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tionIn this arti
le we dis
uss results whi
h stand between geometry, 
onvex geometry,and fun
tional analysis. We 
onsider the family of n-dimensional normed spa
esand study the asymptoti
 behavior of their parameters as the dimension n growsto in�nity. Analogously, we study asymptoti
 phenomena for 
onvex bodies in highdimensional spa
es.This theory grew out of fun
tional analysis. In fa
t, it may be viewed as themost re
ent one among many examples of dire
tions in mathemati
s whi
h wereborn inside this �eld during the twentieth 
entury. Fun
tional analysis was devel-oped during the period between the World Wars by the Polish s
hool of mathemat-i
s, an outstanding s
hool with broad interests and 
onne
tions. The in
uen
e ofthe ideas of fun
tional analysis on mathemati
al physi
s, on di�erential equations,but also on 
lassi
al analysis, was enormous. The great a
hievements and su

ess-ful appli
ations to other �elds led to the 
reation of new dire
tions (among them,algebrai
 analysis, non-
ommutative geometry and the modern theory of partialdi�erential equations) whi
h in a short time be
ame autonomous and independent�elds of mathemati
s.Thus, in the last de
ades of the twentieth 
entury, geometri
 fun
tional analysisand even more narrowly the study of the geometry of Bana
h spa
es be
ame themain line of resear
h in what remained as \proper" fun
tional analysis. The two
entral themes of this theory were in�nite dimensional 
onvex bodies and the linearstru
ture of in�nite dimensional normed spa
es. Several questions in the dire
tionof a stru
ture theory for Bana
h spa
es were asked and stayed open for many years.Some of them 
an be found in Bana
h's book. Their 
ommon feature was a sear
hfor simple building blo
ks inside an arbitrary Bana
h spa
e. For example: does ev-ery Bana
h spa
e 
ontain an in�nite un
onditional basi
 sequen
e? Is every Bana
hspa
e de
omposable as a topologi
al sum of two in�nite dimensional subspa
es? Isit true that every Bana
h spa
e is isomorphi
 to its 
losed hyperplanes? Does everyBana
h spa
e 
ontain a subspa
e isomorphi
 to some `p or 
0?This last question was answered in the negative by Tsirelson (1974) who gavean example of a re
exive spa
e not 
ontaining any `p. Before Tsirelson's example,2



it had been realized by the se
ond named author that the notion of the spe
trum ofa uniformly 
ontinuous fun
tion on the unit sphere of a normed spa
e was related tothis question and that the problem of distortion was a 
entral geometri
 questionfor approa
hing the linear stru
ture of the spa
e. Although Tsirelson's examplewas a major breakthrough and introdu
ed a 
ompletely new 
onstru
tion of norm,the sear
h for simple linear stru
ture 
ontinued to be the aim of most of the e�ortsin the geometry of Bana
h spa
es. We now know that in�nite dimensional Bana
hspa
es have mu
h more 
ompli
ated stru
ture than what was assumed (or hoped).All the questions above were answered in the negative in the middle of the 90's,starting with the works of Gowers and Maurey, Gowers, Odell and S
hlumpre
ht.A
tually, the line of thought related to Tsirelson's example and the 
on
epts ofspe
trum and distortion were the most 
ru
ial for the re
ent developments.The systemati
 quantitative study of n-dimensional spa
es with n tending toin�nity started in the 60's, as an alternative approa
h to several unsolved problemsof geometri
 fun
tional analysis. This study led to a new and deep theory withmany surprising 
onsequen
es in both analysis and geometry. When viewed as partof fun
tional analysis, this theory is often 
alled lo
al theory (or asymptoti
 the-ory of �nite dimensional normed spa
es). However, it adopted a signi�
ant partof 
lassi
al 
onvexity theory and used many of its methods and te
hniques. Clas-si
al geometri
 inequalities su
h as the Brunn-Minkowski inequality, isoperimetri
inequalities and many others were extensively used and established themselves asimportant te
hni
al tools in the development of lo
al theory. Conversely, the studyof geometri
 problems from a fun
tional analysis point of view enri
hed 
lassi
al
onvexity with a new approa
h and a variety of problems: The \isometri
" prob-lems whi
h were typi
al in 
onvex geometry were repla
ed by \isomorphi
" ones,with the emphasis on the role of the dimension. This 
hange led to a new intu-ition and revealed new 
on
epts, the 
on
entration phenomenon being one of them,with many appli
ations in 
onvexity and dis
rete mathemati
s. This natural melt-ing of the two theories should perhaps 
orre
tly be 
alled asymptoti
 (or 
onvex)geometri
 analysis.This paper presents only some aspe
ts of this asymptoti
 theory. We leave asidetype-
otype theory and other 
onne
tions with probability theory, fa
torizationresults, 
overing and entropy (besides a few results we are going to use), 
onne
tionswith in�nite dimension theory, random normed spa
es, and so on. Other arti
lesin this 
olle
tion will 
over these topi
s and 
omplement these omissions. On theother hand, we feel it is ne
essary to give some ba
kground on 
onvex geometry:This is done in Se
tions 2 and 3.The theory as we build it below \rotates" around di�erent Eu
lidean stru
turesasso
iated with a given norm or 
onvex body. This is in fa
t a re
e
tion of di�erenttra
es of hidden symmetries every high dimensional body possesses. To re
overthese symmetries is one of the goals of the theory. A new point whi
h appears inthis arti
le is that all these Eu
lidean stru
tures that are in use in lo
al theory havepre
ise geometri
 des
riptions in terms of 
lassi
al 
onvexity theory: they may beviewed as \isotropi
" ones.Traditional lo
al theory 
on
entrates its attention on the study of the stru
ture3



