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Illuminating 1-unconditional convex bodies in R3 and

R4, and certain cases in higher dimensions

Wen Rui Sun and Beatrice-Helen Vritsiou

Abstract

We settle the Hadwiger-Boltyanski Illumination Conjecture for all 1-unconditional convex
bodies in R3 and in R4. Moreover, we settle the conjecture for those higher-dimensional
1-unconditional convex bodies which have at least one coordinate hyperplane projection
equal to the corresponding projection of the circumscribing rectangular box. Finally, we
confirm the conjectured equality cases of the Illumination Conjecture within the subclass
of 1-unconditional bodies which, just like the cube [−1, 1]n, have no extreme points on
coordinate subspaces.

Our methods are combinatorial, and the illuminating sets that we use consist primarily
of small perturbations of the standard basis vectors. In particular, we build on ideas and
constructions from [39], and mainly on the notion of deep illumination introduced there.

1 Introduction

This paper is a direct continuation of [39]: building on the approach there, which allowed us
to come up with a uniform way of illuminating 1-symmetric convex bodies of all dimensions in
accordance to what the Illumination Conjecture stipulates, we extend this to certain cases of
1-unconditional convex bodies.

Let K be a convex body in the Euclidean space Rn, that is, a convex, compact set with
non-empty interior. Given a boundary point x of K and a non-zero vector d ∈ Rn (a direction),
we say that d illuminates x if there exists ε > 0 such that x + εd ∈ intK. A set of directions
D = {d1, d2, . . . , dM} such that, for each boundary point x of K, there is at least one di ∈ D
which illuminates x, will be called an illuminating set for K. The smallest cardinality of an
illuminating set for K is called the illumination number of K, and we denote it by I(K).

This definition of illumination is due to Boltyanski [10]. There is also an equivalent definition
by Hadwiger [25], where we illuminate using point ‘light sources’ placed outside K (and all rays
emanating from them towards the boundary of K, which meet the boundary and then cross
into the interior of K); it can be shown that both definitions lead to the same number for a
fixed body K.

Moreover, we have that, for any convex body K, I(K) = N(K, intK), where the latter
stands for the covering number of K by intK (that is, the smallest number of translates of
intK whose union contains K). Thus the Illumination Conjecture, which we formulate right
below, is equivalent to Hadwiger’s Covering Problem. Finally, there is yet another equivalent
formulation by Gohberg and Markus [23], where we cover K by smaller homothetic copies of it.

Hadwiger’s Covering Problem/The Hadwiger-Boltyanski Illumination Conjecture.
For every convex body K in Rn, we should have I(K) = N(K, intK) ≤ 2n.

Furthermore, the inequality should be strict, except in the case of the cube and of its affine
images (parallelepipeds) in Rn.

Keywords: illumination, symmetries of the cube, covering number, X-ray number, deep illumination
2020 Mathematics Subject Classification: 52A40, 52A37 (Primary); 52A20, 52C07 (Secondary)

1

http://arxiv.org/abs/2407.11331v1


An excellent reference on the history of these conjectures, and of related problems, and on
progress up to recent years is the survey [6]. We also refer to the monographs [4, 14] and the
surveys [3, 12, 33].

Levi in 1955 [30] fully settled the problem of bounding N(K, intK) for planar convex bodies
(showing that N(K, intK) = 3 for K ⊂ R2, except if K is a parallelogram, in which case
N(K, intK) = 4). Motivated by that, in 1957 Hadwiger [24] posed the analogous question in
higher dimensions. Still, aside from Levi’s solution in R2, in all other dimensions the general
problem is still open. In dimension 3 Lassak [28] has shown that, if K is centrally symmetric
(that is, K − x = x − K for some x ∈ R3), then I(K) ≤ 8. In other words, short of the
equality cases, the conjecture in R3 is settled for symmetric convex bodies, but it remains open
for the not-necessarily symmetric case, with the best bound being 14 (due to Prymak [35]). We
also refer to a very recent paper by Arman, Bondarenko and Prymak [1], where the reader can
find all the progress to date and the most recent improvements on the bounds for other low
dimensions.

A longstanding general upper bound (which remains the best known when specialised to the
symmetric case) was already given in 1964 by Erdös and Rogers [20]:

I(K) = N(K, intK) ≤ vol(K −K)

vol(K)
θ(K) ≤ vol(K −K)

vol(K)
n
(
lnn+ ln lnn+ 5

)

where θ(K) is the asymptotic lower density of the most economical covering of Rn by copies
(translates) of K. Erdös and Rogers adapted an earlier proof by Rogers [36] which was giving
the first polynomial-order, and essentially best known to date, bound on θ(K). Combining this
with the Rogers-Shephard inequality [37], one is led to the bound I(K) ≤ C4n

√
n lnn for every

convex body K ⊂ Rn, where C is an absolute constant (moreover, in the symmetric case one
gets I(K) ≤ C ′2nn lnn). More recently, subexponential improvements to this general upper
bound were given in [26], [18] and [21], with the latter two papers attaining almost exponential
improvements. The main novelty in these three papers is the use of results from Asymptotic
Convex Geometry on the concentration of volume in high-dimensional convex bodies. Note
however that neither the initial approach in [26], nor the more recent refinements, can contribute
anything to the bound in the symmetric case, which would be the most relevant one for both
this paper and [39].

The Illumination Conjecture has been fully settled for certain special classes of convex
bodies. Again, we refer the reader to the survey [6] for a comprehensive list of references up to
2016. Just as examples, we mention that:

• Levi also showed in [30] that I(Q) = n+ 1 for all smooth convex bodies Q in Rn.

• Martini [32] settled the conjecture for the class of belt polytopes (which contains the
zonotopes). This was later extended by Boltyanski and Soltan [15, 16] to zonoids, and by
Boltyanski [11] to belt bodies (see also [13]).

• The conjecture is fully settled for convex bodies of constant width. For dimensions n ≥ 16,
this is due to Schramm [38]. For the remaining dimensions we have: [29], [41] (see also [8,
Section 11]) dealing with n = 3, [7] dealing with n = 4, and [17] dealing with 5 ≤ n ≤ 15.

• Tikhomirov [40] settled the conjecture for 1-symmetric convex bodies of sufficiently large
dimension (1-symmetric means that the body is invariant under reflections about coordi-
nate subspaces and under any permutation of the coordinates). His result was the main
motivation for [39], where the authors gave an alternative approach which also allows one
to deal with 1-symmetric bodies in low dimensions.
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• Bezdek, Ivanov and Strachan [5] confirmed the conjecture for centrally symmetric cap
bodies in dimensions n = 3 (see also [27]), n = 4, and n ≥ 20. They further showed that,
if the cap body is 1-unconditional (we recall the definition below), then the Illumination
Conjecture holds in all dimensions (and in that case I(K) ≤ 4n once n ≥ 5).

• Gao, Martini, Wu and Zhang [22] verified the conjecture for polytopes which arise as the
convex hull of the Minkowski sum of a finite subset of the lattice Zn and of the unit-volume
cube

[
−1

2 ,
1
2

]n
.

• Finally, Livshyts and Tikhomirov [31] settled the conjecture for convex bodies in suffi-
ciently small neighbourhoods of the cube (with respect to either the geometric or the
Hausdorff distance). Given that I(K) = N(K, intK) is an upper semicontinuous quan-
tity (see e.g. [34]), the bound 2n can already be deduced for bodies sufficiently close to
[−1, 1]n, so their result is about settling the equality cases (and indeed they show that,
if dist(K, [−1, 1]n) is small enough, and K is not a parallelepiped, then 2n − 1 is a sharp
upper bound for I(K)).

Recall that a convex bodyK in Rn is called 1-unconditional if it is invariant under reflections
about coordinate subspaces. Equivalently if

x = (x1, x2, . . . , xn) ∈ K implies that (ǫ1x1, ǫ2x2, . . . , ǫnxn) ∈ K
for any choice of signs ǫi ∈ {±1}, 1 ≤ i ≤ n.

Relevant results that would apply to this class are the following, which however only deal with
3-dimensional convex bodies. Lassak [28] showed that I(K) ≤ 8 for every centrally symmetric
convex body K in R3 (equivalently, for every origin-symmetric K, that is, such that K = −K).
Moreover, he showed this while using illuminating sets formed by 4 pairs of opposite directions
(and posed the question whether this is possible to do in higher dimensions as well, if K = −K).

Bezdek [2] showed that I(P ) ≤ 8 for any polytope in R3 which has a non-trivial affine
symmetry. Finally Dekster [19] obtained the same bound for any convex body K in R3 which
is symmetric about a plane.

The main results of this paper are the following. Note that, given a convex body K, we
will denote by dim(K) the dimension of the ambient Euclidean space. Moreover, assuming the
dimension n is clear from the context, we write 1 = e1 + e2 + · · · + en, where ei, 1 ≤ i ≤ n are
the standard basis vectors in Rn.

Theorem 1. Let K be a 1-unconditional convex body in R3 or R4, and assume that K is not
a parallelepiped. Then I(K) ≤ 2dim(K) − 2.

Moreover, we can use illuminating sets of this cardinality which consist of pairs of opposite
directions.

Observe that, because of Lassak’s and Dekster’s results, the part of the above theorem which
concerns dimension 3 is only novel in that we also settle the equality cases.

Theorem 2. Let n ≥ 3, and let K be a 1-unconditional convex body in Rn. Assume without
loss of generality that ei ∈ ∂K for all 1 ≤ i ≤ n (see the next section on why this is WLOG).

In addition, suppose that there exists at least one i0 ∈ {1, 2, . . . , n} such that the vector
1− ei0 ∈ ∂K (in other words, K contains at least one unit subcube of dimension n− 1). Then,
if K is not a parallelepiped, we will have that I(K) ≤ 2n − 2.

Moreover, we can use illuminating sets of this cardinality which consist of pairs of opposite
directions.

Similar to Theorem 2, we also have the following
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Proposition 3. Let n ≥ 4, and let K be a 1-unconditional convex body in Rn such that ei ∈ ∂K
for all 1 ≤ i ≤ n.

Assume that for all 1 ≤ i < j ≤ n we have that 1−ei−ej ∈ ∂K (in other words, K contains
all possible unit subcubes of dimension n− 2). Then, if K is not a parallelepiped, we will have
that I(K) ≤ 2n − 2.

Moreover, we can use illuminating sets of this cardinality which consist of pairs of opposite
directions.

Corollary 4. Let K be a 1-unconditional convex body satisfying any of the assumptions of
Theorems 1 and 2 or of Proposition 3.

Then, given that we can illuminate K using no more than 2dim(K)−1 pairs of opposite direc-
tions, we can conclude that K also satisfies the Bezdek-Zamfirescu X-ray conjecture, and that
its X-ray number X(K) ≤ 2dim(K).

For details on this latter conjecture, see e.g. [9] and [7].

The final main result of this paper is the following

Theorem 5. Let n ≥ 3, and let K be a 1-unconditional convex body in Rn with the following
property:

if x is an extreme point of K, then xi 6= 0 for all 1 ≤ i ≤ n. (†)
Then, if K is not a parallelepiped, we will have that I(K) ≤ 2n − 2.

Moreover, we can use illuminating sets of this cardinality which consist of pairs of opposite
directions.

Remark 6. ln this paper, 1-unconditional convex bodies which have Property (†) will be called
cubelike.

As we will recall in the next section, such convex bodies in Rn can be illuminated by 2n

directions (and in fact, they can be illuminated by any illuminating set of the cube in Rn).
Hence, this last theorem is about settling equality cases in this subclass of bodies.

We will also see that its proof relies on an inductive process, which however on its own can
only recover the bound 2n; it’s a combination of this inductive process and Theorem 2 that
finally allows us to obtain the claimed result.

The rest of the paper is organised as follows. For most of the 3-dimensional cases of Theorem
1, a proof (or a proof sketch) is given in Section 3. The remaining cases are also special cases
of Theorem 2: all cases of this theorem, broken down into separate propositions, are proved in
Section 4. The proof of Proposition 3 is also found at the end of this section. In Section 5 we
establish Theorem 5. Finally, the still unsettled 4-dimensional cases of Theorem 1, which do
not already follow as special cases of Theorem 2 and of Proposition 3, are handled in Section 6.

Acknowledgements. Part of writing up the final version of this paper was done while the
two authors were in residence at the Hausdorff Research Institute for Mathematics for the pro-
gramme “Synergies between modern probability, geometric analysis and stochastic geometry”.
The authors are grateful to the institute and the organisers for the hospitality and the excellent
working conditions. The second-named author is partially supported by an NSERC Discovery
Grant.

2 Preliminary results

We write [n] for the set {1, 2, . . . , n}, and e1, e2, . . . , en for the standard basis vectors of Rn.
For any vector x ∈ Rn, we will denote by Zx the set {i ∈ [n] : xi = 0}. Also, we will write

∣∣~x
∣∣
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for the vector
∑

i∈[n] |xi| ei, namely the coordinate reflection of x which has only non-negative
coordinates.

Given a subset A of Rn, we will denote its interior and its boundary by intA and by bdA
or ∂A respectively. Recall that if A is a non-empty convex set, then its affine hull

aff(A) :=
{
µ1a1 + µ2a2 + · · ·+ µℓaℓ : ℓ > 1, ai ∈ A and µi ∈ R with µ1 + µ2 + · · ·+ µℓ = 1

}

coincides with the smallest affine subspace of Rn which contains A, and that, in the subspace
topology on aff(A), A has non-empty interior. We call this the relative interior of A and denote
it by relintA. Moreover, we call A\relintA the relative boundary of A, and denote it by relbdA.

As already mentioned, a convex body K in Rn is a convex set of Rn which is compact and
has non-empty interior. If K is also origin-symmetric, that is, K = −K, then K is the unit ball
of a certain norm on Rn, which is given by x ∈ Rn 7→ ‖x‖K := inf{t > 0 : x ∈ tK}.

Recall that the illumination number of any convex body is an affine invariant: namely
I(K) = I(TK + z) for any invertible linear transformation T ∈ GL(n) and any (translation)
vector z.

Therefore, without loss of generality, we can assume that all the 1-unconditional convex
bodies B ⊂ Rn which we consider satisfy ei ∈ ∂B for all i ∈ [n], or equivalently that ‖ei‖B = 1
for all i ∈ [n] (this is possible because, if B does not already have this property, it suffices
to multiply it by the diagonal matrix diag

(
‖e1‖−1

B
, ‖e2‖−1

B
, . . . , ‖en‖−1

B

)
). We will denote this

subclass of n-dimensional 1-unconditional convex bodies by Un.

Finally, we should mention the following fact about illumination (which we will often use in
the sequel).

Fact A. If a set D of directions illuminates all extreme points of a convex body K, then D
illuminates K.

We recall [39, Lemma 1, Corollary 2 and Remark 3] and [39, Lemma 6 and Corollary 7]
(they are now Lemma 7, Corollary 8, Remark 9, Lemma 10 and Corollary 11 respectively).
Their proofs are standard, and are already given in [39], so we will not repeat them here.

Lemma 7. Let B be a 1-unconditional convex body in Rn. Suppose that x is a point in B, and
that y ∈ Rn satisfies:

for all i ∈ [n], |yi| ≤ |xi|.

Then y ∈ B as well.

Moreover, if we have that

for all i ∈ [n], |yi| < |xi| or |yi| = |xi| = 0,

then y ∈ intB.

Corollary 8. Let B be a 1-unconditional convex body in Rn, and let x ∈ ∂B. Then x is
illuminated by any direction d ∈ Rn which satisfies

Zd = Zx, and di · xi < 0 for all i ∈ [n] \ Zx

(recall that Zx is the set of indices in [n] which correspond to the zero coordinates of x).

In particular, B is illuminated by the set {−1, 0, 1}n \ {~0}. Furthermore, if B is cubelike
(namely if it has Property (†) from Theorem 5), then B can be illuminated by the set {−1, 1}n
(here we also rely on Fact A).
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Remark 9. If B is a 1-unconditional convex body in Rn, and x ∈ B, then, by Lemma 7, we
also have that |xi|ei ∈ B for all i ∈ [n].

Thus, if B ∈ Un, then ‖x‖∞ := max
i∈[n]

|xi| ≤ 1. In other words, B ⊆ [−1, 1]n.

Lemma 10. Let K be a convex body in Rn, and let H be an affine subspace of Rn. Suppose
that (intK) ∩H 6= ∅. Then

relint(K ∩H) = (intK) ∩H and relbd(K ∩H) = (∂K) ∩H.

Corollary 11. Given the same general assumptions as in Lemma 10, consider p ∈ relbd(K∩H),
and a non-zero vector d′ in the linear subspace H − p 6 Rn such that p + εd′ ∈ relint(K ∩H)
for some ε > 0. Then p+ εd′ ∈ intK.

In other words, if p is (K ∩ H)-illuminated by d′, within H = aff(K ∩ H), then it is also
K-illuminated by d′, viewed within Rn now.

In the sequel, we will also need the following

Lemma 12. Let K be a convex body in Rn, let x0 ∈ ∂K, and let d0 be a direction in Rn which
illuminates x0.

(a) We can find ρ > 0 such that, if d′ ∈ Rn \ {~0} satisfies ‖d0 − d′‖∞ < ρ, then d′ also
illuminates x.

(b) We can find τ > 0 such that, for every y ∈ ∂K which satisfies ‖x− y‖∞ < τ , we will have
that the direction d0 illuminates y as well.

Proof. Fix ε0 > 0 such that x0 + ε0d0 ∈ intK. Then we can find η0 > 0 such that

{
z ∈ Rn : ‖(x0 + ε0d0)− z‖∞ < η0

}
⊆ intK.

Now, set ρ = 1
ε0
η0, and consider d′ ∈ Rn \ {0} such that ‖d0 − d′‖∞ < ρ. For z0 = x0 + ε0d

′, we
will have ∥∥(x0 + ε0d0)− z0

∥∥
∞

= ‖ε0(d0 − d′)‖∞ = ε0‖d0 − d′‖∞ < η0,

which shows that z0 = x0+ε0d
′ ∈ intK. In other words, d′ illuminates x0 too, which completes

the proof of part (a).

Similarly, set τ = η0. Suppose that y ∈ ∂K and satisfies ‖x0 − y‖∞ < τ . Then, for
z1 = y + ε0d0, we have ∥∥(x0 + ε0d0)− z1

∥∥
∞

= ‖x0 − y‖∞ < η0,

and hence z1 = y + ε0d0 ∈ intK. In other words, d0 illuminates the boundary point y too,
which shows part (b).

2.1 A brief review of tools from [39]: illuminating 1-symmetric convex bodies
in all dimensions

Recall that 1-symmetric convex bodies are a subclass of 1-unconditional convex bodies: a body
B ⊂ Rn is called 1-symmetric if

x = (x1, x2, . . . , xn) ∈ K implies that (ǫ1xσ(1), ǫ2xσ(2), . . . , ǫnxσ(n)) ∈ K
for any choice of signs ǫi ∈ {±1}, 1 6 i 6 n, and any permutation σ on [n].
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In [39] we dealt with illuminating 1-symmetric convex bodies in all dimensions, and for this
purpose we introduced the notion of deep illumination: given δ ∈ (0, 1), consider the set

Gn(δ) :=



d ∈ Rn : ∃ i ∈ [n] such that d = ±ei +

∑

j∈[n]\{i}

±δej



 , (1)

of directions in Rn. A direction d ∈ Gn(δ) is said to deep illuminate a non-zero vector x ∈ Rn if
(i) sign(xi) = − sign(di) for every i ∈ [n]\Zx and (ii) 1 = ‖d‖∞ = |dj| for an index j ∈ [n]\Zx.
A subset S of Gn(δ) is said to deep illuminate a subset A of Rn \ {0} if every y ∈ A is deep
illuminated by some dy ∈ S.

Subsequently we showed that there exists a smaller subset In(δ) of Gn(δ) with cardinality
2n which still deep illuminates every non-zero vector in Rn. We gave two explicit constructions,
a more geometric one, and a purely combinatorial and recursive one.

In this paper, when we write In(δ), we will exclusively refer to the 2nd type of construction,
which we recall below. This is partly because it will be easier to define/describe variations of
this set, which, as we can then show, we can use as illuminating sets in different settings.

Reminder 13. (Construction of In(δ) from [39])
(i) Check that I2(δ) :=

{
±(1, δ), ±(δ,−1)

}
deep illuminates every non-zero vector in R2.

(ii) Construct In+1(δ) from In(δ) as follows: out of the 2n+1 directions that In+1(δ) will have
in the end, the first 2n are formed by appending to each direction dn

s of In(δ) one more ‘small’
coordinate at the end, so that this new coordinate will have the same sign as the last coordinate
of dn

s ; that is,
dn+1
s :=

(
dn
s , sign(d

n
s,n)δ

)
.

At the same time, this direction dn
s allows us to also define one of the remaining 2n directions

for In+1(δ), which we will denote by dn+1
2n+s: the sign of each of the first n coordinates of dn+1

2n+s

will be the same as for the respective coordinate of dn
s , while the last coordinate of dn+1

2n+s will
be equal to 1 in absolute value and will have opposite sign to the previous coordinate, the n-th
one. That is,

dn+1
2n+s :=

(
δ ·

(
sign(dn

s,1), sign(d
n
s,2), . . . , sign(d

n
s,n−1), sign(d

n
s,n)

)
, −− sign(dn

s,n)
)
.

Given this construction, we can inductively check that In(δ) deep illuminates Rn.

If we consider a 1-symmetric convex body B in Rn and x ∈ ∂B, it is not hard to check that,
if a direction d ∈ Gn( 1

n+1 ) deep illuminates the vector x, then x + εd ∈ intB for some ε > 0

(see [39, Lemma 11]). Thus, B is illuminated by both the set Gn( 1
n+1) and by its smaller subset

In( 1
n+1) (since each of these sets deep illuminates all the boundary points of B).

Moreover, by examining more carefully

1. which directions are included in the set In( 1
n+1 ) when it is constructed as above, and

2. in which other cases deep illumination is guaranteed to imply illumination,

we could establish the following

Theorem 14. ([39, Theorem 23]) Let n ≥ 3, and let B be a 1-symmetric convex body in Rn

which is not affinely equivalent to the cube. WLOG assume that B ∈ Un. Then we can find a
minimal αB > 1 such that B ⊂ [−1, 1]n ⊂ αBB.
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We can illuminate B using the set

[
In

(
1

n+1

)
\
{
±
(
+1,+ 1

n+1 ,+
1

n+1 , . . . ,+
1

n+1 ,+
1

n+1 ,+
1

n+1

)
,

±
(
+ 1

n+1 ,+
1

n+1 ,+
1

n+1 , . . . ,+
1

n+1 ,−−
1

n+ 1
,+1

)}]

⋃ {
±
(
+1,+ 1

n+1 ,+
1

n+1 , . . . ,+
1

n+1 , η, +
1

n+1

)}

for some η ∈ (0, 1
n+1) (which will only depend on how close αB is to 1).

One of the main ingredients in the proof of this theorem is the following

Fact B. ([39, Lemma 24]) The following subset of In(δ) (δ ∈ (0, 1)):

In
−2(δ) := In(δ) \

{
±(+δ,+δ, . . . ,+δ,+δ, −−δ, +1)

}
(2)

deep illuminates every vector x ∈ Rn \{~0} which has at least one zero coordinate, that is, every
vector x with 1 ≤ |Zx| ≤ n− 1.

A further observation that we will need here is the following: if B is 1-symmetric and in Un,
and moreover

1− ei ∈ B

for all i ∈ [n], while 1 /∈ B, then B can more simply be illuminated by the set In
−2(δ) directly,

with δ ∈ (0, 1) only depending on ‖1‖B.
As we will see (Proposition 20), this can be extended to 1-unconditional convex bodies with

the same properties (note that these don’t necessarily have to be 1-symmetric too, because for
example we could have B contain some points of the form 1− 1

2ei, say, but not for all i ∈ [n],
and this wouldn’t violate 1-unconditionality, but it would break 1-symmetry).

3 1-unconditional convex bodies in R3

Observe that if B ∈ U3 is NOT affinely equivalent to the cube, then, by our convention, ei ∈ ∂B
for all i ∈ [3], while 1 = e1 + e2 + e3 /∈ B. Thus we can separate the different 3-dimensional
cases of Theorem 1 into four groups, based on whether any coordinate permutations of e1 + e2
are contained in B, and if yes, how many (equivalently, based on whether B contains any unit
squares (2-dimensional subcubes), and how many).

We summarise the conclusions for each of these groups of cases in the following theorem (the
numerical subscripts correspond to the numbering of the proposition(s) where each illuminating
set appears).

Theorem 15. Let B ∈ U3 which is not a parallelepiped. Then B is illuminated by a coordinate
permutation of one of the following sets:

F16,17,δ :=
{
±(1, δ, 0), ±(−δ, 1, 0), ±(0, 0, 1)

} cases with no unit squares
or one unit square

or

F1
18,δ1

:=
{
±(δ1, δ1, 1),±(δ1, δ1,−1),±(−δ1, 1, 0)

}

or F2
18,ǫ2,δǫ2

:=
{
± (ǫ2, 1, 1),±(−δǫ2 , 1, δǫ2),±(−δǫ2 ,−δǫ2 , 1)

} cases with two unit squares
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or

F20,δ :=
{
±(1, δ, δ),±(δ,−1,−δ),±(δ, δ,−1)

}
cases with three unit squares,

where the relevant parameter(s) δ, δ1, ǫ2, δǫ2 > 0 should also be chosen based on B (in explicit
ways, as we will see).

