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Abstract

Let K be a symmetric convex body in R*. Given any A € (3,1), we
give lower and upper bounds for the diameter of a random [An]-dimensional
section of K. We are interested in a description of the bounds which might
be useful from the computational geometry point of view. Our approach is
based on the function Mj (r) = LM*(K NrD) which is easily computable,

and makes use of the low M*-estimate, a new conditional low M-estimate
and Borsuk’s antipodal theorem. In the case of an a-regular body in M-

position, the ratio of our bounds is independent of K and n.

1 Introduction

Let K be a symmetric convex body in R™. In this paper we study the following
question:

Given any X € (3,1), find an interval I = Ix(\) = [r1,r2] where r; =
ri(K, ), i = 1,2, such that most of the [An]-dimensional sections of K have diam-
eter in I and ry/r1 is as small as possible.

One naturally has to make precise the meaning of “most”: we are interested in
an estimate of the form

Vn,[An] (E € G an) : diam(K N E) € I) >1—h(\n),

for some function h tending as fast as possible to 0 when n — oo, where G, ;, is the
Grassmanian of k-dimensional subspaces of R equipped with the Haar probability
measure Uy, .

We were led to the formulation of this question by discussions with L. Lovasz
and M. Simonovits on the computational problems arising when one wants to de-
termine the diameter of a symmetric convex body in R": it is known that it is



impossible to give a good estimate of the diameter in less than exponential (in the
dimension) time. Therefore, dealing with our question, we are at the same time
interested in a description of the bounds r; and ry which might be useful from the
computational geometry point of view.

Our method is to push to its limit a well-known and crucial inequality of the
asymptotic theory of finite dimensional normed spaces, the Low M *-estimate [M2],
[PT], [Go]. In order to describe our approach we need to introduce a few related
notions: If W is a symmetric convex body in R" we write ||.||w for the norm induced
to R" by W and define M (W) = [y, . |[z[lw o(dx), where o is the rotationally
invariant probability measure on the Euclidean unit sphere S"~1. Also, if W¢ is
the polar body of W, let M*(W) = M (W?) (this quantity has a natural geometric
meaning, being half of the mean width of W). The Low M *-estimate states that
there is a function f> : (0,1) — (0,1) — one can actually choose f2(A) = cov/1— )\
for some absolute constant ¢z > 0 — such that for every W and every A € (0,1),

: 2M*(W)
(L.1) diam(W N E) < ey
for most £ € Gy [an)-

This essentially gives an upper bound for the diameter of the proportional
sections of an arbitrary body K: From (1.1) we easily deduce (Theorem 2.1) that for
every K and every A € (0,1), if 7 > 0 satisfies the inequality £ M*(K NrD) < fa())
where D is the Euclidean unit ball in R™, then

diam(K NE) < 2r

for most £ € Gy [an)-

It turns out that this application of the Low M *-estimate leads to bounds which
are “already exact”: there exists a second function f; : (0,1) — (0,1) such that for
every K and every A € (%, 1), if r > 0 satisfies the inequality %M*(KDTD) > fi(A),
then

diam(K N E) > 2g(A)r

for most E' € G, [n,,] (Theorem 2.7). One can actually see that fi()) and g(A) may
be chosen to be two absolute constants ¢; and ¢} in (0,1) (which can be written
down explicitely and work for all A € (%, 1)). What is of importance is of course
that both functions f; and fy are independent of the body K and the dimension n.

In view of the above, let us associate to each symmetric convex body K the
function Mj; : (0,00) — (0,1] defined by

M) = M*(Krﬂ rD)

The function Mj; is onto (0,1] and decreasing, and if p;,ps are the radii of the
inscribed and circumscribed balls of K, then M (r) =1 on (0, p1] and M (r) =



M*(K)/r on [pa2,00). Now, we can qualitatively describe our main result in terms
of My as follows:

General Statement: There exist three functions fi,fo and g : (0,1) — (0,1)
such that the following holds: Given a symmetric convex body K in R™ and any
A€ (%, 1), let r; =i (K, \), i = 1,2, be the solutions of the equations

(1.2) M (r) = fi(A), i=1,2,
in r. Then, we have
diam(K N E) € [29(MN)r1 (K, ), 2ra (K, A)],

for all E € Ly, 1, where Ly, 1 is a subset of Gy, i of measure vy, (L) > 1—h(\,n),
k = [An], and h(\,n) — 0 exponentially fast as n — oco.

