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6 Isomorphi symmetrization and appliations to lassial onvexity 466.1 Estimates on overing numbers . . . . . . . . . . . . . . . . . . . . . 466.2 Isomorphi symmetrization and appliations to lassial onvexity . 497 Appendix 527.1 The hyperplane onjeture . . . . . . . . . . . . . . . . . . . . . . . . 527.2 Geometry of the Banah-Mazur ompatum . . . . . . . . . . . . . . 557.3 Symmetrization and approximation . . . . . . . . . . . . . . . . . . . 577.4 Quasi-onvex bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . 587.5 Type and otype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597.6 Non-linear type theory . . . . . . . . . . . . . . . . . . . . . . . . . . 611 IntrodutionIn this artile we disuss results whih stand between geometry, onvex geometry,and funtional analysis. We onsider the family of n-dimensional normed spaesand study the asymptoti behavior of their parameters as the dimension n growsto in�nity. Analogously, we study asymptoti phenomena for onvex bodies in highdimensional spaes.This theory grew out of funtional analysis. In fat, it may be viewed as themost reent one among many examples of diretions in mathematis whih wereborn inside this �eld during the twentieth entury. Funtional analysis was devel-oped during the period between the World Wars by the Polish shool of mathemat-is, an outstanding shool with broad interests and onnetions. The inuene ofthe ideas of funtional analysis on mathematial physis, on di�erential equations,but also on lassial analysis, was enormous. The great ahievements and suess-ful appliations to other �elds led to the reation of new diretions (among them,algebrai analysis, non-ommutative geometry and the modern theory of partialdi�erential equations) whih in a short time beame autonomous and independent�elds of mathematis.Thus, in the last deades of the twentieth entury, geometri funtional analysisand even more narrowly the study of the geometry of Banah spaes beame themain line of researh in what remained as \proper" funtional analysis. The twoentral themes of this theory were in�nite dimensional onvex bodies and the linearstruture of in�nite dimensional normed spaes. Several questions in the diretionof a struture theory for Banah spaes were asked and stayed open for many years.Some of them an be found in Banah's book. Their ommon feature was a searhfor simple building bloks inside an arbitrary Banah spae. For example: does ev-ery Banah spae ontain an in�nite unonditional basi sequene? Is every Banahspae deomposable as a topologial sum of two in�nite dimensional subspaes? Isit true that every Banah spae is isomorphi to its losed hyperplanes? Does everyBanah spae ontain a subspae isomorphi to some `p or 0?This last question was answered in the negative by Tsirelson (1974) who gavean example of a reexive spae not ontaining any `p. Before Tsirelson's example,2



it had been realized by the seond named author that the notion of the spetrum ofa uniformly ontinuous funtion on the unit sphere of a normed spae was related tothis question and that the problem of distortion was a entral geometri questionfor approahing the linear struture of the spae. Although Tsirelson's examplewas a major breakthrough and introdued a ompletely new onstrution of norm,the searh for simple linear struture ontinued to be the aim of most of the e�ortsin the geometry of Banah spaes. We now know that in�nite dimensional Banahspaes have muh more ompliated struture than what was assumed (or hoped).All the questions above were answered in the negative in the middle of the 90's,starting with the works of Gowers and Maurey, Gowers, Odell and Shlumpreht.Atually, the line of thought related to Tsirelson's example and the onepts ofspetrum and distortion were the most ruial for the reent developments.The systemati quantitative study of n-dimensional spaes with n tending toin�nity started in the 60's, as an alternative approah to several unsolved problemsof geometri funtional analysis. This study led to a new and deep theory withmany surprising onsequenes in both analysis and geometry. When viewed as partof funtional analysis, this theory is often alled loal theory (or asymptoti the-ory of �nite dimensional normed spaes). However, it adopted a signi�ant partof lassial onvexity theory and used many of its methods and tehniques. Clas-sial geometri inequalities suh as the Brunn-Minkowski inequality, isoperimetriinequalities and many others were extensively used and established themselves asimportant tehnial tools in the development of loal theory. Conversely, the studyof geometri problems from a funtional analysis point of view enrihed lassialonvexity with a new approah and a variety of problems: The \isometri" prob-lems whih were typial in onvex geometry were replaed by \isomorphi" ones,with the emphasis on the role of the dimension. This hange led to a new intu-ition and revealed new onepts, the onentration phenomenon being one of them,with many appliations in onvexity and disrete mathematis. This natural melt-ing of the two theories should perhaps orretly be alled asymptoti (or onvex)geometri analysis.This paper presents only some aspets of this asymptoti theory. We leave asidetype-otype theory and other onnetions with probability theory, fatorizationresults, overing and entropy (besides a few results we are going to use), onnetionswith in�nite dimension theory, random normed spaes, and so on. Other artilesin this olletion will over these topis and omplement these omissions. On theother hand, we feel it is neessary to give some bakground on onvex geometry:This is done in Setions 2 and 3.The theory as we build it below \rotates" around di�erent Eulidean struturesassoiated with a given norm or onvex body. This is in fat a reetion of di�erenttraes of hidden symmetries every high dimensional body possesses. To reoverthese symmetries is one of the goals of the theory. A new point whih appears inthis artile is that all these Eulidean strutures that are in use in loal theory havepreise geometri desriptions in terms of lassial onvexity theory: they may beviewed as \isotropi" ones.Traditional loal theory onentrates its attention on the study of the struture3



of the subspaes and quotient spaes of the original spae (the \loal struture" ofthe spae). The onnetion with lassial onvexity goes through the translationof these results to a \global" language, that is, to equivalent statements pertainingto the struture of the whole body or spae. Suh a omparison of \loal" and\global" results is very useful, opens a new dimension in our study and will leadour presentation throughout the paper.We refer the reader to the books of Shneider [177℄ and of Burago and Zalgaller[35℄ for the lassial onvexity theory. Books mainly devoted to the loal theoryare the ones by: Milman and Shehtman [149℄, Pisier [162℄, Tomzak-Jaegermann[195℄.2 Classial inequalities and isotropi positions2.1 Notation2.1.1. We study �nite-dimensional real normed spaes X = (Rn ; k � k). The unitball KX of suh a spae is an origin-symmetri onvex body in Rn whih we agreeto all a body. There is a one to one orrespondene between norms and bodies inRn : If K is a body, then kxk = minf� > 0 : x 2 �Kg is a norm de�ning a spaeXK with K as its unit ball. In this way bodies arise naturally in funtional analysisand will be our main objet of study.If K and T are bodies in Rn we an de�ne a multipliative distane d(K;T ) byd(K;T ) = inffab : a; b > 0;K � bT; T � aKg:The natural distane between the n-dimensional spaes XK and XT is theBanah-Mazur distane. Sine we want to identify isometri spaes, we allow alinear transformation and setd(XK ; XT ) = inffd(K;uT ) : u 2 GLng:In other words, d(XK ; XT ) is the smallest positive number d for whih we an �ndu 2 GLn suh that K � uT � dK. We learly have d(XK ; XT ) � 1 with equalityif and only if XK and XT are isometri. Note the multipliative triangle inequalityd(X;Z) � d(X;Y )d(Y; Z) whih holds true for every triple of n-dimensional spaes.2.1.2. We assume that Rn is equipped with a Eulidean struture h�; �i anddenote the orresponding Eulidean norm by j � j. Dn is the Eulidean unit ball andSn�1 is the unit sphere. We also write j � j for the volume (Lebesgue measure) inRn , and � for the Haar probability measure on the orthogonal group O(n).Let Gn;k denote the Grassmannian of all k-dimensional subspaes of Rn . Then,O(n) equips Gn;k with a Haar probability measure �n;k satisfying�n;k(A) = �fu 2 O(n) : uEk 2 Agfor every Borel subset A of Gn;k and every �xed element Ek of Gn;k. The rotation-ally invariant probability measure on Sn�1 will be denoted by �.4



2.1.3. Duality plays an important role in the theory. If K is a body in Rn , itspolar body is de�ned byKÆ = fy 2 Rn : jhx; yij � 1 for all x 2 Kg:That is, kykKÆ = maxx2K jhx; yij. Note that XKÆ = X�K : KÆ is the unit ball ofthe dual spae of X . It is easy to hek that d(X;Y ) = d(X�; Y �).2.2 Classial Inequalities(a) The Brunn-Minkowski inequality. Let K and T be two onvex bodies inRn . If K + T denotes the Minkowski sum fx+ y : x 2 K; y 2 Tg of K and T , theBrunn-Minkowski inequality states that(1) jK + T j1=n � jKj1=n + jT j1=n;with equality if and only ifK and T are homothetial. Atually, the same inequalityholds for arbitrary non empty ompat subsets of Rn .One an rewrite (1) in the following form: For every � 2 (0; 1),(2) j�K + (1� �)T j1=n � �jKj1=n + (1� �)jT j1=n:Then, the arithmeti-geometri means inequality gives a dimension free version:(3) j�K + (1� �)T j � jKj�jT j1��:There are several proofs of the Brunn-Minkowski inequality, all of them relatedto important ideas. We shall sketh only two lines of proof.The �rst (historially as well) proof is based on the Brunn onavity priniple:Let K be a onvex body in Rn and F be a k-dimensional subspae. Then, thefuntion f : F? ! R de�ned by f(x) = jK \ (F + x)j1=k is onave on its support.The proof is by symmetrization. Reall that the Steiner symmetrization of Kin the diretion of � 2 Sn�1 is the onvex body S�(K) onsisting of all pointsof the form x + ��, where x is in the projetion P�(K) of K onto �? and j�j �12 � length(x + R�) \K. Steiner symmetrization preserves onvexity: in fat, thisis the Brunn onavity priniple for k = 1. The proof is elementary and essentiallytwo dimensional. A well known fat whih goes bak to Steiner and Shwarz butwas later rigorously proved in [45℄ (see [35℄) is that for every onvex body K onean �nd a sequene of suessive Steiner symmetrizations in diretions � 2 F sothat the resulting onvex body ~K has the following property: ~K \ (F + x) is a ballwith radius r(x), and j ~K \ (F +x)j = jK \ (F +x)j for every x 2 F?. Convexity of~K implies that r is onave on its support, and this shows that f is also onave.2 The Brunn onavity priniple implies the Brunn-Minkowski inequality. If K;Tare onvex bodies in Rn , we de�neK1 = K�f0g, T1 = T�f1g in Rn+1 and onsidertheir onvex hull L. If L(t) = fx 2 Rn : (x; t) 2 Lg, t 2 R, we easily hek that5



L(0) = K;L(1) = T , and L(1=2) = K+T2 . Then, the Brunn onavity priniple forF = Rn shows that(4) ���K + T2 ���1=n � 12 jKj1=n + 12 jT j1=n: 2A seond proof of the Brunn-Minkowski inequality may be given via the Kn�othemap: Assume that K and T are open onvex bodies. Then, there exists a one toone and onto map � : K ! T with the following properties:(i) � is triangular: the i-th oordinate funtion of � depends only on x1; : : : ; xi.That is,(5) �(x1; : : : ; xn) = (�1(x1); �2(x1; x2); : : : ; �n(x1; : : : ; xn)):(ii) The partial derivatives ��i�xi are nonnegative on K, and the determinant ofthe Jaobian of � is onstant. More preisely, for every x 2 K(6) (detJ�)(x) = nYi=1 ��i�xi (x) = jT jjKj :The map � is alled the Kn�othe map from K onto T . Its existene was establishedin [102℄ (see also [149, Appendix I℄). Observe that eah hoie of oordinate systemin Rn produes a di�erent Kn�othe map from K onto T .It is lear that (I + �)(K) � K + T , therefore we an estimate jK + T j usingthe arithmeti-geometri means inequality as follows:(7) jK + T j � Z(I+�)(K) dx = ZK jdetJI+�(x)jdx = ZK nYi=1�1 + ��i�xi� dx� ZK(1 + detJ1=n� )ndx = jKj�1 + jT j1=njKj1=n�n = �jKj1=n + jT j1=n�n :This proves the Brunn-Minkowski inequality. 2Alternatively, instead of the Kn�othe map one may use the Brenier map  :K ! T , where K and T are open onvex bodies. This is also a one to one, ontoand \ratio of volumes" preserving map (i.e. its Jaobian has onstant determinant),with the following property: There is a onvex funtion f 2 C2(K) de�ned on Ksuh that  = rf . A remarkable property of the Brenier map is that it is uniquelydetermined. Existene and uniqueness of the Brenier map were proved in [26℄ (seealso [125℄ for a di�erent proof and important generalizations).It is lear that the Jaobian J = Hessf is a symmetri positive de�nite matrix.Again we have (I +  )(K) � K + T , hene(8) jK + T j � ZK jdetJI+ (x)jdx = ZK det (I +Hessf) dx = ZK nYi=1(1 + �i(x))dx;6



where �i(x) are the non negative eigenvalues of Hessf . Moreover, by the ratio ofvolumes preserving property of  , we have Qni=1 �i(x) = jT j=jKj for every x 2 K.Therefore, the arithmeti-geometri means inequality gives(9) jK + T j � ZK  1 + [ nYi=1�i(x)℄1=n!n dx = �jKj1=n + jT j1=n�n : 2This proof has the advantage of providing a desription for the equality ases: eitherK or T must be a point, or K must be homothetial to T .Let us desribe here the generalization of Brenier's work due to MCann: Let�; � be probability measures on Rn suh that � is absolutely ontinuous with respetto Lebesgue measure. Then, there exists a onvex funtion f suh that rf : Rn !Rn is de�ned �-almost everywhere, and �(A) = �((rf)�1(A))) for every Borelsubset A of Rn (rf pushes forward � to �). If both �; � are absolutely ontinuouswith respet to Lebesgue measure, then the Brenier map rf has an inverse (rf)�1whih is de�ned �-almost everywhere and is also a Brenier map, pushing forward� to �. A regularity result of Ca�arelli [44℄ (see [11℄) states that if T is a onvexbounded open set, f is a probability density on Rn , and g is a probability densityon T suh that(i) f is loally bounded and bounded away from zero on ompat sets, and(ii) there exist 1; 2 > 0 suh that 1 � g(y) � 2 for every y 2 T ,then, the Brenier maprf : (Rn ; fdx)! (Rn ; gdx) is ontinuous and belongs loallyto the H�older lass C� for some � > 0. The following reent result [11℄ makes useof all this information:Fat 1: Let K1 and K2 be open onvex bounded subsets of Rn with jK1j = jK2j = 1.There exists a C1-di�eomorphism  : K1 ! K2 whih is volume preserving andsatis�es(10) K1 + �K2 = fx+ � (x) : x 2 K1g ; � > 0:Proof: Let � be any smooth stritly positive density on Rn . Consider the Breniermaps(11)  i = rfi : (Rn ; �dx)! (Ki; dx) ; i = 1; 2:Ca�arelli's result shows that they are C1-smooth. We now apply the followingtheorem of Gromov [72℄ (for a proof, see also [11℄):Fat 2: (i) Let f : Rn ! R be a C2-smooth onvex funtion with stritly positiveHessian. Then, the image of the gradient map Imrf is an open onvex set.(ii) If f1; f2 are two suh funtions, thenIm(rf1 +rf2) = Im(rf1) + Im(rf2): 2It follows that, for every � > 0,(12) K1 + �K2 = frf1(x) + �rf2(x) : x 2 Rng:7



Then, one an hek that the map  =  2 Æ ( 1)�1 : K1 ! K2 satis�es all theonditions of Fat 1. 2The existene of a volume preserving  : K1 ! K2 suh that (I +  )(K1) =K1 + K2 overs a \weak point" of the Kn�othe map and should have importantappliations to onvex geometry. We disuss some of them in Setion 3.2.(b) Consequenes of the Brunn-Minkowski inequality(b1) The isoperimetri inequality for onvex bodies. The surfae area �(K) of aonvex body K is de�ned by(13) �(K) = lim"!0+ jK + "Dnj � jKj" :It is a well-known fat that among all onvex bodies of a given volume the ball hasminimal surfae area. This is an immediate onsequene of the Brunn-Minkowskiinequality: If K is a onvex body in Rn with jKj = jrDnj, then for every " > 0(14) jK + "Dnj1=n � jKj1=n + "jDnj1=n = (r + ")jDnj1=n:It follows that the surfae area �(K) of K satis�es(15) �(K) = lim"!0+ jK + "Dnj � jKj" � lim"!0+ (r + ")n � rn" jDnj = njDnj 1n jKjn�1nwith equality if K = rDn. The question of uniqueness in the equality ase is moredeliate.(b2) The spherial isoperimetri inequality. Consider the unit sphere Sn�1 with thegeodesi distane � and the rotationally invariant probability measure �. For everyBorel subset A of Sn�1 and for every " > 0, we de�ne the "-extension of A:(16) A" = fx 2 Sn�1 : �(x;A) � "g:Then, the isoperimetri inequality for the sphere is the following statement:Among all Borel subsets A of Sn�1 with given measure � 2 (0; 1), a spherialap B(x; r) of radius r > 0 suh that �(B(x; r)) = � has minimal "-extension forevery " > 0.This means that if A � Sn�1 and �(A) = �(B(x0; r)) for some x0 2 Sn�1 andr > 0, then(17) �(A") � �(B(x0; r + "))for every " > 0. Sine the �-measure of a ap is easily omputable, one an give alower bound for the measure of the "-extension of any subset of the sphere. We aremainly interested in the ase �(A) = 12 , and a straightforward omputation (see[61℄) shows the following: 8



