�3)�℄ 21�� :Then, we 
an �nd Ln;[�n℄ � Gn;[�n℄ with �n;[�n℄(Ln;[�n℄) � 1� � [�n℄ su
h thatK \ E � �5(3� ) �1�� 2 11��� 1r (D \ E) = R(�; �)r (D \ E);for every E 2 Ln;[�n℄.Proof: Let W = 
o(rK [ D). From our 
hoi
e of r we have M(W ) = 1 �13 [ 12 ( �3 )�℄ 21�� , and sin
e k:kW is 1-Lips
hitz on Sn�1 a standard argument from[M1℄ (see also [FLM℄ or [MS1℄) shows that for every Æ 2 (0; 1)(2:14) � �fy 2 Sn�1 : j kykW �m(W ) j > Æg� < 4e�nÆ2=2;8



whi
h means that(2:15) 1� 13[12(�3)�℄ 21�� = ZSn�1 kykW �(dy) � m(W ) + Æ + 4e�nÆ2=2;therefore, for n � n0(�; �) the right 
hoi
e of Æ givesm(W ) � 1� "0(�; �):We now apply Lemma 2.3 for " = "0 to �nd Ln;[�n℄ � Gn;[�n℄ of measure �n;[�n℄(Ln;[�n℄) �1� � [�n℄, su
h that(2:16) W \ E � 5(3� ) �1�� 2 11��D \E = R(�; �)D \E;for every E 2 Ln;[�n℄. Sin
e rK �W , the proof is 
omplete. 2If n is large enough, one 
an 
hoose � almost equal to 1 and still a
hieve \almostfull measure" for Ln;[�n℄. In order to give the 
avor of the statement, we rewritethe low M -estimate given by Theorem 2.5 in a less pre
ise form:Conditional Low M-estimate: There exist two absolute positive 
onstants 
 <1; C > 1 su
h that if K is a symmetri
 
onvex body in Rn , n large enough, and ifr > 0 satis�es M�K(r) � 1� 
 11�� ;then diam(Ko \ E) � 20r C �1��for all � 2 (0; 1) and all E in a subset Ln;[�n℄ of Gn;[�n℄ with �n;[�n℄(Ln;[�n℄) �1� 
[�n℄. 2Compare with the version of the LowM�-estimate whi
h was used in the proofof Theorem 2.1:Low M�-estimate: If K is a symmetri
 
onvex body in Rn and if r > 0 satis�esM�K(r) � 12p1� �;then diam(K \ E) � 2rfor all � 2 (0; 1) and all E in a subset Ln;[�n℄ of Gn;[�n℄ of almost full measure.We pro
eed to the lower bound for the diameter of [�n℄-dimensional se
tionsof K. Besides Theorem 2.5, our proof is also based on the following appli
ation ofBorsuk's antipodal theorem:Lemma 2.6 Let K be a symmetri
 
onvex body in Rn . For every subspa
e E withdimE > dimE? we 
an �nd y 2 bd(PE(K))\K, where PE denotes the orthogonalproje
tion onto E and bd(PE(K)) is the boundary of PE(K).9



Proof: Without loss of generality we may assume that K is stri
tly 
onvex. Forevery y 2 bd(PE(K)) there exists unique t(y) 2 bd(K) su
h that PE(t(y)) = y.De�ne the map T : bd(PE(K))! E? with T (y) = t(y)� y. Then, T is 
ontinuousand antisymmetri
, and sin
e dimE > dimE? we 
an apply Borsuk's theorem to�nd y 2 bd(PE(K)) with t(y) = y. 2Theorem 2.7 below gives a lower bound for the diameter of [�n℄-dimensionalse
tions ofK, � 2 ( 12 ; 1). Adding this information to Theorem 2.1 whi
h gave upperbounds in exa
tly the same spirit, we 
omplete the proof of our General Statement:Theorem 2.7 Let � < 1, � 2 ( 12 ; 1), and K be a symmetri
 