of the subspa
es and quotient spa
es of the original spa
e (the \lo
al stru
ture" ofthe spa
e). The 
onne
tion with 
lassi
al 
onvexity goes through the translationof these results to a \global" language, that is, to equivalent statements pertainingto the stru
ture of the whole body or spa
e. Su
h a 
omparison of \lo
al" and\global" results is very useful, opens a new dimension in our study and will leadour presentation throughout the paper.We refer the reader to the books of S
hneider [177℄ and of Burago and Zalgaller[35℄ for the 
lassi
al 
onvexity theory. Books mainly devoted to the lo
al theoryare the ones by: Milman and S
he
htman [149℄, Pisier [162℄, Tom
zak-Jaegermann[195℄.2 Classi
al inequalities and isotropi
 positions2.1 Notation2.1.1. We study �nite-dimensional real normed spa
es X = (Rn ; k � k). The unitball KX of su
h a spa
e is an origin-symmetri
 
onvex body in Rn whi
h we agreeto 
all a body. There is a one to one 
orresponden
e between norms and bodies inRn : If K is a body, then kxk = minf� > 0 : x 2 �Kg is a norm de�ning a spa
eXK with K as its unit ball. In this way bodies arise naturally in fun
tional analysisand will be our main obje
t of study.If K and T are bodies in Rn we 
an de�ne a multipli
ative distan
e d(K;T ) byd(K;T ) = inffab : a; b > 0;K � bT; T � aKg:The natural distan
e between the n-dimensional spa
es XK and XT is theBana
h-Mazur distan
e. Sin
e we want to identify isometri
 spa
es, we allow alinear transformation and setd(XK ; XT ) = inffd(K;uT ) : u 2 GLng:In other words, d(XK ; XT ) is the smallest positive number d for whi
h we 
an �ndu 2 GLn su
h that K � uT � dK. We 
learly have d(XK ; XT ) � 1 with equalityif and only if XK and XT are isometri
. Note the multipli
ative triangle inequalityd(X;Z) � d(X;Y )d(Y; Z) whi
h holds true for every triple of n-dimensional spa
es.2.1.2. We assume that Rn is equipped with a Eu
lidean stru
ture h�; �i anddenote the 
orresponding Eu
lidean norm by j � j. Dn is the Eu
lidean unit ball andSn�1 is the unit sphere. We also write j � j for the volume (Lebesgue measure) inRn , and � for the Haar probability measure on the orthogonal group O(n).Let Gn;k denote the Grassmannian of all k-dimensional subspa
es of Rn . Then,O(n) equips Gn;k with a Haar probability measure �n;k satisfying�n;k(A) = �fu 2 O(n) : uEk 2 Agfor every Borel subset A of Gn;k and every �xed element Ek of Gn;k. The rotation-ally invariant probability measure on Sn�1 will be denoted by �.4