Theorem 2.2.1. If A is a Borel subset of Sn+1 and �(A) = 1=2, then(18) �(A") � 1�p�=8 exp(�"2n=2)for every " > 0. 2[The onstant p�=8 may be replaed by a sequene of onstants an tending to12 as n!1.℄The spherial isoperimetri inequality an be proved by spherial symmetriza-tion tehniques (see [176℄ or [61℄). However, it was reently observed [10℄ that onean give a very simple proof of an estimate analogous to (18) using the Brunn-Minkowski inequality. The key point is the following lemma:Lemma. Consider the probability measure �(A) = jAj=jDnj on the Eulidean unitball Dn. If A;B are subsets of Dn with �(A) � �, �(B) � �, and if �(A;B) =inffja� bj : a 2 A; b 2 Bg = � > 0, then� � exp(��2n=8):[In other words, if two disjoint subsets of Dn have positive distane �, then at leastone of them must have small volume (depending on �) when the dimension n ishigh.℄Proof: We may assume that A and B are losed. By the Brunn-Minkowski in-equality, �(A+B2 ) � �. On the other hand, the parallelogram law shows that ifa 2 A; b 2 B then ja+ bj2 = 2jaj2 + 2jbj2 � ja� bj2 � 4� �2:It follows that A+B2 � (1� �24 )1=2Dn, hene��A+B2 � � �1� �24 �n=2 � exp(��2n=8): 2Proof of Theorem 2.2.1 (with weaker onstants). Assume that A � Sn�1 with�(A) = 1=2. Let " > 0 and de�ne B = (A") � Sn�1. We �x � 2 (0; 1) and onsiderthe subsets ~A = SftA : � � t � 1g and ~B = SftB : � � t � 1g of Dn. These aredisjoint with distane ' �". The Lemma shows that �( ~B) � exp(��2"2n=8), andsine �( ~B) = (1� �n)�(B) we obtain(19) �(A") � 1� 11� �n exp(��2"2n=8):We onlude the proof by hoosing suitable � 2 (0; 1). 2(b3) C. Borell's Lemma and Khinhine type inequalities. Let � be a Borel probabil-ity measure on Rn . We say that � is log-onave if whenever A;B are Borel subsetsof Rn and � 2 (0; 1) we have(20) �(�A+ (1� �)B) � �(A)��(B)1��:9



The following lemma of C. Borell [21℄ holds for all log-onave probability measures:Lemma. Let � be a log-onave Borel probability measure on Rn , and A be asymmetri onvex subset of Rn . If �(A) = � > 1=2, then for every t � 1 we have(21) � ((tA)) � ��1� �� � t+12 :Proof: Immediate by the log-onavity of �, after one observes that(22) RnnA � 2t+ 1(RnntA) + t� 1t+ 1A: 2Let K be a onvex body in Rn . By the Brunn-Minkowski inequality we seethat the measure �K de�ned by �K(A) = jA \Kj=jKj is a log-onave probabilitymeasure. In this ontext, Borell's lemma tells us that if A is onvex symmetri andif A\K ontains more than half of the volume ofK, then the proportion ofK whihstays outside tA dereases exponentially in t as t ! +1 in a rate independent ofthe onvex body K and the dimension n.This observation has important appliations to the study of linear funtionsf(x) = hx; yi, y 2 Rn , de�ned on onvex bodies. Let us denote by kfkp the Lpnorm with respet to the probability measure �K . Then, for every linear funtionf : K ! R we have(23) kfkq � kfkp � pkfkq ; 0 < q < pwhere p are universal onstants depending only on p. The left hand side inequalityis just H�older's inequality, while the right hand side (in the ase 1 � q < p) is aonsequene of Borell's lemma (see [83℄). One writes(24) 1jKj ZK jf(x)jpdx = Z +10 ptp�1�K (fx 2 K : jf(x)j � tg) dtand estimates �K(fx 2 K : jf(x)j � tg) for large values of t using Borell's lemmawith say A = fx 2 Rn : jf(x)j � 3kfkqg. The dependene of p on p is linear asp!1. This is equivalent to the fat that the L 1(K) norm of f(25) kfkL 1(K) = infn� > 0 : 1jKj ZK exp(jf(x)j=�) � 2ois equivalent to kfk1. The question to determine the ases where (p) ' pp asp ! 1 in (23) is very important for the theory. This is ertainly true for somebodies (e.g. the ube), but the example of the ross-polytope shows that it is notalways so.Inverse H�older inequalities of this type are very similar in nature to the lassialKhinhine inequality (and are sometimes alled Khinhine type inequalities). Infat, the argument desribed above may be used to give proofs of the Kahane-Khinhine inequality (see [149, Appendix III℄).10



Khinhine type inequalities do not hold only for linear funtions. For example,Bourgain [24℄ has shown that if f : K ! R is a polynomial of degree m, then(26) kfkp � (p;m)kfk2for every p > 2, where (p;m) depends only on p and the degree m of f (For thispurpose, the Brunn-Minkowski inequality was not enough, and a suitable diret useof the Kn�othe map was neessary). It was also reently proved [107℄ that (23) holdstrue for any norm f on Rn . Finally the interval of values of p and q in (23) an beextended to (�1;+1) (see [145℄ for linear funtions, [76℄ for norms).2.3 Extremal problems and isotropi positionsIn the study of �nite dimensional normed spaes one often faes the problem ofhoosing a suitable Eulidean struture related to the question in hand. In geomet-ri language, we are given the body K in Rn and want to �nd a spei� Eulideannorm in Rn whih is naturally onneted with our question about K. An equivalent(and sometimes more onvenient) approah is the following: we �x the Eulideanstruture in Rn , and given K we ask for a suitable \position" uK of K, where u is alinear isomorphism of Rn . That is, instead of keeping the body �xed and hoosingthe \right ellipsoid" we �x the Eulidean norm and hoose the \right position" ofthe body.Most of the times the starting point is a question of the following type: weare given a funtional f on onvex bodies and a onvex body K and we ask forthe maximum or minimum of f(uK) over all volume preserving transformations u.We shall desribe some very important positions of K whih solve suh extremalproblems. What is interesting is that there is a simple variational method whihleads to a desription of the solution, and that in most ases the resulting position ofK is isotropi. Moreover, isotropi onditions are losely related to the Brasamp-Lieb inequality [34℄ and its reverse [19℄, a fat that was disovered and used by K.Ball in the ase of John's representation of the identity. For more information onthis very important onnetion, see the artile [18℄ in this olletion.(a) John's position. A lassial result of F. John [94℄ states that d(X; `n2 ) � pn forevery n-dimensional normed spae X . This estimate is a by-produt of the studyof the following extremal problem:Let K be a body in Rn . Maximize jdetuj over all u : `n2 ! XK with kuk = 1.If u0 is a solution of this problem, then u0Dn is the ellipsoid of maximal volumewhih is insribed in K. Existene and uniqueness of suh an ellipsoid are easy tohek. An equivalent formulation of the problem is the following:Let K be a body in Rn . Minimize ku : `n2 ! XKk over all volume preservingtransformations u.We assume that the identity map I is a solution of this problem, and normalize sothat(1) kI : `n2 ! XKk = 1 = minfku : `n2 ! XKk : jdetuj = 1g:11



This means that the Eulidean unit ball Dn is the maximal volume ellipsoid of K.We shall use a simple variational argument [82℄ to give neessary onditions on K:Theorem 2.3.1. Let Dn be the maximal volume ellipsoid of K. Then, for everyT 2 L(Rn ;Rn ) we an �nd a ontat point x of K and Dn (i.e. jxj = kxk = 1)suh that(2) hx; Txi � trTn :Proof: We may assume that K is smooth enough. Let S 2 L(Rn ;Rn ). We �rstlaim that(3) kSxk � trSnfor some ontat point x of K and Dn. Let " > 0 be small enough. From (1) wehave(4) kI + "Sk � [det(I + "S)℄1=n = 1 + " trSn +O("2):Let x" 2 Sn�1 be suh that kx" + "Sx"k = kI + "Sk. Sine Dn � K, we havekx"k � 1. Then, the triangle inequality for k � k shows that(5) kSx"k � trSn +O("):We an �nd x 2 Sn�1 and a sequene "m ! 0 suh that x"m ! x. By (5) weobviously have kSxk � trSn . Also, kxk = lim kx"m + "mSx"mk = kIk = 1. Thisproves (3).Now, let T 2 L(Rn ;Rn ) and write S = I + "T , " > 0. We an �nd x" suh thatkx"k = jx"j = 1 and(6) kx" + "Tx"k � tr(I + "T )n = 1+ " trTn :Sine kx" + "Tx"k = 1 + "hrkx"k; Tx"i + O("2), we obtain hrkx"k; Tx"i � trTn +O("). Choosing again "m ! 0 suh that x"m ! x 2 Sn�1, we readily see that x isa ontat point of K and Dn, and(7) hrkxk; Txi � trTn :But, rkxk is the point on the boundary of KÆ at whih the outer unit normal isparallel to x (see [177, pp. 44℄). Sine x is a ontat point of K and Dn, we musthave rkxk = x. This proves the theorem. 2As a onsequene of Theorem 2.3.1 we get John's upper bound for d(X; `n2 ):Theorem 2.3.2. Let X be an n-dimensional normed spae. Then,d(X; `n2 ) � pn:12



Proof: By the de�nition of the Banah-Mazur distane we may learly assume thatthe unit ball K of X satis�es the assumptions of Theorem 2.3.1. In partiular,kxk � jxj for every x 2 Rn .Let x 2 Rn and onsider the map Ty = hy; xix. Theorem 2.3.1 gives us aontat point z of K and Dn suh that(8) hz; T zi � trTn = jxj2n :On the other hand,(9) hz; T zi = hz; xi2 � kzk2�kxk2 = kxk2;sine one an hek that kzk� = 1. Therefore, kxk � jxj � pnkxk. This shows thatDn � K � pnDn. 2Remark. The estimate given by John's theorem is sharp. If X = `n1 or `n1, one anhek that d(X; `n2 ) = pn.Theorem 2.3.1 gives very preise information on the distribution of ontatpoints of K and Dn on the sphere Sn�1, whih an be put in a quantitative form:Theorem 2.3.3. (Dvoretzky-Rogers Lemma [53℄). Let Dn be the maximal volumeellipsoid of K. Then, there exist pairwise orthogonal vetors y1; : : : ; yn in Rn suhthat(10) �n� i+ 1n �1=2 � kyik � jyij = 1 ; i = 1; : : : ; n:Proof: We de�ne the yi's indutively. The �rst vetor y1 an be any ontatpoint of K and Dn. Assume that y1; : : : ; yi�1 have been de�ned. Let Fi =spanfy1; : : : ; yi�1g. Then, tr(PF?i ) = n� i+1 and using Theorem 2.3.1 we an �nda ontat point xi for whih(11) jPF?i xij2 = hxi; PF?i xii � n� i+ 1n :We set yi = PF?i xi=jPF?i xij. Then,(12) 1 = jyij � kyik = kyik � kxik� � hxi; yii = jPF?i xij � �n� i+ 1n �1=2 : 2Finally, a separation argument and Theorem 2.3.1 give us John's representationof the identity:Theorem 2.3.4. Let Dn be the maximal volume ellipsoid of K. There exist ontatpoints x1; : : : ; xm of K and Dn, and positive real numbers �1; : : : ; �m suh thatI = mXi=1 �ixi 
 xi:13



Proof: Consider the onvex hull C of all operators x
x, where x is a ontat pointof K and Dn. We need to prove that I=n 2 C. If this is not the ase, there existsT 2 L(Rn ;Rn ) suh that(13) hT; I=ni > hx
 x; T ifor every ontat point x. But, hT; I=ni = trTn and hx
x; T i = hx; Txi. This wouldontradit Theorem 2.3.1. 2De�nition. A Borel measure � on Sn�1 is alled isotropi if(14) ZSn�1hx; �i2d�(x) = �(Sn�1)nfor every � 2 Sn�1.John's representation of the identity implies thatmXi=1 �ihxi; �i2 = 1for every � 2 Sn�1. This means that if we onsider the measure � on Sn�1 whihgives mass �i at the point xi, i = 1; : : : ;m, then � is isotropi. In this sense,John's position is an isotropi position. One an atually prove that the existeneof an isotropi measure supported by the ontat points of K and Dn haraterizesJohn's position in the following sense (see [16℄, [82℄):\Assume that Dn is ontained in the body K. Then, Dn is the maximal volumeellipsoid of K if and only if there exists an isotropi measure � supported by theontat points of K and Dn."Note. The argument given for the proof of Theorem 2.3.1 an be applied in a moregeneral ontext: If K and L are (not neessarily symmetri) onvex bodies in Rn ,we say that L is of maximal volume in K if L � K and, for every w 2 Rn andT 2 SLn, the aÆne image w + T (L) of L is not ontained in the interior of K.Then, one has a desription of this maximal volume position, whih generalizesJohn's representation of the identity:Theorem 2.3.5. Let L be of maximal volume in K. For every z 2 int(L), wean �nd ontat points v1; : : : ; vm of K � z and L � z, ontat points u1; : : : ; umof (K � z)Æ and (L � z)Æ, and positive reals �1; : : : ; �m, suh that P�juj = o,huj ; vji = 1, and I = mXj=1 �juj 
 vj : 2This was observed by Milman in the symmetri ase with z = 0 (see [195,Theorem 14.5℄). For the extension to the non-symmetri ase see [88℄, where it isalso shown that under mild onditions on K and L there exists an optimal hoie ofthe \enter" z so that, setting z = 0, we simultaneously haveP�juj =P�jvj = 0in the statement above. 14



(b) Isotropi position { Hyperplane onjeture. A notion oming from lassialmehanis is that of the Binet ellipsoid of a body K (atually, of any ompat setwith positive Lebesgue measure). The norm of this ellipsoid EB(K) is de�ned by(15) kxk2EB(K) = 1jKj ZK jhx; yij2dy:The Legendre ellipsoid EL(K) of K is de�ned by(16) ZEL(K)hx; yi2dy = ZKhx; yi2dyfor every x 2 Rn , and satis�es (see [146℄)(17) EB(K) = (n+ 2)1=2jEL(K)j�1(EL(K))Æ:That is, EL(K) has the same moments of inertia as K with respet to the axes.A body K is said to be in isotropi position if jKj = 1 and its Legendre ellipsoidEL(K) (equivalently, its Binet ellipsoid EB(K)) is homothetial to Dn. This meansthat there exists a onstant LK suh that(18) ZKhy; �i2dy = L2Kfor every � 2 Sn�1 (K has the same moment of inertia in every diretion �). It isnot hard to see that every body K has a position uK whih is isotropi. Moreover,this position is uniquely determined up to an orthogonal transformation. Therefore,LK is an aÆne invariant whih is alled the isotropi onstant of K.An alternative way to see this isotropi position in the spirit of our presentdisussion is to onsider the following minimization problem:Let K be a body in Rn . Minimize RuK jxj2dx over all volume preserving trans-formations u.Then, we have the following theorem [146℄:Theorem 2.3.6. Let K be a body in Rn with jKj = 1. The identity map minimizesRuK jxj2dx over all volume preserving transformations u if and only if K is isotropi.Moreover, this isotropi position is unique up to orthogonal transformations.Proof: We shall use the same variational argument as for John's position. LetT 2 L(Rn ;Rn ) and " > 0 be small enough. Then, u = (I + "T )=[det(I + "T )℄1=n isvolume preserving, and sine RuK jxj2dx � RK jxj2dx we get(19) ZK jx+ "Txj2dx � [det(I + "T )℄ 2n ZK jxj2dx:But, jx+ "Txj2 = jxj2+2"hx; Txi+O("2) and [det(I + "T )℄ 2n = 1+2" trTn +O("2).Therefore, (19) implies(20) ZKhx; Txidx � trTn ZK jxj2dx:15



By symmetry we see that(21) ZKhx; Txidx = trTn ZK jxj2dxfor every T 2 L(Rn ;Rn ). This is equivalent to(22) ZKhx; �i2dx = 1n ZK jxj2dx ; � 2 Sn�1:Conversely, if K is isotropi and if T is any volume preserving transformation, then(23)ZTK jxj2dx = ZK jTxj2dx = ZKhx; T �Txidx = tr(T �T )n ZK jxj2dx � ZK jxj2dx;whih shows that K solves our minimization problem. We an have equality in (23)if and only if T 2 O(n). 2It is easily proved that LK � LDn �  > 0 for every body K in Rn , where  > 0is an absolute onstant. An important open question having its origin in [22℄ is thefollowing:Problem. Does there exist an absolute onstant C > 0 suh that LK � C for everybody K?A simple argument based on John's theorem shows that LK � pn for everybodyK. Uniform boundedness of LK is known for some lasses of bodies: unit ballsof spaes with a 1-unonditional basis, zonoids and their polars, et. For partialanswers to the question, see [13℄, [47℄, [48℄, [95℄, [96℄, [106℄, [146℄. The best knowngeneral upper estimate is due to Bourgain [24℄: LK �  4pn logn for every body Kin Rn . In the Appendix we give a brief presentation of Bourgain's result.The problem we have just stated has many equivalent reformulations, whih aredeeply onneted with problems from lassial onvexity. For a detailed disussion,see [146℄. An interesting property of the isotropi position is that if K is isotropithen all entral setionsK\�?, � 2 Sn�1 are equivalent up to an absolute onstant.This omes from the fat that(24) ZKhx; �i2dx = L2K ' 1jK \ �?j2 ; � 2 Sn�1a onsequene of the log-onavity of �K . This was �rst observed in [91℄. Then, uni-form boundedness of LK is equivalent to the statement that an isotropi body hasall its (n� 1)-dimensional entral setions bounded below by an absolute onstant.This is equivalent to theHyperplane Conjeture: Is it true that a body K of volume 1 must have an(n � 1)-dimensional entral setion with volume bounded below by an absoluteonstant?() Minimal surfae position. Let K be a onvex body in Rn with normalizedvolume jKj = 1. We now onsider the following minimization problem:16