The theorem will follow from the proofs of Propositions 16 and 17, of Proposition 18, which
is treated as a special case of Proposition 29, and of Proposition 20. We will use the following
terminology for the last two cases mentioned here: they concern bodies B ∈ U3 which contain
exactly two maximal unit subcubes, or all possible maximal unit subcubes, respectively (where
‘subcube’ implies proper inclusion here, and where ‘maximality’ is in terms of dimension). We
treat these cases in the next section, in Propositions 29 and 20, proving the analogous results
in an arbitrary dimension n ≥ 3.

Proposition 16. Let B ∈ U3 and suppose

‖ei + ej‖B > 1 for every i, j ∈ [3]. (∗)

Then there exists δ > 0 so that B can be illuminated by some coordinate permutation of the set

F16,17,δ :=
{
±(1, δ, 0), ±(−δ, 1, 0), ±(0, 0, 1)

}
.

Proof. For every i ∈ [3] and for every j ∈ [3]\{i}, set ai,j to be the supremum of non-negative
numbers xj such that

ei + xjej ∈ B

(note that the set of such numbers is nonempty as xj = 0 belongs to it). Observe that by
compactness the vector ei + ai,jej is also in B, and so are all its coordinate reflections. By
assumption (∗), we have ai,j < 1 for all i ∈ [3] and for every j ∈ [3]\{i}.

Let ai0,j0 be the maximum of these numbers (not necessarily unique). For the rest of the

proof, WLOG, we assume that {i0, j0} = {1, 2}. We fix some δ <
1−ai0,j0

2 and consider the
corresponding set F16,17,δ.

Consider a boundary point y = (y1, y2, y3) of B. We will show how to illuminate y based on
the number |Zy| of zero coordinates of y.

• If |Zy| = 2, then necessarily y = es for some s ∈ [3]. If y = ±e3, then ∓e3 from F16,17,δ
illuminates y. If y = ±e1, say y = e1, then y + (−1,−δ, 0) = (0,−δ, 0) ∈ intB given that
δ ∈ (0, 1). Similarly we deal with y = −e1 or y = ±e2.

• Assume now that |Zy| = 1.

– Suppose first that y = (y1, y2, 0). Then we choose the direction dy in F16,17,δ which
has 1st and 2nd entries non-zero and with opposite signs to the corresponding entries
of y. Clearly y + ǫdy ∈ intB for ǫ ∈ (0,min(|y1|, |y2|)) (recall Corollary 8).

– If y = (y1, 0,±1) or (0, y2,±1), we use the directions ∓e3 (since by our assumptions
we must have |y1| < 1 or |y2| < 1 in these cases). We can use the same directions if
y = (y1, 0, y3) or (0, y2, y3) with yi representing numbers in (−1, 1) \ {0} here.
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– Finally, suppose that y is a boundary point of the form (1, 0, y3). Then

(1, 0, y3) + (−1,−δ, 0) = (0,−δ, y3).

Based on our notation, and because of the 1-unconditionality, we have |y3| ≤ a1,3 ≤
ai0,j0 < 1. By convexity the vector

1−ai0,j0
2 e2 +

1+ai0,j0
2 e3

is inB. Moreover, it has strictly larger 2nd and 3rd entries in absolute value compared
to (1, 0, y3) + (−1,−δ, 0), thus, by Lemma 7, the latter vector is in intB.

– Analogously to the last subcase, we deal with points of the form (−1, 0, y3) and
(0,±1, y3).

• Finally we consider a boundary point y with |Zy| = 0.

– If |y3| < 1, we can choose the direction dy in F16,17,δ which has 1st and 2nd entries
non-zero and with opposite signs to the corresponding entries of y, and then employ
Corollaries 8 and 11.

– In the opposite case we have y = (y1, y2,±1); say, for illustration purposes, y3 = 1.
Note that, by the 1-unconditionality, the points (|y1|, 0, 1) and (0, |y2|, 1) are in B,
thus |y1| ≤ a3,1 ≤ ai0,j0 and |y2| ≤ a3,2 ≤ ai0,j0 . Hence, (y1, y2, 1) + (0, 0,−1) =
(y1, y2, 0) and at least one of the following holds: |y1| < 1 and |y2| ≤ a1,2 < 1, or
|y2| < 1 and |y1| ≤ a2,1 < 1. Thus, regardless of whether (i0, j0) = (1, 2) or (2, 1), we
can use Lemmas 7 and 10 (with B ∩ {ξ ∈ R3 : ξ2 = y2} or B ∩ {ξ ∈ R3 : ξ1 = y1},
respectively) to conclude that (y1, y2, 0) = y + (0, 0,−1) ∈ intB.

In cases where {i0, j0} 6= {1, 2} (that is, if neither a1,2 nor a2,1 is the maximum of the
numbers we defined above), we set t0 for the remaining element of [3] and consider the linear
map/coordinate permutation

ι : R3 → R3, xi0ei0 + xj0ej0 + xt0et0 7→ (xi0 , xj0 , xt0).

Then ι(B) is illuminated by F16,17,δ as above, and thus B is illuminated by ι−1(F16,17,δ).

Note that in the previous proposition we did not have to add the assumption that B is not
an affine image of the cube: this is in fact implied from the other assumptions (namely that B
is in U3 and does not contain any unit squares), which were enough to verify that B can be
illuminated by (at most) 6 directions.

The same happens in the next proposition.

Proposition 17. Let B ∈ U3 and suppose that there is exactly one pair of indices i1, i2 ∈ [3]
such that ‖ei1 + ei2‖B = 1. Then there exists δ > 0 so that B can be illuminated by some
coordinate permutation of the set

F16,17,δ :=
{
±(1, δ, 0), ±(−δ, 1, 0), ±(0, 0, 1)

}
.

Proof. Let us assume WLOG that (1, 1, 0) ∈ B. Moreover, let a1, a2 ≥ 0 be maximum possible
such that (1, 0, a1) and (0, 1, a2) ∈ B (by our main assumption we have that a1, a2 ∈ [0, 1)).
WLOG we can assume that a1 ≥ a2.

Here we distinguish three main cases for boundary points y = (y1, y2, y3) of B: (i) |Zy| ≥ 1
and |y3| < 1, (ii) |Zy| = 0 and |y3| < 1, and (iii) |y3| = 1. We start with the following key
observation.
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� We can choose δ1 > 0 small enough so that the directions ±(1, δ, 0) will illuminate both
the point (1, 0, a1) and all its coordinate reflections whenever δ ≤ δ1. Indeed, we have e.g.
that (1, 0, a1) + (−1,−δ, 0) = (0,−δ, a1) = −δe2 + a1e3 ∈ intB, as long as 0 < δ < 1− a1,
so we can set δ1 = (1− a1)/2.

� At the same time, as long as δ ∈ (0, 1), the pair ±(−δ, 1, 0) of directions illuminates
(0, 1, a2) and its coordinate reflections: this is because e.g. (0, 1, a2)+(δ,−1, 0) = (δ, 0, a2),
which has strictly smaller 1st coordinate compared to (1, 0, a1) and at most as large 3rd
coordinate, which is also < 1 (so we can either use Lemma 7 alone, or combine it with
Lemma 10).

Now, suppose that y = (y1, 0, y3) with 0 < |y3| < 1.

• If |y1| = 1, then necessarily (by the maximality of a1) we have that |y3| ≤ a1. Thus:

– if |y3| = a1, we have already seen that the directions ±(1, δ, 0) illuminate y (as long
as δ ≤ δ1);

– if |y3| < a1, then y is in the convex hull of the point (1, 0, a1) and its coordinate
reflections, and hence it is also illuminated by the directions ±(1, δ, 0).

• If |y1| < 1, then the direction (0, 0,− sign(y3)) illuminates y (since (y1, 0, 0) ∈ intB).

In an analogous way, we see that the directions ±(−δ, 1, 0),±(0, 0, 1) illuminate boundary
points of the form y = (0, y2, y3) with 0 < |y3| < 1.

Furthermore, the directions ±(1, δ, 0), ±(−δ, 1, 0), δ ≤ δ1 < 1, also illuminate:

• the point (1, 1, 0) and its coordinate reflections (and thus also any boundary point y which
satisfies y3 = 0, since this will be in the convex hull of the former points);

• any boundary point y of B which satisfies |Zy| = 0 and |y3| < 1.

This takes care of the first two cases of boundary points in our breakdown. It remains to
figure out how to illuminate boundary points y satisfying |y3| = 1. In such a case, by our main
assumption we have |y1| < 1 and |y2| < 1, and thus the point (y1, y2, 0) ∈ intB (we see this if
we compare with the point (1, 1, 0) ∈ B). Thus the direction (0, 0,− sign(y3)) illuminates y.

In contrast with the previous two propositions, the main assumptions in the next one can
also be satisfied by affine images of the cube in R3. In fact, all bodies in U3 which satisfy
the main assumption will contain such an affine image of the cube (which will also be in U3).
Therefore, we have to explicitly rule out the cases where we don’t have strict inclusion, and in
the remaining cases we have to make crucial use of ‘special’ boundary points which verify the
strict inclusion.

Proposition 18. Suppose that B ∈ U3 is not an affine image of the cube but has the property
that, for some permutation (i1, i2, i3) of [3], ‖ei1 + ei2‖B = ‖ei1 + ei3‖B = 1, while ‖ei2 + ei3‖B >
1. Then there exist δ1, ηδ1 > 0 or ǫ2, δǫ2 > 0 such that B can be illuminated by a coordinate
permutation of one of the following sets:

F1
18,δ1 = I3

ex2,1(δ1) :=
{
±(δ1, δ1,±1),±(−δ1, 1, 0)

}

or

F2
18,ǫ2,δǫ2

= I3
ex2,2(ǫ2, δǫ2) :=

{
± (ǫ2, 1, 1),±(−δǫ2 , 1, δǫ2),±(−δǫ2 ,−δǫ2 , 1)

}
.
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As before, we can check that, after applying some coordinate permutation on B (something
which wouldn’t ruin our main assumptions), we would be able to use one of the above sets
exactly. We can thus assume WLOG that B contains the points (1, 1, 0) and (1, 0, 1) but not
the point (0, 1, 1). We first need the following

Lemma 19. Suppose that B ∈ U3 satisfies:

• ‖(1, 1, 0)‖B = ‖(1, 0, 1)‖B = 1, while ‖(0, 1, 1)‖B > 1;

• B is NOT an affine image of the cube.

Then, for any ǫ ∈ (0, 1], the point (
1− ǫ, 1

2 ,
1
2

)

is an interior point of B.

Proof. Since B contains the points (1, 1, 0) and (1, 0, 1) and all their coordinate reflections, it
will contain their convex hull too, which is the set

{
(x1, x2, x3) ∈ R3 : |x1| ≤ 1, |x2|+ |x3| ≤ 1

}
= [−1, 1] × CP 2

1 .

This is an affine image of the cube, therefore, by our last assumption for B, we must have that
B \

(
[−1, 1] × CP 2

1

)
6= ∅.

Combined with the assumption that B ∈ U3, this implies that B contains a point of the
form (0, z2, z3) where z2, z3 ∈ (0, 1] and z2 + z3 > 1. From this we can obtain that

(
0, 12 ,

1
2

)
∈ intB (3)

as follows. WLOG we can assume that z2 ≥ z3.

- If z3 >
1
2 , then (3) follows immediately by Lemma 7.

- If z3 ≤ 1
2 , then we can observe the following: z2 + z3 > 1 implies that z2 > 1 − z3 ≥ 1

2 ,
and hence z2 + (1− z3) > 2(1− z3) ≥ 1. Therefore, we can find λ ∈ (0, 1) such that

λ ·
(
z2 + (1− z3)

)
= 1 ⇒ λz2 = λz3 + (1− λ).

From this we obtain that the point (0, y2, y3) = λ(0, z2, z3)+ (1−λ)(0, 0, 1) ∈ B has equal
2nd and 3rd coordinates, and moreover that

y2 + y3 = λz2 + λz3 + (1− λ) = λ(z2 + z3) + (1− λ) > 1.

In other words, y2 = y3 >
1
2 , whence (3) follows as in the previous case.

Finally, we note that
(
1, 12 ,

1
2

)
= 1

2(1, 1, 0) +
1
2 (1, 0, 1) ∈ B, and thus, for any ǫ ∈ (0, 1), the

point (
1− ε, 1

2 ,
1
2

)
= (1− ǫ)

(
1, 12 ,

1
2

)
+ ǫ

(
0, 12 ,

1
2

)

is an interior point of B as a (non-trivial) convex combination of two points of B with one of
them being interior.

Comment on the proof of Proposition 18. As mentioned above, we can assume that B contains
the points (1, 1, 0) and (1, 0, 1) but not the point (0, 1, 1).

We will distinguish two main cases:

� either both (1, 1, 0) and (1, 0, 1) are extreme points of B,

12



� or at least one of them is not an extreme point of B.

In the former case, we will see that the set F2
18,ǫ2,δǫ2

(which coincides with the set In
ex2,2(ǫ2, δǫ2)

of Proposition 29 when n = 3) illuminates B for some explicit ǫ2, δǫ2 depending on B.

On the other hand, if e.g. (1, 1, 0) is NOT an extreme point of B, then necessarily we can
find a ∈ (0, 1) such that (1, 1, a) ∈ B. In such a case we can show that the set F1

18,δ1
illuminates

B for some explicit δ1.

Similarly, if (1, 1, 0) is an extreme point of B, but (1, 0, 1) is not, then (assuming what is
claimed in the previous paragraph) it is not hard to deduce that a coordinate permutation of
F1
18,δ1

illuminates B: indeed, it suffices to consider the transformation that swaps the 2nd and

the 3rd coordinate.

Full details can be found in the proof of Proposition 29, which is the generalisation of
Proposition 18 to all dimensions n ≥ 3.

The proof of Theorem 15 will be completed with the proofs of Propositions 29 and 20 in the
next section.

4 Bodies with maximal unit subcubes

In this section we deal with 1-unconditional convex bodies B in arbitrary dimensions n which:

• have been normalised to be in Un, thus are contained in the unit cube [−1, 1]n;

• are not affine images of the cube, and thus certainly satisfy B ( [−1, 1]n;

• and have at least one coordinate hyperplane projection (equivalently, coordinate hyper-
plane section) equal to [−1, 1]n−1 (this is equivalent to saying that B contains the point
1− ei for at least one i ∈ [n]). As mentioned before, we will also say in this case that B
contains a maximal unit subcube.

Classifying 1-unconditional convex bodies in this way, by whether points of the form ei1 + ei2 +
· · · + eim are contained in B or not, for different m ∈ {0, 1, . . . , n − 1}, is inspired by recent
approaches to settle the Illumination Conjecture for bodies with many symmetries (starting
with Tikhomirov’s work [40], and also adopted in the precursor [39] to this paper).

Of course, we could also describe the instances that we are focusing on here without/before
employing the ‘special’ normalisation that we use. We are considering 1-unconditional convex
bodies B which satisfy the following: if RB is the circumscribing rectangular box given by

RB =
{
x ∈ Rn : |xi| ≤ ‖ei‖−1

B
for all i ∈ [n]

}
,

then at least one coordinate hyperplane projection of B and the corresponding one of RB

coincide. We will show that, for such bodies B, I(B) ≤ 2n − 2 unless B is an affine image of
the cube.

The results of this section will also help us obtain the main result of the next section. We
consider cases based on how many of the coordinate hyperplane projections of B coincide with
the corresponding ones of [−1, 1]n (or, before normalisation, with those of the circumscribing
rectangular box); equivalently, based on how many maximal unit subcubes B contains.
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Proposition 20. Let n ≥ 3 and let B ∈ Un with the property that, for all i ∈ [n],
∥∥∥
∑

j 6=i ej

∥∥∥
B

=

‖1− ei‖B = 1 but B 6= [−1, 1]n. Then there is δ = δB > 0 such that B can be illuminated by
the set

In
−2(δ) = In(δ)\

{
±(+δ,+δ, . . . ,+δ,+δ,−− δ,+1)

}
.

In other words, I(B) ≤ 2n − 2.

Proof. Set γ = ‖1‖−1
B

; then γ1 ∈ ∂B (clearly γ < 1 since B ( [−1, 1]n). We will see that B is
illuminated by the set in the statement as long as δ < 1− γ.

Observe that, for every boundary point y = (y1, y2, . . . , yn−1, yn) of B, we can pick two
different indices iy, jy ∈ [n] such that |yiy | ≤ γ ≤ |yjy | (this is because, if we had |yi| > γ for all
i ∈ [n], then by Lemma 7 we would get that γ1 ∈ int(B), which would contradict our choice
of γ; moreover, if the first of the desired inequalities were satisfied by every coordinate of y,
that is, if we had |yi| ≤ γ for all i ∈ [n], then for at least one index j we should have |yj| = γ,
otherwise y would not be a boundary point of B).

Fix now some y ∈ ∂B, and pick the smallest, say, index i0 such that |yi0 | ≤ γ. As recalled
in Subsection 2.1, Fact B, we can find a direction d = dy,i0 ∈ In

−2(δ) which deep illuminates
Proje⊥i0

(y) (since the latter vector is non-zero and has at most n− 1 non-zero coordinates).

Note that the direction d = dy,i0 that we just considered illuminates the point y. Indeed,
if t0 is the index at which ‖d‖∞ is attained (by the definition of deep illumination, this also
ensures that yt0 6= 0), then

• (y + |yt0 |d)t0 = 0,

• and at the same time |(y + |yt0 |d)i| ≤ max
(
|yi| − |yt0 |δ, |yt0 |δ

)
< 1 for all i ∈ [n]\{t0, i0}

(here this is satisfied as long as δ < 1).

• Finally, |(y + |yt0 |d)i0 | ≤ |yi0 |+ |yt0 |δ ≤ |yi0 |+ δ < 1, as long as we choose δ < 1− γ.

We can now invoke Lemma 10 for the affine subspace {ξ ∈ Rn : ξt0 = 0}: we compare y+ |yt0 |d
with 1− et0 (both points of B ∩ {ξ ∈ Rn : ξt0 = 0}) to conclude that the former point is in the
interior of B.

Proposition 21. Let n ≥ 4 and let B ∈ Un with the property that there is s0 ∈ [n] such that
‖1− ei‖B = 1 for all i 6= s0, while at the same time ‖1− es0‖B > 1. Then there is δ = δB > 0
such that B can be illuminated by coordinate permutations of the set

In−1
−2 (δ) × {−δ,+δ}.

In other words, I(B) ≤ 2 · (2n−1 − 2) = 2n − 4.

Note. Given our notation,

In−1
−2 (δ) = In−1(δ)\



±


en−1 − δen−2 + δ

∑

j∈[n−3]

ej







(where the standard basis vectors here are considered in Rn−1).

Proof. WLOG assume that s0 = n. Set θn = ‖1− en‖−1
B

. Then θn(1− en) ∈ ∂B, and we have
0 < θn < 1 by our assumptions. We will see that B is illuminated by the set in the statement
as long as δ < 1− θn (and by coordinate permutations of this set if s0 6= n).

14



Consider a boundary point y of B, and moreover suppose that y is an extreme boundary
point (recall Fact A from Section 2, namely that it suffices to show how to illuminate these
boundary points). Because n ≥ 4, because y is an extreme boundary point, and given that, by
our assumptions, 1− ei ∈ ∂B for all i ∈ [n− 1], we can find two distinct indices iy, jy ∈ [n− 1]
such that yiy · yjy 6= 0. Moreover, since θn(1 − en) ∈ ∂B, and by the 1-unconditionality of B,
we can find an index i0 ∈ [n− 1] such that yi0 ≤ θn.

Note that at least one of the two indices iy, jy is different from i0, and thus the vector
Proj[ei0 ,en]⊥

(y) is non-zero. At the same time, it has at most n− 2 non-zero coordinates among

its first n − 1. Therefore, looking initially at these coordinates, we can find a direction d′ =
d′y,i0 ∈ In−1

−2 (δ) which deep illuminates the subvector of the first n− 1 coordinates of Proje⊥i0
(y)

(recall Fact B from Subsection 2.1), and then we can naturally rely on this to pick a direction
d = dy,i0 ∈ In−1

−2 (δ) × {−δ,+δ} which deep illuminates Proje⊥i0
(y).

Given the way we selected d = dy,i0 , if t0 is the index at which ‖d‖∞ is attained, then
t0 ∈ [n − 1] \ {i0}. Moreover, yt0 6= 0. We can now check, just as in the previous proposition,
that y + |yt0 |d ∈ intB (by comparing coordinate-wise the displaced vector y + |yt0 |d with the
boundary point 1− et0).

Remark 22. The above proposition cannot be restated as simply as above when n = 3 because
in R3 there are Q̃ ∈ U3 which are affine images of the cube and satisfy the main assumption
(namely that there exists s0 ∈ [n] such that ‖1− ei‖Q̃ = 1 for all i 6= s0, while at the same time

‖1− es0‖Q̃ > 1; this is the case when e.g. Q̃ = CP 2
1 × [−1, 1]). Therefore, when n = 3, we need

to further assume that B is not an affine image of the cube, and we need to have extra steps
in our proof which essentially encode and capitalise on this additional, necessary assumption.
This leads to Proposition 18, which finds a better high-dimensional analogue in Proposition 29.

For the remaining cases, we need to introduce some further, combinatorially constructed,
sets of directions in Rn that will serve as building blocks for the illuminating sets we will use.

4.1 Constructing other illuminating sets

Notation 23. Let us fix n ≥ 2 and δ ∈ (0, 1), and consider the set In(δ) from Reminder 13
(exactly as is described there).

Define a function m.c. which maps each d ∈ In(δ) to the index of its maximum (in absolute
value) coordinate; in other words m.c. : In(δ) → [n] and e.g. m.c.((−δ, δ,−1,−δ, ...,−δ,−δ)) =
3. Note that the index of the maximum coordinate, as well as its sign, will not change no
matter what value of δ ∈ (0, 1) we pick. Thus, we can also identify directions d1 ∈ In(δ1) and
d2 ∈ In(δ2) if their respective coordinates have the same signs and if their maximum coordinate
is the same, and then we can view m.c. as a function from the set of these equivalence classes
to [n].

By abusing our notation, we also consider the set In(1), which is simply the set {−1, 1}n.
For each d′ ∈ In(1), there is a unique direction dd′ ∈ In(1/2) (say) which agrees in sign in
each coordinate. Then we can also define a function m.c. : In(1) ≡ {−1, 1}n → [n] by setting
m.c.(d′) = m.c.(dd′).

Notation 24. Starting from the set In(δ), we construct a new, similar set În
n−1,n(δ) in the

following way:

• if d ∈ In(δ) satisfies m.c.(d) ∈ {n − 1, n}, then we keep it in În
n−1,n(δ) as well (there are

2n−1 + 2n−2 such directions).
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• If d ∈ In(δ) satisfies m.c.(d) < n− 1, then replace d by a direction d′ which agrees in sign
with d in every coordinate, but has maximum (in absolute value) coordinate the (n−1)-th
one, and place d′ in În

n−1,n(δ). Thus e.g. the direction (−1,−δ,−δ, . . . ,−δ,−δ,−δ) from

In(δ) will give the direction (−δ,−δ,−δ, . . . ,−δ,−1,−δ) in În
n−1,n(δ).

Similarly, we construct a new set În
n−2,n−1,n(δ) in the following way:

• if d ∈ In(δ) satisfies m.c.(d) ∈ {n − 2, n − 1, n}, then we keep it in În
n−2,n−1,n(δ) as well

(these are 2n−1 + 2n−2 + 2n−3 directions).

• If d ∈ In(δ) satisfies m.c.(d) < n− 2, then replace d by a direction d′ which agrees in sign
with d in every coordinate, but has maximum (in absolute value) coordinate the (n−2)-th
one, and place d′ in În

n−2,n−1,n(δ). Thus e.g. the direction (−1,−δ,−δ, . . . ,−δ,−δ,−δ)

from In(δ) will give the direction (−δ,−δ,−δ, . . . ,−1,−δ,−δ) in În
n−2,n−1,n(δ).

Definition 25. Let n ≥ 3 be an integer. If n is even, we set

Jn :=
{
d ∈ In(1) : #{i ∈ [n] : di = +1} ∈ {2, 4, 6 . . . , n− 2}

}
.

If n is odd, we distinguish cases.

– If n = 3, we set J3 = {(1, 1, 1), (−1,−1,−1)}.

– If n > 3 and (n − 1)/2 is odd, we first define

J 1
n :=

{
d ∈ In(1) : #{i ∈ [n] : di = +1} ∈ {2, 4, . . . , n−1

2 − 1}
}

and then
Jn := J 1

n ∪ (−J 1
n ).

– Finally, if n ≥ 3 is odd and (n− 1)/2 is even, then we set

J 1
n :=

{
d ∈ In(1) : #{i ∈ [n] : di = +1} ∈ {1, 3, . . . , n−1

2 − 1}
}

and afterwards we set
Jn := J 1

n ∪ (−J 1
n ).

Remarks 26. (a) With the above definition, we have ensured that the sets Jn are symmetric
(that is, Jn = −Jn).

(b) We also need some ‘efficient’ bounds on the cardinalities of Jn. Note that |J3| = 2 =
2n−1 − 2. We will check that, for all n ≥ 3, |Jn| ≤ 2n−1 − 2.