2.1.3. Duality plays an important role in the theory. If K is a body in Rn , itspolar body is de�ned byKÆ = fy 2 Rn : jhx; yij � 1 for all x 2 Kg:That is, kykKÆ = maxx2K jhx; yij. Note that XKÆ = X�K : KÆ is the unit ball ofthe dual spa
e of X . It is easy to 
he
k that d(X;Y ) = d(X�; Y �).2.2 Classi
al Inequalities(a) The Brunn-Minkowski inequality. Let K and T be two 
onvex bodies inRn . If K + T denotes the Minkowski sum fx+ y : x 2 K; y 2 Tg of K and T , theBrunn-Minkowski inequality states that(1) jK + T j1=n � jKj1=n + jT j1=n;with equality if and only ifK and T are homotheti
al. A
tually, the same inequalityholds for arbitrary non empty 
ompa
t subsets of Rn .One 
an rewrite (1) in the following form: For every � 2 (0; 1),(2) j�K + (1� �)T j1=n � �jKj1=n + (1� �)jT j1=n:Then, the arithmeti
-geometri
 means inequality gives a dimension free version:(3) j�K + (1� �)T j � jKj�jT j1��:There are several proofs of the Brunn-Minkowski inequality, all of them relatedto important ideas. We shall sket
h only two lines of proof.The �rst (histori
ally as well) proof is based on the Brunn 
on
avity prin
iple:Let K be a 
onvex body in Rn and F be a k-dimensional subspa
e. Then, thefun
tion f : F? ! R de�ned by f(x) = jK \ (F + x)j1=k is 
on
ave on its support.The proof is by symmetrization. Re
all that the Steiner symmetrization of Kin the dire
tion of � 2 Sn�1 is the 
onvex body S�(K) 
onsisting of all pointsof the form x + ��, where x is in the proje
tion P�(K) of K onto �? and j�j �12 � length(x + R�) \K. Steiner symmetrization preserves 
onvexity: in fa
t, thisis the Brunn 
on
avity prin
iple for k = 1. The proof is elementary and essentiallytwo dimensional. A well known fa
t whi
h goes ba
k to Steiner and S
hwarz butwas later rigorously proved in [45℄ (see [35℄) is that for every 
onvex body K one
an �nd a sequen
e of su

essive Steiner symmetrizations in dire
tions � 2 F sothat the resulting 
onvex body ~K has the following property: ~K \ (F + x) is a ballwith radius r(x), and j ~K \ (F +x)j = jK \ (F +x)j for every x 2 F?. Convexity of~K implies that r is 
on
ave on its support, and this shows that f is also 
on
ave.2 The Brunn 
on
avity prin
iple implies the Brunn-Minkowski inequality. If K;Tare 
onvex bodies in Rn , we de�neK1 = K�f0g, T1 = T�f1g in Rn+1 and 
onsidertheir 
onvex hull L. If L(t) = fx 2 Rn : (x; t) 2 Lg, t 2 R, we easily 
he
k that5



L(0) = K;L(1) = T , and L(1=2) = K+T2 . Then, the Brunn 
on
avity prin
iple forF = Rn shows that(4) ���K + T2 ���1=n � 12 jKj1=n + 12 jT j1=n: 2A se
ond proof of the Brunn-Minkowski inequality may be given via the Kn�othemap: Assume that K and T are open 
onvex bodies. Then, there exists a one toone and onto map � : K ! T with the following properties:(i) � is triangular: the i-th 
oordinate fun
tion of � depends only on x1; : : : ; xi.That is,(5) �(x1; : : : ; xn) = (�1(x1); �2(x1; x2); : : : ; �n(x1; : : : ; xn)):(ii) The partial derivatives ��i�xi are nonnegative on K, and the determinant ofthe Ja
obian of � is 
onstant. More pre
isely, for every x 2 K(6) (detJ�)(x) = nYi=1 ��i�xi (x) = jT jjKj :The map � is 
alled the Kn�othe map from K onto T . Its existen
e was establishedin [102℄ (see also [149, Appendix I℄). Observe that ea
h 
hoi
e of 
oordinate systemin Rn produ
es a di�erent Kn�othe map from K onto T .It is 
lear that (I + �)(K) � K + T , therefore we 
an estimate jK + T j usingthe arithmeti
-geometri
 means inequality as follows:(7) jK + T j � Z(I+�)(K) dx = ZK jdetJI+�(x)jdx = ZK nYi=1�1 + ��i�xi� dx� ZK(1 + detJ1=n� )ndx = jKj�1 + jT j1=njKj1=n�n = �jKj1=n + jT j1=n�n :This proves the Brunn-Minkowski inequality. 2Alternatively, instead of the Kn�othe map one may use the Brenier map  :K ! T , where K and T are open 
onvex bodies. This is also a one to one, ontoand \ratio of volumes" preserving map (i.e. its Ja
obian has 
onstant determinant),with the following property: There is a 
onvex fun
tion f 2 C2(K) de�ned on Ksu
h that  = rf . A remarkable property of the Brenier map is that it is uniquelydetermined. Existen
e and uniqueness of the Brenier map were proved in [26℄ (seealso [125℄ for a di�erent proof and important generalizations).It is 
lear that the Ja
obian J = Hessf is a symmetri
 positive de�nite matrix.Again we have (I +  )(K) � K + T , hen
e(8) jK + T j � ZK jdetJI+ (x)jdx = ZK det (I +Hessf) dx = ZK nYi=1(1 + �i(x))dx;6