Find the minimum of �(uK) over all volume preserving transformations u.This minimum is attained for some u0 and will be denoted by �K (the minimalsurfae invariant of K). We say that K has minimal surfae if �(K) = �K jKjn�1n .Reall that the area measure �K of K is de�ned on Sn�1 and orresponds tothe usual surfae measure on K via the Gauss map: For every Borel A � Sn�1, wehave(25) �K(A) = � (fx 2 bd(K) : the outer normal to K at x is in Ag) ;where � is the (n � 1)-dimensional surfae measure on K. We obviously have�(K) = �K(Sn�1).A haraterization of the minimal surfae position through the area measurewas given by Petty [157℄:Theorem 2.3.7. Let K be a onvex body in Rn with jKj = 1. Then, �(K) = �Kif and only if �K is isotropi. Moreover, this minimal surfae position is unique upto orthogonal transformations.The proof makes use of the same variational argument. The basi observation isthat if u is any volume preserving transformation, then(26) �((u�1)�K) = ZSn�1 juxj�K(dx):K. Ball [15℄ has proved that the minimal surfae invariant �K is maximal whenK is a ube in the symmetri ase, and when K is a simplex in the general ase.It follows that �K � 2n for every body K in Rn . For appliations of the minimalsurfae position to the study of hyperplane projetions of onvex bodies, see [85℄(also, [14℄ for an approah through the notion of volume ratio).(d) Minimal mean width position. Let K be a onvex body in Rn . The mean widthof K is de�ned by(27) w(K) = 2 ZSn�1 hK(u)�(du);where hK(x) = maxy2Khx; yi is the support funtion of K. We say that K hasminimal mean width if w(TK) � w(K) for every volume preserving linear trans-formation T of Rn . Our standard variational argument gives the following hara-terization of the minimal mean width position:Proposition 2.3.8. A smooth body K in Rn has minimal mean width if and onlyif(28) ZSn�1hrhK(u); Tui�(du) = trTn w(K)2for every linear transformation T . Moreover, this minimal mean width position isuniquely determined up to orthogonal transformations. 217



Consider the measure wK on Sn�1 with density hK with respet to �. If wede�ne(29) IK(�) = ZSn�1hrhK(u); �ihu; �i�(du) ; � 2 Sn�1;an appliation of Green's formula shows that(30) w(K)2 + IK(�) = (n+ 1) ZSn�1 hK(u)hu; �i2�(du):Combining this identity with Proposition 2.3.8, we obtain an isotropi harateri-zation of the minimal mean width position (see [82℄):Theorem 2.3.9. A onvex body K in Rn has minimal mean width if and only ifwK is isotropi. Moreover, the position is uniquely determined up to orthogonaltransformations. 2Note. It is natural to ask for an upper bound for the minimal width parameter, ifwe restrit ourselves to bodies of �xed volume. It is known that every body K hasa linear image ~K with j ~Kj = jDnj suh that(31) w( ~K) �  log(2d(XK ; `n2 )) �  log(2n);where  > 0 is an absolute onstant. This statement follows from an inequalityof Pisier [159℄ after work of Lewis [109℄, Figiel and Tomzak-Jaegermann [60℄, andplays a entral role in the theory. We shall use the minimal mean width positionand ome bak to the estimate (31) in Setion 5.3 Bakground from lassial onvexity3.1 Steiner's formula and Urysohn's inequality3.1.1. Let Kn denote the set of all non-empty, ompat onvex subsets of Rn . Wemay view Kn as a onvex one under Minkowski addition and multipliation bynonnegative real numbers. Minkowski's theorem (and the de�nition of the mixedvolumes) asserts that if K1; : : : ;Km 2 Kn, m 2 N, then the volume of t1K1+ : : :+tmKm is a homogeneous polynomial of degree n in ti � 0 (see [35℄, [177℄). That is,jt1K1 + : : :+ tmKmj = X1�i1;:::;in�mV (Ki1 ; : : : ;Kin)ti1 : : : tin ;where the oeÆients V (Ki1 ; : : : ;Kin) are hosen to be invariant under permuta-tions of their arguments. The oeÆient V (K1; : : : ;Kn) is alled the mixed volumeof K1; : : : ;Kn. 18



Steiner's formula, whih was already onsidered in 1840, may be seen as a speialase of Minkowski's theorem. The volume of K + tDn, t > 0, an be expanded asa polynomial in t:(1) jK + tDnj = nXi=0 �ni�Wi(K)ti;where Wi(K) = V (K;n� i;Dn; i) is the i-th Quermassintegral of K. It is easy tosee that the surfae area of K is given by(2) �(K) = nW1(K):Kubota's integral formula(3) Wi(K) = jDnjjDn�ijn�i ZGn;n�i jP�Kjn�id�n;n�i(�)applied for i = n� 1 shows that(4) Wn�1(K) = jDnj2 w(K):3.1.2. The Alexandrov-Fenhel inequalities onstitute a far reahing general-ization of the Brunn-Minkowski inequality and its onsequenes:If K;L;K3; : : : ;Kn 2 Kn, then(5) V (K;L;K3; : : : ;Kn)2 � V (K;K;K3; : : : ;Kn)V (L;L;K3; : : : ;Kn):The proof is due to Alexandrov [1℄, [2℄ (Fenhel skethed an alternative proof, see[58℄). From (5) one an reover the Brunn-Minkowski inequality as well as thefollowing generalization for the quermassintegrals:(6) Wi(K + L) 1n�i �Wi(K) 1n�i +Wi(L) 1n�i ; i = 0; : : : ; n� 1for any pair of onvex bodies in Rn .If we take L = tDn, t > 0, then Steiner's formula and the Brunn-Minkowskiinequality give(7) nXi=0 �ni�Wi(K)jDnj ti = jK + tDnjjDnj �  � jKjjDnj�1=n + t!n= nXi=0 �ni�� jKjjDnj�n�in tifor every t > 0. Sine the �rst and the last term are equal on both sides of thisinequality, we must have(8) W1(K)jDnj � � jKjjDnj�n�1n19



whih is the isoperimetri inequality for onvex bodies, and(9) w(K) = 2Wn�1(K)jDnj � 2� jKjjDnj� 1n ;whih is Urysohn's inequality. Both inequalities are speial ases of the set ofAlexandrov inequalities(10) �Wi(K)jDnj � 1n�i � �Wj(K)jDnj � 1n�j ; n > i > j � 0:3.1.3. Let K be a body in Rn . We de�ne(11) M�(K) = ZSn�1 kxk��(dx) = w(K)2 :The Blashke-Santal�o inequality asserts that the volume produt jKjjKÆj is maxi-mized over all symmetri onvex bodies in Rn exatly when K is an ellipsoid:(12) jKjjKÆj � jDnj2:A proof of this fat via Steiner symmetrization was given in [12℄ (see also [129℄, [130℄where the non-symmetri ase is treated). H�older's inequality and polar integrationshow that(13) 1M�(K) � �ZSn�1 kxk�n� �1=n = � jKÆjjDnj�1=n :Combining with (12) and applying (13) for K instead of KÆ, we obtain(14) 1M(K) � � jKjjDnj�1=n �M�(K);that is, Urysohn's inequality.3.1.4. A third proof of Urysohn's inequality an be given as follows: Letui 2 O(n), i = 1; : : : ;m and �i > 0 with Pmi=1 �i = 1. It is easily heked thatM��Pmi=1 �iui(K)� =M�(K). It follows that(15) M� ZO(n) u(K)d�(u)! =M�(K):But, T = RO(n) u(K)d�(u) is a ball of radius (jT j=jDnj)1=n, and the Brunn-Minkowskiinequality implies that jT j � jKj. Therefore,(16) M�(K) = � jT jjDnj�1=n � � jKjjDnj�1=n :20



3.1.5. For any (n� 1)-tuple C = K1; : : : ;Kn�1 2 Kn, the Riesz representationtheorem shows the existene of a Borel measure S(C; �) on the unit sphere Sn�1suh that(17) V (L;K1; : : : ;Kn�1) = 1n ZSn�1 hL(u)dS(C; u)for every L 2 Kn. If K 2 Kn, the j-th area measure of K is de�ned by Sj(K; �) =S(K; j;Dn;n � j � 1; �), j = 0; 1; : : : ; n � 1. It follows that the quermassintegralsWi(K) an be written in the form(18) Wi(K) = 1n ZSn�1 hK(u)dSn�i�1(K;u) ; i = 0; 1; : : : ; n� 1or, alternatively,(19) Wi(K) = 1n ZSn�1 dSn�i(K;u) ; i = 1; : : : ; n:If we assume that hK is twie ontinuously di�erentiable, then Sj(K; �) has a on-tinuous density sj(K;u), the j-th elementary symmetri funtion of the eigenvaluesof the Hessian of hK at u.In the spirit of 2.3, we say that a body K minimizes Wi if Wi(K) � Wi(TK)for every volume preserving linear transformation T of Rn . The ases i = 1 and i =n�1 orrespond to the minimal surfae area and minimal mean width respetively.For every i = 1; : : : ; n � 1 one an prove that, if K minimizes Wi then Sn�i(K; �)is isotropi (see [82℄, where other neessary isotropi onditions are also given).3.2 Geometri inequalities of \hyperboli" typeThe Alexandrov-Fenhel inequalities are the most advaned representatives of aseries of very important inequalities. They should perhaps be alled \hyperboli"inequalities in ontrast to the more often used in analysis \ellipti" inequalities:Cauhy-Shwarz, H�older, and their onsequenes (various triangle inequalities). Aonsequene of \hyperboli" inequalities is onavity of some important quantities.3.2.1. Let us start this short review by realling some old and lassial, butnot well remembered, inequalities due to Newton. Let x1; : : : ; xn be real numbers.We de�ne the elementary symmetri funtions e0(x1; : : : ; xn) = 1, and(1) ei(x1; : : : ; xn) = X1�j1<:::<ji�nxj1xj2 : : : xji ; 1 � i � n:In partiular, e1(x1; : : : ; xn) = Pni=1 xi, en(x1; : : : ; xn) = Qni=1 xi. We then on-sider the normalized funtions(2) Ei(x1; : : : ; xn) = 1�ni�ei(x1; : : : ; xn):21



Newton proved that, for k = 1; : : : ; n� 1,(3) E2k(x1; : : : ; xn) � Ek�1(x1; : : : ; xn)Ek+1(x1; : : : ; xn);with equality if and only if all the xi's are equal. An immediate orollary of (3),observed by Newton's student Malaurin, is the string of inequalities(4) E1(x1; : : : ; xn) � E1=22 (x1; : : : ; xn) � : : : � E1=nn (x1; : : : ; xn);whih holds true for any n-tuple (x1; : : : ; xn) of positive reals. Note the similaritybetween (3), (4) and the Alexandrov-Fenhel and Alexandrov inequalities 3.1.2(5)and (10) respetively.To prove (3) we onsider the polynomial(5) P (x) = nYi=1(x� xi) = nXj=0(�1)j�nj�Ej(x1; : : : ; xn)xn�j ;or in homogeneous form,(6) Q(t; �) = �nP ( t� ) = nXj=0(�1)j�nj�Ej(x1; : : : ; xn)tn�j� j :Sine P has only real roots, the same is true for the derivatives of P (with respetto t or �) of any order. If we di�erentiate (6) (n � k � 1)-times with respet to tand then (k � 1)-times with respet to � , we obtain the polynomial(7) n!2 Ek�1(x1; : : : ; xn)t2 � n!Ek(x1; : : : ; xn)t� + n!2 Ek+1(x1; : : : ; xn)�2;whih has two real roots for �xed � = 1. This is exatly Newton's inequality (3).We refer to [167℄ for a very nie di�erent proof and generalizations.3.2.2. Let us now turn to a multidimensional, but still numerial, analogue ofNewton's inequalities. Consider the spae Sn of real symmetri n�n matries. Wepolarize the funtion A! detA to obtain the symmetri multilinear form(8) D(A1; : : : ; An) = 1n! X"2f0;1gn(�1)n+P "idet �X "iAi� ;where Ai 2 Sn. Then, if t1; : : : ; tm > 0 and A1; : : : ; Am 2 Sn, the determinant oft1A1 + : : :+ tmAm is a homogeneous polynomial of degree n in ti:(9) det(t1A1 + : : :+ tmAm) = X1�i1�:::�in�mn!D(Ai1 ; : : : ; Ain)ti1 : : : tin :The oeÆient D(A1; : : : ; An) is alled the mixed disriminant of A1; : : : ; An. Thefat that the polynomial P (t) = det(A+tI) has only real roots for any A 2 Sn playsthe entral role in the proof of a number of very interesting inequalities onneting22



mixed disriminants, whih are quite similar to Newton's inequalities. They were�rst disovered by Alexandrov [2℄ in one of his approahes to what is now alledAlexandrov-Fenhel inequalities. Today, they are part of a more general theory (seee.g. [93℄). We mention some of them: If Ai; i = 1; : : : ; n are positive, then(10) D(A1; A2; : : : ; An) � nYi=1[detA℄ 1n :Also, the following onavity priniple (reverse triangle inequality) is true: Thefuntion [detA℄1=n is onave in the positive one of Sn. This is in fat easy todemonstrate diretly. We want to show that, if A1; A2 are positive then(11) [det(A1 +A2)℄ 1n � [detA1℄ 1n + [detA2℄ 1n :We may bring two positive matries to diagonal form without hanging their de-terminants. Then, we should show that for �i; �i > 0,(12)  nYi=1(�i + �i)!1=n �  nYi=1 �i!1=n + nYi=1�i!1=n ;whih is a onsequene of the arithmeti-geometri means inequality.3.2.3. We now return to onvex sets. The results of 3.2.1 and 3.2.2 have theiranalogues in this setting, but the parallel results for mixed volumes are muh morediÆult and look unrelated. Even the fat that the volume of t1K1 + : : : + tmKmis a homogeneous polynomial in ti � 0 is a non-trivial statement, while the parallelresult for determinants follows by de�nition.To see the onnetion between the two theories we follow [11℄. Consider n �xedonvex open bounded bodies Ki with normalized volume jKij = 1. As in Setion2.2(a), onsider the Brenier maps(13)  i : (Rn ; n)! Ki;where n is the standard Gaussian probability density on Rn . We have  i = rfi,where fi are onvex funtions on Rn . By Ca�arelli's regularity result, all the  i'sare smooth maps. Then, Fat 2 from 2.2(a) shows that the image of (Rn ; n) byP ti i is the interior of P tiKi. Sine eah  i is a measure preserving map, wehave(14) det� �2fi�xk�xl� (x) = n(x) ; i = 1; : : : ; n:It follows that(15) ��� nXi=1 tiKi��� = ZRn det nXi=1 ti( �2fi�xk�xl )! dx23



= nXi1;:::;in=1 ti1 : : : tin ZRnD��2fi1(x)�xk�xl ; : : : ; �2fin(x)�xk�xl � dx:In partiular, we reover Minkowski's theorem on polynomiality of jP tiKij, andsee the onnetion between the mixed disriminants D(Hessfi1 ; : : : ;Hessfin) andthe mixed volumes(16) V (Ki1 ; : : : ;Kin) = ZRnD(Hessfi1(x); : : : ;Hessfin(x))dx:The Alexandrov-Fenhel inequalities do not follow from the orresponding mixeddisriminant inequalities, but the deep onnetion between the two theories is ob-vious. Also, some partiular ases are indeed simple onsequenes. For example, in[11℄ it is proved (as a onsequene of (16)) that(17) V (K1; : : : ;Kn) � nYi=1 jKij1=n:3.3 Continuous valuations on ompat onvex sets(a) Polynomial valuations. We denote by Kn the set of all non-empty ompatonvex subsets of Rn and write L for a �nite dimensional vetor spae over R or C .A funtion ' : Kn ! L is alled a valuation, if '(K1 [ K2) + '(K1 \ K2) ='(K1) + '(K2) whenever K1;K2 2 Kn are suh that K1 [ K2 2 Kn. We shallonsider only ontinuous valuations: valuations whih are ontinuous with respetto the Hausdor� metri.The notion of valuation may be viewed as a generalization of the notion ofmeasure de�ned only on the lass of ompat onvex sets. Mixed volumes providea �rst important example of valuations.A valuation ' : Kn ! L is alled polynomial of degree at most l if '(K + x) isa polynomial in x of degree at most l for every K 2 Kn. The following theorem ofKhovanskii and Pukhlikov [105℄ generalizes Minkowski's theorem on mixed volumes(see also [126℄, [4℄):Theorem 3.3.1. Let ' : Kn ! L be a ontinuous valuation, whih is polynomial ofdegree at most l. Then, if K1; : : : ;Km 2 Kn, '(t1K1+ : : :+ tmKm) is a polynomialin tj � 0 of degree at most n+ l. 2Let ~K = (K1; : : : ;Ks) be an s-tuple of ompat onvex sets in Rn , and F :Rn ! C be a ontinuous funtion. Alesker studied the Minkowski operator M ~Kwhih maps F to M ~KF : Rs+ ! C with(M ~KF )(�1; : : : ; �s) = ZPi�s �iKi F (x)dx:Let A(C n ) be the Frehet spae of entire funtions of n variables and Cr(Rn ) bethe Frehet spae of r-times di�erentiable funtions on Rn , with the topology ofuniform onvergene on ompat sets. The following fats are established in [3℄:24