When n is even, observe that, to determine a direction in Jn, we simply need to know which
coordinates are equal to +1, and the subset of the corresponding indices will range over all
subsets of [n] of even cardinality ≥ 2 and ≤ n− 2. Thus

|Jn| =
(n−2)/2∑

s=1

(
n

2s

)
=

2n

2
−

(
n

0

)
−

(
n

n

)
= 2n−1 − 2

(the fact that

⌊m/2⌋∑

s=0

(
m

2s

)
=

∑

u even≤m

(
m

u

)
=

2m

2
, regardless of whether m is even or odd, can

be checked using induction in m).
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To estimate the cardinality of Jn when both n > 3 and (n− 1)/2 are odd, we first observe
that

(n−1)/2∑

u=0

(
n

u

)
= 2n−1

and also that, for u < (n− 1)/2, we have that
(n
u

)
<

( n
u+1

)
. Therefore,

2n−1 =

(
n

0

)
+

(
n

1

)
+

(n−1)/2∑

u=2

(
n

u

)
≥ n+ 1 +

n− 3

4
+ 2

(n−3)/4∑

s=1

(
n

2s

)
,

which shows that
∣∣J 1

n

∣∣ =
(n−3)/4∑

s=1

(
n

2s

)
≤ 2n−2 − 5n + 1

8
.

This gives that

|Jn| =
(n−3)/4∑

s=1

[(
n

2s

)
+

(
n

n− 2s

)]
= 2

(n−3)/4∑

s=1

(
n

2s

)
≤ 2n−1 − 5n+ 1

4
.

Finally, when n > 3 is odd and (n− 1)/2 is even, we similarly observe that

2n−1 =

(
n

0

)
+

(n−1)/2∑

u=1

(
n

u

)
≥ 1 +

n− 1

4
+ 2

(n−1)/4∑

s=1

(
n

2s− 1

)

which shows that
∣∣J 1

n

∣∣ =
(n−1)/4∑

s=1

(
n

2s− 1

)
≤ 2n−2 − n+ 3

8
.

Thus, in this case

|Jn| ≤ 2n−1 − n+ 3

4
.

As claimed, in all cases we have that |Jn| ≤ 2n−1 − 2.

(c) The last key property of the sets Jn which we use in the sequel is the following: consider
any direction d′ ∈ {0, 1,−1}n such that exactly two coordinates of d′ are equal to 0. Then we
can find a direction d ∈ Jn such that di = d′i whenever d

′
i 6= 0.

Indeed, let i1, i2 ∈ [n] be the two indices for which d′i1 = d′i2 = 0 (WLOG suppose that
i1 < i2). Assume first that n is even. The subset of indices i for which d′i = +1 is a subset Pd′

of [n]\{i1, i2}. If |Pd′ | = 0, set di1 = di2 = +1, and we will have that the corresponding subset
Pd for d has cardinality 2, so d ∈ Jn. If |Pd′ | is even and > 0, then we can set di1 = di2 = −1,
and we will have that 0 < |Pd| ≤ n− 2, thus d will be in Jn again. Finally, if |Pd′ | is odd, then
it must be an odd number between 1 and n− 3, thus we can set di1 = +1, di2 = −1.

Assume now that n is odd. We first deal with the case n = 3. In this case, |Pd′ | = 0 or = 1.
If the former holds, set d = (−1,−1,−1), while, if the latter holds, set d = (+1,+1,+1). In
both cases, d will agree with d′ in the unique entry of d′ that is non-zero.

If n > 3 and (n− 1)/2 is odd, again observe that Pd′ is a subset of [n]\{i1, i2}. If |Pd′ | = 0,
set di1 = di2 = +1, and we will have that |Pd| = 2, thus d ∈ Jn. If |Pd′ | is a positive even
number < (n− 1)/2, then we set di1 = di2 = −1. If |Pd′ | is a positive even number > (n− 1)/2,
then it is also < n − 2 (since n − 2 is odd in this case), and we can set di1 = +1, di2 = −1, in
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which case |Pd| will be an odd number between n+3
2 = n − (n−1

2 − 1) and n − 2, thus d ∈ Jn.
If instead |Pd′ | is an odd number < (n − 1)/2, then set di1 = +1, di2 = −1, in which case |Pd|
will be an even number between 2 and n−3

2 = n−1
2 − 1. If |Pd′ | is an odd number ≥ (n − 1)/2

and < n − 2, set di1 = di2 = +1, in which case |Pd| will be an odd number between n+3
2 and

n−2. Finally, if |Pd′ | = n−2, set di1 = di2 = −1. In all these cases, we end up with a direction
d ∈ Jn.

Similarly we deal with the last case, where n > 3 is odd and (n− 1)/2 is even. If |Pd′ | is an
even number < (n− 1)/2, then set di1 = +1, di2 = −1. If |Pd′ | is an even number ≥ (n− 1)/2,
then it will also be < n− 2 (since n− 2 is odd), and thus we will be able to set di1 = di2 = +1
to get that |Pd| is an even number ≥ n+3

2 = n − (n−1
2 − 1) and ≤ n − 1. If |Pd′ | is an odd

number < (n − 1)/2, then set di1 = di2 = −1. If |Pd′ | is an odd number > (n − 1)/2 (and
obviously ≤ n − 2 since Pd′ ⊆ [n]\{i1, i2}), then set di1 = +1 and di2 = −1. In all cases, we
pick a direction d ∈ Jn as needed.

With these properties at hand, we are now ready to illuminate the remaining cases of bodies
in Un which contain a maximal unit subcube.

4.2 Remaining cases with maximal unit subcubes

Proposition 27. Let k ≥ 2 and n ≥ k+3, and consider B ∈ Un such that we can find k indices
j1 < j2 < · · · < jk in [n] with the property that

1− ej ∈ B

for all j ∈ [n]\{j1, j2, . . . , jk}, while, if js ∈ {j1, j2, . . . , jk},

1− ejs /∈ B.

Then there is δ = δB such that:

• if k = 2, then B can be illuminated by a coordinate permutation of the set

[
[In−2(δ)\{± (δ, δ, . . . , δ,−δ, 1)︸ ︷︷ ︸

n−2

}]× {δ,−δ}2
] ⋃ {

±(δ, δ, . . . , δ,−δ, 1, 0, 0)
}
, (4)

• and if k ≥ 3, then B can be illuminated by a coordinate permutation of the set

[
[In−k(δ)\{± (δ, δ, . . . , δ,−δ, 1)︸ ︷︷ ︸

n−k

}]× {δ,−δ}k
] ⋃ [

{± (δ, δ, . . . , δ,−δ, 1)︸ ︷︷ ︸
n−k

} × δ · Jk

]
. (5)

Thus I(B) ≤ (2n−2 − 2) · 4+ 2 = 2n − 6 if k = 2, while I(B) ≤ (2n−k − 2) · 2k +2 · (2k−1 − 2) =
2n − 2k − 4 if k ≥ 3.

Proof. Case k = 2: WLOG suppose that {j1, j2} = {n − 1, n}. In other words, 1 − en−1 and
1− en are not in B, while 1− ej ∈ ∂B for all j ∈ [n− 2].

Set θn−1 = ‖1−en−1‖−1
B

and θn = ‖1−en‖−1
B

; by our assumptions θn−1, θn ∈ (0, 1). Set also
Θ0 = max{θn−1, θn}. We will show that B is illuminated by the set in (4) as long as δ < 1−Θ0.

Consider a boundary point y of B, and moreover suppose that y is an extreme boundary
point. Because n ≥ k + 3 ≥ 5, because y is an extreme boundary point, and given that, by our
assumptions, 1− ei ∈ ∂B for all i ∈ [n− 2], we can find two distinct indices iy, jy ∈ [n− 2] such
that yiy · yjy 6= 0. Moreover, since θn(1− en) ∈ ∂B, and by the 1-unconditionality of B, we can
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find an index in ∈ [n − 1] such that |yin | ≤ θn ≤ Θ0. Similarly, because θn−1(1 − en−1) ∈ ∂B,
we can find an index in−1 ∈ [n] \ {n− 1} such that |yin−1

| ≤ θn−1 ≤ Θ0 (note that it’s possible
that in−1 = in).

Assume first that either in or in−1 can be picked from [n − 2], and denote the smallest
such index by i0. Note that at least one of the two indices iy, jy is different from i0, and thus
the vector Proj[ei0 ,en−1,en]⊥(y) is non-zero. At the same time, it has at most n − 3 non-zero
coordinates among its first n− 2. Therefore, looking initially at these coordinates, we can find
a direction

d′ = d′y,i0 ∈ In−2
−2 (δ) = In−2(δ)\{± (δ, δ, . . . , δ,−δ, 1)︸ ︷︷ ︸

n−2

}

which deep illuminates the subvector of the first n− 2 coordinates of Proje⊥i0
(y) (recall Fact B),

and then we can rely on this to pick a direction d = dy,i0 ∈ In−2
−2 (δ) × {−δ,+δ}2 which deep

illuminates Proje⊥i0
(y).

Given the way we selected d = dy,i0 , if t0 is the index at which ‖d‖∞ is attained, in other
words, if t0 = m.c.(d), then t0 ∈ [n − 2] \ {i0}. Moreover, yt0 6= 0. We can now check that
y+|yt0 |d ∈ intB (by comparing coordinate-wise the displaced vector y+|yt0|d with the boundary
point 1− et0).

Next assume that |yi| > Θ0 for all i ∈ [n − 2]. Then necessarily in = n − 1 and in−1 = n.
In other words, max{|yn−1|, |yn|} ≤ Θ0 < 1. We can then pick a direction d from the set in
(4) such that di · yi < 0 for all i ∈ [n − 2], and, as before, we can check that y + |yt0 |d ∈ intB
(where t0 = m.c.(d)).

Cases where k ≥ 3: WLOG we suppose that {j1, j2, . . . , jk} = {n− k+ 1, n− k+2, . . . , n},
and for each j ∈ {n−k+1, n−k+2, . . . , n} we set θj = ‖1− ej‖−1

B
. We also set Θ0 = max{θj :

n− k+1 ≤ j ≤ n}; by our assumptions Θ0 ∈ (0, 1). We will show that B is illuminated by the
set in (5) as long as δ < 1−Θ0.

Again consider an extreme boundary point y of B. We can find two distinct indices iy, jy ∈
[n − k] such that yiy · yjy 6= 0. If we can also find an index i0 ∈ [n − k] such that |yi0 | ≤ Θ0,
then as before we can pick a direction

d ∈ [In−k(δ)\{± (δ, δ, . . . , δ,−δ, 1)︸ ︷︷ ︸
n−k

}]× {δ,−δ}k

which will deep illuminate Proje⊥i0
(y), and then we can check that y + |yt0 |d ∈ intB (where

t0 = m.c.(d)).

Assume now that |yi| > Θ0 for all i ∈ [n − k]. Since θn(1 − en) ∈ ∂B, there is an index
in ∈ [n − 1] such that |yin | ≤ θn ≤ Θ0. Given our prior assumption, we also have that
in ∈ {n − k + 1, . . . , n − 1}. Next we also use the assumption that θin(1 − ein) ∈ ∂B, which
implies that there is an index

sn ∈ {n− k + 1, n − k + 2, . . . , n} \ {in}

such that |ysn | ≤ θin ≤ Θ0.

We can find a (unique) direction d′ ∈ In−k(δ) such that d′i · yi < 0 for all i ∈ [n− k].

� If

d′ /∈ {±(δ, δ, . . . , δ,−δ, 1)},
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then we can extend d′ to a direction

d ∈ [In−k(δ)\{± (δ, δ, . . . , δ,−δ, 1)︸ ︷︷ ︸
n−k

}]× {δ,−δ}k

which deep illuminates y.

� On the other hand, if d′ ∈ {±(δ, δ, . . . , δ,−δ, 1)}, then, given the third main property of
the set Jk, we can find a direction

d ∈ {±(δ, δ, . . . , δ,−δ, 1)} × δ · Jk

which deep illuminates the vector Proj[ein ,esn ]⊥(y).

In both subcases, we can check that, for the direction d that we ended up picking, y + |yt0 |d ∈
intB (where t0 = m.c.(d) ∈ [n− k]). The proof is complete.

It is clear from the above proof that the assumption that n − k ≥ 3 (that is, the number
of maximal unit subcubes contained in B is ≥ 3) was crucially used (so that, given an extreme
boundary point y, we could find two distinct indices iy, jy ∈ [n − k] such that yiy · yjy 6= 0).
This is not an artefact of the proof though. As we will see, if the number of maximal unit
subcubes contained in B is exactly 2, then B could also be an affine image of the cube (e.g.
B = CP 2

1 × [−1, 1]n−2). Thus we need to argue more carefully about how to illuminate such B
which are not parallelepipeds.

Not for the same reason, but we also have to argue more carefully when B contains only
one maximal unit subcube; this is the case that we deal with now.

Proposition 28. Let n ≥ 4, and let B ∈ Un with the property that there exists exactly one index
i0 ∈ [n] such that 1 − ei0 ∈ B. Then there are δ, ηδ and δ̃ > 0 such that B can be illuminated
by a coordinate permutation of the set

I
δ,η,δ̃

= Iδ,η ∪
[(
δ̃ · Jn−1

)
× {1,−1}

]

where Jn−1 is defined as in the previous subsection (note that n− 1 ≥ 3 here), and where

Iδ,η :=
{(

±(1, ηδ),±δ,±δ, . . . ,±δ, 0
)
,
(
±(−ηδ, 1),±δ,±δ, . . . ,±δ, 0

)}
.

Note. Recall that |Jn−1| ≤ 2n−2 − 2 and thus
∣∣∣Iδ,η,δ̃

∣∣∣ ≤ 2n−1 + 2(2n−2 − 2) = 2n − 4.

Recall also that, since Jn−1 is symmetric, the set
(
δ̃ · Jn−1

)
× {1,−1} is formed from pairs

of opposite directions, and so is I
δ,η,δ̃

.

Proof. WLOG we can assume that i0 = n, and thus 1−en ∈ B, while 1−ej /∈ B for j ∈ [n−1].
For each such j, we set αj to be the supremum of non-negative numbers xn such that

xnen +
∑

i∈[n−1]\{j}

ei ∈ B.

By compactness the point wj := αjen +
∑

i∈[n−1]\{j} ei ∈ B (in fact, ∈ ∂B), and, by our
assumptions, αj ∈ [0, 1). WLOG we assume that α1 ≥ α2 ≥ αj for each j ∈ [n− 1]\{1, 2}.

Given any δ ∈ (0, 1), the directions (±1, 0,±δ,±δ, . . . ,±δ, 0) illuminate the point w2 =
α2en+

∑
i∈[n−1]\{2} ei and all its coordinate reflections (we can use Corollary 11 here). Further-

more, by Lemma 12, we can find η0,δ > 0 sufficiently small so that the directions

(
±(1, η),±δ,±δ, . . . ,±δ, 0

)
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will illuminate the same points if 0 < η ≤ η0,δ (note that, in the latter subset of (perturbed)
directions, we have sign(d1) = sign(d2) for each direction d).

Similarly, the directions (0,±1,±δ,±δ, . . . ,±δ, 0) illuminate w1 = α1en+
∑

i∈[n−1]\{1} ei and
all its coordinate reflections, and if we pick η0,δ even smaller if needed, so will the directions

(
±(−η0,δ, 1),±δ,±δ, . . . ,±δ, 0

)

(note that, in the latter subset of directions, sign(d′1) = − sign(d′2) for each direction d′; this
shows that the set Iδ, η0,δ we just formed contains any combination of signs for the first n − 1
coordinates).

Consider now j ∈ [n − 1]\{1, 2}, and suppose x is one of the coordinate reflections of the
point

wj = αjen +
∑

i∈[n−1]\{j}

ei.

Based on whether sign(x1) = sign(x2) or not, choose a direction dx from Iδ, η0,δ such that
dx,i · xi ≤ 0 for all i (to avoid any ambiguity later, we can agree to set dx,j = +δ). Then the
coordinates of x+ dx satisfy the following:

– one of (x+ dx)1, (x+ dx)2 is equal to 0,

– while the other one is < 1 in absolute value (in fact equal to 1− η0,δ in absolute value).

– In addition, |(x+ dx)j| = δ,

– and for all i ∈ [n− 1]\{1, 2, j}, |(x+ dx)i| = 1− δ.

– Finally |(x+ dx)n| = |xn| = αj ≤ α2 ≤ α1 < 1.

Hence we can use Lemma 10 (combined with Lemma 7), and compare with one of the points
α1en +

∑
i∈[n−1]\{1} ei and α2en +

∑
i∈[n−1]\{2} ei to conclude that x+ dx ∈ intB.

For the rest of the proof we fix δ0 ∈ (0, 1) and η0 ≡ η0,δ0 such that the set Iδ0,η0 illuminates
all the points wj and their coordinate reflections. Moreover, for each of these points x we fix
a direction dx from Iδ0,η0 which illuminates x (we pick it as before, when it is not unique),
and then, recalling Lemma 12(b), we also find τx > 0 with the property that, if z ∈ ∂B and
‖x− z‖∞ ≤ τx, then z is also illuminated by dx. Given that the points αjen +

∑
i∈[n−1]\{j} ei

and their coordinate reflections are finitely many, we can set

τ0 = min

(
1− α1

2
, min {τx : x is a coordinate reflection of one of the points wj}

)
.

Next, for each j ∈ [n − 1], set βj = βj(αj , τ0) to be the supremum of positive numbers u
such that

(αj + τ0)en + u
∑

i∈[n−1]\{j}

ei ∈ B

(such positive numbers exist since we can consider convex combinations of the point en and the
point

∑n−1
i=1 ei, and focus on those convex combinations which are closer to en). By compactness

we have that the point (αj + τ0)en + βj ·
∑

i∈[n−1]\{j} ei ∈ B (in fact ∈ ∂B); moreover βj < 1
since (αj + τ0)en +

∑
i∈[n−1]\{j} ei /∈ B (by how we chose αj previously).

Finally, as before, for each j ∈ [n − 1] set θj := ‖1− ej‖−1
B

; by our main assumption, we
have that Θ0 := max{θj : j ∈ [n− 1]} ∈ (0, 1). We can finally choose

δ̃0 < min
{
τ0, min{1− βj : j ∈ [n− 1]}, 1−Θ0

}
.

We are now ready to illuminate all boundary points of B using the set I
δ0, η0, δ̃0

. Let y ∈ ∂B.

21



� If y = 1− en or one of its coordinate reflections, then y is illuminated by some direction
in Iδ0, η0 (since we can find any combination of signs for the first n− 1 coordinates).

� If n ∈ Zy, then y is contained in the convex hull of 1− en and its coordinate reflections,
and thus it is also illuminated by some direction in Iδ0, η0 .

� Assume now that n /∈ Zy.

• Suppose also that y has the property:

for two distinct indices s1, s2 ∈ [n− 1], max{|ys1 |, |ys2 |} < 1− δ̃0. (∗)

By the third main property of the set Jn−1, we can find a direction d ∈
(
δ̃0 · Jn−1

)
×

{1,−1} which deep illuminates the vector Proj[es1 ,es2 ]⊥
(y). We can then check that

the displaced vector y+ |yn|d ∈ intB (by comparing coordinate-wise with the vector
1− en).

Note that property (∗) is satisfied in several instances, including the following:

– when |Zy| ≥ 2, given also our previous assumption that n /∈ Zy.

– When |yn| > Θ0. Indeed, in this case, since θn−1(1 − en−1) ∈ ∂B, we must be
able to find an index s1 ∈ [n − 2] such that |ys1 | ≤ θn−1 ≤ Θ0 < 1− δ̃0.
Similarly, because θs1(1 − es1) ∈ ∂B, we should be able to find an index s2 ∈
[n− 1] \ {s1} such that |ys2 | ≤ θs1 ≤ Θ0.

– When Zy = {t0} ⊂ [n − 1], and |yn| > αt0 + τ0. Indeed, by our choice of βt0 ,
we have that vt0 := (αt0 + τ0)en + βt0

∑
i∈[n−1]\{t0}

ei ∈ ∂B. Given that the
n-th coordinate of Proje⊥t0

(y) is strictly bigger in absolute value than the n-th

coordinate of vt0 , while their t0-th coordinates are both zero, we must have that
some other coordinate of vt0 exceeds the respective one of Proje⊥t0

(y) in absolute

value. Thus, we can find some t1 ∈ [n− 1] \ {t0} such that |yt1 | ≤ βt0 < 1− δ̃0.

• Suppose now that, for at least n− 2 indices i ∈ [n− 1], |yi| ≥ 1− δ̃0 > 1− τ0.

First of all, this implies that |yn| ≤ Θ0 < 1. Therefore,

– if Zy = ∅, then, since |yn| ∈ (0, 1), we can use Corollary 11 to conclude that a
direction d from Iδ0,η0 illuminates y (it suffices to pick the unique direction from
Iδ0,η0 which satisfies di · yi < 0 for all i ∈ [n− 1]).

– If instead Zy 6= ∅, then necessarily, given our main assumptions here, we will
have that Zy = {t1} ⊂ [n − 1]. From the previous remarks, we know that this
implies that |yn| ≤ αt1 + τ0.
If |yn| ≤ αt1 , then y is in the convex hull of the point

wt1 = αt1en +
∑

i∈[n−1]\{t1}

ei

and its coordinate reflections, and thus it is illuminated by some direction in
Iδ0,η0 .
If instead |yn| ∈ (αt1 , αt1 + τ0], then we will have that ‖x− y‖∞ ≤ τ0 ≤ τx with
x some coordinate reflection of wt1 . Thus, y will again be illuminated by some
direction d ∈ Iδ0,η0 (in fact, the selected direction dx which illuminates x).

In this way, we have illuminated all boundary points of B.
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We now turn to the case where a convex body B ∈ Un contains exactly two maximal
unit subcubes. The proof of the following proposition will also encompass the full proof of
Proposition 18, that is, the relevant result in R3.

Proposition 29. Let n ≥ 3, and suppose B ∈ Un is not an affine image of the cube but has
the property that there are exactly two distinct indices i1, i2 ∈ [n] such that 1 − eis ∈ B for
s = 1, 2, while 1− ej /∈ B for any j ∈ [n]\{i1, i2}. Then, up to coordinate permutations, one of
the following sets illuminates B.

1. The set In
ex2,1(δ), for some δ = δB ∈ (0, 1), which consists of the following directions:

- the directions
{
δ ·

(
d, sign(dm.c.(d))

)
: d ∈ In−2(1)

}
× {±1} for some δ > 0 which

depends only on B (these are 2n−2 · 2 = 2n−1 directions);

- the directions
{(

δ · d, − sign(dm.c.(d)), 0
)
: d ∈ In−2(1)

}
for the same δ > 0 as above

(these are 2n−2 directions);

- if n > 4, the directions
{
δ ·

(
d, − sign(dm.c.(d))

)
: d ∈ Jn−2

}
× {±1} for the same

δ > 0 as above (these are ≤ (2n−3 − 2) · 2 = 2n−2 − 4 directions).

Important Clarification. Note that, in the cases of n = 3 and n = 4, we have not
defined a set Jn−2. In these cases, as we will see, we don’t need a third subfamily of
directions, and we can quickly write down what the sets I3

ex2,1(δ) and I4
ex2,1(δ) look like:

I3
ex2,1(δ) :=

{
±(δ, δ,+1),±(δ, δ,−1), ±(δ,−1, 0)

}
and

I4
ex2,1(δ) :=

{
± (δ, δ, δ, 1),±(δ, δ, δ,−1),±(−δ, δ, δ, 1),±(−δ, δ, δ,−1),

± (δ, δ,−1, 0),±(−δ, δ,−1, 0)
}
.

2. The set In
ex2,2(ǫ, δǫ), for some ǫ > 0 and δǫ > 0 which depend only on B, which is defined

as below:

In
ex2,2(ǫ, δǫ) := {±(ǫ, ǫ, . . . , ǫ, 1, 1)}

⋃[
În
n−1,n(δǫ)\{±(δǫ, δǫ, . . . , δǫ, 1, δǫ), ±(δǫ, δǫ, . . . , δǫ,−δǫ, 1)}

]
.

We then see that in both cases I(B) ≤ 2n − 2.

Proof. WLOG assume that i1 = n − 1 and i2 = n. In other words, B contains the points
(1, 1, 1, . . . , 1, 0, 1) and (1, 1, 1, . . . , 1, 1, 0), but does not contain other similar points, that is,
points of the form 1− ej for j ∈ [n− 2]. We distinguish two cases.

Case 1. At least one of the points 1 − en−1 and 1 − en is NOT an extreme point of B. In other
words, there is a > 0 such that aen−1 +

∑
i∈[n]\{n−1} ei ∈ B or aen +

∑
i∈[n−1] ei ∈ B.

WLOG assume that B certainly contains a point of the form aen +
∑

i∈[n−1] ei for some
positive a.

Let αn−1 be the supremum of all yn−1 ≥ 0 such that

yn−1en−1 +
∑

i∈[n]\{n−1}

ei ∈ B.

By compactness we have that αn−1en−1 +
∑

i∈[n]\{n−1} ei ∈ B, and thus 0 ≤ αn−1 < 1.
Similarly, set αn to be the supremum of all yn ≥ 0 such that

ynen +
∑

i∈[n−1]

ei ∈ B.
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By compactness we have that αnen +
∑

i∈[n−1] ei ∈ B, and by our assumptions it follows
that 1 > αn > 0.

As in the previous propositions, for every j ∈ [n − 2], set θj = ‖1− ej‖−1
B

, and Θ0 =

maxj∈[n−2] θj . Also, set γ = ‖1‖−1
B

. Clearly, for all j ∈ [n − 2], 0 < γ ≤ θj ≤ Θ0 < 1.
On the other hand, max(αn−1, αn) ≤ γ (because otherwise γ1 would not be a boundary
point of B). We will show that, in the setting here, In

ex2,1(δ) illuminates B as long as
δ < 1−Θ0.

Consider a boundary point x of B.

� Assume first that x = αn−1en−1+
∑

i∈[n]\{n−1} ei or one of its coordinate reflections.