where �i(x) are the non negative eigenvalues of Hessf . Moreover, by the ratio ofvolumes preserving property of  , we have Qni=1 �i(x) = jT j=jKj for every x 2 K.Therefore, the arithmeti
-geometri
 means inequality gives(9) jK + T j � ZK  1 + [ nYi=1�i(x)℄1=n!n dx = �jKj1=n + jT j1=n�n : 2This proof has the advantage of providing a des
ription for the equality 
ases: eitherK or T must be a point, or K must be homotheti
al to T .Let us des
ribe here the generalization of Brenier's work due to M
Cann: Let�; � be probability measures on Rn su
h that � is absolutely 
ontinuous with respe
tto Lebesgue measure. Then, there exists a 
onvex fun
tion f su
h that rf : Rn !Rn is de�ned �-almost everywhere, and �(A) = �((rf)�1(A))) for every Borelsubset A of Rn (rf pushes forward � to �). If both �; � are absolutely 
ontinuouswith respe
t to Lebesgue measure, then the Brenier map rf has an inverse (rf)�1whi
h is de�ned �-almost everywhere and is also a Brenier map, pushing forward� to �. A regularity result of Ca�arelli [44℄ (see [11℄) states that if T is a 
onvexbounded open set, f is a probability density on Rn , and g is a probability densityon T su
h that(i) f is lo
ally bounded and bounded away from zero on 
ompa
t sets, and(ii) there exist 
1; 
2 > 0 su
h that 
1 � g(y) � 
2 for every y 2 T ,then, the Brenier maprf : (Rn ; fdx)! (Rn ; gdx) is 
ontinuous and belongs lo
allyto the H�older 
lass C� for some � > 0. The following re
ent result [11℄ makes useof all this information:Fa
t 1: Let K1 and K2 be open 
onvex bounded subsets of Rn with jK1j = jK2j = 1.There exists a C1-di�eomorphism  : K1 ! K2 whi
h is volume preserving andsatis�es(10) K1 + �K2 = fx+ � (x) : x 2 K1g ; � > 0:Proof: Let � be any smooth stri
tly positive density on Rn . Consider the Breniermaps(11)  i = rfi : (Rn ; �dx)! (Ki; dx) ; i = 1; 2:Ca�arelli's result shows that they are C1-smooth. We now apply the followingtheorem of Gromov [72℄ (for a proof, see also [11℄):Fa
t 2: (i) Let f : Rn ! R be a C2-smooth 
onvex fun
tion with stri
tly positiveHessian. Then, the image of the gradient map Imrf is an open 
onvex set.(ii) If f1; f2 are two su
h fun
tions, thenIm(rf1 +rf2) = Im(rf1) + Im(rf2): 2It follows that, for every � > 0,(12) K1 + �K2 = frf1(x) + �rf2(x) : x 2 Rng:7



Then, one 
an 
he
k that the map  =  2 Æ ( 1)�1 : K1 ! K2 satis�es all the
onditions of Fa
t 1. 2The existen
e of a volume preserving  : K1 ! K2 su
h that (I +  )(K1) =K1 + K2 
overs a \weak point" of the Kn�othe map and should have importantappli
ations to 
onvex geometry. We dis
uss some of them in Se
tion 3.2.(b) Consequen
es of the Brunn-Minkowski inequality(b1) The isoperimetri
 inequality for 
onvex bodies. The surfa
e area �(K) of a
onvex body K is de�ned by(13) �(K) = lim"!0+ jK + "Dnj � jKj" :It is a well-known fa
t that among all 
onvex bodies of a given volume the ball hasminimal surfa
e area. This is an immediate 
onsequen
e of the Brunn-Minkowskiinequality: If K is a 
onvex body in Rn with jKj = jrDnj, then for every " > 0(14) jK + "Dnj1=n � jKj1=n + "jDnj1=n = (r + ")jDnj1=n:It follows that the surfa
e area �(K) of K satis�es(15) �(K) = lim"!0+ jK + "Dnj � jKj" � lim"!0+ (r + ")n � rn" jDnj = njDnj 1n jKjn�1nwith equality if K = rDn. The question of uniqueness in the equality 
ase is moredeli
ate.(b2) The spheri
al isoperimetri
 inequality. Consider the unit sphere Sn�1 with thegeodesi
 distan
e � and the rotationally invariant probability measure �. For everyBorel subset A of Sn�1 and for every " > 0, we de�ne the "-extension of A:(16) A" = fx 2 Sn�1 : �(x;A) � "g:Then, the isoperimetri
 inequality for the sphere is the following statement:Among all Borel subsets A of Sn�1 with given measure � 2 (0; 1), a spheri
al
ap B(x; r) of radius r > 0 su
h that �(B(x; r)) = � has minimal "-extension forevery " > 0.This means that if A � Sn�1 and �(A) = �(B(x0; r)) for some x0 2 Sn�1 andr > 0, then(17) �(A") � �(B(x0; r + "))for every " > 0. Sin
e the �-measure of a 
ap is easily 
omputable, one 
an give alower bound for the measure of the "-extension of any subset of the sphere. We aremainly interested in the 
ase �(A) = 12 , and a straightforward 
omputation (see[61℄) shows the following: 8