(i) If F 2 A(C n ), then M ~KF has a unique extension to an entire funtion onC s , and the operator M ~K : A(C n )! A(C s ) is ontinuous. It follows that if F is apolynomial of degree d then M ~KF is a polynomial of degree at most d+ n.(ii) If F 2 Cr(Rn ), then M ~KF 2 Cr(Rs+ ), and M ~K is a ontinuous operator.Moreover, ontinuity of the map ~K 7!M ~K with respet to the Hausdor� metriis established.(b) Translation invariant valuations. A valuation of degree 0 is simply trans-lation invariant. If '(uK) = '(K) for every K 2 Kn and every u 2 SO(n), we saythat ' is SO(n)-invariant. Hadwiger [89℄ haraterized the translation and SO(n)invariant valuations as follows (see also [101℄ for a simpler proof):Theorem 3.3.2. A valuation ' is translation and SO(n)-invariant if and only ifthere exist onstants i, i = 0; : : : ; n suh that(1) '(K) = nXi=0 iWi(K)for every K 2 Kn. 2After Hadwiger's lassial result, two natural questions arise: to harater-ize translation invariant valuations without any assumption on rotations, and toharaterize O(n) or SO(n) invariant valuations without any assumption on trans-lations. Both questions are of obvious interest in translative integral geometry andin the asymptoti theory of �nite dimensional normed spaes respetively (onsider,for example, the valuation '(K) = RK jxj2dx whih was disussed in 2.3(b)).It is a onjeture of MMullen [127℄ that every ontinuous translation invariantvaluation an be approximated (in a ertain sense) by linear ombinations of mixedvolumes. This is known to be true in dimension n � 3. In [126℄, [127℄ it is provedthat every translation invariant valuation ' an be uniquely expressed as a sum' = Pni=0 'i, where 'i are translation invariant ontinuous valuations satisfying'i(tK) = ti'(K) (homogeneous of degree i). Moreover, in the ase L = R, ho-mogeneous valuations 'i as above an be desribed in some ases: '0 is always aonstant, 'n is always a multiple of volume, 'n�1 is always of the form(2) 'n�1(K) = ZSn�1 f(u)dSn�1(K;u);where f : Sn�1 ! R is a ontinuous funtion (whih an be hosen to be orthogonalto every linear funtional, and then it is uniquely determined).Under the additional assumption that ' is simple ('(K) = 0 if dimK < n), areent theorem of Shneider [178℄ ompletely desribes ':Theorem 3.3.3. Every simple, ontinuous translation invariant valuation ' :Kn ! R has the form(3) '(K) = jKj+ ZSn�1 f(u)dSn�1(K;u);25



where f : Sn�1 ! R is a ontinuous odd funtion. 2Remark: MMullen's onjeture was reently proved by Alesker [5℄ in dimensionn = 4.Added in Proofs: Even more reently, Alesker [6℄ gave a desription of transla-tion invariant valuations on onvex sets, whih in partiular on�rms MMullen'sonjeture in all dimensions.() Rotation invariant valuations. Alesker [4℄ has reently obtained a har-aterization of O(n) (respetively SO(n)) invariant ontinuous valuations. The�rst main point is that every suh valuation an be approximated uniformly onthe ompat subsets of Kn by ontinuous polynomial O(n) (or SO(n)) invariantvaluations.Then, one an desribe polynomial rotation invariant valuations in a onreteway. To this end, let us introdue some spei� examples of suh valuations. Wewrite � for the (n � 1)-dimensional surfae measure on K and n(x) for the outernormal at bd(K) (this is uniquely determined �-almost everywhere). If p; q arenon-negative integers, we onsider a valuation  p;q : Kn ! R with(4)  p;q(K) = Zbd(K)hx; n(x)ipjxj2qd�(x):All  p;q are ontinuous, polynomial of degree at most p+2q+n, and O(n)-invariant.Theorem 3.3.1 shows that, for every K 2 Kn,  p;q(K + "Dn) is a polynomial in" � 0, therefore it an be written in the form(5)  p;q(K + "Dn) = p+2q+nXi=0  (i)p;q(K)"i:All  (i)p;q are ontinuous, polynomial and O(n)-invariant. These partiular valuationssuÆe for a desription of all rotation invariant polynomial valuations [4℄:Theorem 3.3.4. If n � 3, then every SO(n)-invariant ontinuous polynomialvaluation ' : Kn ! R is a linear ombination of the  (i)p;q. 2Sine  (i)p;q are O(n)-invariant, Theorem 3.3.4 desribes O(n)-invariant valua-tions as well. The ase n = 2 is also ompletely desribed in [4℄ (and the samestatements hold true if R is replaed by C ).4 Dvoretzky's theorem and onentration of mea-sure4.1 IntrodutionA version of the Dvoretzky-Rogers Lemma [53℄ asserts that for every body K whosemaximal volume ellipsoid is Dn, there exist k ' pn and a k-dimensional subspae26



Ek of Rn suh that Dk � K \ Ek � 2Qk, where Dk denotes the Eulidean ball inEk and Qk the unit ube in Ek (for an appropriately hosen oordinate system).Inspired by this, Grothendiek asked whether Qk an be replaed by Dk in thisstatement. He did not speify what the dependene of k on n might be, asking justthat k should inrease to in�nity with n. A short time after, Dvoretzky [51℄, [52℄proved Grothendiek's onjeture:Theorem 4.1.1. Let " > 0 and k be a positive integer. There exists N = N(k; ")with the following property: Whenever X is a normed spae of dimension n � Nwe an �nd a k-dimensional subspae Ek of X with d(Ek; `k2) � 1 + ".Geometrially speaking, every high-dimensional body has entral setions ofhigh dimension whih are almost ellipsoidal. The dependene of N(k; ") on k and" beame a very important question, and Dvoretzky's theorem took a muh morepreise quantitative form:Theorem 4.1.2. Let X be an n-dimensional normed spae and " > 0. Thereexist an integer k � "2 logn and a k-dimensional subspae Ek of X whih satis�esd(Ek ; `k2) � 1 + ".This means that Theorem 4.1.1 holds true with N(k; ") = exp("�2k). Dvoret-zky's original proof gave an estimate N(k; ") = exp("�2k2 log k). Later, Milman[131℄ established the estimateN(k; ") = exp("�2j log "jk) with a di�erent approah.The logarithmi in " term was removed by Gordon [68℄, and then by Shehtman[174℄. Other proofs and extensions of Dvoretzky's theorem in di�erent diretionswere given in [59℄, [185℄, [112℄ (see also the surveys [110℄, [113℄, [142℄).The logarithmi dependene of k on n is best possible for small values of ". Onean see this by analyzing the example of `n1. Every k-dimensional entral setion ofQn is a polytope with at most 2n faets. If we assume that we an �nd a subspaeEk of `n1 with d(Ek ; `k2) � 1+", then there exists a polytope Pk in Rk with m � 2nfaets satisfying Dk � Pk � (1+")Dk. The hyperplanes supporting the faets of Pkreate m spherial aps J1; : : : ; Jm on (1+")Sk�1 suh that (1+")Sk�1 � Smi=1 Ji.On the other hand, sine Dk � Pk, if we assume that " is small, then eah Jihas angular radius of the order of p". An elementary omputation shows that thenormalized measure of suh a ap does not exeed (") k�12 . Therefore, we musthave 2n � (")� k�12 whih shows that(1) k �  logn= log(1="):The same argument shows that if P is a symmetri polytope and f(P ) is the numberof its faets, then k � (") log f(P ).The right dependene of N(k; ") on " for a �xed (even small) positive integer kis not lear. It seems reasonable that `n1 is the worst ase and that the omputationwe have just made gives the orret order:Question 4.1.3. Can we take N(k; ") = (k)"� k�12 in Theorem 4.1.1?Using ideas from the theory of irregularities of distribution, Bourgain and Lin-denstrauss [29℄ have shown that the hoie N(k; ") = (k)"� k�12 j log "j is possible27



for spaes X with a 1-symmetri basis. There are numerous onnetions of thisquestion with other branhes of mathematis (algebrai topology, number theory,harmoni analysis). For instane, an aÆrmative answer to Question 4.1.3 wouldbe a onsequene of the following hypothesis of Knaster: Let f : Sk�1 ! R be aontinuous funtion and x1; : : : ; xk be points on Sk�1. Does there exist a rotationu suh that f is onstant on the set fuxi : i � kg? This hypothesis has been settledonly in speial ases (see [137℄ for a disussion of this and other problems relatedto Question 4.1.3).Note. Bourgain and Szarek [33℄ proved a stronger form of the Dvoretzky-RogersLemma: If Dn is the ellipsoid of minimal volume ontaining K, then for everyÆ 2 (0; 1) one an hoose x1; : : : ; xm, m � (1� Æ)n, among the ontat points of Kand Dn suh that for every hoie of salars (ti)i�m,(2) f(Æ) mXi=1 t2i!1=2 ���� mXi=1 tixi ����www mXi=1 tixi wwwK� mXi=1 jtij:This is a Dvoretzky-Rogers Lemma for arbitrary proportion of the dimension. Itan also be stated as a fatorization result: For any n-dimensional normed spaeX and any Æ 2 (0; 1), one an �nd m � (1 � Æ)n and two operators � : `m2 ! X ,� : X ! `n1 suh that the identity id2;1 : `m2 ! `m1 an be written as id2;1 = � Æ�and k�kk�k � 1=f(Æ). For an extension to the non-symmetri ase see [116℄.Using this result, Bourgain and Szarek answered in the negative the questionof uniqueness, up to a onstant, of the entre of the Banah-Mazur ompatum,and gave the �rst non-trivial estimate o(n) for the Banah-Mazur distane from ann-dimensional spae X to `n1. It is now known [186℄, [63℄ that (2) holds true withf(Æ) = Æ. The question about the best possible exponent of Æ in the Dvoretzky-Rogers fatorization is also open. By [63℄, [169℄ it must lie between 1/2 and 1.In the Appendix we give a brief aount on these and other questions relatedto the geometry of the Banah-Mazur ompatum.4.2 Conentration of measure on the sphere and a proof ofDvoretzky's theoremWe shall outline the approah of [131℄ to Dvoretzky's theorem. The method usesthe onentration of measure on the sphere and was further developed in [61℄. Weneed to introdue the average parameter(1) M =M(XK) = ZSn�1 kxk �(dx);the average on the sphere Sn�1 of the norm that K indues on Rn .Remarks on M . (i) It is lear from the de�nition that M depends not only on thebody K but also on the Eulidean struture we have hosen in Rn . If we assume28



that 1a jxj � kxk � bjxj and that a; b > 0 are the smallest onstants for whih thisis true for all x 2 Rn , then we have the trivial bounds 1a �M � b.(ii) For every p > 0 we de�ne(2) Mp =Mp(XK) = �ZSn�1 kxkp�(dx)� 1p :In this notationM =M1 and as a onsequene of the Kahane-Khinhine inequalityone an hek that M1 ' M2 independently from the dimension and the norm. Itan be atually shown [118℄ that, for every 1 � p � n,(3) maxnM1; 1 bpppn o �Mp � maxn2M1; 2 bpppn o;where 1; 2 > 0 are absolute onstants.(iii) Let g1; : : : ; gn be independent standard Gaussian random variables on someprobability spae 
 and fe01; : : : ; e0ng be any orthonormal basis in Rn . Integrationin polar oordinates establishes the identity(4)  Z
 www nXi=1 gi(!)e0i www2 d!!1=2 = pnM2:Using the symmetry of the gi's and the triangle inequality for k � k we get(5) Z
 www kXi=1 gi(!)e0i www d! � Z
 www nXi=1 gi(!)e0i www d!;for every 1 � k � n, and ombining with the previous observations we have(6) M(Ek) � pn=kMfor every k-dimensional subspae Ek of XK .� The main step for our proof of Theorem 4.1.2 will be the following [131℄:Theorem 4.2.1. Let X be an n-dimensional normed spae satisfying 1a jxj � kxk �bjxj. For every " 2 (0; 1) there exist k � "2n(M=b)2 and a k-dimensional subspaeEk of Rn suh that 11 + "Ljxj � kxk � (1 + ")Ljxj ; x 2 Ek:The onstant L appearing in the statement above is the L�evy mean (or median)of the funtion f(x) = kxk on Sn�1. This is the unique real number L = Lf forwhih �(fx : f(x) � Lg) � 12 and �(fx : f(x) � Lg) � 12 :A few observations arise diretly from this statement: Assume that x 2 Sn�1has maximal norm kxk = b. Consider the one-dimensional subspae E1 spanned by29



x. We have b = M(E1) � pnM , and this shows that n(M=b)2 �  > 0 for everynorm. This is of ourse not enough for a proof of Dvoretzky's theorem.On the other hand, reall that M � 1=a. By Theorem 4.2.1, every X hasa subspae of dimension k � "2n=(ab)2 on whih k � k is (1 + ")-equivalent tothe Eulidean norm. Sine we an hoose a linear transformation of KX so thatab � d(X; `n2 ), we obtain the following orollary [131℄:Corollary 4.2.2. For every n-dimensional spae X and every " 2 (0; 1) we an �nda subspae Ek of X with dimEk = k � "2n=d2(X; `n2 ) suh that d(Ek ; `k2) � 1 + ".2 This already shows that spaes with small Banah-Mazur distane from `n2have Eulidean setions of dimension muh larger than logn (even proportional ton). However, sine John's theorem is sharp this observation is not enough for thegeneral ase.� The proof of Theorem 4.2.1 is based on the onentration of measure on thesphere. Reall that as a onsequene of the spherial isoperimetri inequality wehave the following fat:If A � Sn�1 and �(A) = 12 , then �(A") � 1� 1 exp(�2"2n).This inequality explains the term \onentration of measure": However small " > 0may be, the measure of the set outside a \strip" of width " around the boundaryof any subset of the sphere of half measure is less than 21 exp(�2"2n), whih de-reases exponentially fast to 0 as the dimension n grows to in�nity. This surprisingfat was observed and used by P. L�evy [108℄:Let f be a ontinuous funtion on the sphere. By !f (�) we denote the modulusof ontinuity of f :!f (t) = maxfjf(x)� f(y)j : �(x; y) � t; x; y 2 Sn�1g:Consider the L�evy mean Lf of f . It is not hard to see thatfx : f = Lfg" = (fx : f � Lfg)" \ (fx : f � Lfg)":Sine jf(x) � Lf j � !f (") on fx : f = Lfg", the spherial isoperimetri inequalityhas the following diret onsequene:Fat 1. For every ontinuous funtion f : Sn�1 ! R and every " > 0,(7) � �x 2 Sn�1 : jf(x)� Lf j � !f (")� � 1 exp(�2"2n): 2If the modulus of ontinuity of f behaves well, then Fat 1 implies strongonentration of the values of f around its median. Moreover, from a set of bigmeasure on whih f is almost onstant we an extrat a subspae of high dimension,on the sphere of whih f is almost onstant:Fat 2. Let f : Sn�1 ! R be a ontinuous funtion and Æ; � > 0. There exists asubspae F of Rn with dimF = k � Æ2n= log(3=�) suh thatjf(x)� Lf j � !f (Æ) + !f (�)30



for every x 2 S(F ) := Sn�1 \ F .Proof: Fix k < n (to be determined) and Fk 2 Gn;k. A standard argumentshows that there exists a �-net N of S(Fk) with ardinality jN j � (1 + 2� )k �exp(k log(3=�)). If x 2 N , then(8) � (u 2 O(n) : jf(ux)� Lf j > !f (Æ)) � 1 exp(�2Æ2n):Therefore, if 1jN j exp(�2Æ2n) < 1 then most u 2 O(n) satisfy(9) jf(ux)� Lf j � !f (Æ)for every x 2 N . It follows that jf(x)�Lf j � !f (Æ) + !f (�) for every x 2 S(uFk).A simple omputation shows that the neessary ondition will be satis�ed for somek � Æ2n= log(3=�). 2For the proof of Theorem 4.2.1 we are going to apply this fat to the normf(x) = kxk. In this ase, one an say even more (see [149, pp. 12℄):Fat 3. Let X = (Rn ; k � k) and assume that kxk � bjxj. For every " 2 (0; 1) thereexists a subspae Ek with dimEk = k � "2log(1=")n(Lfb )2 suh that11 + "Lf jxj � kxk � (1 + ")Lf jxjfor every x 2 Ek. 2The proof of Theorem 4.2.1 is now omplete. We just have to observe that iff(x) = kxk on Sn�1, then Lf 'M . By Markov's inequality, �(x : f(x) � 2M) � 12and this shows that Lf � 2M . It an be heked that Lf � M as well, where > 0 is an absolute onstant [149℄. It follows that we an have almost spherialsetions of dimension k � "2log(1=")n(Mb )2 in Theorem 4.2.1. In order to remove thelogarithmi in " term, one needs to put additional e�ort (see [68℄, [174℄). 2From Theorem 4.2.1 we may dedue Dvoretzky's theorem (Theorem 4.1.2): Forevery n-dimensional spae X and any " 2 (0; 1) there exists a subspae Ek of Xwith dimEk = k � "2 logn, suh that d(Ek; `k2) � 1 + ".Proof: We may assume that Dn is the maximal volume ellipsoid of KX . Then,kxk � jxj on Rn and in view of Theorem 4.2.1 we only need to show that M2 � logn=n. This is a onsequene of the Dvoretzky-Rogers lemma: There exists anorthonormal basis y1; : : : ; yn in Rn with kyik � (n�i+1n )1=2. In partiular, kyik � 12 ,i = 1; : : : ; n4 .From the equivalene of M1 and M2 we see that(10) M � pn Z
 www nXi=1 gi(!)yi www d! � pn Z
 www n=4Xi=1 gi(!)yi www d!� pn Z
 maxi�n=4 www gi(!)yi www d! � 0pn Z
 maxi�n=4 jgi(!)jd! � 00plognpn ;where we have used the fat (see e.g. [115, pp. 79℄) that if g1; : : : ; gm are inde-pendent standard Gaussian random variables on 
 then R
maxi�m jgij ' plogm.2 31