Then we find the unique direction dx in In−2(1) which has opposite signs to x in each
of the first n−2 coordinates. Observe that d′x =

(
δ ·dx, δ sign(dx,m.c.(dx)),− sign(xn)

)

illuminates x (we can compare the displaced vector x+ d′x with the point 1− en to
confirm this; this is because αn−1 + δ ≤ γ + δ ≤ Θ0 + δ < 1).

� Similarly, the first two types of directions in In
ex2,1(δ) illuminate all the coordinate

reflections of αnen +
∑

i∈[n−1] ei (here is where we use the assumption that 1− en is
NOT an extreme point of B, and thus that αn > 0; indeed, this allows us to have
access to all of the 2n−1 combinations of signs for the first n−1 coordinates, that are
all needed, without having to include 2n−1 all new directions, which would otherwise
lead to an illuminating set of larger than desired size).

In more detail now, if x is one of these coordinate reflections, again we pick the
unique direction dx in In−2(1) which has opposite signs to x in each of the first
n− 2 coordinates. In the case that sign(dx,m.c.(dx)) = sign(xn−1), then the direction
d′ =

(
δ · dy,− sign(dy,m.c.(dy)), 0

)
(of the second type that we included) illuminates x

(this is because |xn| = αn ∈ (0, 1), and thus we can use Corollary 11).

Otherwise, the direction d′′ =
(
δ · dx, δ sign(dx,m.c.(dx)),− sign(xn)

)
(of the first type)

will work instead.

� Next, assume that either |xn−1| ≤ αn−1 or |xn| ≤ αn (or both). Then x is in the
convex hull of the points αn−1en−1+

∑
i∈[n]\{n−1} ei and αnen+

∑
i∈[n−1] ei and their

coordinate reflections, and thus it is illuminated by some of the directions we have
already used.

� We now suppose that |xn−1| > αn−1 ≥ 0 AND |xn| > αn > 0.

• Assume first that min{|xn−1|, |xn|} ≤ Θ0.

– In this case, if |xn| > Θ0, then necessarily |xn−1| ≤ Θ0. Thus, as for the
point αn−1en−1 +

∑
i∈[n]\{n−1} ei and its coordinate reflections, we can use

a direction of the first type in In
ex2,1(δ) to illuminate the boundary point x

that we are considering now (it suffices to pick dx such that dx,i · xi ≤ 0 for
all i ∈ [n− 2] ∪ {n}, and then compare the displaced vector x+ |xn|dx with
the point 1− en).

– If |xn| ≤ Θ0 < 1, then, since we also have |xn−1| > 0, we can pick a direction
dx from the first two types in In

ex2,1(δ) so that dx,i · xi ≤ 0 for all i ∈ [n].
Depending on whether m.c.(dx) = n − 1 or not, we consider the displaced
vector x+ |xn−1|dx or the displaced vector x+ |xn|dx, and we compare with
the points 1− en−1 or 1− en respectively.

• We finally consider the cases where min{|xn−1|, |xn|} > Θ0 ≥ γ. Then we can
find s1 ∈ [n− 2] such that |xs1 | ≤ γ < 1− δ.
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– In the case where n = 3, we can quickly confirm that x is illuminated by one
of the directions ±(δ, δ,±1).

– If instead n ≥ 4, then we can find one more index s2 ∈ [n − 2] \ {s1} such
that |xs2 | ≤ Θ0. Indeed, since θs1(1 − es1) ∈ ∂B, we should be able to find
an index s2 ∈ [n] \ {s1} such that |xs2 | ≤ θs1 ≤ Θ0. Since both |xn−1| and
|xn| are > Θ0, we must have s2 ∈ [n− 2] \ {s1}.
We can now conclude the following: if n = 4, then {s1, s2} = {1, 2}, and we
have that x is illuminated by one of the directions ±(δ, δ, δ, 1), ±(δ, δ, δ,−1)
(indeed, set dx to be the unique direction among these that satisfies dx,i ·xi <
0 for i ∈ {n − 1, n}, and then compare x + |xn|dx with the point 1 − en to
conclude that the former is in intB).

If instead n > 4, then we have access to the set Jn−2 that we previously
defined, and hence we can find a direction d′ ∈ Jn−2 such that d′j ·xj ≤ 0 for

all j ∈ [n− 2] \ {s1, s2}. Clearly d′ ∈ In−2(1) as well, and thus both vectors

(
δ ·d′, δ sign(d′m.c.(d′)), − sign(xn)

)
and

(
δ ·d′, −δ sign(d′m.c.(d′)), − sign(xn)

)

are in In
ex2,1(δ). The one which has (n − 1)-th coordinate of opposite sign

to xn−1 will illuminate x (and we can compare the displaced vector to the
point 1− en to confirm this).

We have thus illuminated all boundary points of B (regardless of what the dimension
n ≥ 3 is), when Case 1 holds.

Case 2. Both of the points 1 − en−1 and 1 − en are extreme points of B. Recall that we have
assumed that B is not an affine image of the cube, however the convex hull of these two
points and of their coordinate reflections is an affine image of the cube, the convex body
[−1, 1]n−2 ×CP 2

1 . Thus there must exist a point x ∈ B outside of this convex hull, which
in particular implies that |xn−1|+ |xn| > 1. Just as in Lemma 19, we can show that this
entails that

1
2 (en−1 + en) ∈ intB, or equivalently ‖en−1 + en‖−1

B
>

1

2
,

which further implies that

for every ǫ > 0, the point (1− ǫ, 1− ǫ, 1− ǫ, . . . , 1− ǫ, 1
2 ,

1
2) ∈ intB.

Fix some ǫ0 ∈ (0, 1), and note that, because the point

(1− ǫ0
2 , 1− ǫ0

2 , 1− ǫ0
2 , . . . , 1− ǫ0

2 ,
1
2 ,

1
2) ∈ intB,

we can find ζ0 ∈ (0, 12) such that

(1− ǫ0
2 , 1− ǫ0

2 , 1− ǫ0
2 , . . . , 1− ǫ0

2 ,
1
2 + ζ0,

1
2 + ζ0)

is also an interior point of B.

Next, we set βn−1 to be the supremum of positive constants c such that

ζ0en−1 + c
∑

i∈[n]\{n−1}

ei ∈ B.
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By compactness ζ0en−1 + βn−1
∑

i∈[n]\{n−1} ei ∈ B, and by the main assumption of Case

2, βn−1 ∈ (0, 1). Similarly, we set βn to be the supremum of positive constants c′ such
that

ζ0en + c′
∑

i∈[n−1]

ei ∈ B.

Again, we have ζ0en + βn
∑

i∈[n−1] ei ∈ B and βn ∈ (0, 1).

Now we pick

δ0 < min(1− ζ0, 1− βn−1, 1− βn)

and consider the corresponding set In
ex2,2(ǫ0, δ0). We will show that this illuminates B.

Consider a boundary point x of B.

� If x is the point 1− en−1 or one of its coordinate reflections, then we find a direction
dx ∈ In

ex2,2(ǫ0, δ0) which has opposite signs to x in all the first n−2 entries, as well as
the n-th entry, and has maximum entry the n-th entry. Unless sign(x1) = sign(x2) =
sign(x3) = · · · = sign(xn−2) = sign(xn), we take dx from the set

În
n−1,n(δ0)\{±(δ0, δ0, . . . , δ0, 1, δ0),±(δ0, δ0, . . . , δ0,−δ0, 1)}

and it is clear that x+dx ∈ intB if we compare to the point 1−en. In the remaining
case, dx will be one of the directions ±(ǫ0, ǫ0, . . . , ǫ0, 1, 1), and again we can see that

x+ 1
2dx ∈ intB

since x+ 1
2dx will be a coordinate reflection of the point (1− ǫ0

2 , 1− ǫ0
2 , . . . , 1− ǫ0

2 ,
1
2 ,

1
2).

� Analogously we illuminate the point 1− en and its coordinate reflections.

� Given the above, we have now also illuminated all boundary points x of B which fall
in the convex hull of the points 1 − en−1, 1 − en and their coordinate reflections;
thus all boundary points x which satisfy |xn−1|+ |xn| ≤ 1.

� Suppose now that |xn−1|+ |xn| > 1.

• Assume first that |xn−1| ≤ ζ0. Again, we find a direction dx which has oppo-
site signs to x in all the first n − 2 entries, as well as the n-th entry, and has
maximum entry the n-th entry. Unless sign(x1) = sign(x2) = sign(x3) = · · · =
sign(xn−2) = sign(xn), we take dx from the set

În
n−1,n(δ0)\{±(δ0, δ0, . . . , δ0, 1, δ0),±(δ0, δ0, . . . , δ0,−δ0, 1)}

and then compare x + |xn|dx to the point 1 − en (since in particular |(x +
|xn|dx)n−1| ≤ |xn−1|+ |xn|δ0 ≤ ζ0 + δ0 < 1).
In the remaining case, we choose dx from ±(ǫ0, ǫ0, . . . , ǫ0, 1, 1). We can see that

x+ 1
2dx ∈ intB

because we will have

·

∣∣(x+ 1
2dx)i

∣∣ ≤ max(1− ǫ0
2 ,

ǫ0
2 ) = 1− ǫ0

2 for all i ∈ [n− 2],

·

∣∣(x+ 1
2dx)n

∣∣ ≤ max(1− 1
2 ,

1
2 ) =

1
2 ,

· and finally
∣∣(x+ 1

2dx)n−1

∣∣ ≤ |xn−1|+ 1
2 ≤ 1

2 + ζ0,
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while the point

(1− ǫ0
2 , 1− ǫ0

2 , 1− ǫ0
2 , . . . , 1− ǫ0

2 ,
1
2 + ζ0,

1
2 + ζ0)

is an interior point of B, given our choice of ζ0.

• We argue analogously if |xn| ≤ ζ0.

• Finally, let us assume that min(|xn−1|, |xn|) > ζ0.

– Suppose also that max(|xn−1|, |xn|) ≤ max(βn−1, βn) < 1− δ0.
If xn−1 · xn < 0, then we can pick a direction dx from the set

În
n−1,n(δ0)\{±(δ0, δ0, . . . , δ0, 1, δ0),±(δ0, δ0, . . . , δ0,−δ0, 1)}

to illuminate x. In fact, in most cases we can take dx from the second
half of this set, which contains directions with maximum (in absolute value)
coordinate the n-th one (and consider the vector x+ |xn|dx, comparing it to
1− en). This will work in all cases except when all entries of x are non-zero
and

sign(x1) = sign(x2) = sign(x3) = · · · = sign(xn−2) = sign(xn) = − sign(xn−1).

In this last subcase, we instead choose dx from ±(δ0, δ0, δ0, . . . , δ0,−1,−δ0)
(and consider the vector x+ |xn−1|dx, comparing it to 1− en−1, given that
we have

∣∣(x + |xn−1|dx)n
∣∣ = |xn| + |xn−1|δ0 ≤ |xn| + δ0 < 1 by our last

assumption above).

Similarly, if xn−1 ·x > 0, we choose dx from the first half of the set În
n−1,n(δ0),

except in the case where all entries of x are non-zero and

sign(x1) = sign(x2) = sign(x3) = · · · = sign(xn−2) = sign(xn−1) = sign(xn).

In this last subcase we can instead choose dx to be one of the directions
±(ǫ0, ǫ0, . . . , ǫ0, 1, 1) and consider the vector x+εxdx where εx = mini∈[n] |xi|.

– Now, suppose that max(|xn−1|, |xn|) > max(βn−1, βn). Given also our ‘par-
ent’ assumption that min(|xn−1|, |xn|) > ζ0, by the choice of the constants
βn−1 and βn we can find j0 ∈ [n−2] such that |xj0 | ≤ max(βn−1, βn) < 1−δ0.
But then it is possible to find a direction dx from

În
n−1,n(δ0)\{±(δ0, δ0, . . . , δ0, 1, δ0),±(δ0, δ0, . . . , δ0,−δ0, 1)}

such that dx,i · xi ≤ 0 for all i ∈ [n]\{j0}, and we can check that this dx
illuminates x.

We have completed the proof in both Case 1 and Case 2.

Remark 30. (I) Combining Propositions 20, 21 and 27, Proposition 28 (and its 3-dimensional
version, Proposition 17) and Proposition 29, we reach the following conclusion: for any dimen-
sion n ≥ 3, if B ∈ Un is NOT an affine image of the cube, but has the property that there
is at least one index i0 ∈ [n] such that 1 − ei0 ∈ B, then I(B) ≤ 2n − 2. In other words,
if B contains at least one maximal unit subcube (according to our terminology) but is not a
parallelepiped, then I(B) ≤ 2n − 2.

(II) Moreover, Proposition 20 and the proof of Proposition 29 allow us to complete the
discussion of Section 3: we can conclude that, for ALL 1-unconditional bodiesB in R3, I(B) ≤ 6,
unless B is a parallelepiped.

(III) As a ‘bonus’, we have also confirmed all the above results while using illuminating sets
which consist of pairs of opposite directions.
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4.3 Bodies with all unit subcubes of dimension n− 2

We finish this section by proving a similar result to the above, namely Proposition 3 of the
Introduction, since a similar argument can work here as well. To keep the proof simpler, we
assume that the convex bodies that we will consider are not already covered by any of the
previous propositions, or in other words by Theorem 2.

Proposition 31. Let n ≥ 4 and let B ∈ Un with the property that B contains

e1 + e2 + · · ·+ en−2

and all its coordinate permutations, but it does not contain any coordinate permutation of

e1 + e2 + · · ·+ en−2 + en−1.

For δ ∈ (0, 1) and ζ = ζδ ∈ (0, δ), let Ĩδ,ζ be the following set of directions:

— we will include most of the directions in În
n−2,n−1,n(δ) except

(i′) the directions d+ = (δ, δ, . . . , δ,−δ, 1) and d− = −(δ, δ, . . . , δ,−δ, 1),

(ii′) and all the other directions d ∈ În
n−2,n−1,n(δ) whose sequence of coordinate signs

differs from that of either d+ or d− in exactly one place (e.g. ±(δ, δ, . . . , δ, 1, δ, δ)
or ±(δ, δ, . . . , δ,−δ,−δ, 1)); note that, for each of these directions d, the place where
its sequence of signs differs from that of d+ or d− is not the place where d has its
maximum in absolute value coordinate.

— For each of the directions d in (ii′) we introduce a ‘replacement’ direction d′ as follows:
we first distinguish whether d has an almost identical sequence of signs to that of d+ or
to that of d− (suppose for illustration purposes that it is d+ here). We then set d′ to be
the direction which has the same respective entries as d, except for the one entry did of d
which differs in sign from the respective entry of d+, in which case we set d′id = sign(did)ζ
(e.g. if d = (δ, δ, . . . , δ,−δ,−δ, 1), then d′ = (δ, δ, . . . , δ,−ζ,−δ, 1)).

Then there are δ = δB > 0 and ζ = ζB > 0 such that B can be illuminated by the corresponding
set Ĩδ,ζ .

Remark 32. For illustration purposes, let’s write down what the sets Ĩδ,ζ would look like in
R4: we get the set of directions

{
± (δ, 1, ζ, δ), ±(δ,−1,−δ,−δ), ±(δ, δ,−1,−ζ), ±(δ,−δ, 1, δ),

± (δ, δ, δ,−1), ±(δ,−ζ,−δ, 1), ±(−ζ, δ,−δ, 1)
}
.

Proof. We first verify the following
Claim. Let y ∈ Rn \ {~0} such that |Zy| = 2. Then we can find d ∈ Ĩδ,ζ which deep illuminates
y, and which in addition satisfies the following: if di = ζ for some i ∈ [n] (unique in our setting),
then yi = 0 (in other words, if d is one of the modified directions in Ĩδ,ζ, and di is the modified
coordinate, then this corresponds to one of the two zero coordinates of y).

Proof of Claim. Note that, due to the way we construct Ĩδ,ζ from În
n−2,n−1,n(δ) (and ulti-

mately from In(δ)), all sequences of signs whose last 3 terms take one of the forms ±(1, 1, 1) or
±(−1, 1, 1) or ±(1, 1,−1) are still there (there are 2n−2 sequences of signs of each such form).
Moreover, there is exactly one pair of opposite directions in each of these subgroups which
comes from the modified directions: in fact,
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· in the first subgroup the coordinate which may be equal to ζ is the (n− 1)-th one,

· in the second subgroup the coordinate which may be equal to ζ is the n-th one,

· and in the third subgroup the coordinate which may be equal to ζ is the (n− 2)-th one.

At the same time, we observe that (because of the specific, combinatorial construction of In(δ)
that we rely on in this paper, and then the construction of În

n−2,n−1,n(δ) from that)

· the maximum (in absolute value) coordinate of all directions in the first subgroup is the
(n− 2)-th one,

· the maximum coordinate of all directions in the second subgroup is the (n− 1)-th one,

· and the maximum coordinate of all directions in the third subgroup is the n-th one.

We can now analyse what d should be, based on where the zero coordinates of y are found.

Case 1: The two zero coordinates of y are among the last three ones. Then the remaining coor-
dinate from these, say coordinate i0 ∈ {n − 2, n − 1, n}, is non-zero, and so are all the
coordinates with index < n− 2. Thus we can focus on one of the first three subgroups of
directions in Ĩδ,ζ , which contains directions with maximum (in absolute value) coordinate
the i0-th one, and pick the unique direction d whose signs on the non-zero coordinates of
y are opposite to the corresponding signs of y (in such a case, even if d has a coordinate
equal to ±ζ, this will have index in {n− 2, n− 1, n} \ {i0}).

Case 2: Only one of the zero coordinates of y is among the last three ones, say the coordinate
with index i1 ∈ {n − 2, n − 1, n}. Let us also write i2 for the index of the other zero
coordinate of y: i2 < n− 2. For illustration purposes, let’s assume that i1 = n (the other
cases can be treated completely analogously). Then we can use directions either from the
first subgroup (if the (n − 2)-th and (n − 1)-th coordinates of y have the same sign), or
from the second subgroup (if these coordinates of y have opposite signs). To avoid the
one pair of directions in these subgroups which has an (n−1)-th coordinate equal to ζ (in
absolute value), we can focus on directions d which satisfy sign(di2) 6= sign(dn−1) (since
di2 will correspond to a zero coordinate of y, so it can have either positive or negative sign
without issue).

Case 3: Both of the zero coordinates of y have indices < n − 2, say indices i3 and i4 (where
1 ≤ i3 < i4 ≤ n− 3). Clearly this case can occur only when n ≥ 5. We first focus on the
subgroup of directions in Ĩδ,ζ whose sequences of signs in the last three coordinates match
or are exactly opposite to the respective sequence for y. From within this subgroup, it
suffices to consider those directions d which satisfy sign(di3) 6= sign(di4) (because in this
way we both avoid the one pair of opposite directions/sign-sequences missing from Ĩδ,ζ
compared to În

n−2,n−1,n(δ), which we wouldn’t have been able to pick anyway, and also
we make sure that, even if a suitable direction d has a coordinate equal to ±ζ, this will
be its i3-th or its i4-th one, as desired).

The proof of the claim is complete.

Since B does not contain any of the coordinate permutations of 1−en, as previously we can
set, for each j ∈ [n], θj := ‖1− ej‖−1

B
; we will have θj ∈ (0, 1). We also set Θ0 := maxj∈[n] θj,

and pick

0 < δ < min

{
1

6
,
1−Θ0

2

}
.
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Furthermore, set γ := ‖1‖−1
B

. A suitable value for ζ will become clear towards the end of the
proof, but for now we just make sure that ζ < δ.

Let x be an extreme point of B. We distinguish two main cases.

|Zx| ≥ 1. Suppose xi0 = 0 for some i0 ∈ [n]. Because θi0
(
1 − ei0

)
∈ ∂B, for at least one index

i1 ∈ [n] \ {i0} we must have |xi1 | ≤ θi0 ≤ Θ0 < 1. Moreover, for every j ∈ [n] \ {i0, i1}, we
must have xj 6= 0, because otherwise x would not be an extreme point of B (it would be
in the convex hull of a point of the form 1−ei0 −ej, j ∈ [n]\{i0, i1}, and of its coordinate
reflections, without being any of those points). Thus the point

yx := x − xi0ei0 − xi1ei1 = x − xi1ei1

has exactly two zero coordinates, and hence, by the above claim, we can find a direction
d ∈ Ĩδ,ζ which deep illuminates yx. Moreover, we can make sure that, if ds = ±ζ for some
s ∈ [n], then yx,s = 0 (or, in other words, |ds| = ζ ⇒ s ∈ {i0, i1}).
Let j0 = m.c.(d). Then x+ |xj0 | d satisfies the following:

· its j0-th coordinate is zero,

· while |(x+ |xj0 | d)i0 | ≤ |xj0 | δ
· and |(x+ |xj0 | d)i1 | ≤ Θ0 + |xj0 | δ. Moreover, by our assumptions on δ, we have
Θ0 + |xj0 | δ < 1− |xj0 | δ.

· Finally, for any j ∈ [n] \ {j0, i0, i1}, we will have that

|(x+ |xj0 | d)j | ≤ max
{
|xj| − |xj0 | δ, |xj0 | δ

}
≤ 1− |xj0 | δ.

We now compare this point to the convex combinations

c1(x) := (1− |xj0 | δ)
(
1− ei0 − ej0

)
+ |xj0 | δ · ei0

and c2(x) := (1− |xj0 | δ)
(
1− ei0 − ej0 − ei1

)
+ |xj0 | δ · ei0 + |(x+ |xj0 | d)i1 | · ei1

which are contained in B. All the respective coordinates of c1(x) and c2(x) are equal,
except for the i1-th coordinate: in that case, c2(x) has a strictly smaller coordinate than
c1(x). Moreover, the coordinates of x + |xj0 | d do not exceed the corresponding ones of
c2(x) in absolute value. Thus it suffices to show that c2(x) ∈ intB to also obtain that
x+ |xj0 | d ∈ intB. To do this, we will use the fact that

c3(x) := (1− |xj0 | δ)
(
1− ei0 − ej0 − ei1

)
+ |xj0 | δ · ei0

is an interior point of B (which is verified if we compare with the point 1− ej0 − ei1 ∈ B).
Thus the desired conclusions follow by applying Lemma 10 on the section

{
z ∈ B : zs = (1− |xj0 | δ) for all s ∈ [n] \ {i0, i1, j0}, zj0 = 0, zi0 = |xj0 | δ

}
,

which contains all three points c1(x), c2(x), c3(x).

|Zx| = 0. Here, it suffices to pick a direction d from Ĩδ,ζ which deep illuminates x (which, in this
case, simply means that sign(di) = − sign(xi) for all i ∈ [n]). This will not be possible
only in the case that sign(xi) = sign(xn) for all i ∈ [n − 2] and sign(xn−1) = − sign(xn)
(since we removed without any replacement the only two directions in În

n−2,n−1,n(δ) which
had exactly this property). To deal with this remaining case, we distinguish two subcases.
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– At least two coordinates of x are ≤ 1
3 in absolute value. Say max(|xi1 | , |xi2 |) ≤ 1

3 with
1 ≤ i1 < i2 ≤ n. Recall that we have also assumed that x has no zero coordinates.
For the point

yx = x− xi1ei1 − xi2ei2

we again use our initial claim, and find a direction d ∈ Ĩδ,ζ which deep illuminates
yx, and is such that, if ds = ±ζ for some s ∈ [n], then yx,s = 0 (in other words,
|ds| = ζ ⇒ s ∈ {i1, i2}).
Let j0 = m.c.(d). Then x+ |xj0 | d satisfies the following:

· its j0-th coordinate is zero,

· while

|(x+ |xj0 | d)is | ≤ |xis |+ |xj0 | δ ≤ 1

3
+ δ <

1

2

for both s = 1 or 2 (the last inequality holds because of our assumptions on δ).

· Finally, for any j ∈ [n] \ {j0, i1, i2}, we will have that

|(x+ |xj0 | d)j | ≤ max
{
|xj| − |xj0 | δ, |xj0 | δ

}
≤ 1− |xj0 | δ.

We can now compare to the convex combination

1

2

(
1− ej0 − ei1

)
+

1

2

(
1− ej0 − ei2

)

in B, to conclude that x+ |xj0 | d ∈ intB.

– At most one of the coordinates of x is ≤ 1
3 in absolute value. Let i0 be the (smallest)

index of mini∈[n] |xi|. We must have |xi0 | ≤ γ (otherwise the point γ1 would not be
a boundary point of B). Moreover, recall that the only subcase that we have to still
consider here is the one satisfying the following:

(i) for all j ∈ [n] \ {i0} we have |xj| > 1
3 > δ;

(ii) sign(xi) = sign(xn) for all i ∈ [n− 2] and sign(xn−1) = − sign(xn).

We now pick the unique direction d ∈ Ĩδ,ζ which satisfies |di0 | = ζ and sign(di0) =
sign(xi0), while sign(dj) = − sign(xj) for all j ∈ [n] \ {i0}. Let j0 = m.c.(d). Then
x+ |xj0 | d satisfies the following: for all j ∈ [n] \ {i0},

|(x+ |xj0 | d)j | ≤ |xj| − |xj0 | δ,

while

|(x+ |xj0 | d)i0 | = |xi0 |+ |xj0 | ζ ≤ |xi0 |+ ζ.

Fix some λ0 ∈ (0, δ3); then, for all j ∈ [n] \ {i0}, we can write

λ0 |xj | ≤ λ0 <
δ

3
< |xj0 | δ,

and thus |xj| − |xj0 | δ < (1 − λ0) |xj |. Based on this, we consider the convex combi-
nation

c0(x) := (1 − λ0)
∑

i∈[n]

|xi| ei + λ0 · ei0 = (1− λ0)
∣∣~x
∣∣ + λ0 · ei0

which is contained in B, and we observe that:
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· each of its coordinates with index j ∈ [n] \ {i0} is equal to (1 − λ0) |xj| >
|(x+ |xj0 | d)j |,

· while the coordinate with index i0 is equal to

(1− λ0) |xi0 |+ λ0 = |xi0 |+ λ0(1− |xi0 |) ≥ |xi0 |+ λ0(1− γ).