onvex body in Rn ,n � n0(�; �). Find r > 0 for whi
hM�K(r) = M�(K \ rD)r = 1� 148(�3)2:Then, we 
an �nd Ln;[�n℄ � Gn;[�n℄ with �n;[�n℄(Ln;[�n℄) � 1� � n2 , su
h thatdiam(K \ E) � 110(�3)rfor every E 2 Ln;[�n℄.Proof: Apply Theorem 2.5 to Ko with any �0 > 12 . We 
an �nd Ln;[�0n℄ � Gn;[�0n℄with �n;[�0n℄(Ln;[�0n℄) � 1� � [�0n℄, for whi
h(2:17) Ko \ E � R(�0; �)r D \ Efor every E 2 Ln;[�0n℄. Let E 2 Ln;[�0n℄. Passing to polars in E we get(2:18) PE(K) � rR(�0; �)D \ E:Sin
e �0 > 12 , assuming that n � n0(�0) we have dimE > dimE?. Therefore, we
an apply Lemma 2.6 to �nd y 2 bd(PE(K)) \K. In parti
ular, y 2 K \ E andjyj � rR(�0;�) whi
h means that(2:19) diam(K \E) � 2rR(�0; �) :For n large enough, we 
an assume that (2.19) is true with �0 = 12 , whi
h gives thetheorem in the spe
ial 
ase of � = 12 . Now, let � > 12 , and de�neLn;[�n℄ = fF 2 Gn;[�n℄ : there is E 2 Ln;[n2 ℄+1 with E � Fg:Claim: �n;[�n℄(Ln;[�n℄) � �n;[n2 ℄+1(Ln;[n2 ℄+1).[This is a general fa
t: Fix E0 � F0, with dimE0 = [n2 ℄ + 1 and dimF0 = [�n℄.By the de�nition of Ln;[�n℄, if for some T 2 On we have TE0 2 Ln;[n2 ℄+1, thenTF0 2 Ln;[�n℄. It follows that(2:20) �n;[�n℄(Ln;[�n℄) = � �T 2 On : TF0 2 Ln;[�n℄�10



� ��T 2 On : TE0 2 Ln;[n2 ℄+1� = �n;[n2 ℄+1(Ln;[n2 ℄+1) � 1� � n2 : ℄On the other hand, it is 
lear that if F 2 Ln;[�n℄, then for some E � F in Ln;[n2 ℄+1we have(2:21) diam(K \ F ) � diam(K \ E) � 110(�3)r;whi
h 
ompletes the proof. 22.2. An example on the behavior ofM�K. To show thatM�K may behave ina quite irregular way, we study the behavior of the fun
tionM�E(r) = 1rM�(E\rD)for an ellipsoid with highly in
omparable semiaxes. Let " 2 (0; 1) be a very smallpositive number, and de�neE = fx = (x1; : : : ; xn) 2 Rn : nXi=1 "2ix2i � 1g:Given any r > 0, one easily 
he
ks that E \ rD is p2{isomorphi
 to the ellipsoidE0(r) = fx 2 Rn : nXi=1("2i + 1r2 )x2i � 1g:In parti
ular, if M�2 (W ) = �RSn�1 kxk2W o�(dx)�1=2, we have M�2 (E0(r)) �M�2 (E \rD) � p2M�2 (E0(r)) for every r > 0. Consider the fun
tion F (r) = 1rM�2 (E0(r)).It is easy to see that(2:22) F (r) = 1r " 1n nXi=1 r2r2"2i + 1#1=2 = " 1n nXi=1 �i(r)#1=2 ;where �i(r) = 1=(r2"2i + 1). We shall estimate F ("�k); k = 1; 2; : : : ; n:(1) If i < k, then 0 � �i("�k) � "2.(2) If i = k, then �i("�k) = 12 .(3) If i > k, then (1 + "2)�1 � �i("�k) � 1.It follows that e.g for all k 2 [n3 ; 2n3 ℄,(2:23) 13 + 12n � "2 � F 2("�k) � 23 + 12n + "2:Sin
e M�(E \ rD) � M�2 (E \ rD) � p2M�(E \ rD), M�E satis�es the inequality1p2F (r) �M�E(r) � p2F (r), and this shows that if " is small enough then for everypair of k; l 2 [n3 ; 2n3 ℄ we haveM�E("�k)=M�E("�l) � 
 for some absolute 
onstant 
 >0. It follows that for some k 2 [n3 ; 2n3 ℄ we must have M�E("�k)=M�E("�k�1) � 
1=n1 ,where 
1 is some other absolute 
onstant. Hen
e, if n is large and if " is too small,11