4.3 Probabilisti and global form of Dvoretzky's TheoremThe proof of Theorem 4.2.1, being probabilisti in nature, gives that a subspae Ekof X with dimEk = ["2n(M=b)2℄ is (1 + ")-Eulidean with high probability. Thisleads to the de�nition of the following harateristi of X :De�nition. Let X be an n-dimensional normed spae. We set k(X) to be the largestpositive integer k � n for whih(1) Prob�Ek 2 Gn;k : 12M jxj � kxk � 2M jxj; x 2 Ek� � 1� kn+ k :In other words, k(X) is the largest possible dimension k � n for whih themajority of k-dimensional subspaes of X are 4-Eulidean. Note that the preseneof M in the de�nition orresponds to the right normalization, sine the average ofM(Ek) over Gn;k is equal to M for all 1 � k � n.Theorem 4.2.1 implies that k(X) � n(M=b)2. What is surprisingly simpleis the observation [151℄ that an inverse inequality holds true. The estimate inTheorem 4.2.1 is sharp in full generality:Theorem 4.3.1. k(X) � 4n(M=b)2.Proof: Fix orthogonal subspaes E1; : : : ; Et of dimension k(X) suh that Rn =Pti=1Ei (there is no big loss in assuming that k(X) divides n). By the de�nition ofk(X), most orthogonal images of eah Ei are 4-Eulidean, so we an �nd u 2 O(n)suh that(2) 12M jxj � kxk � 2M jxj ; x 2 uEifor every i = 1; : : : ; t. Every x 2 Rn an be written in the form x =Pti=1 xi, wherexi 2 uEi. Sine the xi's are orthogonal, we get(3) kxk � 2M tXi=1 jxij � 2Mptjxj:This means that b � 2Mpt, and sine t = n=k(X) we see that k(X) � 4n(M=b)2.2In other words, the following asymptoti formula holds true:Theorem 4.3.2. Let X be an n-dimensional normed spae. Then,k(X) ' n(M=b)2: 2Dvoretzky's theorem gives information about the entral setions of a body, orequivalently, about the loal struture of the orresponding normed spae. By aglobal result we mean a statement about the full body or spae. In order to desribethe global version of Dvoretzky's theorem, we need to introdue a new quantity:32



De�nition. Let X = (Rn ; k � k). We de�ne t(X) to be the smallest positive integert for whih there exist u1; : : : ; ut 2 O(n) suh that12M jxj � 1t tXi=1 kuixk � 2M jxjfor every x 2 Rn .Geometrially speaking, t(X) is the smallest integer t for whih there exist rota-tions v1; : : : ; vt suh that the average Minkowski sum of viKÆ is 4-Eulidean. Oneagain, the presene ofM in the de�nition orresponds to the orret normalization.It is proved in [38℄ that t(X) � (b=M)2 (we postpone a proof of this fat untilSetion 4.5). It was reently observed in [151℄ that a reverse inequality is true infull generality:Theorem 4.3.3. t(X) � 14 (b=M)2.For the proof of this assertion we shall make use of the following lemma:Lemma. Let x1; : : : ; xt 2 Sn�1. There exists y 2 Sn�1 suh that Pti=1 jhy; xiij �pt.Proof: We onsider all vetors of the form z(") = Pti=1 "ixi, where "i = �1.If z = z(") has maximal length among them, the parallelogram law shows thatjzj � pt. Also,(4) tXi=1 jhz; xiij � tXi=1hz; "ixii = jzj2 � jzjpt:Choosing y = z=jzj we onlude the proof. 2Proof of Theorem 4.3.3: Assume that we an �nd t orthogonal transformationsu1; : : : ; ut suh that 1t Pti=1 kuixk � 2M jxj for every x 2 Rn . We �nd x0 2 Sn�1with kx0k = b (minimal distane from the origin). It is lear that 1 = kx0k�kx0k =bkx0k�. We set xi = u�1i x0 and use the Lemma to �nd y 2 Sn�1 suh thatPti=1 jhy; xiij � pt. Then, we have(5) pt � tXi=1 jhy; u�1i x0ij = tXi=1 jhuiy; x0ij � kx0k� tXi=1 kuiyk � 2Mtb :This shows that 4t � (b=M)2. 2Combining Theorem 4.3.3 with the upper bound for t(X) we obtain a seondasymptoti formula:Theorem 4.3.4. For every �nite dimensional normed spae X we havet(X) ' (b=M)2: 2Theorems 4.3.2 and 4.3.4 give a very preise asymptoti relation between a loaland a global parameter of X [151℄: 33



Fat. There exists an absolute onstant  > 0 suh that1n � k(X)t(X) � nfor every n-dimensional normed spae X. 24.4 Appliations of the onentration of measure on the sphereWe used the onentration of measure on Sn�1 for the proof of Dvoretzky's theorem.The same priniple applies in very di�erent situations. We shall demonstrate thisby two more examples.(a) Banah-Mazur distane. Reall that by John's theorem d(X; `n2 ) � pn forevery n-dimensional spae X . Then, the multipliative triangle inequality for dshows that d(X;Y ) � n for every pair of spaes X and Y . On the other hand,E.D. Gluskin [64℄ has proved that the diameter of the Banah-Mazur ompatumis roughly equal to n:There exists an absolute onstant  > 0 suh that for every n we an �nd twon-dimensional spaes Xn; Yn with d(Xn; Yn) � n.The spaes Xn; Yn in Gluskin's example are random and of the same nature:random symmetri polytopes with �n verties. We shall show that spaes whoseunit balls are geometrially quite di�erent objets have \small" distane [55℄:Theorem 4.4.1. Let X and Y be two n-dimensional normed spaes suh that#Extr(KX) � n� and #Extr(KY �) � n� for some �; � > 0, where #Extr(�)denotes the number of extreme points. Then,d(X;Y ) � p�+ �pn logn:[In other words, if a body has few extreme points and a seond body has few faets,then their distane is not more than pn logn.℄Proof: Wemay assume that 1pnDn � KX � Dn � KY � pnDn. Then,KY � � Dn.If u 2 O(n), it is lear that ku�1 : Y ! Xk � n. We are going to show thatku : X ! Y k is small for a random u.We estimate the norm of u as follows:ku : X ! Y k = supx2KX kuxkY = maxx2Extr(KX) maxy�2Extr(KY � ) jhux; y�ij:Observe that if x 2 Extr(KX) and y� 2 Extr(KY �), then ux; y� 2 Dn. It followsthat �(u 2 O(n) : jhux; y�ij � ") �  exp(�"2n=2):Therefore, if n�+� exp(�"2n=2) < 1, we an �nd u 2 O(n) suh that ku : X !Y k � ". Solving for " we see that we an hoose" 'p�+ �plogn=n:34



Hene, there exists u 2 O(n) for whihd(X;Y ) � ku : X ! Y k ku�1 : Y ! Xk � p�+ �pn logn: 2(b) Random projetions. Let 1 � k � n, and E 2 Gn;k. A simple omputationshows that ZSn�1 jPE(x)j2�(dx) = kn;and sine PE is a 1-Lipshitz funtion, onentration of measure on the sphereshows that � �x 2 Sn�1 : j jPE(x)j �pk=n j > "� � 1 exp(�2"2n)for every " > 0. Double integration and the hoie " = Æpk=n show that for any�xed subset fy1; : : : ; yNg of Sn�1 and any Æ 2 (0; 1) we have�n;k �E 2 Gn;k : (1� Æ)pk=n < jPE(yj)j < (1 + Æ)pk=n ; j � N�> 1� 1N exp(�2Æ2k):If N � �11 exp(2Æ2k), then we an �nd a k-dimensional subspae E suh thatjPE(yj)j ' q kn for every j � N . It an be also arranged so that the distanes ofthe yj 's will shrink in a uniform way under PE (this appliation omes from [97℄).4.5 The onentration phenomenon: L�evy familiesThe onentration of measure on the sphere is just an example of the onentrationphenomenon of invariant measures on high-dimensional strutures. Assume that(X; d; �) is a ompat metri spae with metri d and diameter diam(X) � 1,whih is also equipped with a Borel probability measure �. We then de�ne theonentration funtion (or \isoperimetri onstant") of X by�(X ; ") = 1� inf��(A") : A Borel subset of X;�(A) � 12	;where A" = fx 2 X : d(x;A) � "g is the "-extension of A. As a onsequene of theisoperimetri inequality on Sn+1 we saw that�(Sn+1; ") �p�=8 exp(�"2n=2);an estimate whih was ruial for the proof of Dvoretzky's theorem and the appli-ations in Setion 4.4.P. L�evy [108℄ was the �rst to observe the role of the dimension in this partiularexample. For this reason, a family (Xn; dn; �n) of metri probability spaes is alleda normal L�evy family with onstants (1; 2) (see [84℄ and [9℄) if�(Xn; ") � 1 exp(�2"2n);35



or, more generally, a L�evy family if for every " > 0�(Xn; ")! 0as n!1. There are many examples of L�evy families whih have been disoveredand used for loal theory purposes. In most ases, new and very interesting teh-niques were invented in order to estimate the onentration funtion �(X ; "). Welist some of them (and refer the reader to [175℄ in this volume for more information;see also [73℄, [74℄ for a development in a di�erent diretion):(1) The family of the orthogonal groups (SO(n); �n; �n) equipped with theHilbert-Shmidt metri and the Haar probability measure is a L�evy family withonstants 1 =p�=8 and 2 = 1=8.(2) The family Xn = Qmni=1 Sn with the natural Riemannian metri and theprodut probability measure is a L�evy family with onstants 1 =p�=8 and 2 =1=2.(3) All homogeneous spaes of SO(n) inherit the property of forming L�evyfamilies. In partiular, any family of Stiefel manifolds Wn;kn or any family ofGrassman manifolds Gn;kn is a L�evy family with the same onstants as in (1).[All these examples of normal L�evy families ome from [84℄.℄(4) The spae Fn = f�1; 1gn with the normalized Hamming distane d(�; �0) =#fi � n : �i 6= �0ig=n and the normalized ounting measure is a L�evy family withonstants 1 = 1=2 and 2 = 2. This follows from an isoperimetri inequality ofHarper [90℄, and was �rst put in suh form and used in [8℄.(5) The group �n of permutations of f1; : : : ; ng with the normalized Hammingdistane d(�; �) = #fi � n : �(i) 6= �(i)g=n and the normalized ounting measuresatis�es �(�n; ") � 2 exp(�"2n=64). This was proved by Maurey [119℄ with amartingale method, whih was further developed in [172℄.� We shall give two more examples of situations where L�evy families are used.In partiular, we shall omplete the proof of the global form of Dvoretzky's theoremusing the onentration phenomenon for produts of spheres.(a) A topologial appliation. Let 1 � k � n and Vk = f(�; x) : � 2 Gn;k; x 2S(�)g be the anonial sphere bundle over Gn;k. Assume that f : Sn�1 ! R is aLipshitz funtion with the following property:For every � 2 Gn;k we an �nd x 2 S(�) suh that f(x) = 0.One an easily hek that Vk is a homogeneous spae of SO(n) whose onentrationfuntion satis�es �(Vk ; ") �p�=8 exp(�"2n=8):A standard argument shows that given Æ > 0, if k � Æ2n= log(3=Æ) then we an�nd a subspae � 2 Gn;k and a Æ-net N of S(�) suh that f(x) = 0 for every x 2 N .Assuming that the Lipshitz onstant of f is not large, we get [84℄:There exists � 2 Gn;k suh that jf(x)j � Æ for every x 2 S(�).36



(b)Global form of Dvoretzky's Theorem. Reall that t(X) is the least positiveinteger for whih there exist u1; : : : ; ut 2 O(n) suh that 12M jxj � 1t Pti=1 kuixk �2M jxj for every x 2 Rn .We saw that 4t(X) � (b=M)2. We shall now prove the reverse inequality (whihis stated in Theorem 4.3.4) following [118℄:Consider the spae ~St = fx = (x1; : : : ; xt) : xi 2 Sn�1g. De�ne f(x) =1t Pti=1 kxik. Then, for every x; y 2 ~St we have:jf(x)� f(y)j � 1t tXi=1 kxi � yik �  1t tXi=1 kxi � yik2!1=2 � bpt�(x; y):The onentration estimate for produts of spheres givesProb ��� 1t tXi=1 kxik � Lf ���> ÆLf! � exp(�Æ2tL2fn=b2)for every Æ 2 (0; 1). Equivalently, if x 2 Sn�1 then(1� Æ)Lf � 1t tXi=1 kuixk � (1 + Æ)Lffor all (ui)i�t in a subset of [O(n)℄t of measure greater than 1� exp(�Æ2tL2fn=b2).If N is a Æ-net for Sn�1, we an �nd u1; : : : ; ut 2 O(n) suh that 1t P kuixk ' Lf forall x 2 N , provided that n= log(3=Æ) � Æ2tL2fn=b2. We hoose Æ > 0 small enoughso that suessive approximation will give 1t P kuixk ' Lf for all x 2 Sn�1, andwe verify that the ondition will be satis�ed for some t � 0(b=Lf )2. Sine M ' Lfup to a multipliative onstant, the proof is omplete. 24.6 Dvoretzky's theorem and duality4.6.1. Reall that if X = (Rn ; k � k) is a normed spae, then the dual norm isde�ned by kxk� = supfjhx; yij : kyk � 1g. It is lear that 1b jxj � kxk� � ajxj, heneif we de�ne k� = k(X�) and M� =M(X�) then Theorem 4.3.2 shows thatk� ' n(M�=a)2:On the other hand, it is a trivial onsequene of the Cauhy-Shwarz inequalitythat(1) MM� � �ZSn�1 kxk 12� kxk 12�(dx)�2 � �ZSn�1 jhx; xij 12 �(dx)�2 = 1:Multiplying the estimates for k and k� we obtain(2) kk� � n2 (MM�)2(ab)2 � n2=(ab)2:37



Sine we an always assume that ab � pn, we have proved:Theorem 4.6.1. [61℄ Let X be an n-dimensional normed spae. Then,k(X)k(X�) � n: 2This already shows that for every pair (X;X�) at least one of the quantitiesk; k� is greater than pn. Reall that for X = `n1 we have k(`n1) ' logn, thereforek(`n1 ) � n= logn { almost proportional to n. In fat, a diret omputation showsthat M(`n1 ) ' b(`n1 ) ' pn, therefore k(`n1 ) ' n. Although d(X; `n1 ) is the maximalpossible, `n1 has Eulidean setions of dimension proportional to n.4.6.2. Let k = minfk; k�g. Sine Dvoretzky's theorem holds for random sub-spaes of the appropriate dimension, we an �nd a subspae E 2 Gn;k on whih wehave(3) 12M jxj � kxk � 2M jxj ; 12M�jxj � kxk� � 2M�jxjsimultaneously. This implies that kPE : X ! Ek � 4MM�. We see this as follows:let x 2 Rn . Then,(4) jPE(x)j2 = hPE(x); xi � kPE(x)k�kxk � 2M�jPE(x)j kxk;sine PE(x) 2 E. For the same reason,(5) kPE(x)k � 2M jPE(x)j � 4MM�kxk:But then,(6) kk� ' n2 (MM�)2(ab)2 � n2 kPEk2(ab)2 ;whih is a strengthening of Theorem 4.6.1 [61℄. In the example of X = `n1 we knowthat k ' logn, therefore our estimate shows that for a random subspae E(logn)of dimension roughly equal to logn we must havek(`n1 ) logn � nkPE(logn)k2:On the other hand, the norm of a random projetion of `n1 of rank logn is knownto exeed plogn, so we get the orret estimate k(`n1 ) � n.4.6.3. Another example where the preeding omputation gives preise infor-mation on several parameters of X is the ase X = `np ; 1 < p < 2. Let q be theonjugate exponent of p. We need the following result [43℄ (see also [149, pp. 22℄):Theorem 4.6.2. k(`nq ) � (q)n2=q . 2It is a simple onsequene of H�older's inequality that (ab)2 � n1� 2q for X = `np .Our omputation in 4.6.2 and Theorem 4.6.2 show that if k = minfk(`np ); k(`nq )g,then(7) (q)n2=qk(`np ) � n1+ 2q kPE(k)k2:38