Note that the simplest example of the Euclidean unit ball D in R® shows that
the function g is really needed in the statement above: we have M},(r) = L on
[1,00), hence for any function f; : (0,1) — (0,1) and for any A, the solution of
Mp(r) = fi(A) in 7 will be greater than 1 while obviously diam(D N E) = 2 for
every E € G, [\n]-

The use of the function M} meets the requirement of an effective determination
of the bounds r; and r2 in our original question. The reason is that, for any sym-
metric convex body K, one can “compute” with high probability M (r) effectively
to any given degree of accuracy: The empirical distribution method (described in
a similar setting e.g in [BLM]) shows that given any ¢ and ¢ in (0,1), a random

choice of N = [clogé—(ﬁ)] + 1 points z1,...,zn in S*! satisfies
LN
(1.3) |M*(K NrD) — N ; llzill(xrrpyel < CM*(K NrD)

with probability exceeding 1 — §, where ¢ > 0 is an absolute constant. One can
therefore assume that M (r) can be easily determined for every r. Since Mj; is
decreasing, one can then solve the equation M. (r) = « for any given o < 1. The
number of steps needed depends, for example, on a rough estimate of the ratio
p2/p1 of the radii of the circumscribed and the inscribed ball of K.

A second point which is of interest is that our general statement

(1.4) 290N (M) (f1(V) < diam(K N E) < 2(Mj) ™ (f2(V)

may be viewed as an asymptotic formula connecting the diameter of a random [An]-
dimensional section of K with a quite simple average parameter of K. Compare
with the following result obtained recently in [MS2]: Let k& = k(K) be the largest
integer for which

M(K)
2

1
|z| < ||z||x < 2M (K)|z| for all z € E}> >1——.
n

Vn,k ({E S Gn,k :
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It is a well-known fact [M1] that k£ > cn(%{?o))2 for some absolute constant

¢ > 0. Rather surprisingly, it is observed in [MS2] that the reverse inequality is
also true: k(K) ~ n(#{go))z Again, proving a basic inequality to be exact gives
rise to an asymptotic formula connecting the local structure of an arbitrary body
K with some of its global parameters. It is an important direction to enrich this

list of high dimensional formulas.

The main part of the paper is organized as follows: In Section 2.1 we give the
proof of the general statement with an exact description of the functions fi, fo
and g, corresponding to one among many interpretations of the requirement that
h(A\,n) = 0 fast as n — oco. Our argument for the lower bound makes use of a new
“conditional low M-estimate”. We also make use of Borsuk’s antipodal theorem
in an essential way, and this is what forces us to restrict ourselves to the case
Ae(L,1).

What is interesting is of course the ratio /71 and this makes it clear that the
dependence of (M}.)™! on fi(A) and f2(\) for a given X is quite important. In
Section 2.2 we give an example of an ellipsoid with highly incomparable semiaxes
which shows that the behavior of (M};)~! can be very irregular: the interval I may
be huge even if the ratio f2(\)/fi()) is very close to 1. This indicates that one
cannot expect a completely satisfactory answer with this “one step” determination
of I.

On the other hand, what seems to cause problems in our approach is not the
geometry of the body K but the fact that K may be in a very bad “position” (like
the ellipsoid in our example), in which case even the question doesn’t make much
sense. In fact, our original goal can be achieved if we allow a linear transformation
in order to bring the body K in some kind of a more “regular” position. In Section
2.3 we assume that K is in M-position with parameter a (in the terminology of
[Pi]), and we show that for every A € (%, 1) and for most E € Gy [an]

1
(1.5) diam(K N E) ~ (M}})_l(ix/l -2)
up to (), where 1, : (0,1) — R* is a fixed function depending only on a.
Since every body K has an affine image which is in M-position, in this regular but
general enough case (1.4) becomes a real asymptotic formula with f1 (\) = fo(A\) =

L/T—x

We use the standard notation from [MS1]: In paricular, |.| is a fixed Euclidean
norm, the Lévy median of ||| on S"~! is denoted by m or m (W), the boundary
of W is denoted by bd(W), |N| denotes the cardinality of a finite set IV, and the
letter c is reserved for absolute positive constants.
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2 Upper and lower bounds for the diameter of a
random proportional section

2.1. Let us agree that a property of a random k-dimensional section of the body
K in R is one that holds for all sections K N E with E in a subset £, ; of Gy 1
of measure vy, & (Ln ) > 1 — (", where ¢ = ((£) € (0,1). There is nothing specific
about this choice of the function h in our general statement: we want to examine
more closely the dependence on the other parameters involved in the problem, in
particular the ratio f2(£)/f1(£). Obvious modifications of the arguments given
below lead to various other possible estimates depending on what is of interest in
each case.