Hence, if we fix some ζ < λ0(1−γ) (e.g. fix λ0 =
δ
4 and ζ = δ

5(1−γ); note that none
of these quantities has to depend on the point x that we are considering), we can also
ensure that |(x+ |xj0 | d)i0 | is strictly smaller than the i0-th coordinate of the convex
combination c0(x). This will imply that x+ |xj0 | d ∈ intB.

We have addressed all possibilities for the arbitrary extreme point of B, and we have shown
how to illuminate it in each case using some direction from Ĩδ,ζ (with δ and ζ suitably chosen

with respect to B). Therefore Ĩδ,ζ is an illuminating set for B, and I(B) ≤ 2n − 2.

5 Cubelike 1-unconditional convex bodies

Here we prove Theorem 5, namely we settle the Illumination Conjecture for 1-unconditional
convex bodies K which have the following property:

if x is an extreme point of K, then xi 6= 0 for all 1 ≤ i ≤ n (†)

(we called these cubelike bodies).

Recall that, because of standard results such as Fact A and Corollary 8, it is well-known
that such convex bodies can be illuminated by 2dim(K) directions. Therefore, the novelty in
Theorem 5 is that we also verify the conjectured equality cases of the Illumination Conjecture.

The proof of Theorem 5 could be summarised as follows: we will use induction in the
dimension, and in the inductive step we will rely on combining two key lemmas, which we
present first.

The first of these lemmas could be of independent interest as well, since it applies in a
broader setting than that of ‘cubelike’ 1-unconditional convex bodies.

Lemma 33. Let n ≥ 3, and let K be a convex body in Rn and H a(n) (affine) hyperplane of
Rn. Suppose that: (i) ProjH(K) = K ∩ H (where projection of any given vector here means
translating the vector parallel to a normal vector to H until we hit H), and (ii) K has NO
extreme points in H, that is, ext(K) ∩H = ∅.

Then I(K) ≤ 2 ·I(K∩H) = 2 ·I(ProjH(K)) (note that I(K∩H) is the illumination number
of an (n− 1)-dimensional convex body, found by illuminating K ∩H = ProjH(K) within H).

Proof. WLOG we can assume that H = e⊥n +aen for some a ∈ R, and then, by translating both
H and K by −aen, we can assume (for simplicity) that H = e⊥n . From now on, we will write
Ken instead of K ∩H = K ∩ e⊥n .

Note also that, because K ∩H = ProjH(K), we have that aff(K ∩H) = H.

Next we observe that K contains points x with xn = 〈x, en〉 > 0, as well as points y with
yn < 0. This is because, if this were not true, we would have that Ken is a support set of
K, and thus it would have to contain some extreme points of K, contrary to our second main
assumption. As a consequence of this, we also get that (intK) ∩ e⊥n 6= ∅.

Set now N0 = I(Ken) (where we initially view Ken as a subset of Rn−1 instead of e⊥n ). We
can find a set D = {d1, d2, . . . , dN0

} of directions in Rn−1 which illuminates Ken . Let us also
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restate this as a statement about subsets and directions of Rn: D can be viewed as a (minimum-
size) subset of e⊥n which has the property that, for every p ∈ relbd(Ken), we can find di ∈ D
and ε > 0 such that p+ εdi ∈ relint(Ken).

Claim. We can find a common ε0 > 0 with the property that, for every p ∈ Ken (and not
just ∈ relbd(Ken)), there will be some di ∈ D such that p + ε0di ∈ relint(Ken). By convexity,
this will also imply that, for p and di as before, p+ ε′di ∈ relint(Ken) for every ε′ ∈ (0, ε0).

Proof of the claim. We will use compactness (working with relatively open sets in the
subspace topology on e⊥n , so as not to further complicate our notation). The following is
essentially the (core of the) standard argument that shows that the illumination number and
the covering number of a convex body coincide.

For every p ∈ Ken we can find dip ∈ D and some εp > 0 such that p + εpdip ∈ relint(Ken).
For points on the relative boundary of Ken , this is already guaranteed by our choice of the set
D. On the other hand, if p ∈ relint(Ken), then, no matter which direction d we choose from
aff(Ken) = e⊥n (more accurately, from aff(Ken)−p, which just happens to coincide with aff(Ken)
here), we can get the desired conclusion as long as we pick εp = εp,d small enough.

We can rewrite this as p ∈ −εpdip + relint(Ken), and thus

Ken ⊂
⋃

p∈Ken

(
−εpdip + relint(Ken)

)
.

Therefore, by compactness, we can find finitely many positive numbers ε1, ε2, . . . , εM , M ≥ 1,
such that, for every p ∈ Ken , it will be possible to write

p ∈ −εjdi + relint(Ken) ⇔ p+ εjdi ∈ relint(Ken)

for some j ∈ {1, 2, . . . ,M} and i ∈ {1, 2, . . . , N0}. Finally, if we set ε0 = min{εj : 1 ≤ j ≤ M},
by convexity we will have that p + ε0di ∈ relint(Ken) as well, while ε0 will not depend on the
point p anymore. The proof of the claim is complete.

We can finally define an illuminating set for the convex body K. Set

a0 = max{|xn| : x ∈ K}.

By our remarks at the beginning, we know that a0 > 0. Set η0 =
ε0
a0
. We claim that the set

η0D × {±1} =
{
(η0di, 1), (η0di,−1) : 1 ≤ i ≤ N0

}

illuminates K (where we abuse our notation a bit again, and view D as a subset of (n − 1)-
dimensional vectors now).

Indeed, let x be an extreme point of K. Then, by our assumptions xn 6= 0, and also

Proje⊥n (x) ∈ Proje⊥n (K) = K ∩ e⊥n = Ken .

Hence, we can find di ∈ D such that Proje⊥n (x) + ε′di ∈ relint(Ken) for any ε′ ∈ (0, ε0].

We will show that x is illuminated by the direction
(
η0di,− sign(xn)

)
:

x+ |xn|
(
η0di,− sign(xn)

)
=

(
Proje⊥n (x) + |xn| ε0a0 di, 0

)
∈ relint(Ken)

given that |xn| ε0a0 ≤ ε0 (again, we abuse our notation and view Proje⊥n (x) as a vector with

n− 1 coordinates). It remains to recall that, since (intK) ∩ e⊥n 6= ∅ due to our assumptions on
e⊥n = H, Lemma 10 gives us that relint(Ken) = relint(K ∩ e⊥n ) ⊂ intK.
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Remark 34. Let K be a 1-unconditional convex body in Rn which has Property (†). It is not
hard to see that we can find at least one affine image K̃ of K which belongs to the subclass Un

and still has Property (†).
Indeed, as mentioned in Section 2, an obvious choice for an affine image of K from Un is the

convex body we get if we multiply K by the diagonal matrix diag
(
‖e1‖−1

K , ‖e2‖−1
K , . . . , ‖en‖−1

K

)
.

Let us write T0 for the linear transformation of Rn which corresponds to this matrix. It is clear
that

x ∈ ext(K) ⇔ T0(x) ∈ ext(T0(K)),

while this transformation T0 is such that, for all y ∈ Rn and i ∈ [n], yi 6= 0 ⇔ (T0(y))i 6= 0.

Lemma 35. Let B be a cubelike 1-unconditional convex body in Un (in other words, assume
that B has Property (†), and that ‖ei‖B = 1 for all i ∈ [n]).

Suppose that for some i0 ∈ [n] we have that Proje⊥i0
(B) is a(n) ((n− 1)-dimensional) paral-

lelepiped. Then we will have that Proje⊥i0
(B) coincides with Proje⊥i0

([−1, 1]n) (and not only that

they are affinely equivalent). Equivalently, B must contain the point 1− ei0 .

Proof. WLOG we can assume that i0 = n. By the linearity of projections, we can observe that

ext
(
Proje⊥n (B)

)
⊆

{
Proje⊥n (x) : x ∈ ext(B)

}
.

Moreover, since we have assumed that Proje⊥n (B) is an (n − 1)-dimensional parallelepiped, we

know that it has exactly 2n−1 extreme points. Let v1 be one of them; as already observed, we
can find an extreme point x1 of B such that v1 = Proje⊥n (x1).

Now note that, because of Property (†), all coordinates of x1 are non-zero, and hence the
first n − 1 coordinates of v1 will be non-zero. Moreover, by the 1-unconditionality, we know
that all coordinate reflections of v1 must also be extreme points of Proje⊥n (B), and given what

we just remarked, we have that there are 2n−1 different such coordinate reflections (including
v1 itself).

We conclude that the extreme points of Proje⊥n (B) are precisely v1 = Proje⊥n (x1) and its
coordinate reflections. WLOG we can assume that v1 has only positive coordinates (except for
its last one).

We finally observe that, for all j ∈ [n − 1], ej ∈ Proje⊥n (B), and thus it must be possible
to write it as a convex combination of v1 and its coordinate reflections. This implies that
|v1,j | = v1,j ≥ 1 (and since B ∈ Un, we also have v1,j = x1,j ≤ 1). We conclude that v1 =
Proje⊥n (x1) = 1− en, and by the 1-unconditionality we know that this is contained in B.

We are now ready to give the
Proof of Theorem 5. Let n ≥ 3, and consider a cubelike 1-unconditional convex body B in Rn

which is NOT a parallelepiped. Because of Remark 34, we can also assume that B ∈ Un without
ruining any of the other assumptions. We will show that I(B) ≤ 2n − 2 by using induction in
the dimension n.

Base of induction: If n = 3, then Theorem 15 gives us that I(B) ≤ 6 (without even
having to use the assumption that B is cubelike), and it also guarantees that we can illuminate
(any affine image of) B using 3 pairs of opposite directions.

Induction Step: Let us now assume that the theorem holds in dimension n − 1 for some
n > 3, and consider B ∈ Un as above.

Because of the 1-unconditionality, we have that Proje⊥n (B) = B ∩ e⊥n . Moreover, as we also
observed in the proof of Lemma 35, it holds that

ext
(
Proje⊥n (B)

)
⊆

{
Proje⊥n (x) : x ∈ ext(B)

}
,

and thus Proje⊥n (B) (viewed as a convex body in Rn−1) is 1-unconditional and cubelike.
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� If Proje⊥n (B) is a parallelepiped of Rn−1, then Lemma 35 gives us that B contains the point
1 − en. Note that B is assumed to NOT be a parallelepiped of Rn, and thus Theorem 2
applies in this case, allowing us to illuminate B using 1

2(2
n−2) pairs of opposite directions.

� If instead Proje⊥n (B) is NOT a parallelepiped of Rn−1, then we can invoke the inductive

hypothesis and conclude that I(Proje⊥n (B)) ≤ 2n−1−2. In fact, we obtain that Proje⊥n (B)

can be illuminated using 2n−2 − 1 pairs of opposite directions.

We can then combine this with Lemma 33 (given our assumptions, which imply the
conditions of that lemma), and this gives that I(B) ≤ 2 · I(Proje⊥n (B)) ≤ 2n − 4.

In addition, by looking at the proof of Lemma 33 as well, we can check that, if we start
with an illuminating set of Proje⊥n (B) which consists of pairs of opposite directions, then
we pass to an illuminating set for B which also consists of pairs of opposite directions
(and has double cardinality).

This completes the proof.

It is worth remarking that we only looked at the particular hyperplane projection Proje⊥n (B)
of B for simplicity. By the 1-unconditionality assumption (which is a rather strong symmetry
assumption from certain points of view), we have that Proje⊥j

(B) = B ∩ e⊥j for all j ∈ [n].

Therefore, we could have applied the inductive hypothesis and Lemma 33, exactly as we did
above, for any index j0 ∈ [n] for which we would know that Proje⊥j0

(B) is NOT a parallelepiped.

And if it turned out that no such index exists, then (by also recalling Lemma 35) we would
deduce that we are in the setting of Proposition 20, which is just a special case of Theorem 2
(in fact, the case with the easiest, most direct proof). Thus, the proof of Theorem 5 only truly
requires Proposition 20.

Still, in this paper we sought to give a full proof of Theorem 2, because this allows us to
settle more high-dimensional cases of the Illumination Conjecture in the class of 1-unconditional
bodies.

6 1-unconditional convex bodies in R4

It remains to complete the proof of Theorem 1: note that we have already fully settled the part
of the theorem that concerns R3. Recall also that Propositions 20, 21, 28 and 29 apply with
n = 4 too, and cover all cases where we have at least one coordinate permutation of e1+ e2+ e3
contained in a 1-unconditional convex body B ∈ U4. Analogously, Proposition 31 corresponds
to, and settles, the case of 1-unconditional convex bodies in U4 which contain all coordinate
permutations of e1 + e2 and no coordinate permutations of e1 + e2 + e3.

Therefore, to also fully confirm the Illumination Conjecture for 1-unconditional convex bod-
ies in R4, it remains to address the cases where B ∈ U4 contains only some of the coordinate
permutations of e1 + e2 or none of them. We summarise the conclusions that we reach in this
section in the following

Theorem 36. Let B ∈ U4 which is not a parallelepiped.

• If B contains at least one coordinate permutation of e1+ e2+ e3, then, as we have already
seen, there exist δ ∈ (0, 1), or δ1 ∈ (0, 1), or ǫ2 and δǫ2 ∈ (0, 1), or δ3, δ̃3 ∈ (0, 1) and
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η3 ∈ (0, δ3), which depend only on B, so that B is illuminated by one of the following sets:

F4
20,δ = I4

−2(δ) =
{
±(1, δ, δ, δ), ±(δ,−1,−δ,−δ), ±(δ, δ,−1,−δ), ±(δ,−δ, 1, δ),

± (δ, δ, δ,−1), ±(δ,−δ,−δ, 1), ±(δ,−δ, δ,−1)
}
,

or F4
21,δ = I3

−2(δ) × {±δ} =
{
±(1, δ, δ), ±(δ,−1,−δ), ±(δ, δ,−1)

}
× {±δ},

or F4,1

29,δ1
= I4

ex2,1(δ1) =
{
±(δ1, δ1, δ1, 1), ±(δ1, δ1, δ1,−1), ±(δ1,−δ1,−δ1, 1),

±(δ1,−δ1,−δ1,−1), ±(δ1, δ1,−1, 0), ±(δ1,−δ1, 1, 0)
}
,

or F4,2

29,ǫ2,δǫ
2

= I4
ex2,2(ǫ2, δǫ2 ) =

{
±(ǫ2, ǫ2, 1, 1), ±(δǫ

2
,−δǫ

2
,−1,−δǫ

2
), ±(δǫ

2
, δǫ

2
,−1,−δǫ

2
),

±(δǫ
2
,−δǫ

2
, 1, δǫ

2
), ±(δǫ

2
, δǫ

2
, δǫ

2
,−1), ±(δǫ

2
,−δǫ

2
,−δǫ

2
, 1), ±(δǫ

2
,−δǫ

2
, δǫ

2
,−1)

}
,

or F4
28,δ3,η3,δ̃3

=
{(

±(1, η3),±δ3, 0
)
,
(
±(−η3, 1),±δ3, 0

)}
∪

[{
±(δ̃3, δ̃3, δ̃3)

}
× {±1}

]
,

or by some coordinate permutation of those.

• Again, as we have seen, if B contains all coordinate permutations of e1 + e2 (and none of
the coordinate permutations of e1 + e2 + e3), then B can be illuminated by the set

F4
31,δ,ζ = Ĩ4

δ,ζ =
{
± (δ, 1, ζ, δ), ±(δ,−1,−δ,−δ), ±(δ, δ,−1,−ζ), ±(δ,−δ, 1, δ),

± (δ, δ, δ,−1), ±(δ,−ζ,−δ, 1), ±(−ζ, δ,−δ, 1)
}

for some δ ∈ (0, 1) and ζ ∈ (0, δ) which depend only on B. Note that an equivalent
description for B here is that it contains all possible unit squares.

• In the remaining 4-dimensional cases, where B may contain only some unit squares, or
none at all, we can use a coordinate permutation of one of the following illuminating sets:

F37,42,δ,η,ζ :=
{
± (1, δ, η, 0), ±(δ,−1,−η, 0), ±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ),

± (0,±(η, δ), 1), ±(0, 1,−δ, η)
}
,

F38,39,δ,η :=
{
± (1, δ, η, 0), ±(δ,−1, η, 0), ±(−η, δ, 1, 0), ±(η, δ,−1, 0),

± (−η, 0, δ, 1), ±(−η, 0, δ,−1), ±(1, 0, 1, 0)
}
,

F39,alt,δ1 :=
{
±(1, δ1, 0, 0),±(−δ1, 1, 0, 0),±(0, 0, 1, δ1),±(0, 0,−δ1, 1)

}
,

F40,43,δ,η :=
{
± (1, δ, η, 0), ±(δ,−1,−η, 0), ±(δ,−η, 1, 0), ±(δ, η,−1, 0),

± (0,±(η, δ), 1), ±(0, 1,−1, 0)
}
,

F40,alt,δ2,η2 :=
{
±(η2, 1, δ2, 0), ±(−η2, 1, δ2, 0), ±(−η2, 1,−δ2, 0),

±(η2, η2, 1, δ2), ±(−η2,−η2, 1, δ2), ±(η2, η2,−δ2, 1), ±(−η2,−η2,−δ2, 1)
}
,

or F43,alt,δ3,η3 :=
{
± (1,−η3,−δ3,−δ3), ±(−η3, 1,−δ3,−δ3),

± (δ3, 0, 1,−η3), ±(δ3, 0,−η3, 1), ±(0, δ3, 1,−η3), ±(0, δ3,−η3, 1)
}
.
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Note that the order in which we include the parameters/‘small’ constants that we use as
subscripts should indicate how they (potentially) depend on each other: parameters appearing
earlier do not depend on later ones, but how small one may need to choose the later one(s)
depends on the values of the earlier parameters.

In the same manner as in earlier sections, we divide the remaining cases into the following
propositions (based on how many unit squares the given unconditional body contains).

Proposition 37. Suppose that B ∈ U4 satisfies ‖ei + ej‖B > 1 for every i, j ∈ [4]. Then there
exist δ > 0, η = ηδ > 0 and ζ = ζδ,η > 0 so that B can be illuminated by some coordinate
permutation of the set

F37,42,δ,η,ζ :=
{
± (1, δ, η, 0), ±(δ,−1,−η, 0), ±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ),

± (0,±(η, δ), 1), ±(0, 1,−δ, η)
}
.

Observe that
∣∣∣F37,42,δ,η,ζ

∣∣∣ = 14.

Proof. For all i, j ∈ [4], i 6= j, set θi,j = ‖ei + ej‖−1
B

; this is equivalent to θi,j(ei + ej) ∈ ∂B, and
thus θi,j < 1 for all i 6= j by our main assumption. Set Θ0 = maxi<j θi,j.

Next, similarly to the proof of Proposition 16, for each i ∈ [4] and for each j ∈ [4]\{i}, set
αi,j to be the supremum of non-negative numbers xj such that

1 + Θ0

2
ei + xjej ∈ B.

Then 1+Θ0

2 ei + αi,jej ∈ B, and we must have αi,j < 1 (in fact, αi,j must be < θi,j, since
otherwise the point θi,j(ei + ej) would not be a boundary point of B; indeed, since θi,j < 1, if
we had that 1+Θ0

2 ei + θi,jej ∈ B, we could use Lemma 10 to conclude that yiei + θi,jej ∈ intB

for any yi ∈ (0, 1+Θ0

2 )).

Set α0 = max1≤i 6=j≤4 αi,j and WLOG assume that (at least) one of α1,2, α2,1 is equal to α0.
We will now show that F37,42,δ,η,ζ (with suitably chosen δ, η, ζ) illuminates B. Let x ∈ ∂B.
Consider the following cases for the index set Zx of zero coordinates of x.

|Zx| ≥ 2. First of all, if x = xiei for some i ∈ [4], where xi = ±1, then we find a direction
d ∈ F37,42,δ,η,ζ satisfying m.c.(d) = i and di · xi < 0. Observe that ‖d − diei‖∞ = δ,

and thus, as long as we choose ζ < η < δ < 1
4 , we will have that x+ d ∈ intB.

Similarly, if x = xiei + xjej , and we assume WLOG that |xi| ≥ |xj | > 0, we will have
that |xj | ≤ θi,j ≤ Θ0. Again we choose d ∈ F37,42,δ,η,ζ which satisfies m.c.(d) = i and
di · xi < 0. Then, for the displaced vector x+ |xi|d, we will have that

· |(x+ |xi|d)i| = 0,

· |(x+ |xi|d)j | ≤ |xj |+ |xi|δ ≤ |xj |+ δ ≤ Θ0 + δ,

· and for s ∈ [4] \ {i, j}, |(x+ |xi|d)s| ≤ δ.

Thus, if we also choose ζ < η < δ < 1−Θ0

3 , we will have that x+ |xi|d ∈ intB (note that
these restrictions on δ, η and ζ do not depend on what the coordinates of x are).

|Zx| = 0. We consider two subcases here.
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– First, assume that |x1| ≤ 1+Θ0

2 . Then |x1| < 1, and we can invoke Corollary 11 to
conclude that a direction d from

±(0,±(η, δ), 1), ±(0, 1,−δ, η)

will illuminate x if it holds that ds · xs < 0 for all s ∈ [4] \ {1}. Otherwise, if
none of these directions can satisfy this requirement, it will mean that sign(x2) =
− sign(x3) = − sign(x4), in which case one of the directions

±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ)

will illuminate x (the one direction d which also satisfies d1 · x1 < 0).

– Now we assume that |x1| > 1+Θ0

2 . Then, by our choice of the numbers αi,j , we will
have that |x4| ≤ α1,4 ≤ α0 < 1.

If sign(x1) = sign(x2) = sign(x3) or sign(x1) = − sign(x2) = − sign(x3), then one
of ±(1, δ, η, 0), ±(δ,−1,−η, 0) will illuminate x (by Corollary 11). Thus, assume for
the remainder of this case that x does not satisfy either of these sign assumptions.
We consider further subcases here.

· If max(|x2|, |x3|) < 1−α0

8 ≤ 1−α1,4

8 , then, as long as we also make sure that
ζ < η < δ < 1−α0

8 , we can choose a direction d ∈
{
±(1, δ, η, 0)

}
which satisfies

d1 · x1 < 0 (and we can check that x+ |x1|d ∈ intB by comparing to the point
1+α0

2 e4 +
1−α0

4 (e2 + e3) ∈ B).

· Assume now that max(|x2|, |x3|) ≥ 1−α0

8 ≥ min(|x2|, |x3|). Also assume first that
max(|x2|, |x3|) = |x2|. Then we choose the unique direction d from

{
±(1, δ, η, 0),

±(δ,−1,−η, 0)
}

which satisfies ds · xs < 0 for s ∈ [2] (recall that, by our last
assumption on the signs of x, we will also have here that d3 · x3 > 0). For the
displaced vector x+ 1−α0

8 d we observe that∣∣(x+ 1−α0

8 d
)
s

∣∣ < (1− λ0)|xs| for s ∈ {1, 2}, as long as

λ0 <
1−α0

8 δ.

Based on this, we can compare with the vector

uα0
:= (1− λ0)

∣∣~x
∣∣+ λ0

(
3 + α0

4
e4 +

1− α0

4
e3

)
∈ B.

We have that
∣∣(x+ 1−α0

8 d
)
s

∣∣ < uα0,s for s ∈ {1, 2, 4}, and also that

uα0,3 = |x3|+ λ0

(
1− α0

4
− |x3|

)
≥ |x3|+ λ0

1− α0

8
.

Thus, if we also choose

η < λ0 <
1− α0

8
δ,

we will have that
∣∣(x+ 1−α0

8 d
)
3

∣∣ ≤ |x3|+ 1−α0

8 η < uα0,3, which finally shows that

x+ 1−α0

8 d ∈ intB.

On the other hand, if max(|x2|, |x3|) = |x3|, then we pick the unique direction
d′ from

{
±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ)

}
which satisfies d′s · xs < 0 for s ∈ {1, 3}.

Similarly, we compare the displaced vector x+ 1−α0

8 d′ with the vector

u′α0
= (1− λ1)

∣∣~x
∣∣+ λ1

(
7 + α0

8
e4 +

1− α0

8
e2

)
∈ B,
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where λ1 needs to be < 1−α0

8 δ. Observe that, as long as ζ < 7λ1 <
7(1−α0)

8 δ, we
will have that x+ 1−α0

8 d′ ∈ intB.

· Finally, assume that min(|x2|, |x3|) > 1−α0

8 . Then we pick the unique direction
d ∈

{
±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ)

}
which satisfies ds ·xs < 0 for s ∈ [3]. Again,

we can check that x+ 1−α0

8 d ∈ intB as long as ζ < (1− α0)η.

We now turn to the cases where:

|Zx| = 1. We will argue similarly to the previous case, but will now rely on the existence of the
points

vi;Θ0
:=

3 + Θ0

4
ei +

1−Θ0

12

∑

j 6=i

ej

in B.

– Assume first of all that x4 = 0.