Sine k(`np ) � n (!), we immediately get:Theorem 4.6.3. Let 1 < p < 2 and q be its onjugate exponent. Then,k(`np ) ' n ; k(`nq ) ' pqn2=q ; d(`np ; `n2 ) = d(`nq ; `n2 ) ' n 12� 1q : 24.6.4. A ombinatorial appliation. We saw that the logn estimate inDvoretzky's theorem is optimal by studying the example of `n1. The argument weused for the ube shows something more general: Let P be a symmetri polytope,and denote its number of faets by f(P ) and its number of verties by v(P ). Then,k � log f(P ) and sine v(P ) = f(P Æ) we also get k� � log v(P ). We have seen thatkk� � n, and this proves the following fat [61℄:Theorem 4.6.4. Let P be a symmetri polytope in Rn . Then,log f(P ) log v(P ) � n: 24.7 Isomorphi versions of Dvoretzky's Theorem4.7.1. Bounded volume ratio. Let K be a body in Rn . The volume ratio of Kis the quantity vr(K) = infn� jKjjEj�1=n : E � Ko;where the inf is over all ellipsoids ontained in K. It is easily heked that vr(K)is an aÆne invariant.We shall show that if a body K has small volume ratio, then the spae XK hassubspaes F of dimension proportional to n whih are \well-isomorphi" to `dimF2 :Theorem 4.7.2. Let K be a body in Rn with vr(K) = A. Then, for every k � nthere exists a k-dimensional subspae F of XK suh thatd(F; `k2) � (A) nn�k :Proof: We may assume that Dn is the maximal volume ellipsoid of K. Then,kxk � jxj for every x 2 Rn . Given k � n, double integration shows that thereexists F 2 Gn;k satisfying(1) ZSn�1\F kxk�n�k(dx) � vr(K)n = An:Then, Markov's inequality shows that for any r > 0, �kfx 2 Sn�1\F : kxk < rg �(rA)n. If we onsider just one point x in Sn�1 \F , then the r=2 neighbourhood ofx with respet to j � j has �k measure greater than (r)k , for some absolute onstant > 0. This means that if (rA)n < (r)k then the set fx 2 Sn�1 \ F : kxk � rg isan r=2 net for Sn�1 \ F : if y 2 Sn�1 \ F , we an �nd x with jx � yj � r=2 andkxk � r, and the triangle inequality shows that(2) kyk � kxk � kx� yk � r � jx� yj � r=2:39



This shows that d(F; `k2) � 2r . Analyzing the neessary ondition on r we obtain(3) d(F; `k2) � (A) nn�k : 2Theorem 4.7.2 has its origin in the work of Kashin [100℄, who proved that thereexist (�)-Eulidean subspaes of `n1 of dimension [�n℄, for every � 2 (0; 1). Szarek[180℄ realized the fat that bounded volume ratio is responsible for this propertyof `n1 , while the notion of volume ratio was formally introdued somewhat later in[187℄.4.7.3. A natural question related to Dvoretzky's theorem is to give an estimatefor maxdimX=nminfd(F; `k2) : F � X; dimF = kg:for eah 1 � k � n. Suh an \isomorphi" version was proved by Milman andShehtman [150℄ who showed the following:Theorem 4.7.4. There exists an absolute onstant C > 0 suh that, for every n andevery k � C logn, every n-dimensional normed spae X ontains a k-dimensionalsubspae F for whih d(F; `k2) � Cpk= log(n=k): 2For an extension to the non-symmetri ase, see [75℄, [86℄.5 The Low M�-estimate and the Quotient of Sub-spae Theorem5.1 The Low M�-estimateDvoretzky's theorem gives very strong information about the Eulidean struture ofk-dimensional subspaes of an arbitrary n-dimensional spae when their dimensionk is up to the order of logn. In some ases one an �nd Eulidean subspaes ofdimension even proportional to n, but no \proportional theory" an be expeted insuh a strong sense. However, surprisingly enough, there is non trivial Eulideanstruture in subspaes of dimension �n, � 2 (0; 1), even for � very lose to 1. The�rst step in this diretion is the Low M�-estimate:Theorem 5.1.1. There exists a funtion f : (0; 1) ! R+ suh that for every� 2 (0; 1) and every n-dimensional normed spae X, a random subspae E 2 Gn;[�n℄satis�es(1) f(�)M� jxj � kxk ; x 2 E;where  > 0 is an absolute onstant.Theorem 5.1.1 was originally proved in [132℄ and a seond proof using theisoperimetri inequality on Sn�1 was given in [133℄, where (1) was shown to hold40



with f(�) � (1 � �) for some absolute onstant  > 0 (and with an estimatef(�) � 1 � � + o(�) as � ! 0+). This was later improved to f(�) � p1� � in[164℄ (see also [139℄ for a di�erent proof with this best possible p1� � dependene).Finally, it was proved in [69℄ that one an have(2) f(�) � p1� ��1 +O( 1(1� �)n )� :Geometrially speaking, Theorem 5.1.1 says that for a random �n-dimensional se-tion of KX we have(3) KX \E � M�f(�)Dn \ E;that is, the diameter of a random setion of a body of dimension proportional ton is ontrolled by the mean width M� of the body (a random setion does not feelthe diameter a of KX but the radius M� whih is roughly the level r at whih halfof the supporting hyperplanes of rDn ut the body KX).The dual formulation of the theorem has an interesting geometri interpretation.A random �n-dimensional projetion of KX ontains a ball of radius of the orderof 1=M . More preisely, for a random E 2 Gn;�n we have(4) PE(KX) � f(�)M Dn \ E:We shall present the proof from [133℄ whih gives linear dependene in � andis based on the isoperimetri inequality for Sn�1:Proof of the Low M�-estimate: Consider the set A = fy 2 Sn�1 : kyk� � 2M�g.We obviously have �(A) � 12 .Claim:For every � 2 (0; 1) there exists a subspae E of dimension k = [�n℄ suhthat(5) E \ Sn�1 � A( �2�Æ);where Æ � (1� �).Proof of the laim: We have �(A�=4) � 1 � pn R �=40 sinn�2 tdt, and double inte-gration through Gn;k shows that a random E 2 Gn;k satis�es(6) �k(A�=4 \E) � 1� pn Z �=40 sinn�2 tdt:On the other hand, for every x 2 Sn�1 \ E we have(7) �k(B(x; �4 � Æ)) ' pk Z �4�Æ0 sink�2 tdt:41



This means that if(8) p� Z �4�Æ0 sink�2 tdt ' Z �40 sinn�2 tdt;then A�=4\B(x; �4�Æ) 6= ;, and hene x 2 A�2�Æ. Analyzing the suÆient ondition(8) we see that we an hoose Æ � (1� �). 2We omplete the proof of Theorem 5.1.1 as follows: Let x 2 Sn�1 \ E. Thereexists y 2 A suh that(9) sin Æ � jhx; yij � kyk�kxk � 2M�kxk;and sine sin Æ � 2�Æ � 0(1� �), the theorem follows. 25.2 The `-positionLet X be an n-dimensional normed spae. Figiel and Tomzak-Jaegermann [60℄de�ned the `-norm of T 2 L(`n2 ; X) by(1) `(T ) = pn�ZSn�1 kTyk2�(dy)�1=2 :Alternatively, if fejg is any orthonormal basis in Rn , and if g1; : : : ; gn are indepen-dent standard Gaussian random variables on some probability spae 
, we have(2) `(T ) =  E ww nXi=1 giT (ei) ww!1=2 ;where E denotes expetation.Let now RadnX be the subspae of L2(
; X) onsisting of funtions of theform Pni=1 gi(!)xi where xi 2 X (the notation here is perhaps not anonial, butonvenient). The natural projetion from L2(
; X) onto RadnX is de�ned by(3) Radnf = nXi=1 �Z
 gif� gi:We write kRadnkX for the norm of this projetion as an operator in L2(
; X).The dual norm `� is de�ned on L(X; `n2 ) by(4) `�(S) = supf tr(ST ) : T 2 L(`n2 ; X); `(T ) � 1g:From a general result of Lewis [109℄ it follows that for some T 2 L(`n2 ; X) one has`(T )`�(T�1) = n. Using this fat, Figiel and Tomzak-Jaegermann proved that forevery n-dimensional spae X there exists T : `n2 ! X suh that(5) `(T )`((T�1)�) � nkRadnkX :42



The norm of the projetion Radn was estimated by Pisier [159℄: For every n-dimensional spae X ,(6) kRadnkX �  log[d(X; `n2 ) + 1℄:This implies that for every X = (Rn ; k � k) we an de�ne a Eulidean struture h�; �i(alled the `-struture) on Rn , for whih(7) M(X)M�(X) �  log[d(X; `n2 ) + 1℄:Equivalently, we an state the following theorem:Theorem 5.2.1. Let K be a symmetri onvex body in Rn . There exists a position~K of K for whih(8) M( ~K)M�( ~K) �  log[d(XK ; `n2 ) + 1℄;where  > 0 is an absolute onstant. 2Pisier's argument uses symmetry in an essential way, therefore one annot trans-fer diretly this line of thinking to the non-symmetri ase. For reent progress onthe non-symmetri MM�-estimate, see Appendix 7.2.5.3 The quotient of subspae theoremThe quotient of subspae theorem [134℄ states that by performing two operationson an n-dimensional spae, taking �rst a subspae and then a quotient of it, we analways arrive at a new spae of dimension proportional to n whih is (independentlyof n) lose to Eulidean:Theorem 5.3.1.(Milman) Let X be an n-dimensional normed spae and � 2 [ 12 ; 1).Then, there exist subspaes E � F of X for whih(1) k = dim(E=F ) � �n ; d(E=F; `k2) � (1� �)�1j log(1� �)j:Geometrially, this means that for every body K in Rn and any � 2 [ 12 ; 1), we an�nd subspaes G � E with dimG � �n and an ellipsoid E suh that(2) E � PG(K \ E) � (1� �)�1j log(1� �)jE :The proof of the theorem is based on the Low M�-estimate and an iteration pro-edure whih makes essential use of the `-position.Proof: We may assume that KX is in `-position: then, by Theorem 5.2.1 we haveM(X)M�(X) �  log[d(X; `n2 ) + 1℄.Step 1: Let � 2 (0; 1). We shall show that there exist a subspae E of X ,dimE � �n, and a subspae F of E�, dimF = k � �2n, suh that d(F; `k2) �(1� �)�1 log[d(X; `n2 ) + 1℄. 43



The proof of this fat is a double appliation of the Low M�-estimate. ByTheorem 5.1.1, a random �n-dimensional subspae E of X satis�es(3) 1p1� �M�(X) jxj � kxk � bjxj ; x 2 E:Moreover, sine (3) holds for a random E 2 Gn;�n, we may also assume thatM(E) � 2M(X). Therefore, repeating the same argument for E�, we may �nd asubspae F of E� with dimF = k � �2n and(4) 3p1� �M(X) jxj � 1p1� �M�(E�) jxj � kxkE� � M�(X)1p1� � jxjfor every x 2 F . Sine KX is in `-position, we obtain(5) d(F; `k2) � 4(1� �)�1M(X)M�(X) � (1� �)�1 log[d(X; `n2 ) + 1℄:Step 2: Denote by QS(X) the lass of all quotient spaes of a subspae of X , andde�ne a funtion f : (0; 1)! R+ by(6) f(�) = inffd(F; `k2) : F 2 QS(X); dimF � �ng:Then, what we have really proved in Step 1 is the estimate(7) f(�2�) � (1� �)�1 log f(�):An iteration lemma (see [134℄ or [162, pp. 130℄) allows us to onlude thatf(�) � (1� �)�1j log(1� �)j: 25.4 Variants and appliations of the Low M�-estimate1. An almost diret onsequene of the Low M�-estimate is the existene of afuntion f : (0; 1)! R+ with the following property [141℄:If K is a body in Rn and if � 2 (0; 1), then a random �n-dimensional setionK \ F of K satis�es diam(K \ F ) � 2r, where r is the solution of the equation(1) M�(K \ rDn) = f(�)r:One an hoose f(�) = (1�")p1� � for any " 2 (0; 1), and then (1) is satis�edfor all F in a subset of Gn;[�n℄ of measure greater than 1� 1 exp(�2"2(1� �)n).2. Let t(r) = t(XK ; r) be the greatest integer k for whih a random subspaeF 2 Gn;k satis�es diam(K \ F ) � 2r. The following linear duality relation wasproved in [140℄:If t�(r) = t(X�; r), then for any � > 0 and any r > 0 we have(2) t(r) + t�� 1�r� � (1� �)n� C;44



where C > 0 is an absolute onstant.This surprisingly preise onnetion between the struture of proportional se-tions of a body and its polar is also expressed as follows [81℄:Let � > 0 and k; l be integers with k+ l � (1� �)n. Then, for every body K inRn we have(3) ZGn;kM�(K \ F )d�n;k(F ) ZGn;lM�(KÆ \ F 0)d�n;l(F 0) � C� ;where C > 0 is an absolute onstant.3. An estimate dual to (1) was established in [79℄. There exists a seondfuntion g : (0; 1) ! R suh that: for every body K in Rn and every � 2 ( 12 ; 1), arandom �n-dimensional setion K \ F of K satis�es diam(K \ F ) � 2r, where r isthe solution of the equation(4) M�(K \ rDn) = g(�)r:This double sided estimate provided by (1) and (4) may be viewed as an (inom-plete) asymptoti formula for the diameter of random proportional setions of K,whih is of interest from the omputational geometry point of view sine the fun-tion r !M�(K \ rDn) is easily omputable.4. The diameter of proportional dimensional setions of K is onneted withthe following global parameter of K: For every integer t � 2 we de�ne rt(K) to bethe smallest r > 0 for whih there exist rotations u1; : : : ; ut suh that u1(K)\ : : :\ut(K) � rDn.If Rt(K) is the smallest R > 0 for whih most of the [n=t℄-dimensional setionsof K satisfy diam(K \ F ) � 2R, then it is proved in [141℄ that r2t(K) � ptRt(K).The fat that a reverse omparison of these two parameters is possible was estab-lished in [80℄: There exists an absolute onstant C > 1 suh that(5) RCt(K) � Ctrt(K)for every t � 2.5. Fix an orthonormal basis fe1; : : : ; eng of Rn . Then, for every non empty� � f1; : : : ; ng we de�ne the oordinate subspae R� = spanfej : j 2 �g.We are often interested in analogues of the Low M�-estimate with the addi-tional restrition that the subspae E should be a oordinate subspae of a givenproportional dimension (see [63℄ for appliations to Dvoretzky-Rogers fatorizationquestions). Suh estimates are sometimes possible [78℄:If K is an ellipsoid in Rn , then for every � 2 (0; 1) we an �nd � � f1; : : : ; ngof ardinality j�j � (1� �)n suh that(6) PR�(K) � [�= log(1=�)℄1=2MK Dn \ R� :Analogues of this hold true if the volume ratio of K or the otype-2 onstant ofXK is small. 45



Finally, let us mention that Bourgain's solution of the �(p) problem [23℄ (seealso [189℄ and [25℄) is losely related to the following \oordinate" result:Let (�i)i�n be a sequene of funtions on [0; 1℄ whih is orthogonal in L2. Ifk�ik1 � 1 and k�ik2 �  > 0 for every i � n, then for every p > 2 most of thesubsets � � f1; : : : ; ng of ardinality [n2=p℄ satisfy(7)  Xi2� t2i!1=2 �wwwXi2� ti�i wwwp� K(p) Xi2� t2i!1=2for every hoie of reals (ti)i2� . We refer the reader to the artile [99℄ in thisolletion for the results of Bourgain-Tzafriri on restrited invertibility, whih arelosely related to the above.6 Isomorphi symmetrization and appliations tolassial onvexity6.1 Estimates on overing numbersLet K1 and K2 be onvex bodies in Rn . The overing number N(K1;K2) of K1 byK2 is the least positive integer N for whih there exist x1; : : : ; xN 2 Rn suh that(1) K1 � N[i=1(xi +K2):We shall formulate and sketh the proofs of a few important results on overingnumbers whih we need in the next setion.The well known Sudakov inequality [179℄ estimates N(K; tDn):Theorem 6.1.1. Let K be a body in Rn . Then,(2) N(K; tDn) � exp(n(M�=t)2)for every t > 0, where  > 0 is an absolute onstant.The dual Sudakov inequality, proved by Pajor and Tomzak-Jaegermann [163℄,gives an upper bound for N(Dn; tK):Theorem 6.1.2. Let K be a symmetri onvex body in Rn . Then,(3) N(Dn; tK) � exp(n(M=t)2)for every t > 0, where  > 0 is an absolute onstant.We shall give a simple proof of Theorem 6.1.2 whih is due to Talagrand (see[115, pp. 82℄). 46



Proof of Theorem 6.1.2: We onsider the standard Gaussian probability measuren on Rn , with density dn = (2�)�n=2 exp(�jxj2=2)dx:A diret omputation shows that R kxkdn(x) = �nM , where �n=pn ! 1 asn!1. Markov's inequality shows that(4) n(x : kxk � 2M�n) � 12 :Let fx1; : : : ; xNg be a subset of Dn whih is maximal under the requirement thatkxi � xjk � t, i 6= j. Then, the sets xi + t2K have disjoint interiors. The sameholds true for the sets yi + 2M�nK, yi = (4M�n=t)xi. Therefore,(5) NXi=1 n(yi + 2M�nK) � 1:Using the onvexity of e�s, the symmetry of K and (4), we an then estimaten(yi + 2M�nK) from below as follows:(6) n(yi + 2M�nK) � 12 exp(�(4M�n=t)2):Now, (5) shows that(7) N � 2 exp((4M�n=t)2);and sine �n ' pn we onlude the proof. 2Sudakov's inequality (Theorem 6.1.1) an be dedued from Theorem 6.1.2 witha duality argument of Tomzak-Jaegermann [194℄: Let(8) A = supt>0 t(logN(Dn; tKÆ))1=2:We hek that 2K \ ( t22 KÆ) � tDn for every t > 0, and this implies that(9) N(K; tDn) � N(K; 2K \ ( t22 KÆ)) = N(K; t24 KÆ)� N(K; 2tDn)N(Dn; t8KÆ):This shows that(10) t(logN(K; tDn))1=2 � t(logN(K; 2tDn))1=2 + 8A;from whih we easily get(11) supt>0 t(logN(K; tDn))1=2 � 16A:47