Theorem 2.2.1. If A is a Borel subset of Sn+1 and �(A) = 1=2, then(18) �(A") � 1�p�=8 exp(�"2n=2)for every " > 0. 2[The 
onstant p�=8 may be repla
ed by a sequen
e of 
onstants an tending to12 as n!1.℄The spheri
al isoperimetri
 inequality 
an be proved by spheri
al symmetriza-tion te
hniques (see [176℄ or [61℄). However, it was re
ently observed [10℄ that one
an give a very simple proof of an estimate analogous to (18) using the Brunn-Minkowski inequality. The key point is the following lemma:Lemma. Consider the probability measure �(A) = jAj=jDnj on the Eu
lidean unitball Dn. If A;B are subsets of Dn with �(A) � �, �(B) � �, and if �(A;B) =inffja� bj : a 2 A; b 2 Bg = � > 0, then� � exp(��2n=8):[In other words, if two disjoint subsets of Dn have positive distan
e �, then at leastone of them must have small volume (depending on �) when the dimension n ishigh.℄Proof: We may assume that A and B are 
losed. By the Brunn-Minkowski in-equality, �(A+B2 ) � �. On the other hand, the parallelogram law shows that ifa 2 A; b 2 B then ja+ bj2 = 2jaj2 + 2jbj2 � ja� bj2 � 4� �2:It follows that A+B2 � (1� �24 )1=2Dn, hen
e��A+B2 � � �1� �24 �n=2 � exp(��2n=8): 2Proof of Theorem 2.2.1 (with weaker 
onstants). Assume that A � Sn�1 with�(A) = 1=2. Let " > 0 and de�ne B = (A")
 � Sn�1. We �x � 2 (0; 1) and 
onsiderthe subsets ~A = SftA : � � t � 1g and ~B = SftB : � � t � 1g of Dn. These aredisjoint with distan
e ' �". The Lemma shows that �( ~B) � exp(�
�2"2n=8), andsin
e �( ~B) = (1� �n)�(B) we obtain(19) �(A") � 1� 11� �n exp(�
�2"2n=8):We 
on
lude the proof by 
hoosing suitable � 2 (0; 1). 2(b3) C. Borell's Lemma and Khin
hine type inequalities. Let � be a Borel probabil-ity measure on Rn . We say that � is log-
on
ave if whenever A;B are Borel subsetsof Rn and � 2 (0; 1) we have(20) �(�A+ (1� �)B) � �(A)��(B)1��:9



The following lemma of C. Borell [21℄ holds for all log-
on
ave probability measures:Lemma. Let � be a log-
on
ave Borel probability measure on Rn , and A be asymmetri
 