· If |x3| ≤ 1+Θ0

2 , then we cannot have max(|x1|, |x2|) < 1−Θ0

24 (because otherwise we
could compare the entries of x with those of v3;Θ0

and we would obtain that x is
not a boundary point). If |x2| = min(|x1|, |x2|) and it is < 1−Θ0

24 , then we simply
choose a direction from ±(1, δ, η, 0) such that d1 ·x1 < 0. Then x+ |x1|d ∈ intB
as long as

ζ < η < δ <
1−Θ0

24

(this can be seen by comparing with the corresponding coordinates of the point
v3;Θ0

again).
Similarly, if |x1| = min(|x1|, |x2|) < 1−Θ0

24 , then we illuminate x with a direction
from ±(δ,−1,−η, 0).

Finally, if min(|x1|, |x2|) ≥ 1−Θ0

24 , then we choose d from the same directions
as previously, ±(1, δ, η, 0), ±(δ,−1,−η, 0), so that ds · xs < 0 for s ∈ [2]. We
compare the coordinates of the displaced vector x+ 1−Θ0

24 d with those of a convex
combination of the form

λe3 + (1− λ)
∣∣~x
∣∣ =

(
(1− λ)|x1|, (1− λ)|x2|, |x3|+ λ(1− |x3|), 0

)
(6)

where λ < 1−Θ0

24 δ. But then, as long as 1−Θ0

24 η < λ1−Θ0

2 ≤ λ(1− |x3|), which can

be achieved if η < 1−Θ0

2 δ, we will have that x+ 1−Θ0

24 d ∈ intB.

· If instead |x3| > 1+|Θ0

2 , then we observe the following: by 1-unconditionality,
we will have that |x1|e1 + |x3|e3 ∈ B ⇒ |x1| ≤ α3,1 ≤ α0 = max(α1,2, α2,1).
Similarly, we see that |x2| ≤ α3,2 ≤ max(α1,2, α2,1). Therefore, we can pick the
unique direction d ∈ {±(δ,−η, 1, ζ)} which satisfies d3 · x3 < 0, and we will have
that x+ |x3|d ∈ intB as long as

η < δ <
θ1,2 − α0

2
=

θ1,2 −max(α1,2, α2,1)

2
and ζ <

1

2

(
1− α0

θ1,2

)

(we can confirm this by comparing to the point

θ1,2 + α0

2
(e1 + e2) +

(
1

2
− α0

2θ1,2

)
e4

which is a convex combination of θ1,2(e1 + e2) and of e4).
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– Now we assume that x3 = 0.

· If |x4| ≤ 1+Θ0

2 , we argue exactly as before, and we illuminate x using one of the
directions ±(1, δ, η, 0), ±(δ,−1,−η, 0). The only change that we make is that,
in the subcases where min(|x1|, |x2|) ≥ 1−Θ0

24 , instead of comparing the displaced

vector x+ 1−Θ0

24 d with a vector analogous to the one in (6), we compare with a
vector of the form

λ′v4;Θ0
+ (1− λ′)

∣∣~x
∣∣.

· If |x4| > 1+Θ0

2 , again we argue similarly to the previous case, while illuminating
x with the unique direction d ∈ {±(0, η, δ, 1)} which satisfies d4 · x4 < 0.

– Next, assume that x2 = 0. In this case we illuminate x with a direction d from

±(1, δ, η, 0), ±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ), ±(0,±(η, δ), 1)

and we distinguish subcases based on whether |x4| ≤ 1+Θ0

2 or not (in fact, in the
latter subcase we illuminate x with one of the directions from ±(0,±(η, δ), 1), relying
on the fact that |x1| ≤ α4,1 ≤ α0 <

1+Θ0

2 ).

– Finally assume that x1 = 0. Then we illuminate x with one of the directions from

±(0,±(η, δ), 1), ±(0, 1,−δ, η), ±(δ,−η, 1, ζ).

If sign(x2) = sign(x3), then we use one of the first 4 directions. We also use one
of these directions in the cases where sign(x2) = − sign(x3), but at the same time
|x2| ≤ 1+Θ0

2 and |x4| ≥ 1−Θ0

24 , whereas we use the last pair of directions here if,

instead of the last assumption, we have min(|x3|, |x4|) = |x4| < 1−Θ0

24 .

Finally, if sign(x2) = − sign(x3) and |x2| > 1+Θ0

2 , then we will have that |x4| ≤
α2,4 ≤ α0. Thus, regardless of whether min(|x2|, |x3|) = |x3| < 1−Θ0

24 or not, we will
illuminate x by a direction d ∈ {±(0, 1,−δ, η)} (it’s just that in the former subcase
we will compare the displaced vector x+ |x2|d with the vector v4;Θ0

, whereas in the
latter subcase we will compare the same displaced vector with a convex combination
of the form λe4 + (1 − λ)|~x|; note that in the latter subcase we again consider the
displacement x + |x2|d because |x3| ≥ 1−Θ0

24 > δ by our restrictions so far, and thus
|(x+ |x2|d)3| = |x3|− |x2|δ, which we can write as < (1−λ)|x3| for a suitably chosen
λ ∈ (0, 1)).

We have thus illuminated all boundary points of B. We finally remark that, if B doesn’t
satisfy the assumption that max1≤i 6=j≤4 αi,j = max(α1,2, α2,1), then clearly a coordinate per-
mutation ι of R4 suffices to give an affine image ι(B) of B which does. This completes the
proof.

Proposition 38. Suppose that for a given B ∈ U4 there is exactly one pair of indices i1, i2 ∈ [4]
such that ‖ei1 + ei2‖B = 1. Then there exist δ > 0 and η = ηδ > 0 so that B can be illuminated
by some coordinate permutation of the set

F38,39,δ,η :=
{
± (1, δ, η, 0), ±(δ,−1, η, 0), ±(−η, δ, 1, 0), ±(η, δ,−1, 0),

± (−η, 0, δ, 1), ±(−η, 0, δ,−1), ±(1, 0, 1, 0)
}
.

Proof. WLOG we can assume that e1 + e2 ∈ B. For any 1 ≤ i 6= j ≤ 4 with {i, j} 6= {1, 2}, we
set

θi,j := ‖ei + ej‖−1
B

,
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which by our assumption will be < 1. Set Θ0 = max
{
θi,j : 1 ≤ i 6= j ≤ 4, {i, j} 6= {1, 2}

}
and

fix some δ ∈
(
0, 1−Θ0

4

)
and some ηδ ∈ (0, δ/2) (we will further restrict ηδ by the end of the

proof). Let x be a boundary point of B, and consider the following cases.

|Zx| = 3. Since η < δ < 1
4 , to illuminate a boundary point x = xiei with xi = ±1, it suffices to pick

a direction dx from the first 12 in F38,39,δ,η which satisfies m.c.(dx) = m.c.(x) = i and
dx,i · xi < 0.

|Zx| = 2. We first deal with the subcase where

– Zx = {3, 4}. Here we pick the unique direction d ∈ ±(1, δ, η, 0), ±(δ,−1, η, 0) which
satisfies ds · xs < 0 for s ∈ [2]. Then the non-zero coordinates of x+ d do not exceed
in absolute value the non-zero coordinates of either (1 − δ, 0, η, 0) or (0, 1 − δ, η, 0).
The latter points are interior points of B since 1− δ + η < 1, and thus x+ d ∈ intB
too.

– Zx 6= {3, 4}. If we write x = xi1ei1 + xi2ei2 with {i1, i2} = [4] \ Zx, and we assume
WLOG that |xi1 | ≥ |xi2 |, then we will have that |xi2 | ≤ θi1,i2 ≤ Θ0. Thus, we can pick
a direction dx from the first 12 in F38,39,δ,η so that m.c.(dx) = i1 and dx,i1 · xi1 < 0.
We can compare the displaced vector x + |xi1 |dx to either (Θ0 + δ)ei2 + δei3 or
Θ0ei2 + δ(ei3 + ei4), where {i3, i4} = Zx. Given that Θ0 + 2δ < 1, the latter points
are in intB, and thus the same is true for x+ |xi1 |dx.

|Zx| = 0. Here we distinguish subcases based on the magnitude of |x4|.

– If |x4| ≤ Θ0 < 1, then, by employing Corollary 11 (combined with Corollary 8), we
can illuminate x using one of the first 8 directions in F38,39,δ,η (we choose the unique
direction d among these which satisfies ds · xs < 0 for s ∈ [3]).

– Assume now that |x4| > Θ0. Then |x1| ≤ θ1,4 ≤ Θ0 and |x2| ≤ θ2,4 ≤ Θ0.

· If |x3| < 1−Θ0

4 , we use the unique direction d ∈ {±(−η, 0, δ, 1)} which satisfies d4 ·
x4 < 0. We compare the displaced vector x+ |x4|d with the convex combination

u3;Θ0
:=

1 + Θ0

2
(e1 + e2) +

1−Θ0

2
e3 ∈ B.

· If instead |x3| ≥ 1−Θ0

4 , then we use the unique direction d ∈ {±(−η, 0, δ, 1),
±(−η, 0, δ,−1)} which satisfies ds · xs < 0 for s ∈ {3, 4}. For the same indices s,
we have that ∣∣(x+ |x4|d)s

∣∣ < (1− λ0)|xs|

as long as λ0 ∈ (0, δ) (since (x + |x4|d)4 = 0, and since λ0|x3| ≤ λ0θ3,4 ≤ λ0Θ0

and |x4|δ ≥ Θ0δ). But then we compare x+ |x4|d with the vector

(1− λ0)
∣∣~x
∣∣+ λ0(e1 + e2) ∈ B,

and we can conclude that x+ |x4|d ∈ intB as long as η < λ0(1−Θ0) < δ(1−Θ0)
(so that

∣∣(x+ |x4|d)1
∣∣ ≤ |x1|+ |x4|η < |x1|+ λ0(1−Θ0) ≤ |x1|+ λ0(1− |x1|)).

|Zx| = 1. First of all, if Zx = {4}, then we argue as in the cases where |Zx| = 0 and |x4| ≤ Θ0: the
first 8 directions of F38,39,δ,η illuminate x.

The remaining subcases are the following.
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– Assume that x3 = 0. If |x4| ≤ Θ0, while min(|x1|, |x2|) ≤ 1−Θ0

4 ≤ max(|x1|, |x2|),
then we use a direction d from ±(1, δ, η, 0), ±(δ,−1, η, 0) so that m.c.(d) is the same
index where max(|x1|, |x2|) is attained, and so that dm.c.(d) · xm.c.(d) < 0. We will
have that x+ |xm.c.(d)|d ∈ intB based on our restrictions on δ and η.

If instead |x4| ≤ Θ0 and min(|x1|, |x2|) ≥ 1−Θ0

4 , then we choose from the same
directions a direction d such that ds · xs < 0 for s ∈ [2]. We compare the displaced
vector x+ 1−Θ0

4 d with a convex combination of the form

(1− λ)
∣∣~x
∣∣+ λ

(
1 + Θ0

2
e4 +

1−Θ0

2
e3

)

where λ < 1−Θ0

4 δ, to conclude that x+ 1−Θ0

4 d ∈ intB as long as η < 1−Θ0

2 δ.

Finally, if |x4| > Θ0, then we use a direction d ∈ {±(−η, 0, δ, 1)} and compare
x+ |x4|d with u3;Θ0

= 1+Θ0

2 (e1 + e2) +
1−Θ0

2 e3 again.

– Assume now that x1 = 0. Then we will illuminate x using one of the directions

±(δ,−1, η, 0), ±(−η, δ, 1, 0), ±(η, δ,−1, 0), ±(−η, 0, δ, 1), ±(−η, 0, δ,−1)

while distinguishing subcases based on whether |x4| ≤ Θ0 or not, and whether in the
former case min(|x2|, |x3|) ≤ 1−Θ0

4 or not, or whether in the latter case |x3| ≤ 1−Θ0

4
or not.

– Finally, we assume that x2 = 0. If |x4| > Θ0, then we will have that |x1| ≤ Θ0, and
thus we can use a direction d from ±(−η, 0, δ, 1), ±(−η, 0, δ,−1) so that ds · xs < 0
for s ∈ {3, 4}: we can conclude that x+ |x4|d ∈ intB (while distinguishing subcases
in our analysis based on whether |x3| ≤ 1−Θ0

4 or not).

If instead |x4| ≤ Θ0 < 1, then we can also rely on Corollary 11. We distinguish cases
based on whether sign(x1) = − sign(x3) or not. In the former case, we use again
one of the directions ±(−η, 0, δ, 1), ±(−η, 0, δ,−1) to illuminate x (here we can find
a direction d such that ds ·xs < 0 for all s ∈ {1, 3, 4}). If instead sign(x1) = sign(x3),
then Corollary 11 guarantees that one of the directions ±(1, 0, 1, 0) illuminates x.

In the end, by examining our analysis more carefully, we can see that the restrictions δ ∈(
0, 1−Θ0

4

)
and η < 1−Θ0

2 δ are sufficient to complete the proof.

Proposition 39. Suppose that for a given B ∈ U4 there are exactly two pairs of indices i1, i2 ∈
[4] such that ‖ei1 + ei2‖B = 1. Then at least one of the following two statements holds:

(i) there exist δ1 > 0 and η1 = ηδ1 > 0 so that B can be illuminated by some coordinate
permutation of the set

F38,39,δ1,η1 =
{
± (1, δ1, η1, 0), ±(δ1,−1, η1, 0), ±(−η1, δ1, 1, 0), ±(η1, δ1,−1, 0),

± (−η1, 0, δ1, 1), ±(−η1, 0, δ1,−1), ±(1, 0, 1, 0)
}
;

(ii) there exists δ2 > 0 so that B can be illuminated by some coordinate permutation of the set

F39,alt,δ2 :=
{
±(1, δ2, 0, 0),±(−δ2, 1, 0, 0),±(0, 0, 1, δ2),±(0, 0,−δ2 , 1)

}
.

Proof. We first deal with the cases where statement (ii) definitely applies. These are the cases
where the two pairs of indices i1 6= i2 and j1 6= j2 ∈ [4] for which we have ‖ei1 + ei2‖B =
‖ej1 + ej2‖B = 1 satisfy {i1, i2} ∩ {j1, j2} = ∅.
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WLOG we can assume {i1, i2} = {1, 2} and {j1, j2} = {3, 4}. For each other pair (i, j) of
(distinct) indices, we set θi,j = ‖ei + ej‖−1

B
, and we know from our assumptions that θi,j < 1.

Let us set Θ0 = max{θi,j : 1 ≤ i < j ≤ 4, ei + ej /∈ B}, and let us fix δ2 < 1−Θ0.

Consider now a boundary point x of B, and suppose |x1| is its maximum coordinate
(in absolute value); note that this doesn’t have to be unique. Necessarily max{|x3|, |x4|} ≤
max{θ1,3, θ1,4} ≤ Θ0, and thus (0, 0, x3, x4) is an interior point of B (since e3 + e4 ∈ B).

If x2 = 0, then we illuminate x using the direction dx = − sign(x1)(1, δ2, 0, 0): we will have
x+ |x1|dx = (0,−x1δ2, x3, x4), which by our assumptions is an interior point of B (this can be
seen by comparing with the point (1−Θ0)e2 +Θ0(e3 + e4) ∈ B).

If x2 6= 0, then we pick instead a direction dx from ±(1, δ2, 0, 0),±(−δ2, 1, 0, 0) which satisfies
dx,s · xs < 0 for both s = 1 and = 2. Then, using Corollary 11, we see that dx illuminates x.

We argue analogously if the maximum (in absolute value) coordinate of x is its 2nd or 3rd
or 4th one.

Consider now the cases where {i1, i2} ∩ {j1, j2} 6= ∅. WLOG let e1 + e2, e2 + e3 ∈ B. Again
let us set Θ0 = max{θi,j : 1 ≤ i < j ≤ 4, ei + ej /∈ B}, where θi,j = ‖ei + ej‖−1

B
, and observe

that Θ0 < 1. Fix now some

δ1 <
1−Θ0

4

and suppose also that we have chosen some η1 < δ1/2 (we will soon see that we need to restrict
η1 further, but this will be done in an unambiguous manner).

The argument that F38,39,δ1,η1 illuminates B is very analogous to that of the previous
proposition: let us fix an extreme point x ∈ ∂B.

� If |Zx| = 3, then x is an extreme point only if x = ±e4. Then x is illuminated by the
directions ∓(−η1, 0, δ1, 1), as long as η1, δ1 < 1.

� If |Zx| = 2, and x = ±e1+±e2 or ±e2+±e3, then one of the first 8 directions of F38,39,δ1,η1
illuminates x. The ‘trickiest’ case here is if x = ±(e1 − e2). Then we have to use the
directions ∓(δ1,−1, η1, 0): e.g. (e1 − e2) + (−δ1, 1,−η1, 0) = (1 − δ1, 0,−η1, 0), which is
∈ int(B) since 1− δ1 + η1 < 1.

Note that all other points x ∈ ∂B with Zx = {3, 4} or Zx = {1, 4} are not extreme, but
in the convex hull of ±e1 +±e2 and ±e2 +±e3 (so they are also illuminated by the same
first 8 directions). Other subcases that we need to consider here are the following.

• If x = (x1, 0, x3, 0), then by our assumptions min(|x1|, |x3|) ≤ Θ0. If |x1| ≤ |x3|, then
we illuminate x using the directions ±(−η1, δ1, 1, 0):

x+ (− sign(x3)|x3|)(−η1, δ1, 1, 0) = (x1 + x3η1,−x3δ1, 0, 0) ∈ int(B)

since |x1 + x3η1| ≤ Θ0 +
1−Θ0

4 < 1− 1−Θ0

2 , while |x3δ1| ≤ δ1 <
1−Θ0

2 .

Similarly, when |x3| ≤ |x1|, we illuminate x with the directions ±(1, δ1, η1, 0).

• Assume now that x = xjej + x4e4 for some j ∈ [3]. One of the ‘trickiest’ cases here
is if j = 2. Again, we distinguish the subcases |x4| ≤ |x2| and |x2| ≤ |x4| (with
min(|x2|, |x4|) ≤ Θ0 by our assumptions). In the former we have

x+ (− sign(x2)|x2|)(−δ1, 1,−η1, 0) = (x2δ1, 0, x2η1, x4) ∈ int(B)

since |x2η1| < |x2δ1| < 1−Θ0

2 and |x4| ≤ Θ0, and thus the above displaced vector can

be compared with the convex combination Θ0e4 +
1−Θ0

2 (e1 + e3) ∈ B.
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On the other hand, in the subcase where |x2| ≤ |x4|, we will have

x+ (− sign(x4)|x4|)(−η1, 0, δ1, 1) = (x4η1, x2,−x4δ1, 0)

which is ∈ int(B) by completely analogous reasoning.

The remaining cases, where x = xjej + x4e4 with j = 1 or 3, are handled very
similarly (and we illuminate x using one of the first 12 directions of F38,39,δ1,η1).

� If |Zx| = 1, and we have Zx = {4}, then we can use one of the first 8 directions to illuminate
x (since they contain all possible combinations of signs for the first three coordinates).

• Assume now that Zx = {3}. If |x4| ≤ Θ0, then max(|x1|, |x2|) ≥ 1 − Θ0 (because
otherwise x would not be a boundary point, since B contains (1−Θ0)(e1+e2)+Θ0e4
and we can use Lemma 10 with the section {ξ ∈ B : ξ4 = Θ0}). If in addition
min(|x1|, |x2|) < 1−Θ0

4 , and we write s1 for the index where the maximum is attained,
then we can pick a direction d from ±(1, δ1, η1, 0), ±(δ1,−1, η1, 0) so that m.c.(d) =
s1 ∈ {1, 2} and ds1 ·xs1 < 0. We will have that x+ |xs1 |d ∈ intB by our assumptions
on δ1 and η1.

If instead |x4| ≤ Θ0 and min(|x1|, |x2|) ≥ 1−Θ0

4 , then we pick d from the same

directions so that ds · xs < 0 for both s = 1 and = 2. We compare x+ 1−Θ0

4 d with a
convex combination of the form

(1− λ)
∣∣~x
∣∣+ λ

(
1 + Θ0

2
e4 +

1−Θ0

2
e3

)

where λ < 1−Θ0

4 δ1. As long as η1 < 2λ < 1−Θ0

2 δ1, we will have that x+
1−Θ0

4 d ∈ intB.

Finally, if |x4| > Θ0, then max(|x1|, |x2|) ≤ Θ0. Therefore, we pick a direction
d ∈ {±(−η1, 0, δ1, 1)} such that d4 · x4 < 0, and we can check that x+ |x4|d ∈ intB
by comparing to the point 1+Θ0

2 (e1 + e2) +
1−Θ0

2 e3 ∈ B.

• We argue completely analogously when Zx = {1}, and we use the directions

±(δ1,−1, η1, 0), ±(−η1, δ1, 1, 0), ±(η1, δ1,−1, 0), ±(−η1, 0, δ1, 1)

to illuminate x.

• Assume finally that Zx = {2}. If |x4| ≤ Θ0, and at the same time sign(x1) =
− sign(x3), then we use one of the directions ±(−η1, 0, δ1, 1), ±(−η1, 0, δ1,−1) to
illuminate x.

If instead |x4| ≤ Θ0 < 1 and sign(x1) = sign(x3), then one of the directions
±(1, 0, 1, 0) illuminates x because of Corollary 11.

On the other hand, if |x4| > Θ0, then |x1| ≤ Θ0. Then we choose d ∈
{
±(−η1, 0, δ1, 1),

±(−η1, 0, δ1,−1)
}
so that ds ·xs < 0 for s ∈ {3, 4}. We will have that x+|x4|d ∈ intB

(where we distinguish subcases in our analysis based on whether |x3| < 1−Θ0

4 or
not; in the latter subcase we compare x + |x4|d with a convex combination of
the form (1 − λ)

∣∣~x
∣∣ + λe1 where λ < Θ0δ1 < |x4|δ1, and observe that, as long as

η1 < λ(1−Θ0) < Θ0(1−Θ0)δ1, the desired conclusion will follow).
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� Finally we deal with the cases where |Zx| = 0. We can argue as in the very last
subcase when |x4| > Θ0: indeed, then max(|x1|, |x2|) ≤ Θ0, and thus we can pick
d ∈

{
±(−η1, 0, δ1, 1), ±(−η1, 0, δ1,−1)

}
so that ds · xs < 0 for s ∈ {3, 4} to illuminate

x (considering again the displaced vector x+ |x4|d and distinguishing subcases based on
whether |x3| < 1−Θ0

4 or not; the only change we have to make is that, in the latter subcase,
we compare x+ |x4|d to a convex combination of the form (1− λ)

∣∣~x
∣∣+ λ(e1 + e2)).

On the other hand, if |x4| ≤ Θ0 < 1, then one of the first 8 directions in F38,39,δ1,η1 will
illuminate x by Corollary 11.

Gathering all the restrictions on η1, we see that, as long as

η1 <
1−Θ0

2
δ1

(which also implies that η1 < Θ0(1−Θ0)δ1 since Θ0 ≥ 1/2), the set F38,39,δ1,η1 will illuminate
B in this second main case that we considered.

Proposition 40. Suppose that for a given B ∈ U4 there are exactly three pairs of indices
i1, i2 ∈ [4] such that ‖ei1 + ei2‖B = 1 (and at the same time there are NO triples of indices
j1, j2, j3 ∈ [4] such that ej1 + ej2 + ej3 ∈ B). Then at least one of the following two statements
holds:

(i) there exist δ1 > 0 and η1 = ηδ1 > 0 so that B can be illuminated by some coordinate
permutation of the set

F40,43,δ1,η1 :=
{
± (1, δ1, η1, 0), ±(δ1,−1,−η1, 0), ±(δ1,−η1, 1, 0), ±(δ1, η1,−1, 0),

± (0,±(η1, δ1), 1), ±(0, 1,−1, 0)
}
;

(ii) there exist δ2 > 0 and η2 = ηδ2 > 0 so that B can be illuminated by some coordinate
permutation of the set

F40,alt,δ2,η2 :=
{
± (η2, 1, δ2, 0), ±(−η2, 1, δ2, 0), ±(−η2, 1,−δ2, 0),

± (η2, η2, 1, δ2), ±(−η2,−η2, 1, δ2), ±(η2, η2,−δ2, 1), ±(−η2,−η2,−δ2, 1)
}
.

Proof. We single out three non-equivalent cases, and observe that any other case here can be
reduced to one of these three after a coordinate permutation:

Case 1: B contains the points e1 + e2, e1 + e3 and e2 + e3 (but does not contain the point
e1 + e2 + e3).

Case 2: B contains the points e1 + e2, e1 + e3 and e3 + e4.

Case 3: B contains the points e1 + e2, e1 + e3 and e1 + e4.

We will see that if either Case 1 or Case 2 holds, then F40,43,δ1,η1 illuminates B (for some
suitably chosen δ1, η1), while if Case 3 holds, we may use F40,alt,δ2,η2 to illuminate B.

Proof for Case 1. For every i ∈ [3], set θi,4 = ‖ei + e4‖−1
B

. By our assumptions for this main
case, Θ0 := max{θi,4 : i ∈ [3]} ∈ (0, 1).

We pick δ1 <
1−Θ0

4 , and η1 <
δ1
2 (which we will restrict further by the end of the proof).

Note that the only extreme points x of B with |Zx| = 3 are ±e4. To illuminate such a point
x, we use the directions ∓(0, η1, δ1, 1): e.g. e4 + (0,−η1,−δ1,−1) = (0,−η1,−δ1, 0) ∈ intB if
we compare with the point e2 + e3.

We now consider the other possibilities for |Zx|.

45



� Assume that |Zx| = 2, and consider first the (potentially extreme) points ±ei +±ej with
i, j ∈ [3]. The “trickiest” case here are the points ±e2 + ±e3, for which we can pick a
direction d from ±(δ1,−1,−η1, 0), ±(δ1,−η1, 1, 0) so that ds · xs < 0 for s ∈ {2, 3}. E.g.
e2− e3+(δ1,−η1, 1, 0) = (δ1, 1−η1, 0, 0) ∈ intB, and this can be confirmed if we compare
with the point e1 + e2.