we 
an have r1; r2 with r1=r2 arbitrarily large andM�E(r1)=M�E(r2) arbitrarily 
loseto 1. Note that this happens in the \interesting" interval of the range of M�E .2.3. Diameter of the se
tions of a body in M-position. It is well-knownthat every symmetri
 
onvex body 
an be put in a \regular" position by meansof a linear transformation [M3℄. We use this result in the formulation of Pisier[Pi℄: For every � > 12 any body K has a linear image K whi
h is �-regular: If�K = (jKj=jDj) 1n is the volume radius of K, and if N(U; V ) denotes the 
overingnumber of U by V i.e the minimal 
ardinality of a set fx1; : : : ; xNg � U for whi
hU � Si�N (xi + V ), then(2:24) maxf[N(K; t�KD)℄ 1n ; [N(�KD; tK)℄ 1n g � 
 exp(
1(�)t� 1� )for every t � 1, where 
 > 0 is an absolute 
onstant and 
1(�) is a positive 
onstantdepending only on �.Moreover, it 
an be proved that for every K there exists a linear image K su
hthat bothK andK0 (as well as any orthogonal images of them) are �-regular. Also,if r1; r2 > 0 and W = 
o((K \ r1D) [ r2D), then both W and W o are �-regularwith some possibly di�erent (but independent from r1 and r2) 
onstants 
0; 
0(�).Assume that K is �-regular in the strong sense de�ned above and 
onsider any� 2 ( 12 ; 1). Apply Theorem 2.1 with " = 12 to �nd r > 0 for whi
h M�K(r) =12p1� �. Then, for most [�n℄-dimensional subspa
es E of Rn (most in the senseof x2.1) we have(2:25) diam(K \ E) � 2r:Set K1 = (K \ rD)o. Then, M(K1) = 12p1� �r and kxkK1 � rjxj for everyx 2 Rn . By [BLM℄ we 
an �nd orthogonal transformations u1; : : : ; us with s � 
11��su
h that(2:26) 14(1� �) 12 rD � 1s sXi=1 ui(Ko1 ) � (1� �) 12 rD:Sin
e Ko1 is also �-regular, the inverse Brunn-Minkowski inequality [M3℄, [Pi℄ showsthat(2:27) 14(1� �) 12 r � 
2(�)s� � jKo1 jjDj � 1n :Now 
hoose R > 0 for whi
h M�(K1 \RD) = R=2p2. Applying Theorem 2.1 on
emore (this time for � = 12 ), we see that for most ([n2 ℄ + 1)-dimensional subspa
es Fof Rn we have(2:28) diam(K1 \ F ) � 2R;12



and repeating the argument above we see that(2:29) 14p2R � 
3� jK1 \ RDjjDj � 1n � 
3� jK1jjDj � 1n :Multiplying (2.27) and (2.29), and making use of the Blas
hke-Santal�o inequalityand of the estimate on s, we obtain(2:30) rR � 
4(�)(1� �)�+ 12 :From (2.28), taking polars in F we have PF (K) � PF (K \ rD) � 1RD \ F , andapplying Borsuk's theorem as in Theorem 2.7 we see that diam(K \ F ) � 2R (weassume that n is large enough). Exa
tly the same lower bound is true for most[�n℄-dimensional subspa
es, � 2 ( 12 ; 1). Thus, we have proved the following:Theorem 2.8 Let � 2 ( 12 ; 1), � > 12 , and K be an �-regular symmetri
 
onvexbody in Rn , n � n0(�). Find r > 0 for whi
hM�K(r) = M�(K \ rD)r = 12p1� �:Then, for most [�n℄-dimensional subspa
es E of Rn we havediam(K \ E) 2 [2
(�)(1� �)�+ 12 r; 2r℄;where 
(�) > 0 is a 
onstant depending only on �. 2
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