onvex subset of Rn . If �(A) = � > 1=2, then for every t � 1 we have(21) � ((tA)
) � ��1� �� � t+12 :Proof: Immediate by the log-
on
avity of �, after one observes that(22) RnnA � 2t+ 1(RnntA) + t� 1t+ 1A: 2Let K be a 
onvex body in Rn . By the Brunn-Minkowski inequality we seethat the measure �K de�ned by �K(A) = jA \Kj=jKj is a log-
on
ave probabilitymeasure. In this 
ontext, Borell's lemma tells us that if A is 
onvex symmetri
 andif A\K 
ontains more than half of the volume ofK, then the proportion ofK whi
hstays outside tA de
reases exponentially in t as t ! +1 in a rate independent ofthe 
onvex body K and the dimension n.This observation has important appli
ations to the study of linear fun
tionsf(x) = hx; yi, y 2 Rn , de�ned on 
onvex bodies. Let us denote by kfkp the Lpnorm with respe
t to the probability measure �K . Then, for every linear fun
tionf : K ! R we have(23) kfkq � kfkp � 
pkfkq ; 0 < q < pwhere 
p are universal 
onstants depending only on p. The left hand side inequalityis just H�older's inequality, while the right hand side (in the 
ase 1 � q < p) is a
onsequen
e of Borell's lemma (see [83℄). One writes(24) 1jKj ZK jf(x)jpdx = Z +10 ptp�1�K (fx 2 K : jf(x)j � tg) dtand estimates �K(fx 2 K : jf(x)j � tg) for large values of t using Borell's lemmawith say A = fx 2 Rn : jf(x)j � 3kfkqg. The dependen
e of 
p on p is linear asp!1. This is equivalent to the fa
t that the L 1(K) norm of f(25) kfkL 1(K) = infn� > 0 : 1jKj ZK exp(jf(x)j=�) � 2ois equivalent to kfk1. The question to determine the 
ases where 
(p) ' pp asp ! 1 in (23) is very important for the theory. This is 
ertainly true for somebodies (e.g. the 
ube), but the example of the 
ross-polytope shows that it is notalways so.Inverse H�older inequalities of this type are very similar in nature to the 
lassi
alKhin
hine inequality (and are sometimes 
alled Khin
hine type inequalities). Infa
t, the argument des
ribed above may be used to give proofs of the Kahane-Khin
hine inequality (see [149, Appendix III℄).10



Khin
hine type inequalities do not hold only for linear fun
tions. For example,Bourgain [24℄ has shown that if f : K ! R is a polynomial of degree m, then(26) kfkp � 
(p;m)kfk2for every p > 2, where 
(p;m) depends only on p and the degree m of f (For thispurpose, the Brunn-Minkowski inequality was not enough, and a suitable dire
t useof the Kn�othe map was ne
essary). It was also re
ently proved [107℄ that (23) holdstrue for any norm f on Rn . Finally the interval of values of p and q in (23) 
an beextended to (�1;+1) (see [145℄ for linear fun
tions, [76℄ for norms).2.3 Extremal problems and isotropi
 positionsIn the study of �nite dimensional normed spa
es one often fa
es the problem of
hoosing a suitable Eu
lidean stru
ture related to the question in hand. In geomet-ri
 language, we are given the body K in Rn and want to �nd a spe
i�
 Eu
lideannorm in Rn whi
h is naturally 
onne
ted with our question about K. An equivalent(and sometimes more 
onvenient) approa
h is the following: we �x the Eu
lideanstru
ture in Rn , and given K we ask for a suitable \position" uK of K, where u is alinear isomorphism of Rn . That is, instead of keeping the body �xed and 
hoosingthe \right ellipsoid" we �x the Eu
lidean norm and 
hoose the \right position" ofthe body.Most of the times the starting point is a question of the following type: weare given a fun
tional f on 
onvex bodies and a 
onvex body K and we ask forthe maximum or minimum of f(uK) over all volume preserving transformations u.We shall des
ribe some very important positions of K whi
h solve su
h extremalproblems. What is interesting is that there is a simple variational method whi
hleads to a des
ription of the solution, and that in most 
ases the resulting position ofK is isotropi
. Moreover, isotropi
 
onditions are 
losely related to the Bras
amp-Lieb inequality [34℄ and its reverse [19℄, a fa
t that was dis
overed and used by K.Ball in the 
ase of John's representation of the identity. For more information onthis very important 
onne
tion, see the arti
le [18℄ in this 
olle
tion.(a) John's position. A 
lassi
al result of F. John [94℄ states that d(X; `n2 ) � pn forevery n-dimensional normed spa
e X . This estimate is a by-produ
t of the studyof the following extremal problem:Let K be a body in Rn . Maximize jdetuj over all u : `n2 ! XK with kuk = 1.If u0 is a solution of this problem, then u0Dn is the ellipsoid of maximal volumewhi
h is ins
ribed in K. Existen
e and uniqueness of su
h an ellipsoid are easy to
he
k. An equivalent formulation of the problem is the following:Let K be a body in Rn . Minimize ku : `n2 ! XKk over all volume preservingtransformations u.We assume that the identity map I is a solution of this problem, and normalize sothat(1) kI : `n2 ! XKk = 1 = minfku : `n2 ! XKk : jdetuj = 1g:11