Note also that there are no other extreme points of B with |Zx| = 2 and 4 ∈ Zx.

Consider now a (potentially extreme) point x ∈ ∂B of the form xi1ei1+x4e4, where i1 ∈ [3]
(write also {i2, i3} = [3] \ {i1}). By our assumptions, min(|xi1 |, |x4|) ≤ Θ0. If |xi1 | ≤ Θ0,
then we choose d ∈ {±(0, η1, δ1, 1)} so that d4 · x4 < 0. Then x+ |x4|d ∈ intB, which can
be seen if we compare with one of the points

(|xi1 |+ |x4|δ1)ei1 + |x4|δ1ei2 or |xi1 |ei1 + |x4|δ1(ei2 + ei3)

(where the values of i2, i3 from [3] \ {i1} are suitably chosen based on x). Note that both
the above points are interior points of B by our restriction on δ1, and at least one of them
has larger in absolute value corresponding coordinates to those of x+ |x4|d.
If instead |x4| ≤ Θ0, then we pick a direction d from the first 8 in F40,43,δ1,η1 so that
di1 · xi1 < 0. In a similar manner to above, we can compare the point x + |xi1 |d to the
point |x4|e4 + |xi1 |δ1(ei2 + ei3) to see that the former point (as well as the latter) is in
intB.

� Next, assume that |Zx| = 1. If Zx = {4}, the first 8 directions of F40,43,δ1,η1 illuminate
x.

• If instead Zx = {1}, and we assume first that |x4| ≤ Θ0, then one of the directions
from

{
± (0,±(η1, δ1), 1), ±(0, 1,−1, 0)

}
illuminates x (we use one of the first 4 if

sign(x2) = sign(x3), and we use one of the last 2 if sign(x2) = − sign(x3) while
relying on Corollary 11 as well).

When |x4| > Θ0, we will instead have that |x2| ≤ Θ0, and thus we can pick a direction
d′ from ±(0,±(η1, δ1), 1) so that d′s · xs < 0 for s ∈ {3, 4}. Then x+ |x4|d′ ∈ intB,
since we can compare it to the point (Θ0+η1)e2+(1− δ1)e3 which is also an interior
point of B.

• If Zx = {2}, and we assume first that |x4| ≤ Θ0, then we use the directions
±(1, δ1, η1, 0), ±(δ1,−η1, 1, 0), ±(δ1, η1,−1, 0) to illuminate x (and we consider sub-
cases based on whether min(|x1|, |x3|) < 1−Θ0

4 or not; in the latter subcase, we pick
d ∈

{
±(δ1,−η1, 1, 0), ±(δ1, η1,−1, 0)

}
so that ds · xs < 0 for s ∈ {1, 3}, and we

compare x+ 1−Θ0

4 d with a convex combination of the form

(1− λ)
∣∣~x
∣∣+ λ

(
1−Θ0

2
e2 +

1 + Θ0

2
e4

)

where λ < 1−Θ0

4 δ1; as long as η1 < 2λ < 1−Θ0

2 δ1, we can conclude that x+ 1−Θ0

4 d ∈
intB).

If instead |x4| > Θ0, then we have that max(|x1|, |x3|) ≤ Θ0. We thus pick d′ ∈{
±(0,±(η1, δ1), 1)

}
so that d′s · xs < 0 for s ∈ {3, 4}, and we check that x+ |x4|d′ ∈

intB by comparing this point to a point of the form Θ0(e1 + e3) +
1−Θ0

2 e2, which
is also an interior point of B (here we also use the fact that Θ0 ≥ 1/2, and thus
|(x+ |x4|d′)3| ≤ max

(
|x3| − |x4|δ1, |x4|δ1

)
≤ max(|x3|, δ1) ≤ Θ0).
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• Finally, if Zx = {3}, then we argue similarly to the previous subcase, and we illumi-
nate x using one of the directions

±(1, δ1, η1, 0), ±(δ1,−1,−η1, 0), ±(0,±(η1, δ1), 1)

(while distinguishing subcases based on whether |x4| > Θ0 or not, and in the latter
case, based on whether min(|x1|, |x2|) < 1−Θ0

4 or not).

� It remains to deal with the cases where Zx = ∅. If |x4| ≤ Θ0 < 1, then we use the first 8
directions in F40,43,δ1,η1 to illuminate x.

If instead |x4| > Θ0, then, as before, we observe that max(|x1|, |x2|) ≤ Θ0. Thus, we
can illuminate x using a direction d from ±(0,±(η1, δ1), 1) which satisfies ds · xs < 0 for
s ∈ {3, 4} (to show that the point x + |x4|d ∈ intB, we distinguish subcases based on
whether |x3| ≥ 1−Θ0

4 or not; in those cases that |x3| is ‘not too small’, we compare the
point x + |x4|d with a convex combination of the form (1 − λ)

∣∣~x
∣∣ + λ(e1 + e2) where

λ < Θ0δ1 < |x4|δ1, and note that, as long as η1 < λ(1 −Θ0) < (1−Θ0)Θ0δ1, the desired
conclusion holds).

We can conclude that, as long as δ1 < 1−Θ0

4 and η1 < 1−Θ0

2 δ1, the set F40,43,δ1,η1 will
illuminate the body B which contains the points e1+ e2, e1+ e3 and e2+ e3, but not the points
ei + e4, i ∈ [3], or the point e1 + e2 + e3.

Proof for Case 2. Analogously to the previous main case, we set θi,j = ‖ei + ej‖−1
B

for all
1 ≤ i < j ≤ 4 such that (i, j) /∈

{
(1, 2), (1, 3), (3, 4)

}
, and then set

Θ0 := max
{
θi,j : 1 ≤ i < j ≤ 4, (i, j) /∈ {(1, 2), (1, 3), (3, 4)}

}
.

We will again pick δ1 <
1−Θ0

4 and η1 <
1−Θ0

2 δ1.
Let x be an extreme boundary point of B. In this main case, the additional assumption

that x is extreme implies that |Zx| ≤ 2.

� Assume that |Zx| = 2, and consider first the (potentially extreme) points ±ei ± ej with
(i, j) ∈

{
(1, 2), (1, 3), (3, 4)

}
. The “trickiest” cases here are the points ±(e1 + e2) and

±e3 ± e4. We have e.g. that −(e1 + e2) + (1, δ1, η1, 0) = (0,−1 + δ1, η1, 0) ∈ intB because
(1 − δ1) + η1 < 1. Similarly, for ±e3 ± e4 we use the directions ±(0,±(η1, δ1), 1), and we
have e.g. that −e3 + e4 +(0, η1, δ1,−1) = (0, η1,−1+ δ1, 0) ∈ intB for the same reason as
above.

If x is a different extreme point of B with |Zx| = 2, then we must have x = xiei + xjej
with {i, j} = ([4] \ Zx) /∈

{
{1, 2}, {1, 3}, {3, 4}

}
. But then min(|xi|, |xj |) ≤ Θ0. WLOG

suppose that |xi| = max(|xi|, |xj |), and pick a direction d from the first 12 in F40,43,δ1,η1
so that di · xi < 0. Then x + |xi|d ∈ intB, which can be seen in the same manner as in
the previous main case, by comparing to coordinate permutations of the points

(Θ0 + δ1)e1 + δ1e2 and Θ0e1 + δ1(e2 + e3)

(all coordinate permutations of these points are in B, and are interior points because of
our restriction on δ1).

� Next, assume that |Zx| = 1. We argue exactly as in the previous main case when Zx = {4}
or when Zx = {3}.
We also argue as in the previous main case when Zx = {1} or = {2}, and we additionally
suppose that |x4| ≤ Θ0.
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• If Zx = {1} and |x4| > Θ0, we have that |x2| ≤ Θ0. As in the previous main case, we
pick a direction d′ from ±(0,±(η1, δ1), 1) so that d′s · xs < 0 for s ∈ {3, 4}, but now
we distinguish cases according to whether |x3| < 1−Θ0

4 or not. In both subcases, we

consider the displaced vector x + |x4|d′. Moreover, when |x3| ≥ 1−Θ0

4 , we compare
x + |x4|d′ to a convex combination of the form (1 − λ)

∣∣~x
∣∣ + λe2, where λ < Θ0δ1;

similarly to before, as long as η1 < (1 − Θ0)λ < (1 − Θ0)Θ0δ1, we obtain that
x+ |x4|d′ ∈ intB in this subcase too.

• If instead Zx = {2} and |x4| > Θ0, we similarly have that |x1| ≤ Θ0 (but unlike the
previous main case, we cannot claim anymore that |x3| ≤ Θ0). Still, as earlier, we
pick a direction d′ ∈

{
±(0,±(η1, δ1), 1)

}
so that d′s ·xs < 0 for s ∈ {3, 4}, but now we

distinguish cases based on whether |x3| ≤ Θ0 or not. In the former case, we continue
as we did before, while, in the cases where |x3| > Θ0, we compare x+ |x4|d′ with a
convex combination of the form

(1− λ′)
∣∣~x
∣∣+ λ′(e1 + e2)

where λ′ < Θ0δ1, and obtain the desired conclusion as long as η1 < λ′ < Θ0δ1.

� Finally, when Zx = ∅, we argue exactly as in the previous main case.

We are done with the proof of Case 2 as well.

Proof for Case 3. Just as in the previous main cases, for any pair (i, j) for which ei+ej /∈ B,
we set θi,j := ‖ei + ej‖−1

B
, and then we define

Θ0 := max{θi,j : 2 ≤ i < j ≤ 4}.

We pick δ2 <
1−Θ0

4 and η2 < (1−Θ0)δ2, and, under these restrictions, we show that F40,alt,δ2,η2
illuminates the convex body B of Case 3. We will be relying on the following

Key Observation for Case 3. Let 2 ≤ i < j ≤ 4, let µi, µj ∈ (0, 1) be such that
µi + µj < 1, and let λ0 ∈ (0, 1). Then the point

λ0e1 + µiei + µjej

is an interior point of B, since it can be written as a (non-trivial) convex combination of the
points λ0e1 + ei, λ0e1 + ej ∈ B and the interior point λ0e1:

λ0e1 + µiei + µjej = µi

(
λ0e1 + ei

)
+ µj

(
λ0e1 + ej

)
+ (1− µi − µj)λ0e1.

Consider now an extreme point x ∈ ∂B. Observe that there are no such x with |Zx| = 3,
thus we consider the remaining possibilities.

� Assume that |Zx| = 2, and consider first the (potentially extreme) points ±e1 ± ej, where
j ∈ {2, 3, 4}. We pick a direction d such that m.c(d) = j, and such that ds · xs < 0 for
s ∈ {1, j}. Then x+ |xj|d = x+ d satisfies:

· (x+ d)j = 0,

· |(x+ d)1| = 1− η2 < 1,

· and |(x+ d)i1 |+ |(x+ d)i2 | ≤ δ2 + η2 < 2δ2 < 1, where {i1, i2} = [4] \ {1, j}.
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We obtain that x+ d ∈ intB from the above “key observation”.

Next, note that there are no other extreme points in B with |Zx| = 2 and 1 /∈ Zx.
Thus, assume now that x = xiei + xjej with i, j ∈ {2, 3, 4}, i 6= j. WLOG assume that
max(|xi|, |xj |) = |xi|, which in turn implies that |xj | ≤ Θ0. Thus, we pick a direction d′

such that m.c.(d′) = i and d′i · xi < 0. We will have that x+ |xi|d′ satisfies:

· (x+ |xi|d′)i = 0,

· |(x+ |xi|d′)1| = |xi|η2 ≤ η2,

· |(x+ |xi|d′)j | ≤ Θ0 + δ2,

· and |(x+ |xi|d′)s| ≤ δ2, where {s} = {2, 3, 4} \ {i, j}.

Since |(x+ |xi|d′)j |+ |(x+ |xi|d′)s| ≤ Θ0+2δ2 < 1, we conclude from the “key observation”
that x+ |xi|d′ ∈ intB.

� Next, assume that |Zx| = 0. Suppose first that |x4| ≤ Θ0. Except for the cases where
sign(x1) = sign(x2) = − sign(x3), we can use the first 6 directions of F40,alt,δ2,η2 to
illuminate x.

On the other hand, if sign(x1) = sign(x2) = − sign(x3), then one of the directions
±(−η2,−η2, 1, δ2), ±(η2, η2,−δ2, 1) illuminates x (based also on what sign(x4) is).

Next, suppose that |x4| > Θ0. In that case |x2| ≤ Θ0. If we first assume that |x3| < 1−Θ0

4 ,
then we pick a direction d from ±(η2, η2,−δ2, 1), ±(−η2,−η2,−δ2, 1) so that ds · xs < 0
for s ∈ {1, 4}. We will have that x+ |x4|d satisfies:

· (x+ |x4|d)4 = 0,

· |(x+ |x4|d)1| ≤ 1− |x4|η2 < 1−Θ0η2,

· |(x+ |x4|d)2| ≤ Θ0 + η2,

· and |(x+ |x4|d)3| ≤ 1−Θ0

4 + δ2.

Thus |(x+ |x4|d)2|+ |(x+ |x4|d)3| ≤ Θ0+
1−Θ0

4 +2δ2 < Θ0+
3
4(1−Θ0) < 1, which implies

that x+ |x4|d ∈ intB because of the “key observation”.

If instead |x3| ≥ 1−Θ0

4 , then we pick a direction d′ from the last 8 in F40,alt,δ2,η2 so that

d′s ·xs < 0 for s ∈ {1, 3, 4}. We can compare x+ 1−Θ0

4 d′ with a convex combination of the
form

(1− λ)
∣∣~x
∣∣+ λ(e1 + e2)

where λ < 1−Θ0

4 δ2. As long as η2 < (1−Θ0)δ2, we obtain that x+ 1−Θ0

4 d′ ∈ intB.

� Finally, we suppose that |Zx| = 1. Assume first that Zx = {r} with r ∈ {2, 3, 4}.
Let us write {i, j} = {2, 3, 4} \ Zx = {2, 3, 4} \ {r}, and WLOG let us assume that
max(|xi|, |xj |) = |xi|. Then we will also have that |xj| = min(|xi|, |xj |) ≤ Θ0.

We pick a direction d so that m.c.(d) = i, and so that ds · xs < 0 for s ∈ {1, i}. Then
x+ |xi|d will satisfy:

· (x+ |xi|d)i = 0,

· |(x+ |xi|d)1| ≤ 1− |xi|η2 < 1,

· and |(x+ |xi|d)j |+ |(x+ |xi|d)r| ≤ Θ0 + |xi|δ2 + |xi|δ2 < 1, given our restrictions on
δ2 and η2.
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Thus, by the “key observation”, x+ |xi|d ∈ intB.

It remains to deal with the cases where Zx = {1}. Here, we first consider the subcases
where |x3| < 1−Θ0

4 . Let {i, j} = {2, 4}, and let us write i for the index where max(|x2|, |x4|)
is attained (if |x2| = |x4|, then set i = 2). We then know that |xj | ≤ Θ0. Again, we pick
a direction d′ so that m.c.(d′) = i and d′i · xi < 0. Then, similarly to above, we can
check that x+ |xi|d′ ∈ intB by the “key observation” (given that |(x+ |xi|d′)1| ≤ η2, and
|(x+ |xi|d′)j |+ |(x+ |xi|d′)3| ≤ Θ0 + |xi|δ2 + 1−Θ0

4 + |xi|δ2 < 1).

We argue very similarly when |x3| ≥ 1−Θ0

4 while at the same time |xi| = max(|xi|, |xj |) =
max(|x2|, |x4|) < 1−Θ0

4 : in those subcases, we pick a direction d′ from ±(η2, η2, 1, δ2) so
that d′3 · x3 < 0, and check in an analogous way that x+ |x3|d′ ∈ intB.

The last subcase to consider is when min(|xi|, |x3|) ≥ 1−Θ0

4 . Then we pick a direction
d′′ so that

{
|d′′i |, |d′′3 |

}
= {1, δ2}, and so that d′′s · xs < 0 for s ∈ {i, 3}. We compare the

displaced vector x+ 1−Θ0

4 d′′ with a convex combination of the form

(1− λ′)
∣∣~x
∣∣+ λ′(e1 + ej)

where λ′ < 1−Θ0

4 δ2: the former vector is guaranteed to be in intB as long as 1−Θ0

4 η2 <
λ′(1−Θ0) ≤ λ′(1− |xj |) ⇔ η2 < 4λ′ < (1−Θ0)δ2.

This completes the proof in all main cases.

Remark 41. Taking into account that parameters which appear as later subscripts depend on
previous parameters, and can be chosen much smaller if needed, we can now also verify, through
a minor adaptation of the above argument, that, for Cases 1 and 2 of Proposition 40, we can
use the illuminating set

F37,42,δ,η,ζ :=
{
± (1, δ, η, 0), ±(δ,−1,−η, 0), ±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ),

± (0,±(η, δ), 1), ±(0, 1,−δ, η)
}

instead of

F40,43,δ1,η1 :=
{
± (1, δ1, η1, 0), ±(δ1,−1,−η1, 0), ±(δ1,−η1, 1, 0), ±(δ1, η1,−1, 0),

± (0,±(η1, δ1), 1), ±(0, 1,−1, 0)
}
.

This reduces further the number of non-equivalent illuminating sets that we need (we still chose
to work with the latter set to keep the proof a little more transparent).

Next we prove the case where B contains five 2-dimensional unit subcubes, because it is
much more similar to the previous settings compared to the case where B contains four such
subcubes (which we will handle last).

Proposition 42. Suppose that for a given B ∈ U4 there are exactly five pairs of indices i1, i2 ∈
[4] such that ‖ei1 + ei2‖B = 1 (and at the same time there are NO triples of indices j1, j2, j3 ∈ [4]
such that ej1 + ej2 + ej3 ∈ B). Then there exist δ > 0, η = ηδ > 0 and ζ = ζδ,η > 0 such that B
can be illuminated by a coordinate permutation of the set

F37,42,δ,η,ζ =
{
± (1, δ, η, 0), ±(δ,−1,−η, 0), ±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ),

± (0,±(η, δ), 1), ±(0, 1,−δ, η)
}
.

50



Proof. WLOG we can assume that the only pair of indices i1 6= i2 ∈ [4] for which ei1 + ei2 /∈ B
satisfies {i1, i2} = {1, 4}. Set Θ0 = ‖e1 + e4‖−1

B
< 1. Also, for each j ∈ [4] set

γj = ‖1− ej‖−1
B

.

By our assumptions, γ0 := maxj∈[4] γj < 1. Fix now some

δ <
min(1−Θ0, 1− γ0)

4

and some ζ < η/2 < δ/4 (which we will further restrict shortly).

Clearly there are no extreme boundary points x ∈ B with |Zx| = 3, thus we focus on the
remaining cases.

� Assume that |Zx| = 2. Here most cases are similar, except for the case where Zx = {2, 3}
(or in other words, where x = (x1, 0, 0, x4)). From the remaining cases the only potentially
extreme points are of the form ±ei+±ej where {i, j} 6= {1, 4}. We illuminate these points
using a direction d as follows:

Boundary point Possible illuminating directions

± e1 +±e2 ±(1, δ, η, 0), ±(δ,−1,−η, 0)

± e1 +±e3 ±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ)

± e2 +±e3 ±(δ,−1,−η, 0), ±(δ,−η, 1, ζ)

± e2 +±e4, ±e3 +±e4 ±(0, η, δ, 1), ±(0,−η,−δ, 1)

so that ds · xs < 0 for s ∈ {i, j}. E.g.

(e2 + e3) + (δ,−1,−η, 0) = (δ, 0, 1− η, 0) ∈ intB,

which follows simply from the facts that e1 + e3 ∈ B and that δ, η ∈ (0, 1). Similarly

(−e2 + e3) + (−δ, η,−1,−ζ) =
(
−δ, −(1− η), 0, −ζ

)
∈ intB,

which can be seen by comparing to the point (1−η)(e1+ e2)+ ζe4, that is also an interior
point of B since 1− η + ζ < 1.

Now assume that x = (x1, 0, 0, x4). Then min(|x1|, |x4|) ≤ Θ0. Thus, if i is the (smallest)
index at which max(|x1|, |x4|) is attained, we can illuminate x choosing a direction d from
±(1, δ, η, 0), ±(0, η, δ, 1) so that m.c.(d) = i and di · xi < 0. We will have that x+ |xi|d ∈
intB, which can be seen by comparing with the points 1+Θ0

2 ej +
1−Θ0

2 (e2 + e3) ∈ B,
j ∈ {1, 4}.

� Next, assume that |Zx| = 1.

• If Zx = {4}, then we illuminate x choosing from the directions

±(1, δ, η, 0), ±(δ,−1,−η, 0), ±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ).

This is straightforward to do in the cases that sign(x2) = sign(x3), so we examine
how to handle the remaining subcases here.

51



Note that min(|x1|, |x2|, |x3|) ≤ γ4 ≤ γ0. If sign(x2) = − sign(x3), but also |x3| ≤ γ0,
then we still pick a direction d from the first 4 above so that ds · xs < 0 for s ∈ [2].
Then, if i = m.c.(d) ∈ [2], we will have that x+ |xi|d ∈ intB by comparing it to one
of the points e1 + e3 or e2 + e3.

If instead |x3| > γ0, then we pick a direction d′ from ±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ)
so that d′s · xs < 0 for s ∈ [3]. We then check that x+ |x3|d′ satisfies:

· (x+ |x3|d′)3 = 0,

· |(x+ |x3|d′)4| = |x3|ζ,
· and |(x+ |x3|d′)1| ≤ 1−|x3|δ ≤ 1−|x3|η, and similarly |(x+ |x3|d′)2| ≤ 1−|x3|η.

Thus we can compare x + |x3|d′ with the point (1 − |x3|η)(e1 + e2) + |x3|ζ e4, with
the latter point being an interior point of B, since 1− |x3|η + |x3|ζ < 1.

• If Zx = {1}, we use the directions ±(0,±(η, δ), 1), ±(0, 1,−δ, η) to illuminate x.
Again, this will be straightforward when sign(x2) = sign(x3), so we examine the
remaining subcases.

Note that min(|x2|, |x3|, |x4|) ≤ γ1 ≤ γ0. If |x4| ≤ γ0 and sign(x2) = − sign(x3),
then we pick the unique direction d ∈ {±(0, 1,−δ, η)} which satisfies ds · xs < 0 for
s ∈ {2, 3}. We will have that x + |x2|d ∈ intB, which can be seen by comparing to
the point e3 + e4.

If instead |x4| > γ0, then min(|x2|, |x3|) ≤ γ0. Let i ∈ {2, 3} be the index at which
max(|x2|, |x3|) is attained, and pick d′ ∈ {±(0,±(η, δ), 1)} so that d′s · xs < 0 for
s ∈ {i, 4}. Then x + |x4|d′ ∈ intB, which can be seen by comparing to the point
e2 + e3.

• Now, assume that Zx = {2}. Then min(|x1|, |x4|) ≤ Θ0. If we also have that |x3| ≤
1−Θ0

4 , and if i is the (smallest) index at which max(|x1|, |x4|), then we pick a direction
d from ±(1, δ, η, 0), ±(0, η, δ, 1) so that m.c.(d) = i and di · xi < 0. We have that
x+|xi|d ∈ intB, which can be seen by comparing to the point 1+Θ0

2 ej+
1−Θ0

2 (e2+e3),
j ∈ {1, 4} \ {i}.
Suppose now that |x3| > 1−Θ0

4 . Then we pick a direction d′ from

±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ), ±(0,±(η, δ), 1)

so that {|d′i|, |d′3|} = {1, δ} and so that d′s · xs < 0 for s ∈ {i, 3}. We compare
x + 1−Θ0

4 d′ with a convex combination of the form (1 − λ)
∣∣~x
∣∣ + λ(e2 + ej), where

j ∈ {1, 4} \ {i} and λ < 1−Θ0

4 δ. As long as η < δ and ζ < 4λ < (1 − Θ0)δ, we can

conclude that x+ 1−Θ0

4 d′ ∈ intB.

• Analogously we argue if Zx = {3}, while picking a direction d from

±(1, δ, η, 0), ±(δ,−1,−η, 0), ±(0,±(η, δ), 1)

to illuminate x. For most subcases we can simply rely on the restrictions η < δ <
1−Θ0

4 .

In the subcases where |x2| > 1−Θ0

4 and |x4| > |x1|, we pick d ∈
{
±(0,±(η, δ), 1)

}
so

that ds · xs < 0 for s ∈ {2, 4}. We will have that x + |x4|d ∈ intB because we can
compare this displaced vector to the vector

(1− |x4|η)e2 +
1 + Θ0

2
e1 +

1−Θ0

4
e3

which we can show is an interior point of B as well, in a similar manner to how we
proved the “Key Observation for Case 3” of Proposition 40.
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� Finally, we consider the cases where Zx = ∅. If |x1| ≤ Θ0, then we can use the directions
±(0,±(η, δ), 1), ±(0, 1,−δ, η) to illuminate x, except in the subcases where sign(x2) =
− sign(x3) = − sign(x4). In these latter subcases, we can instead use one of the directions
±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ) (which we choose based also on what sign(x1) is).

If instead |x1| > Θ0, then |x4| ≤ Θ0 < 1. Here we also consider subcases according
to whether max(|x2|, |x3|) < 1−Θ0

4 or not. If this maximum is “small”, we simply pick
d ∈ {±(1, δ, η, 0)} so that d1 · x1 < 0, and we compare the displaced vector x + |x1|d to
the vector

1−Θ0

2
(e2 + e3) +

1 +Θ0

2
e4 ∈ B.