The upper bound for diam(K N E) is a well-known consequence of the low
M*-estimate [M2], [PT], [Go]. We give the statement in the spirit of our present
discussion with a brief sketch of the estimates involved in the proof:

Theorem 2.1 Let A € (0,1) and € € (0,1). There exist ng = no(e,A) and ( =
C(e,N\) € (0,1) with the following property: for every symmetric conver body K in
R™, n > ng, we can find a set Ly, C Gy 1, where k = [An], of measure vy, (Ly k) >
1 — (™, such that diam(K N E) < 2r for every E € L, 1, where 1 is the solution of
the equation

M (r) = (1—e)VI—

2
(2=E=1)1/2 "and this implies that for n > ng(e, A) we have

Sketch of the proof: Define a, = v/2I'(231)/I'(£). One can check that 2=~ >

(1= 3)an—k

an(l—e)vy1—-2X\

Suppose that r satisfies the equation MUKOrD) — (1 — g)y/T = . Then, Gordon’s
r
proof of the low M*-estimate [Go, Corollary 3.4] shows that

(2.1) > 1+%-

(]- - %)anfk

2.2 >
(2.2) e 2 anM*(K N rD)

145
|| > Ziz|, v € E
r

for all E in a subset £, of Gy, 1 of measure v, ,(Lpx) > 1 — %exp(—%aiiksz).
Since ||z||knrp = max{||z||x, ||}, this shows that actually

1
(2.3) lalli > ~|al, @ € E,

for every E € L, , and this completes the proof since vy, ;(Lp k) > 1 — ("(g, N)
(observe that a2 _, ~n — k). O

Our lower bound is based on a conditional low M-estimate. We start with the
following geometric lemma:



Lemma 2.2 Let W be a symmetric convex body in R such that W O D. Consider
the function ||.||w on S™~! and denote its median by m. Then, for every R > #
we have

or(W NRS"™) < 1= 0R(B(5 + b)),

where 6y € (0,%) is defined by

sin o = % ([R2 —1]% — [(1/m)? - 1]%) .
Here, or denotes the rotationally invariant probability measure on RS™ 1, while
B(Z +6o) is a cap of angular radius 5 + 6 in RS™ 1.

Proof: Let A =W°N %S "~1 and consider an arbitrary point a on the boundary of
A. We then clearly have that a € bd(W). If H(«a) is any hyperplane that supports
W at a, let § = Pp(q)(0) be the orthogonal projection of the origin o onto H(«).

Assume first that the points o, « and ¢ determine a two-dimensional plane II(«).
Write 3, for the points in II(«) where the lines da and 6@ meet RS™~!. Let also
y > 1 be the distance from o to §. If 8 = B/(;y, p = 0/04\6, and n = (76\6, we have
0 = ¢ —n, therefore sin f = sin p cosn — cos @ sinn, and simple trigonometry shows
that

y [B—y)r  [A/m) —y’2 y

(2.4) sinf = Tm 7 - m i
_my

= 2 (182 =) = [(/m)? = y?)¢).

We easily check that this is an increasing function of y on [1, L], and this shows
that

(2.5) sinf > 7 ([32 — 1] —[(1/m)? - 1]%) = sinf.

If this is not the case, then we actually have that H(«) is uniquely determined and
a = 6. Let v be the point where o meets RS™ !, and for any two-dimensional
plane II(«) containing oa write 8 for the point where the line in II(«) perpendicular

to oo at @ meets RS™1. If § = Bory, we readily see that

(72 — (1/m)]?
R

Observe that, in both cases, H(«) separates the cap B(v,6p) in RS™ ! from W.
Since the points v = y(«), a € bd(A), form the boundary of (Rm).A, we conclude
that W N ((Rm)A)y, =0, where

(2.6) sinf = > sinf.

((Rm)A)g, = {z € RS"' : z € B(x,8p) for some z € (Rm)A}.

On the other hand, by the definition of the median m we have oy/,,(A) > 1 and

b
hence or((Rm)A) > 4. From the isoperimetric inequality on the sphere RS™~!