This is equivalent to the assertion of Theorem 6.1.1 (just observe that M�(K) =M(KÆ)). 2A weaker version of Sudakov's inequality an be proved if we use Urysohn'sinequality: For every body K and any t > 0, we have(12) N(K; tDn) � exp(2nM�=t):Proof: Consider a set fx1; : : : ; xNg � K whih is maximal under the requirementint(xi + t2Dn) \ int(xj + t2Dn) = ;. Then,(13) N(K; tDn) � N � jK + t2Dnjj t2Dnj = �2t�n jK + t2DnjjDnj ;and Urysohn's inequality shows that(14) N(K; tDn) � �2t�n (M�(K + (t=2)Dn))n= �2t�n�M� + t2�n = �1 + 2M�t �n � exp(2nM�=t): 2Using the overing numbers one an ompare volumes of onvex bodies in vari-ous situations. A main ingredient of the proof of the lemmas below (whih may befound in [138℄) is the Brunn-Minkowski inequality:Lemma 1. Let K;T , and P be symmetri onvex bodies in Rn . Then,(15) jK \ (T + x) + P j � jK \ T + P jfor every x 2 Rn .Proof: Let Tx = K \ (T + x) + P . We easily hek that Tx + T�x � 2T0, and thenapply the Brunn-Minkowski inequality. 2Lemma 2. Let K and P be symmetri onvex bodies in Rn . If t > 0, then(16) jK + P j � N(K; tDn)j(K \ tDn) + P j:Proof: If K � Si�N K \ (xi + tDn), then K +P � Si�N [(xi + tDn)\K +P ℄. Weompare volumes using the information from Lemma 1. 2Lemma 3. Let K and L be symmetri onvex bodies in Rn . Assume that L � bKfor some b � 1. Then,(17) N �o(K [ L); (1 + 1n )K� � 2bnN(L;K): 2Using Lemma 3 with L = 1tDn and ombining with Lemma 2, we have:Lemma 4. LetK and P be symmetri onvex bodies in Rn . Assume that Dn � tbKfor some t > 0. Then,(18) jo(K [ (1=t)Dn) + P ) � 2ebnN(Dn; tK)jK + P j: 248



6.2 Isomorphi symmetrization and appliations to lassialonvexityThe funtional analyti approah and the methods of loal theory lead to newisomorphi geometri inequalities. In this way, the ideas we desribed in previoussetions �nd appliations to lassial onvexity theory in Rn . We shall desribe tworesults in this diretion:6.2.1. The inverse Blashke-Santal�o inequality[32℄ There exists an absoluteonstant  > 0 suh that(1) 0 <  � � jKjjKÆjjDnjjDnj� 1n � 1for every body in Rn .The inequality on the right is the Blashke-Santal�o inequality: the volumeprodut s(K) = jKjjKÆj is maximized (among symmetri onvex bodies) exatlywhenK is an ellipsoid. A well-known onjeture of Mahler states that s(K) � 4n=n!for every K. This has been veri�ed for some lasses of bodies, e.g. zonoids and1-unonditional bodies (see [165℄, [128℄, [171℄, [87℄). The left handside inequalityomes from [32℄ and answers the question of Mahler in the asymptoti sense: Forevery body K, the aÆne invariant s(K)1=n is of the order of 1=n.6.2.2. The inverse Brunn-Minkowski inequality[135℄ There exists an absoluteonstant C > 0 with the following property: For every body K in Rn there existsan ellipsoid MK suh that jKj = jMK j and for every body T in Rn(2) 1C ��MK + T ��1=n � ��K + T ��1=n � C��MK + T ��1=n:This implies that for every body K in Rn there exists a position ~K = uK(K)of volume j ~Kj = jKj suh that the following reverse Brunn-Minkowski inequalityholds true:\If K1 and K2 are bodies in Rn , then(3) jt1 ~K1 + t2 ~K2j1=n � C �t1j ~K1j1=n + t2j ~K2j1=n� ;for all t1; t2 > 0, where C > 0 is an absolute onstant".The ellipsoidMK in 6.2.2 is alled anM-ellipsoid forK. Analogously, the body~K = uK(K) is alled an M-position of K (and then, one may take M ~K = �Dn).The symmetry of K is not really needed in 6.2.1 and 6.2.2 (see e.g. [147℄).Both results were originally proved by a dimension desending proedure whihwas based on the quotient of subspae theorem. We shall present a seond approah,whih appeared in [138℄ and introdued an \isomorphi symmetrization" tehnique.This is a symmetrization sheme whih is in many ways di�erent from the lassialsymmetrizations. In eah step, none of the natural parameters of the body is being49



preserved, but the ones whih are of interest remain under ontrol. After a �nitenumber of steps, the body has ome lose to an ellipsoid and this is suÆient forour purposes, but there is no natural notion of onvergene to an ellipsoid.6.2.3. Remarks. Applying (2) for T =MK we get(4) jK +MK j1=n � CjKj1=n:This is equivalent to Theorem 6.2.2 and to eah one of the following statements:(i) There exists a onstant C > 0 suh that for every body K we an �nd anellipsoid MK with jMK j = jKj andN(K;MK) � exp(Cn):(ii) There exists a onstant C > 0 suh that for every body K we an �nd anellipsoid MK with jMK j = jKj andN(MK ;K) � exp(Cn):We an also pass to polars and show that for every body T in Rn ,1C jMÆK + T j1=n � jKÆ + T j1=n � CjMÆK + T j1=n:Sine the M -position is isomorphially de�ned, one may ask for stronger regularityon the overing numbers estimates (i) and (ii): Pisier proved (see [162, Chapter7℄) that, for every � > 1=2 and every body K there exists an aÆne image ~K of Kwhih satis�es j ~Kj = jDnj andmaxfN(K; tDn); N(Dn; tK); N(KÆ; tDn); N(Dn; tKÆ)g � exp((�)nt�1=�)for every t � 1, where (�) is a onstant depending only on �, with (�) = O((��12 )�1=2) as � ! 12 . We then say that K is in M-position of order � (�-regular inthe terminology of [162℄).Proof of the Theorems: Sine s(K) is an aÆne invariant, we may assume that K isin a position suh thatM(K)M�(K) �  log[d(XK ; `n2 )+1℄. We may also normalizeso that M(K) = 1. We de�ne(5) �1 =M�(K)a1 ; �01 =M(K)a1;for some a1 > 1, and onsider the new body(6) K1 = o[(K \ �1Dn) [ 1�01Dn℄:Using Sudakov's inequality and Lemma 2 with P = f0g, we see that(7) jK1j � jK \ �1Dnj � jKj=N(K;�1Dn) � jKj exp(�n=a21);50



while using the dual Sudakov inequality and Lemma 3 we get(8) jK1j � jo(K [ 1�01Dn)j � 2e b�01nN(Dn; �01K)jKj � exp(n=a21):The same omputation an be applied to KÆ1 , and this shows that(9) exp(�n=a21) � s(K1)s(K) � exp(n=a21):We ontinue in the same way. We now know that d(XK1 ; `n2 ) � M(K)M�(K)a21and, sine s(K1) is an aÆne invariant, we may assume that M(K1)M�(K1) � log[d(XK1 ; `n2 ) + 1℄ and M(K1) = 1. We then de�ne(10) �2 =M�(K1)a2 ; �02 =M(K1)a2;and onsider the body K2 = o[(K1 \ �2Dn) [ 1�02Dn℄. Estimating volumes, we seethat(11) exp(�n=a22) � s(K2)s(K1) � exp(n=a22):We iterate this sheme, hoosing a1 = logn, a2 = log logn; : : : ; at = log(t) n { thet-iterated logarithm of n, and stop the proedure at the �rst t for whih at < 2. Itis easy to hek that d(XKt ; `n2 ) � C, therefore(12) 1C � s(Kt)1=n � C:On the other hand, ombining our volume estimates we see that(13) 1 � exp(�( 1a21 + : : :+ 1a2t )) � s(Kt)1=ns(K)1=n � exp(( 1a21 + : : :+ 1a2t ));whih proves Theorem 6.1.1 sine the series 1a21 + : : :+ 1a2t + : : : remains bounded byan absolute onstant. 2The proof of Theorem 6.2.2 follows the same pattern. In eah step, we verifythat for every onvex body T(14) exp(�n=a2s) � jKs + T jjKs�1 + T j � exp(n=a2s);and the same holds true for KÆs . At the t-th step, we arrive at a body Kt whihis C-isomorphi to an ellipsoid M , and (14) shows that jKtj1=n ' jKj1=n up to anabsolute onstant. If we de�ne MK = �M where � > 0 is suh that jMK j = jKj,then � ' 1 and using (14) we onlude the proof. 2Note. The existene of the M -ellipsoid MK of K in the non-symmetri ase wasestablished in [147℄. The key lemma is the observation that if 0 is the entroid ofthe onvex body K, then jK \ (�K)j � 2�njKj.51



We lose this setion with a few geometri onsequenes of the M -position:1. Every body K has a position ~K with the following property: there existu; v 2 SO(n) suh that if we set P = ~K + u( ~K) and Q = P Æ + v(P Æ), then Q isequivalent to a Eulidean ball up to an absolute onstant. Atually, this statementis satis�ed for a random pair (u; v) 2 SO(n) � SO(n). This double operation maybe alled isomorphi Eulidean regularization.Compare with the following examples: If K is the unit ube, then P is alreadyequivalent to a ball for most u 2 SO(n) (this follows from [100℄, see 4.7.1). If K isthe unit ball of `n1 , the seond operation is ertainly needed.A losely related result from [141℄ is the following isomorphi inequality on-neting K with KÆ:Let �t(K) = maxf� > 0 : �Dn � 1t Pti=1 ui(K) ; ui 2 O(n)g. Then, thereexists an absolute onstant  > 0 suh that�2(K)�3(KÆ) � for every body K in Rn . Observe that Kashin's result is a onsequene of this fat:if K is the ube, then �3(KÆ) � =pn. Therefore, K + u(K) � pnDn for someu 2 O(n). It is not lear if two rotations of KÆ suÆe for a similar statement.2. One may use the M -position in order to obtain a random version of thequotient of subspae theorem: If K is in M -position, then using Remark 6.2.3(i)we see that every �n-dimensional projetion PE(K) of K has �nite volume ratio(whih depends on �). We an therefore apply Theorem 4.7.2 to onlude that arandom �2n-dimensional setion PF (K)\E of PF (K) has distane depending onlyon � from the orresponding Eulidean ball.7 Appendix7.1 The hyperplane onjetureIn 2.3 we saw that every body in Rn has an isotropi position K with jKj = 1,whih satis�es(1) ZKhx; �i2dx = L2Kfor every � 2 Sn�1. This position is uniquely determined up to orthogonal transfor-mations, and the aÆne invariant LK is alled the isotropi onstant of K. It is anopen problem whether there exists an absolute onstant C > 0 suh that LK � Cfor every body K.Let K be a body in Rn . Using Theorem 2.3.6, one an easily hek that(2) nL2K � jdetujjuKj1+ 2n ZK juxj2dx52



for every invertible linear transformation u. For the same reason,(3) nL2KÆ � jdet(u�1)�jj(u�1)�(KÆ)j1+ 2n ZKÆ j(u�1)�(x)j2dx:We may hoose u : XK ! `n2 suh that d(XK ; `n2 ) = kuk ku�1k. Then, (2) and (3)imply that(4) n2L2KL2KÆ � d2(XK ; `n2 ) �juKj j(u�1)�(KÆ)j��2=n ;and an appliation of the inverse Santal�o inequality shows that(5) LKLKÆ � d(XK ; `n2 ):Therefore, duality gives the following �rst estimates on the isotropi onstant:Theorem 7.1.1. Let K be a body in Rn . Then, LK � d(XK ; `n2 ) � pn. More-over, either LK �  4pn or LKÆ �  4pn. 2Bourgain [24℄ has proved that LK �  4pn logn, where  > 0 is an absoluteonstant, for every body K. We shall give a proof of this fat following Dar'spresentation in [46℄. Reall that for every � 2 Sn�1 and p > 1 we have(6) � 1jKj ZK jhx; �ijpdx�1=p � p 1jKj ZK jhx; �ijdx;where  > 0 is an absolute onstant. This is a onsequene of Borell's lemma (see2.3). It follows from 2.3 (25) that if K is isotropi, then(7) ZK exp(jhx; �ij=LK)dx � 2;for every � 2 Sn�1, where  > 0 is an absolute onstant. We shall use this infor-mation in the following form:Lemma 1. Let K be an isotropi body. If N is a �nite subset of Sn�1, then(8) ZK max�2N jhx; �ijdx � LK log jN j: 2Starting with an isotropi body K, we see from Theorem 2.3.6 that(9) nL2K � trTn ZK jxj2dx = ZKhx; Txidx� ZK kTxkKÆdx = ZK maxy2TK jhx; yijdxfor every symmetri, positive-de�nite volume preserving transformation T of Rn .In order to estimate this last integral, we �rst redue the problem to a disrete oneusing the Dudley-Fernique deomposition:53



Lemma 2. Let A be a body in Rn , and R be its diameter. For every r andj = 1; : : : ; r, we an �nd �nite subsets Nj of A with log jNj j � n(w(A)2j=R)2 withthe following property: every x 2 A an be written in the formx = z1 + : : :+ zr + wr ;where zj 2 Zj = (Nj �Nj�1)\ (3R=2j)Dn and wr 2 (R=2r)Dn (we set N0 = fog).2 The proof of this deomposition is simple. The estimate on the ardinality ofNj omes from Sudakov's inequality (Theorem 6.1.1). We now hoose T in (9) sothat A = TK will have minimal mean width: Theorem 5.2.1 allows us to assumethat w(TK) � pn logn.From Lemma 2, we see that for every x 2 K,(10) maxy2TK jhy; xij � rXj=1maxz2Zj jhz; xij+ maxw2(R=2r)Dn jhw; xij� rXj=1 3R2j maxz2Zj jh~z; xij+ R2r jxj;where ~z = z=jzj 2 Sn�1. Now, Lemma 1 and the estimate on jNj j imply that(11) ZK maxz2Zj jh~z; xijdx � LK log jZj j � nLK �w(TK)2jR �2for every j = 1; : : : ; r. Going bak to (9), we onlude that(12) nL2K � LK0� rXj=1 nw2(TK)2jR + R2rpn1A� 0LK �nw2(TK)2rR + R2rpn� ;and the optimal hoie for r gives(13) nL2K �  4pnw(TK)pnLK :Sine w(TK) � pn logn, the proof is omplete:Theorem 7.1.2. For every body K in Rn we have LK �  4pn logn. 2Remark: The same holds true for non-symmetri onvex bodies as well (see [155℄).
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7.2 Geometry of the Banah-Mazur ompatum1. Consider the set Bn of all equivalene lasses of n-dimensional normed spaesX = (Rn ; k � k), where X is equivalent to X 0 if and only if X and X 0 are isometri.Then, Bn beomes a ompat metri spae with the metri log d, where d is theBanah-Mazur distane (the Banah-Mazur ompatum).There are many interesting questions about the struture of the Banah-Mazurompatum, and most of them remain open. Below, we desribe some fundamentalresults and problems in this area. The interested reader will �nd more informationin the book [195℄ and the surveys [67℄, [183℄.2. John's theorem shows that d(X;Y ) � n for every X;Y 2 Bn. Therefore,diam(Bn) � n. The natural question of the exat order of diam(Bn) remained openfor many years and was �nally answered by Gluskin [64℄: diam(Bn) � n.Gluskin does not desribe a pair X;Y 2 Bn with d(X;Y ) � n expliitely(in fat, there is no onrete example of spaes with distane of order greaterthan pn). The idea of the proof is probabilisti: a random T : `n1 ! `n1 satis�eskTk kT�1k � n, and this suggests that by \spoiling" `n1 it is possible to obtainX and Y with distane n. The spaes whih were used in [64℄ have as their unitball a body of the form K = of�ei;�xj : 1 � j � 2ng, where feig is the standardorthonormal basis of Rn and the xj 's are hosen uniformly and independently fromthe unit sphere Sn�1. A random pair of suh spaes has the desired property.This method of onsidering random spaes proved to be very fruitful in prob-lems where one needed to establish \pathologial behavior". We mention Szarek's�nite dimensional analogue of Eno's example [56℄ of a spae failing the approx-imation property: there exist n-dimensional normed spaes whose basis onstantis of the order of pn [181℄. See also [65℄, [124℄ and subsequent work of Szarekand Mankiewiz where random spaes play a entral role. The artile [152℄ in thisolletion overs this topi.3. Another natural question about the geometry of the Banah-Mazur om-patum is that of the uniqueness of its enter: If dimX = n and d(X;Y ) � pnfor every Y 2 Bn, is it then true that X is \lose" (depending on ) to `n2 ?This question was answered in the negative by Bourgain and Szarek [33℄: LetX0 = `s2 � `n�s1 , where s = [n=2℄. Then, d(X0; Y ) � pn for every Y 2 Bn (and,learly, d(X0; `n2 ) � 0pn). The proof of the fat that X0 is an asymptoti enterof the ompatum is based on the proportional version of the Dvoretzky-Rogerslemma (see 4.1).4. Fix X 2 Bn. Then, one an de�ne the radius of Bn with respet to X byR(X) = maxfd(X;Y ) : Y 2 Bng. Many problems of obvious geometri interestarise if one wants to give the order of the radius with respet to important onreteenters. For example, the problem of the distane to the ube R(`n1) remains open.It is known that R(`n1) � n5=6 (see [33℄, [186℄ and [62℄). On the other hand, Szarekhas proved [182℄ that R(`n1) � pn logn, therefore `n1 and `n1 are not asymptotienters of the ompatum (these are atually the only onrete examples of spaesfor whih this property has been established).55