If instead max(|x2|, |x3|) ≥ 1−Θ0

4 , then we pick a direction d′ from among all the first
8 in F37,42,δ,η,ζ . We consider further subcases according to whether it also holds that

min(|x2|, |x3|) ≥ 1−Θ0

4 or not: if the minimum is “small”, and i ∈ {2, 3} is the index at
which max(|x2|, |x3|) is attained, then we pick d′ so that {|d′1|, |d′i|} = {1, δ} and so that
d′s · xs < 0 for s ∈ {1, i}; on the other hand, if the minimum is ‘not too small’, we pick d′

so that d′s · xs < 0 for all s ∈ [3]. Then, in all subcases we can conclude that, as long as

ζ < η < (1−Θ0)δ, and also ζ < (1−Θ0)η,

the displaced vector x + 1−Θ0

4 d′ (with x being displaced in the appropriately chosen di-
rection d′, as explained above) will be an interior point of B.

The proof is complete.

Proposition 43. Suppose that for a given B ∈ U4, which is not an affine image of the
cube, there are exactly four pairs of indices i1, i2 ∈ [4] such that ei1 + ei2 ∈ B, and at the same
time there are NO triples of indices j1, j2, j3 ∈ [4] such that ej1 + ej2 + ej3 ∈ B. Then at least
one of the following two statements holds:

(i) there exist δ1 > 0 and η1 = ηδ1 > 0 so that B can be illuminated by some coordinate
permutation of the set

F40,43,δ1,η1 =
{
± (1, δ1, η1, 0), ±(δ1,−1,−η1, 0), ±(δ1,−η1, 1, 0), ±(δ1, η1,−1, 0),

± (0,±(η1, δ1), 1), ±(0, 1,−1, 0)
}
;

(ii) there exist δ2 > 0 and η2 = ηδ2 > 0 so that B can be illuminated by some coordinate
permutation of the set

F43,alt,δ2,η2 :=
{
± (1,−η2,−δ2,−δ2), ±(−η2, 1,−δ2,−δ2),

± (δ2, 0, 1,−η2), ±(δ2, 0,−η2, 1), ±(0, δ2, 1,−η2), ±(0, δ2,−η2, 1)
}
.

Proof. Up to coordinate permutations, there are two main cases to consider:

Case 1: B contains the points e1 + e2, e1 + e3, e2 + e3 and e3 + e4 (and does not contain the point
e1 + e2 + e3).

Case 2: B contains the points e1+e3, e1+e4 and e2+e3, e2+e4. Here we need to further observe
that the convex hull of all coordinate reflections of these points is CP 2

1 ×CP 2
1 which is an

affine image of the 4-dimensional cube, therefore by our assumptions B must contain at
least one more point z0 which satisfies |z0,1|+ |z0,2| > 1 and/or |z0,3|+ |z0,4| > 1. We can
check that this is equivalent to having β0 := max

{
‖e1 + e2‖−1

B
, ‖e3 + e4‖−1

B

}
> 1

2 . WLOG
we will assume here that ‖e3 + e4‖−1

B
= β0 >

1
2 .
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Proof for Case 1. We set Θ0 := max
{
‖e1 + e4‖−1

B
, ‖e2 + e4‖−1

B

}
, and note that Θ0 ∈ (0, 1).

We pick δ1 < 1−Θ0

4 and η1 <
1−Θ0

2 δ1, and we will show that F40,43,δ1,η1 illuminates the convex
body B that we consider here, which satisfies the assumptions of the 1st main case.

Let x be a boundary point of B. As previously, we ignore boundary points which are
guaranteed to not be extreme, so we do not consider cases where |Zx| = 3.

� Assume that |Zx| = 2. We first consider points of the form ±ei + ±ej , where {i, j} /∈{
{1, 4}, {2, 4}

}
. Given such a point, we pick a direction d as follows:

Boundary point Possible illuminating directions

± e1 +±e2 ±(1, δ1, η1, 0), ±(δ1,−1,−η1, 0)

± e1 +±e3 ±(δ1,−η1, 1, 0), ±(δ1, η1,−1, 0)

± e2 +±e3 ±(δ1,−1,−η1, 0), ±(δ1,−η1, 1, 0)

± e3 +±e4 ±(0, η1, δ1, 1), ±(0,−η1,−δ1, 1)

so that ds · xs < 0 for s ∈ {i, j}. We will have that x + d ∈ intB because it can be
compared to one of these points again: if 1 ≤ i < j ≤ 3, then yx := (xiei + xjej) + d
(where |xi| = |xj| = 1) will satisfy ‖yx‖∞ < 1, |Zyx | = 2, and 4 ∈ Zyx , thus we can see
that yx ∈ intB by comparing it to one of the points e1 + e2, e1 + e3, e2 + e3.

Similarly, if e.g. x = e3 − e4, then x+ (0,−η1,−δ1, 1) = (0,−η1, 1− δ1, 0) ∈ intB, which
can be seen by comparing with the point e2 + e3.

Note now that no other point of B with support the same as one of the above points can
be extreme, as they will be contained in the convex hull of the above points, so all these
other points can be illuminated by the same directions. This leaves two more subcases to
consider here.

• Suppose that x = x1e1 + x4e4. Then min(|x1|, |x4|) ≤ Θ0. If |x4| ≤ Θ0, then we
illuminate x using the unique direction d ∈ {±(1, δ1, η1, 0)} satisfying d1 ·x1 < 0. We
will have that x+ |x1|d ∈ intB, by comparing it to the point 1+Θ0

2 e4+
1−Θ0

2 (e2+e3).

Analogously, if |x4| > Θ0, we use the unique direction d′ ∈ {±(0, η1, δ1, 1)} which
satisfies d′4 · x4 < 0: we will have that x+ |x4|d′ ∈ intB, as before.

• Finally, suppose that x = x2e2 + x4e4. In this subcase, pick the unique direction
d ∈

{
±(0,±(η1, δ1), 1)

}
which satisfies ds · xs < 0 for s ∈ {2, 4}. Then x + |x4|d ∈

intB, since (x+ |x4|d)4 = (x+ |x4|d)1 = 0, while |(x+ |x4|d)2| ≤ 1− |x4|η1 < 1, and
|(x+ |x4|d)3| = |x4|δ1 < 1.

� Now assume that |Zx| = 1. If Zx = {4}, then the first 8 directions of F40,43,δ1,η1 illuminate
x. We now examine the remaining subcases here.

• If Zx = {1}, then we illuminate x using the directions±(0,±(η1, δ1), 1), ±(0, 1,−1, 0).
Indeed, if |x2| > Θ0, then necessarily |x4| ≤ Θ0, and thus we can use the first 4 direc-
tions here if sign(x2) = sign(x3), otherwise we can rely on Corollary 11 and illuminate
x using one of the directions ±(0, 1,−1, 0).

If instead |x2| ≤ Θ0, then we pick d from ±(0,±(η1, δ1), 1) so that ds · xs < 0 for
s ∈ {3, 4}. We will have that x+ |x4|d ∈ intB, since (x+ |x4|d)4 = (x+ |x4|d)1 = 0,
while |(x+ |x4|d)3| ≤ 1− |x4|δ1 < 1, and |(x+ |x4|d)2| ≤ Θ0 + |x4|η1 < 1.
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• Next assume that Zx = {2}. Then we use the directions

±(1, δ1, η1, 0), ±(δ1,−η1, 1, 0), ±(δ1, η1,−1, 0), ±(0,±(η1, δ1), 1)

to illuminate x. When |x1| > Θ0 and |x3| < 1−Θ0

4 , we pick d ∈ {±(1, δ1, η1, 0)} so
that d1 · x1 < 0: we have that x+ |x1|d ∈ intB, which can be seen by comparing to
the point 1+Θ0

2 e4+
1−Θ0

2 (e2+e3) again (recall that |x1| > Θ0 implies that |x4| ≤ Θ0).

If instead |x1| > Θ0 and |x3| ≥ 1−Θ0

4 , we pick d′ from ±(δ1,−η1, 1, 0), ±(δ1, η1,−1, 0)

so that d′s ·xs < 0 for s ∈ {1, 3}. We can then compare the displaced vector x+ 1−Θ0

4 d′

with a convex combination of the form

(1− λ)
∣∣~x
∣∣+ λ

(
1−Θ0

2
e2 +

1 + Θ0

2
e4

)

where λ < 1−Θ0

4 δ1. Then, as long as η1 < 2λ < 1−Θ0

2 δ1, we will obtain that x +
1−Θ0

4 d′ ∈ intB.

Finally, if |x1| ≤ Θ0, then we pick d ∈ {±(0,±(η1, δ1), 1)} so that ds · xs < 0 for
s ∈ {3, 4}. We will have that x+ |x4|d ∈ intB, which can be seen by comparing with
the point

(1− |x4|δ1)(e1 + e3) + |x4|η1 e2
which is also an interior point of B since 1− |x4|δ1 + |x4|η1 < 1.

• It remains to consider the subcases Zx = {3} here: we will now illuminate x using
the directions

±(1, δ1, η1, 0), ±(δ1,−1,−η1, 0), ±(0, η1, δ1, 1).

Similarly to the previous subcase, we first assume that max(|x1|, |x2|) > Θ0. Then
we will have that |x4| ≤ Θ0. If we also have that min(|x1|, |x2|) < 1−Θ0

4 , and we
write i for the index at which max(|x1|, |x2|) is attained, then we simply pick d from
the first 4 directions above so that m.c.(d) = i and so that di · xi < 0.

If instead min(|x1|, |x2|) ≥ 1−Θ0

4 , then we pick d′ from the first 4 directions again,
but this time so that d′s · xs < 0 for s ∈ [2]. Similarly to above, we consider the
displaced vector x+ 1−Θ0

4 d′, and conclude that it is in intB as long as η1 <
1−Θ0

2 δ1.

Finally, if max(|x1|, |x2|) ≤ Θ0, then we pick d ∈ {±(0, η1, δ1, 1)} so that d4 · x4 < 0.
We will have that x+ |x4|d ∈ intB, which can be seen by comparing with the point
1+Θ0

2 (e1 + e2) +
1−Θ0

2 e3.

� We now suppose that Zx = ∅. If |x4| ≤ Θ0, then, as in previous propositions and subcases,
we illuminate x using the first 8 directions of F40,43,δ1,η1 (which capture all combinations
of signs for the first three coordinates).

Next assume that |x4| > Θ0. Then max(|x1|, |x2|) ≤ Θ0. Hence, we can pick d ∈
{±(0,±(η1, δ1), 1)} so that ds · xs < 0 for s ∈ {3, 4}. If |x3| < 1−Θ0

4 , then we simply

compare the displaced vector x+ |x4|d with the vector 1+Θ0

2 (e1 + e2) +
1−Θ0

2 e3.

On the other hand, if |x3| ≥ 1−Θ0

4 , we consider the displaced vector x + 1−Θ0

4 d, and
compare it with a convex combination of the form

(1− λ)
∣∣~x
∣∣+ λ(e1 + e2)
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where λ < 1−Θ0

4 δ1. We will have that x+ 1−Θ0

4 d ∈ intB, as long as 1−Θ0

4 η1 < λ(1−Θ0) ≤
λ(1 − |x2|) ⇔ η1 < 4λ < (1 − Θ0)δ1, which is already guaranteed by the restrictions we
imposed on η1.

This completes the proof of Case 1.

Proof for Case 2. Recall that we have set β0 := max
{
‖e1+e2‖−1

B
, ‖e3+e4‖−1

B

}
, and we know

that β0 > 1
2 (since we assumed that B is NOT an affine image of the cube). Recall also that

we supposed WLOG that β0 = ‖e3 + e4‖−1
B

. We will then show that F43,alt,δ2,η2 illuminates B
for some suitably chosen δ2, η2. In this main case, we need some preparatory/key observations
first.

Observation 1 for Case 2. Since 1
2(e3+e4) ∈ intB, we get that, for every ǫ ∈ (0, 1)\{1

2},
the point

(1− ǫ)e3 + ǫe4

is also an interior point of B. Indeed, assume first that ǫ < 1
2 , and set λ = 2ǫ (in which case

λ ∈ (0, 1)). Then
(1− λ)e3 + λ 1

2(e3 + e4) ∈ intB

because it is a non-trivial convex combination of points in B with one of them being interior.
But

(1− λ)e3 + λ 1
2(e3 + e4) =

(
1− λ

2

)
e3 +

λ
2 e4 = (1− ǫ)e3 + ǫe4.

Analogously we show the result if ǫ ∈ (12 , 1), by considering convex combinations of 1
2(e3 + e4)

with e4.

Observation 2 for Case 2. For every a, ǫ ∈ (0, 1), we have that the points

(a, 0, 1 − ǫ, ǫ) and (0, a, 1 − ǫ, ǫ)

are interior points of B. Indeed, by the previous key observation we know that the point
(0, 0, 1 − ǫ, ǫ) ∈ intB. At the same time B contains the point

(1, 0, 1 − ǫ, ǫ) = (1− ǫ)(e1 + e3) + ǫ(e1 + e4).

But then
(a, 0, 1 − ǫ, ǫ) = a(1, 0, 1 − ǫ, ǫ) + (1− a)(0, 0, 1 − ǫ, ǫ),

which shows that it is an interior point of B. Similarly we check that (0, a, 1 − ǫ, ǫ) ∈ intB.

For the rest of the proof we fix δ2 <
1−β0

4 , and η2 < (1− β0)δ2. We are ready to illuminate
the boundary points of B, and as before, we only focus on potentially extreme points x ∈ B.
By our current assumptions for B, there are certainly no such points with |Zx| = 3, so we move
on with the remaining possibilities for |Zx|.

� Assume that |Zx| = 2. If x = ±e1 +±e3, then we use the directions

±(1,−η2,−δ2,−δ2) ± (δ2, 0, 1,−η2)

to illuminate x. Indeed, e.g.

e1 − e3 + (−1, η2, δ2, δ2) = (0, η2, −1 + δ2, δ2)

which is in intB by the 2nd key observation.
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On the other hand, if e.g. x = −e1 − e3, then x + (δ2, 0, 1,−η2) = (−1 + δ2, 0, 0,−η2),
which we can immediately confirm is an interior point of B by comparing it to e1 + e4.

In a very analogous manner, we can illuminate all the points ±e1 + ±e4, ±e2 +±e3 and
±e2 +±e4, and then we will have also illuminated every other point in their convex hull.

Assume now that x = x1e1 + x2e2. Then min(|x1|, |x2|) ≤ β0. If i is the index at
which max(|x1|, |x2|) is attained, and {j} = {1, 2} \ {i}, then we pick a direction d from
±(1,−η2,−δ2,−δ2), ±(−η2, 1,−δ2,−δ2) so that m.c.(d) = i and di · xi < 0. We will
have that x + |xi|d ∈ intB, which can be readily seen if we compare with the point(
β0 +

1−β0

4

)
ej +

1−β0

4 (e3 + e4) ∈ intB.

Similarly, if x = x3e3 + x4e4, then min(|x3|, |x4|) ≤ β0. If r is the index at which
max(|x3|, |x4|) is attained, and {t} = {3, 4} \ {r}, then we pick a direction d′ from
±(δ2, 0, 1,−η2), ±(δ2, 0,−η2, 1) so that m.c.(d′) = r and d′r · xr < 0. We will have that
x+ |xr|d′ ∈ intB, which can be seen by comparing with the point 1+β0

2 (e1 + et) ∈ intB.

� Assume now that |Zx| = 1. If Zx = {2}, then we consider the following subcases:

• sign(x3) = − sign(x4). Then one of the directions ±(δ2, 0, 1,−η2), ±(δ2, 0,−η2, 1)
illuminates x.

• sign(x3) = sign(x4). We also recall that min(|x3|, |x4|) ≤ β0; write i for the index at
which max(|x3|, |x4|) is attained, and j for the other index.

If at the same time sign(x1) = − sign(x3) = − sign(x4), then the unique direction
d ∈ {±(1,−η2,−δ2,−δ2)} satisfying ds ·xs < 0 for s ∈ {1, 3, 4} illuminates x. Indeed,
if |xj| = min(|x3|, |x4|) < |x1|δ2, then x+ |x1|d satisfies:

· (x+ |x1|d)1 = 0,

· |(x + |x1|d)i| ≤ max
(
|xi| − |x1|δ2, |x1|δ2 − |xi|

)
≤ max

(
|xi| − |x1|δ2, |x1|δ2

)
≤

1− |x1|δ2,
· |(x+ |x1|d)j | ≤ max

(
|xj | − |x1|δ2, |x1|δ2 − |xj|

)
≤ |x1|δ2,

· and |(x+ |x1|d)2| ≤ |x1|η2 < 1.

Thus x+ |x1|d has smaller (in absolute value) corresponding coordinates compared
to the vector

|x1|η2e2 + (1− |x1|δ2)ei + |x1|δ2ej .
It remains to recall that the latter point is in intB because of the 2nd key observation.

On the other hand, if |xj| = min(|x3|, |x4|) ≥ |x1|δ2, then we compare x+ |x1|d with
a point of the form

(1− λ)
∣∣~x
∣∣+ λe2

where λ < |x1|δ2. Then, since we have assumed that η2 < (1 − β0)δ2 < δ2, we can
choose λ so that |x1|η2 < λ < |x1|δ2, which will then imply that x+ |x1|d ∈ intB.

Next we consider the cases where sign(x1) = sign(x3) = sign(x4). Then we pick d′

from ±(δ2, 0, 1,−η2), ±(δ2, 0,−η2, 1) so that d′s · xs < 0 for s ∈ {1, i} (recall that we
write i ∈ {3, 4} for the (smallest) index at which max(|x3|, |x4|) is attained, and j
for the remaining index). Then x+ |xi|d′ satisfies:

· (x+ |xi|d′)i = 0 = (x+ |xi|d′)2,
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· |(x+ |xi|d′)1| ≤ 1− |xi|δ2 < 1,

· and |(x+ |xi|d′)j | ≤ β0 + |xi|η2 < 1.

It follows that x + |xi|d′ ∈ intB since its non-zero coordinates are strictly smaller
than the corresponding coordinates of e1 + ej .

• If Zx = {1}, then we illuminate x in a completely symmetric way compared to the
previous subcase, by using one of the directions ±(−η2, 1,−δ2,−δ2), ±(0, δ2, 1,−η2),
±(0, δ2,−η2, 1).

• If Zx = {3}, then we illuminate x using one of the directions

±(1,−η2,−δ2,−δ2), ±(−η2, 1,−δ2,−δ2), ±(δ2, 0,−η2, 1), ±(0, δ2,−η2, 1).

We recall that min(|x1|, |x2|) ≤ β0; let us write i for the index at which max(|x1|, |x2|)
is attained, and j for the other index in [2].

If sign(xi) = − sign(x4), then we pick d from ±(1,−η2,−δ2,−δ2), ±(−η2, 1,−δ2,−δ2)
so that m.c.(d) = i and so that ds · xs < 0 for s ∈ {i, 4}. Then x + |xi|d will have
smaller (in absolute value) corresponding coordinates compared to the point

(β0 + |xi|η2)ej + |xi|δ2e3 + (1− |xi|δ2)e4,

which is in intB by the 2nd key observation. Hence x+ |xi|d ∈ intB too.

If instead sign(xi) = sign(x4), then we pick d′ from ±(δ2, 0,−η2, 1), ±(0, δ2,−η2, 1)
so that |d′i| = δ2 and so that d′s ·xs < 0 for s ∈ {i, 4}. If |xi| < 1−β0

4 , then we compare
x+ |x4|d′ with the vector

1− β0
4

(
ei + ej + e3

)
∈ intB.

On the other hand, if |xi| ≥ 1−β0

4 , then we compare x+ |x4|d′ with a convex combi-
nation of the form (1− λ′)

∣∣~x
∣∣+ λ′(ej + e3) where λ′ < |x4|δ2. Our assumption that

η2 < δ2 implies that we can choose such a λ′ so that |x4|η2 < λ′ < |x4|δ, which in
turn implies that x+ |x4|d′ ∈ intB.

• We illuminate x in a symmetric fashion when Zx = {4}, by using one of the directions

±(1,−η2,−δ2,−δ2), ±(−η2, 1,−δ2,−δ2), ±(δ2, 0, 1,−η2), ±(0, δ2, 1,−η2).

� Finally, assume that Zx = ∅. We know that min(|x1|, |x2|) ≤ β0, and the same inequality
holds true for min(|x3|, |x4|). Let us write i for the index at which max(|x1|, |x2|) is
attained, and j for the other index in [2]. Similarly, let us write r for the index at which
max(|x3|, |x4|) is attained, and t for the other index in {3, 4}.

• Assume first that sign(x3) = − sign(x4). Then, by Corollary 11, x is illuminated
by the unique direction d among the last 8 directions in F43,alt,δ2,η2 which satisfies
di 6= 0 and ds · xs < 0 for s ∈ {i, 3, 4}.

• Next, assume that sign(x3) = sign(x4).

– If sign(xi) = sign(x3) = sign(x4), then we pick d′ from the last 8 directions of
F43,alt,δ2,η2 so that m.c.(d′) = r, |d′i| = δ2 and d′s · xs < 0 for s ∈ {i, r}.
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· If in addition |xi| < 1−β0

4 , then we simply compare the displaced vector
x+ |xr|d′ to the point

1− β0
4

(ei + ej) +
1 + β0

2
et =

1− β0
4

(e1 + e2) +
1 + β0

2
et ∈ B

to conclude that x+ |xr|d′ ∈ intB (we can do this because, by our assump-
tions here, |(x+ |xr|d′)i| ≤ max(|xi| − |xr|δ2, |xr|δ2 − |xi|) ≤ max(|xi|, δ2) <
1−β0

4 and |xj | ≤ |xi| < 1−β0

4 ).

· If instead |xi| ≥ 1−β0

4 , then we compare x+ |xr|d′ to a convex combination
of the form

(1− λ)
∣∣~x
∣∣+ λ(ej + et)

where λ < |xr|δ2. As long as |xr|η2 < λ(1 − β0) ≤ λ(1 − |xt|) (which a
suitably chosen λ can satisfy given the restriction η2 < (1 − β0)δ2), we will
have that x+ |xr|d′ ∈ intB.

– It remains to consider the cases where sign(xi) = − sign(x3) = − sign(x4). Then
we pick the unique direction d from ±(1,−η2,−δ2,−δ2), ±(−η2, 1,−δ2,−δ2) so
that m.c.(d) = i and so that ds · xs < 0 for s ∈ {i, 3, 4}.
· If |xt| = min(|x3|, |x4|) < |xi|δ2, then, similarly to one of the subcases of the
settings where Zx = {1} or Zx = {2}, we will have that the displaced vector
x+ |xi|d has smaller (in absolute value) corresponding coordinates compared
to the vector (

β0 +
1−β0

4

)
ej + (1− |xi|δ2)er + |xi|δ2et

which is an interior point of B itself, by the 2nd key observation. Thus
x+ |xi|d ∈ intB.

· If |xt| = min(|x3|, |x4|) ≥ |xi|δ2, then we compare x + |xi|d with a convex
combination of the form

(1− λ)
∣∣~x
∣∣+ λej

where λ < |xi|δ2. As long as |xi|η2 < λ(1− β0) ≤ λ(1− |xj |), which is again
possible for some λ ∈ (0, |xi|δ2) because of the restriction η2 < (1 − β0)δ2,
we will have that x+ |xi|d ∈ intB.

This completes the proof of Case 2 as well.

We can also make a similar note to Remark 41.

Remark 44. By slightly adjusting the proof of Case 1 of this last proposition, we can also
confirm that any set B ∈ U4 which contains the points e1 + e2, e1 + e3, e2 + e3 and e3 + e4,
but does not contain e1 + e4 and e2 + e4 (nor does it contain the ‘triple’ e1 + e2 + e3) can be
illuminated by the set

F37,42,δ,η,ζ :=
{
± (1, δ, η, 0), ±(δ,−1,−η, 0), ±(δ,−η, 1, ζ), ±(−δ,−η, 1, ζ),

± (0,±(η, δ), 1), ±(0, 1,−δ, η)
}

instead of the set

F40,43,δ1,η1 :=
{
± (1, δ1, η1, 0), ±(δ1,−1,−η1, 0), ±(δ1,−η1, 1, 0), ±(δ1, η1,−1, 0),

± (0,±(η1, δ1), 1), ±(0, 1,−1, 0)
}
.
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[8] K. Bezdek, Z. Lángi, M. Naszódi and P. Papez, “Ball-polyhedra”, Discrete Comput. Geom.
38, no. 2 (2007), 201-230.

[9] K. Bezdek and T. Zamfirescu, “A characterization of 3-dimensional convex sets with an
infinite X-ray number”, in Colloquia Mathematica Societatis János Bolyai, Intuitive Ge-
ometry, Szeged, 63 (1991) (North-Holland Publishing Co., Amsterdam, 1994), 33-38.

[10] V. G. Boltyanski, “The problem of illuminating the boundary of a convex body”, Izvestiya
Moldavskogo Filiala Akademii Nauk SSSR 76 (1960), 77-84.

[11] V. G. Boltyanski, “Solution of the illumination problem for belt-bodies”, Mat. Zametki
58, no. 4 (1995), 505-511 (in Russian); translation in Math. Notes 58, no. 3-4 (1995),
1029-1032.

[12] V. G. Boltyanski and I. Gohberg, “Stories about covering and illuminating of convex bod-
ies”, Nieuw Arch. Wisk. (4) 13, no. 1 (1995), 1-26.

[13] V. G. Boltyanski and H. Martini, “Covering belt bodies by smaller homothetical copies”,
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