(see [FLM] or [MS1]) it follows that og(((Rm)A)g,) > or(B(% + 6b)), and this
means that

(2.7) or(WNRS™ 1) <1 —JR(B(g +6)). O

This Lemma shows that if m is close to 1, and if R is chosen suitably large,

then a big part of W stays inside RD. In the next Lemma we make the dependence
on the various parameters more precise in order to extract sections of W of (any)
proportional dimension inside RD:
Lemma 2.3 Let A € (0,1) and k = [An]. There exists ng = no(X) for which the
following holds: If ( < 1 ande < eo(¢,\) = %[%(%)A]%, then for every symmetric
conver body W in R*, n > ng, with W O D and m(W) > 1 — ¢, we can find
Lk C G of measure vy (L p) > 1 —C*, such that

WNEC 5(%)ﬁ2ﬁDmE
for every E € Ly, ..

Proof: We assume from the beginning that e < % Let R = R(C,A) be a function
of ¢ and A to be determined, and define 6y by the equation sinfy = 2 ([R? — 1]% —

[(1/m)? —1]2). This is an increasing function of m, therefore
(1) sinfy > (1 —e)[1 — %]% — %[5(2 — z—:)]% > c1, provided that, say, R > 2.
A computation analogous to the one in (2.4) shows that

(2) cosby < [1— 75]3[1 —m?]? + 2 < 2e + L.

Let J, = Oﬂ/z cos” 2t dt. By Lemma 2.2 we know that

(2.8) or(W N RS™1) < i ; cos" Lt < o (i -5 Cos;_eloeo

and since Jp > ¢2/+/n, we arrive at

(2.9) or(WNRS") < %[\/%+ %]"—1.

Consider now a zz-net N on S¥~1. This can be done with [N| < (1+3R)¥ < [3R]*.
A standard argument shows that if

(2.10) INlor(W NRS"™) < ¢F,

then there exists £, C Gpk with vy, ;(Ln k) > 1 — (¥ such that for every E €
L, there exists a 2-net of £ N RS"~! disjoint from W. This means that if



z € ENRS" !, we can find y € RS"! for which ||y|lw > 1 and |z — y| < 2,

therefore
4 1
lzllw > llgllw = lle = yllw 21 - = = ==z

5
or, equivalently,
(2.11) WNECSRDNE.

For n large enough, our condition on €, A, and R thus becomes:

n—1
(2.12) <\/%+ %) [BR]* < ¢k.
Let p = . Then, (2.10) will be true if
Cip
(2.13) (5)

Choose R = 2T-x %( )1 X, If ¢ < ¢p(¢,\) and if n is large enough (in which case

we may practlcally assume that p = A), then one can easily check that (2.13) is
satisfied. a

Remark 2.4 Observe that our method cannot produce R smaller than ( C) X even
if we are allowed to choose e arbitrarily close to 0 (this follows immediately from
(2.13)). It is not clear if a better argument might give that R(e,(,A) = 1 ase — 0
for every fixed A € (0,1).

Using Lemma 2.3 we can easily prove the following conditional low M -estimate:

Theorem 2.5 Let ( < 1, A € (0,1) and K be a symmetric convex body in R",
n > no(A, ). Find r > 0 for which

M(co(rK UD))=1- A%

Ly

(

N =

[

L =

Then, we can find Ly, xn] C Gp an] With vy (xp](Lpan]) > 1 — ¢ such that

R(A Q)

r

KNEC (5(%)1*211» %(DHE): (DN E),

for every E € Ly [\

Proof: Let W = co(rK U D). From our choice of r we have M(W) = 1 —

(% )A]T%, and since |||l is 1-Lipschitz on S"~! a standard argument from

[M1] (see also [FLM] or [MS1]) shows that for every ¢ € (0,1)

(2.14) o ({y eS| lyllw —m(W) | > 6}) < 4e™0°/2,



which means that

@13 1= gEENEE = [yl otdy) < m(W) + 5 de

therefore, for n > ng (A, ¢) the right choice of § gives
m(W) > 1 —ego((, A).