5. If we restrit ourselves to sublasses of Bn, then the diameter may be signif-iantly smaller than n: Let An be the family of all 1-symmetri spaes. Tomzak-Jaegermann [192℄ (see also [66℄) proved that d(X;Y ) � pn whenever X;Y 2 An.This result is learly optimal: reall that d(`n1 ; `n2 ) = pn. The analogous problem forthe family of 1-unonditional spaes remains open. Lindenstrauss and Szankowski[114℄ have shown that in this ase d(X;Y ) � n�, where � is a onstant lose to2=3. It is onjetured that the right order is lose to pn.The diameter of other sublasses of Bn was estimated with the method of ran-dom orthogonal fatorizations. The idea (whih has its origin in work of Tomzak-Jaegermann [190℄, and was later developped and used by Benyamini and Gordon[27℄) is to use the average of kTkX!Y kT�1kY!X with respet to the probabilityHaar measure on SO(n) as an upper bound for d(X;Y ). Using this method onean prove a general inequality in terms of the type-2 onstants of the spaes [27℄,[55℄: d(X;Y ) � pn[T2(X) + T2(Y �)℄for every X;Y 2 Bn. This was further improved by Bourgain and Milman [31℄ tod(X;Y ) � �d(Y; `n2 )T2(X) + d(X; `n2 )T2(Y �)�:In [31℄ it is also shown that d(X;X�) � (logn)n5=6 for every X 2 Bn. Allthese results indiate that the distane between spaes whose unit balls are \quitedi�erent" should be signi�antly smaller than diam(Bn).6. The Banah-Mazur distane d(K;L) between two not neessarily symmetrionvex bodies K and L is the smallest d > 0 for whih there exist z1; z2 2 Rn andT 2 GLn suh that K � z1 � T (L� z2) � d(K � z1).The question of the maximal distane between non-symmetri bodies is open.John's theorem implies that d(K;L) � n2. Better estimates were obtained withthe method of random orthogonal fatorizations and reent progress on the non-symmetri analogue of the MM�-estimate (Theorem 5.2.1). In [42℄ it was provedthat every onvex body K has an aÆne imageK1 suh thatM(K1)M�(K1) � pn,a bound whih was improved to n1=3 log� n, � > 0 in [170℄. Using this fat,Rudelson showed that d(K;L) � n4=3 log� n for any K;L 2 Kn. See also reentwork of Litvak and Tomzak-Jaegermann [116℄ for related estimates in the non-symmetri ase.7. Milman and Wolfson [153℄ studied spaes X whose distane from `n2 isextremal. They showed that if d(X; `n2 ) = pn, thenX has a k-dimensional subspaeF with k �  logn whih is isometri to `k1 . The example of X = `n1 shows thatthis estimate is exat.An isomorphi version of this result is also possible [153℄: If d(X; `n2 ) � �pnfor some � 2 (0; 1), then X has a k-dimensional subspae F (with k = h(n) ! 1as n ! 1) whih satis�es d(F; `k1) � (�), where (�) depends only on �. Theoriginal estimate for k in [153℄ was later improved to k � 1(�) logn through workof Kashin, Bourgain and Tomzak-Jaegermann (see [195, Setion 31℄ for details).56



An extension of this fat appears in [158℄: Reall that a Banah spae Xontains `n1 's uniformly if X ontains a sequene of subspaes Fn; n 2 N withd(Fn; `n1 ) � C. Then, the following are equivalent:(i) X does not ontain `n1 's uniformly.(ii) supfd(F; `n2 ) : F � X ; dimF = ng = o(pn).(iii) There exists a sequene �n = o(pn) with the following property: If F is ann-dimensional subspae of X , there exists a projetion P : X ! F with kPk � �n.In the non-symmetri ase the extremal distane to the ball is n. Palmon [156℄showed that d(K;Dn) = n if and only if K is a simplex.8. Tomzak-Jaegermann [193℄ de�ned the weak distane wd(X;Y ) of two n-dimensional normed spaes X and Y by wd(X;Y ) = maxfq(X;Y ); q(Y;X)g, whereq(X;Y ) = inf Z
 kS(!)k kT (!)k d!;and the inf is taken over all measure spaes 
 and all maps T : 
 ! L(X;Y ),S : 
 ! L(Y;X) suh that R
 S(!) Æ T (!)d! = idX . It is not hard to hek thatwd(X;Y ) � d(X;Y ) and that with high probability the weak distane betweentwo Gluskin spaes is bounded by pn. In fat, Rudelson [168℄ has proved thatwd(X;Y ) � n13=14 log15=7 n for all X;Y 2 Bn. It is onjetured that the weakdistane in Bn is always bounded by pn.7.3 Symmetrization and approximationSymmetrization proedures play an important role in lassial onvexity. The ques-tion of how many suessive symmetrizations of a ertain type are needed in orderto obtain from a given body K a body ~K whih is lose to a ball was extensivelystudied with the methods of loal theory. This study led to the surprising fat thatonly few suh operations suÆe:Let K 2 Kn and u 2 Sn�1. Consider the reetion �u with respet to thehyperplane orthogonal to u. The Minkowski symmetrization of K with respetto u is the onvex body 12 (K + �uK). Observe that this operation is linear andpreserves mean width. A random Minkowski symmetrization of K is a body �uK,where u is hosen randomly on Sn�1 with respet to the probability measure �.In [38℄ it was proved that for every " > 0 there exists n0(") suh that for everyn � n0 and K 2 Kn, if we perform N = Cn logn + (")n independent randomMinkowski symmetrizations on K we reeive a onvex body ~K suh that(1� ")w(K)Dn � ~K � (1 + ")w(K)Dnwith probability greater than 1 � exp(�1(")n). The method of proof is loselyrelated to the onentration phenomenon for SO(n).The same question for Steiner symmetrization was studied in [39℄. Mani [123℄has proved that, starting with a body K 2 Kn, if we hoose an in�nite randomsequene of diretions uj 2 Sn�1 and apply suessive Steiner symmetrizations �uj57



of K in these diretions, then we almost surely get a sequene of onvex bodiesonverging to a ball. The number of steps needed in order to bring K at a �xeddistane from a ball is muh smaller [39℄: If K 2 Kn with jKj = jDnj, we an �ndN � 1n logn and u1; : : : ; uN 2 Sn�1 suh that(1) �12 Dn � (�uN Æ : : : Æ �u1)(K) � 2Dn;where 1; 2 > 0 are absolute onstants. It is not lear what the bound f(n; ") onN would be if we wanted to replae 2 by 1�", " 2 (0; 1). The proof of (1) is basedon the previous result about Minkowski symmetrizations.Results of the same nature onern questions about approximation of onvexbodies by Minkowski sums. The global form of Dvoretzky's theorem is an isomor-phi statement of this type.Reall that a zonotope is a Minkowski sum of line segments, and a zonoid is abody in Rn whih is the Hausdor� limit of a sequene of zonotopes. A body is azonoid if and only if its polar body is the unit ball of an n-dimensional subspae ofL1(0; 1) (for this and other haraterizations of zonoids, see [20℄).The unit ball of `np is a zonoid if and only if 2 � p � 1 (see [50℄). In parti-ular, the Eulidean unit ball Dn an be approximated arbitrarily well by sums ofsegments. The question of how many segments are needed in order to ome (1+")-lose to Dn is equivalent to the problem of embedding `n2 into `N1 . From the resultsin [61℄ it follows that N � (")n segments are enough. In [40℄ it was shown that thesame bound on N allows us to hoose the segments having the same length. Thelinear dependene of N on n is optimal, but the best possible answer if we view Nas a funtion of both n and " is not known (see [28℄, [30℄, [40℄, [111℄, [196℄).If we replae the ball Dn by an arbitrary zonoid Z, then the same approxi-mation problem is equivalent to the question of embedding an n-dimensional sub-spae of L1(0; 1) into `N1 . Bourgain, Lindenstrauss and Milman [40℄ proved, byan adaptation of the empirial distribution method of Shehtman [173℄, that forevery " 2 (0; 1) there exist N � "�2n logn and segments I1; : : : ; IN suh that(1� ")Z �P Ij � (1 + ")Z. Moreover, if the norm of Z is stritly onvex then Nan be hosen to be of the order of n up to a fator whih depends on " and themodulus of onvexity of k � kZ . Later, Talagrand [188℄ showed (with a onsiderablysimpler approah) that one an have N � kRadnk2X"�2n.For more information on this topi, we refer the reader to the surveys [110℄,[113℄ and [99℄.7.4 Quasi-onvex bodiesMany of the results that we presented about symmetri onvex bodies an be ex-tended to a muh wider lass of bodies. We have already disussed extensions of themain fats to the non-symmetri onvex ase. We now briey disuss extensions tothe lass of quasi-onvex bodies.Reall that a star body K is alled quasi-onvex if K + K � K for someonstant  > 0. Equivalently, if the gauge f of K satis�es (i) f(x) > 0 if x 6= 0, (ii)58



f(�x) = j�jf(x) for any x 2 Rn , and (iii) f 2 C(�) i.e. there exists � 2 (0; 1℄ suhthat �f(x) � (f � f)(x) := infff(x1) + f(x2) ; x1 + x2 = xg ; x 2 Rn :A body K is alled p-onvex, p 2 (0; 1), if for any x; y 2 K and �; � > 0 with�p + �p = 1 we have �x + �y 2 K. Every p-onvex body K is quasi-onvex, andK +K � 21=pK. Conversely, for every quasi-onvex body K (with onstant C) wean �nd a q-onvex body K1 suh that K � K1 � 2K, where 21=q = 2C (see [166℄).Most of the basi results we desribed in the previous setions were extended tothis ase. Versions of the Dvoretzky-Rogers lemma and Dvoretzky's theorem wereproved by Dilworth [49℄. For the low M�-estimate and the quotient of subspaetheorem in the quasi-onvex setting, see [117℄ and [77℄ respetively (see also [143℄for an isomorphi Eulidean regularization result and the random version of the QS-theorem). The reverse Brunn-Minkowski inequality is shown in [36℄. For resultson existene of M -ellipsoids, entropy estimates and asymptoti formulas, see [117℄,[118℄ and [147℄. In most of the ases, the tools whih were available from theonvex ase were not enough, and new tehniques had to be invented: some ofthem provided interesting alternative proofs of the known \onvex results".7.5 Type and otypeThe notions of type and otype were introdued by Ho�mann-Jorgensen [92℄ inonnetion with limit theorems for independent Banah spae valued random vari-ables. Their importane for the study of geometri properties of Banah spaeswas realized through the work of Maurey and Pisier (see the artile [120℄ in thisolletion for a disussion of the development of this theory).Given an n-dimensional normed spae X , and 1 � p � 2 (2 � q < 1, respe-tively), the type-p (otype-q) onstant Tp(X) (Cq(X)) of X is the smallest T > 0(C > 0) suh that: for every m 2 N and x1; : : : ; xm 2 X , Z 10  mXi=1 ri(t)xi2dt!1=2 � T  mXi=1 kxikp!1=p :0�respetively;  mXi=1 kxikq!1=q � C  Z 10  mXi=1 ri(t)xi2!1=2 : 1AResults of Tomzak-Jaegermann ([191℄ when p = q = 2), K�onig ([103℄ for any pand q not equal to 2, up to onstants depending on p; q) and Szarek [184℄ showthat in order to determine the (Gaussian) type-p or otype-q onstants of X up toan absolute onstant, it is enough to onsider n vetors. In the Rademaher ase,the de�nite answer is not yet known. It is lear that T2(`n2 ) = C2(`n2 ) = 1 and,onversely, Kwapien [104℄ proved that d(X; `n2 ) � C2(X)T2(X).59



Let kp(X ; "), 1 � p � 1, be the largest integer k � n for whih `kp is 1 +"-isomorphi to a subspae of X (in this terminology, k(X) = k2(X ; 4)). Thefollowing results show how type and otype enter in the study of the linear strutureof a spae:(i) In [61℄ it is shown that k2(X) � n=C22(X) and k2(X) � n2=q=C2q (X). Thisgives another proof of the fats k2(`np ) � n; 1 � p � 2, and k2(`nq ) ' n2=q ; q � 2.(ii) In [159℄ it is proved that kp(X ; ") � (p; ")Tp(X)q, where 1 < p < 2 and1p + 1q = 1. This generalizes the estimate kp(`n1 ; ") � (p; ")n, 1 � p � 2, of Johnsonand Shehtman [98℄.(iii) A quantitative version of Krivine's theorem [9℄ states that, for every A � ",kp(X ; ") � ("; A)[kp(X ;A)℄1("=A)p :Gowers [70℄, [71℄ obtained related estimates on the length of (1+")-symmetri basisequenes in X .(iv) In [121℄ it is shown that if no otype-q onstant of X is bounded by anumber independent of n, then X ontains (1+")-isomorphi opies of `k1 for largek. Alon and Milman [7℄, using ombinatorial methods, provided a quantitativeform of this fat: k2(X ; 1)k1(X ; 1) � exp(plogn).Bourgain and Milman [32℄ proved that vr(KX ) � f(C2(X)). Thus, spaeswith bounded otype-2 onstant satisfy all onsequenes of bounded volume ratio(this had been independently observed, see e.g. [61℄,[54℄). Milman and Pisier [148℄introdued the lass of spaes with the weak otype 2 property: X is weak otype2 if there exists Æ > 0 suh that k2(E) � ÆdimE for every E � X . One an thenprove that vr(E) � C(Æ) for every E � X [148℄.In 6.2 we saw that every n-dimensional normed spae X has a subspae E withdimE � n=2 suh that vr(KE�) � C. This suÆes for a proof of the quotient ofsubspae theorem. However, the following question remains open: does every Xontain a subspae E with dimE � n=2 suh that C2(E�) � C? This problem isrelated to many open questions in the loal theory (for a disussion see [136℄, [144℄).Finally, let us mention the onnetion between Gaussian and Rademaher aver-ages [122℄: Let X be an n-dimensional normed spae, and fxjg be a �nite sequenein X . Then,r 2� 0�Z 10 wwwXj rj(t)xj www2 dt1A1=2 � 0�Z
 wwwXj gj(!)xj www2 d!1A1=2
� (1 + logn)1=20�Z 10 wwwXj rj(t)xj www2 dt1A1=2 :If X has bounded otype-q onstant Cq(X) for some q � 2, then the onstant inthe right hand side inequality may be replaed by pqCq(X).60



7.6 Non-linear type theoryLet (T; d) be a metri spae, and Fn = f�1; 1gn with the normalized ountingmeasure �n. An n-dimensional ube in T is a funtion f : Fn ! T . For any suhf and i 2 f1; : : : ; ng, we de�ne(�if)(") = d(f("1; : : : ; "i; : : : ; "n); f("1; : : : ;�"i; : : : ; "n)):A metri spae (T; d) has metri type p, 1 � p � 2, if there exists a onstant C > 0suh that, for every n 2 N and every f : Fn ! T we have�ZFn d(f("); f(�"))2d�n�1=2 � Cn 1p� 12 0� nXj=1 ZFn(�jf("))2d�n1A1=2 :Every metri spae has type 1, and if 1 � p1 � p2 � 2, metri type p2 impliesmetri type p1.Let � : (T1; d1) ! (T2; d2) be a map between metri spaes. The Lipshitznorm of � is de�ned by k�kLip = supt6=s d2(�(t); �(s))d1(t; s) :Let Fnp be the spae Fn equipped with the metri indued by `np . We say that ametri spae (T; d) ontains Fnp 's (1 + ")-uniformly if for every n 2 N there exist asubset Tn � T and a bijetion �n : Fnp ! Tn suh that k�nkLipk��1n kLip � 1 + ".Bourgain, Milman and Wolfson [41℄ (see also [154℄) proved the following:Theorem 7.6.1. A metri spae (T; d) has metri type p for some p > 1 if andonly if there exists " > 0 suh that T does not ontain Fn1 's (1 + ")-uniformly.A natural question whih arises is to ompare the notions of metri type andtype in the ase where T is a normed spae. An answer to this question was givenin [41℄, see also [161℄:Theorem 7.6.2. Let X be a Banah spae and let 1 < p < 2.(i) If X has type (respetively, metri type) p, then X has metri type (respe-tively, type) p1 for all 1 � p1 < p.(ii) X ontains Fn1 's uniformly if and only if X ontains `n1 's uniformly.We refer the interested reader to [41℄, [161℄ for the proofs of these fats, and aomparison with another notion of metri type whih was earlier proposed by Eno[57℄. In [41℄ and [37℄ one an �nd a generalization of Dvoretzky's theorem for metrispaes: For every " > 0 there exists a onstant (") > 0 with the following property:every metri spae T of ardinality N ontains a subspae S with ardinality atleast (") logN suh that for some ~S � `2 with jSj = j ~Sj we an �nd a bijetion� : S ! ~S with k�kLipk��1kLip � 1+ " (this means that S is (1+ ")-isomorphi toa subset of a Hilbert spae). 61



Let us �nally mention an interesting onnetion between non-linear problemsand a more advaned form of type and otype, the so-alled Markov type and otypewhih was introdued and studied by K. Ball [17℄.
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