This means that the Eu
lidean unit ball Dn is the maximal volume ellipsoid of K.We shall use a simple variational argument [82℄ to give ne
essary 
onditions on K:Theorem 2.3.1. Let Dn be the maximal volume ellipsoid of K. Then, for everyT 2 L(Rn ;Rn ) we 
an �nd a 
onta
t point x of K and Dn (i.e. jxj = kxk = 1)su
h that(2) hx; Txi � trTn :Proof: We may assume that K is smooth enough. Let S 2 L(Rn ;Rn ). We �rst
laim that(3) kSxk � trSnfor some 
onta
t point x of K and Dn. Let " > 0 be small enough. From (1) wehave(4) kI + "Sk � [det(I + "S)℄1=n = 1 + " trSn +O("2):Let x" 2 Sn�1 be su
h that kx" + "Sx"k = kI + "Sk. Sin
e Dn � K, we havekx"k � 1. Then, the triangle inequality for k � k shows that(5) kSx"k � trSn +O("):We 
an �nd x 2 Sn�1 and a sequen
e "m ! 0 su
h that x"m ! x. By (5) weobviously have kSxk � trSn . Also, kxk = lim kx"m + "mSx"mk = kIk = 1. Thisproves (3).Now, let T 2 L(Rn ;Rn ) and write S = I + "T , " > 0. We 
an �nd x" su
h thatkx"k = jx"j = 1 and(6) kx" + "Tx"k � tr(I + "T )n = 1+ " trTn :Sin
e kx" + "Tx"k = 1 + "hrkx"k; Tx"i + O("2), we obtain hrkx"k; Tx"i � trTn +O("). Choosing again "m ! 0 su
h that x"m ! x 2 Sn�1, we readily see that x isa 
onta
t point of K and Dn, and(7) hrkxk; Txi � trTn :But, rkxk is the point on the boundary of KÆ at whi
h the outer unit normal isparallel to x (see [177, pp. 44℄). Sin
e x is a 
onta
t point of K and Dn, we musthave rkxk = x. This proves the theorem. 2As a 
onsequen
e of Theorem 2.3.1 we get John's upper bound for d(X; `n2 ):Theorem 2.3.2. Let X be an n-dimensional normed spa
e. Then,d(X; `n2 ) � pn:12



Proof: By the de�nition of the Bana
h-Mazur distan
e we may 
learly assume thatthe unit ball K of X satis�es the assumptions of Theorem 2.3.1. In parti
ular,kxk � jxj for every x 2 Rn .Let x 2 Rn and 
onsider the map Ty = hy; xix. Theorem 2.3.1 gives us a
onta
t point z of K and Dn su
h that(8) hz; T zi � trTn = jxj2n :On the other hand,(9) hz; T zi = hz; xi2 � kzk2�kxk2 = kxk2;sin
e one 
an 
he
k that kzk� = 1. Therefore, kxk � jxj � pnkxk. This shows thatDn � K � pnDn. 2Remark. The estimate given by John's theorem is sharp. If X = `n1 or `n1, one 
an
he
k that d(X; `n2 ) = pn.Theorem 2.3.1 gives very pre
ise information on the distribution of 
onta
tpoints of K and Dn on the sphere Sn�1, whi
h 
an be put in a quantitative form:Theorem 2.3.3. (Dvoretzky-Rogers Lemma [53℄). Let Dn be the maximal volumeellipsoid of K. Then, there exist pairwise orthogonal ve
tors y1; : : : ; yn in Rn su
hthat(10) �n� i+ 1n �1=2 � kyik � jyij = 1 ; i = 1; : : : ; n:Proof: We de�ne the yi's indu
tively. The �rst ve
tor y1 
an be any 
onta
tpoint of K and Dn. Assume that y1; : : : ; yi�1 have been de�ned. Let Fi =spanfy1; : : : ; yi�1g. Then, tr(PF?i ) = n� i+1 and using Theorem 2.3.1 we 
an �nda 
onta
t point xi for whi
h(11) jPF?i xij2 = hxi; PF?i xii � n� i+ 1n :We set yi = PF?i xi=jPF?i xij. Then,(12) 1 = jyij � kyik = kyik � kxik� � hxi; yii = jPF?i xij � �n� i+ 1n �1=2 : 2Finally, a separation argument and Theorem 2.3.1 give us John's representationof the identity:Theorem 2.3.4. Let Dn be the maximal volume ellipsoid of K. There exist 
onta
tpoints x1; : : : ; xm of K and Dn, and positive real numbers �1; : : : ; �m su
h thatI = mXi=1 �ixi 
 xi:13