We now apply Lemma 2.3 for ¢ = g to find £, [xn) € G [an] Of measure vy, (xn) (L, [an)) =
1 — ¢ such that

(2.16) WmEg5§ﬁ%ﬁ%DmE:R@oDnﬂ

for every E € Ly [nn)- Since K C W, the proof is complete. O

If n is large enough, one can choose ¢ almost equal to 1 and still achieve “almost
full measure” for £, [xn). In order to give the flavor of the statement, we rewrite
the low M-estimate given by Theorem 2.5 in a less precise form:

Conditional Low M-estimate: There exist two absolute positive constants ¢ <
1,C > 1 such that if K is a symmetric convex body in R™, n large enough, and if
r > 0 satisfies
1
Mp(r) >1—ct7,
then 20
diam(K° N E) < =Cmx
r
for all X € (0,1) and all E in a subset L, [xn] of Gpan) with vy pan)(Lnang) >
1 — bl ]

Compare with the version of the Low M *-estimate which was used in the proof
of Theorem 2.1:

Low M*-estimate: If K is a symmetric convezx body in R™ and if r > 0 satisfies

1
M;(((T') < 5 1- A;
then

diam(K NE) < 2r
for all X € (0,1) and all E in a subset L, [, of Gy xn) of almost full measure.

We proceed to the lower bound for the diameter of [An]-dimensional sections
of K. Besides Theorem 2.5, our proof is also based on the following application of
Borsuk’s antipodal theorem:

Lemma 2.6 Let K be a symmetric convex body in R™. For every subspace E with
dimE > dimE+ we can find y € bd(Pg(K))NK, where Pg; denotes the orthogonal
projection onto E and bd(Pg(K)) is the boundary of Pr(K).



Proof: Without loss of generality we may assume that K is strictly convex. For
every y € bd(Pg(K)) there exists unique t(y) € bd(K) such that Pg(t(y)) = y.
Define the map 7' : bd(Pg(K)) — E+ with T'(y) = t(y) —y. Then, T is continuous
and antisymmetric, and since dimE > dimE' we can apply Borsuk’s theorem to
find y € bd(Pr(K)) with t(y) = y. m|

Theorem 2.7 below gives a lower bound for the diameter of [An]-dimensional
sections of K, A € (%, 1). Adding this information to Theorem 2.1 which gave upper
bounds in exactly the same spirit, we complete the proof of our General Statement:

Theorem 2.7 Let ( < 1, X\ € (%, 1), and K be a symmetric convex body in R™,
n > no(A, ). Find r > 0 for which

M*(K nrD) 1 ¢,
M* = = ]_ e .
iy = =5
Then, we can find Ly, 1xn) C Gran] With vy (xp](Lyan]) > 1 — (%, such that
1 ¢

. S 1¢
diam(K NE) > 10(3)r

for every E € L, [xn-

Proof: Apply Theorem 2.5 to K° with any Ag > % We can find Ly, [xgn] € G [ron]
With vy, (xen] (La,pron)) > 1 — ¢Poml, for which

R()Ao, ()
r

(2.17) K°NEC DNE

for every E € Ly [njn]- Let E € L, [x,n]- Passing to polars in E we get

Since \g > %, assuming that n > ng(A\o) we have dimE > dimE*. Therefore, we

can apply Lemma 2.6 to find y € bd(Pg(K)) N K. In particular, y € K N E and
ly| > ROG,e Which means that

. 2r

For n large enough, we can assume that (2.19) is true with Ao = 1, which gives the
theorem in the special case of A\ = % Now, let A > %, and define

Ly an] = {F € Gn[an) ¢ thereis E € Ln,[%]-ﬁ-l with E < F'}.

Claim: Vn,[An] ('Cn,[)\n]) > Vn,[2]+1 (ﬁn,[%]—i-l)

[This is a general fact: Fix Ey C Fp, with dimEy = [3] + 1 and dimFp = [An].
By the definition of L, [y, if for some T' € O, we have T'Ey € L, =41, then
TFy € Ly, [an)- It follows that

(220) Vn,[An] (‘cn,[)\n]) =M (T €0, : Tk € ﬁm[)\n])

10



> 1 (T €O : TEy € Logg)i1) = Vngz111(Lngzpe) > 1= CF. ]

On the other hand, it is clear that if F' € £, [xn], then for some E C F'in £, (2141
we have

)T,

which completes the proof. |

(2.21) diam(K N F) > diam(K N E) > 1%(

[PUIR

2.2. An example on the behavior of Mj},. To show that M}, may behave in
a quite irregular way, we study the behavior of the function M3 (r) = 2 M*(ENrD)

for an ellipsoid with highly incomparable semiaxes. Let ¢ € (0,1) beTa very small

positive number, and define
n
E = {:II = (.’L'l,...,.’L'n) € R": 2821.’1,'% S ]_}
i=1

Given any 7 > 0, one easily checks that £ NrD is v/2-isomorphic to the ellipsoid

n

E'(ry={zeR": Z(z—:% + %)xf <1}

i=1

(2.22) F(r) = % l% Z ——

where 3;(r) = 1/(r?c2" + 1). We shall estimate F(e7%), k =1,2,...,n:

(1) If i <k, then 0 < B;(e™F) < &2,

(2) If i = k, then S;(e7%) = 1.

(3) If i > k, then (1+¢2)~! < B;i(e7F) < 1.
Z?n

B

It follows that e.g for all k € [,

1 1 . 2 1 .
2.2 S — — <Py <S4 — 4%
(2.23) 3+2n e < F=(e )_3+2n+z—:

Since M*(ENrD) < Mjy(ENrD) < 2M*(ENrD), M}, satisfies the inequality
%F(r) < M3 (r) < V/2F(r), and this shows that if ¢ is small enough then for every

pair of k,1 € [%,22] we have Mj;(*)/M}(e™") < c for some absolute constant ¢ >

0. It follows that for some k € [, 2%] we must have Mj (e %) /My (e F71) < ci/n,
where ¢; is some other absolute constant. Hence, if n is large and if ¢ is too small,

11



we can have ry,ry with 71 /7y arbitrarily large and M5, (r1)/Mf(r2) arbitrarily close
to 1. Note that this happens in the “interesting” interval of the range of M.

2.3. Diameter of the sections of a body in M-position. It is well-known
that every symmetric convex body can be put in a “regular” position by means
of a linear transformation [M3]. We use this result in the formulation of Pisier
[Pi]: For every @ > i any body K has a linear image K which is a-regular: If
P = (IK|/|D|)* is the volume radius of K, and if N(U, V) denotes the covering
number of U by V i.e the minimal cardinality of a set {z1,...,2nx} C U for which

U C Ujen(@i +V), then

(2.24) max{[N (K, tpeD)]", [N (peD, {K)]* } < cexp(ci (a)t™=)

for every ¢t > 1, where ¢ > 0 is an absolute constant and ¢; () is a positive constant
depending only on a.

Moreover, it can be proved that for every K there exists a linear image K such
that both K and K~ (as well as any orthogonal images of them) are a-regular. Also,
if r1,72 > 0 and W = co((K NryD) U7y D), then both W and W are a-regular
with some possibly different (but independent from r; and r2) constants ¢, ¢/ ().

Assume that K is a-regular in the strong sense defined above and consider any
A € (3,1). Apply Theorem 2.1 with e = % to find r > 0 for which M} (r) =
V1 —X. Then, for most [An]-dimensional subspaces E of R" (most in the sense
of §2.1) we have

(2.25) diam(K N E) < 2r.
Set K1 = (K NrD)°. Then, M(K;) = 1v/1—Ar and ||z k, < r|z| for every
x € R*. By [BLM] we can find orthogonal transformations u, ..., us with s < ;%5
such that

1 1 1< o 1
(2.26) Z(l—/\)ngEZui(Kl)g(l—)\)zrD.

i=1

Since K7 is also a-regular, the inverse Brunn-Minkowski inequality [M3], [Pi] shows

that
IS0
r < coa)s® ( L ) .
1D

=

(2.27) (1-2)

1
4
Now choose R > 0 for which M*(K; NRD) = R/2v/2. Applying Theorem 2.1 once

more (this time for A = 1), we see that for most ([2] + 1)-dimensional subspaces F
of R® we have

(2.28) diam(K; N F) < 2R,

12



and repeating the argument above we see that

! IKmRD|> <|K1|>i
2.29 —R< —_— < — .
(229 vartse (P <o (i

Multiplying (2.27) and (2.29), and making use of the Blaschke-Santal6 inequality
and of the estimate on s, we obtain

3=

(2.30) rR< Al
(1—-XN)tz

From (2.28), taking polars in F' we have Pp(K) D Pp(K NrD) 2 £DNF, and
applying Borsuk’s theorem as in Theorem 2.7 we see that diam(K N F) > £ (we
assume that n is large enough). Exactly the same lower bound is true for most
[An]-dimensional subspaces, A € (%, 1). Thus, we have proved the following:

Theorem 2.8 Let \ € (%, 1), a> %, and K be an a-reqular symmetric convex

body in R, n > no(\). Find r > 0 for which

M(r) = LEOD) Ly

Then, for most [An]-dimensional subspaces E of R we have
diam(K N E) € [2¢(a)(1 — A)*t 37, 27],

where c(a) > 0 is a constant depending only on «. O
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