Proof: Consider the 
onvex hull C of all operators x
x, where x is a 
onta
t pointof K and Dn. We need to prove that I=n 2 C. If this is not the 
ase, there existsT 2 L(Rn ;Rn ) su
h that(13) hT; I=ni > hx
 x; T ifor every 
onta
t point x. But, hT; I=ni = trTn and hx
x; T i = hx; Txi. This would
ontradi
t Theorem 2.3.1. 2De�nition. A Borel measure � on Sn�1 is 
alled isotropi
 if(14) ZSn�1hx; �i2d�(x) = �(Sn�1)nfor every � 2 Sn�1.John's representation of the identity implies thatmXi=1 �ihxi; �i2 = 1for every � 2 Sn�1. This means that if we 
onsider the measure � on Sn�1 whi
hgives mass �i at the point xi, i = 1; : : : ;m, then � is isotropi
. In this sense,John's position is an isotropi
 position. One 
an a
tually prove that the existen
eof an isotropi
 measure supported by the 
onta
t points of K and Dn 
hara
terizesJohn's position in the following sense (see [16℄, [82℄):\Assume that Dn is 
ontained in the body K. Then, Dn is the maximal volumeellipsoid of K if and only if there exists an isotropi
 measure � supported by the
onta
t points of K and Dn."Note. The argument given for the proof of Theorem 2.3.1 
an be applied in a moregeneral 
ontext: If K and L are (not ne
essarily symmetri
) 
onvex bodies in Rn ,we say that L is of maximal volume in K if L � K and, for every w 2 Rn andT 2 SLn, the aÆne image w + T (L) of L is not 
ontained in the interior of K.Then, one has a des
ription of this maximal volume position, whi
h generalizesJohn's representation of the identity:Theorem 2.3.5. Let L be of maximal volume in K. For every z 2 int(L), we
an �nd 
onta
t points v1; : : : ; vm of K � z and L � z, 
onta
t points u1; : : : ; umof (K � z)Æ and (L � z)Æ, and positive reals �1; : : : ; �m, su
h that P�juj = o,huj ; vji = 1, and I = mXj=1 �juj 
 vj : 2This was observed by Milman in the symmetri
 
ase with z = 0 (see [195,Theorem 14.5℄). For the extension to the non-symmetri
 
ase see [88℄, where it isalso shown that under mild 
onditions on K and L there exists an optimal 
hoi
e ofthe \
enter" z so that, setting z = 0, we simultaneously haveP�juj =P�jvj = 0in the statement above. 14



(b) Isotropi
 position { Hyperplane 
onje
ture. A notion 
oming from 
lassi
alme
hani
s is that of the Binet ellipsoid of a body K (a
tually, of any 
ompa
t setwith positive Lebesgue measure). The norm of this ellipsoid EB(K) is de�ned by(15) kxk2EB(K) = 1jKj ZK jhx; yij2dy:The Legendre ellipsoid EL(K) of K is de�ned by(16) ZEL(K)hx; yi2dy = ZKhx; yi2dyfor every x 2 Rn , and satis�es (see [146℄)(17) EB(K) = (n+ 2)1=2jEL(K)j�1(EL(K))Æ:That is, EL(K) has the same moments of inertia as K with respe
t to the axes.A body K is said to be in isotropi
 position if jKj = 1 and its Legendre ellipsoidEL(K) (equivalently, its Binet ellipsoid EB(K)) is homotheti
al to Dn. This meansthat there exists a 
onstant LK su
h that(18) ZKhy; �i2dy = L2Kfor every � 2 Sn�1 (K has the same moment of inertia in every dire
tion �). It isnot hard to see that every body K has a position uK whi
h is isotropi
. Moreover,this position is uniquely determined up to an orthogonal transformation. Therefore,LK is an aÆne invariant whi
h is 
alled the isotropi
 
onstant of K.An alternative way to see this isotropi
 position in the spirit of our presentdis
ussion is to 
onsider the following minimization problem:Let K be a body in Rn . Minimize RuK jxj2dx over all volume preserving trans-formations u.Then, we have the following theorem [146℄:Theorem 2.3.6. Let K be a body in Rn with jKj = 1. The identity map minimizesRuK jxj2dx over all volume preserving transformations u if and only if K is isotropi
.Moreover, this isotropi
 position is unique up to orthogonal transformations.Proof: We shall use the same variational argument as for John's position. LetT 2 L(Rn ;Rn ) and " > 0 be small enough. Then, u = (I + "T )=[det(I + "T )℄1=n isvolume preserving, and sin
e RuK jxj2dx � RK jxj2dx we get(19) ZK jx+ "Txj2dx � [det(I + "T )℄ 2n ZK jxj2dx:But, jx+ "Txj2 = jxj2+2"hx; Txi+O("2) and [det(I + "T )℄ 2n = 1+2" trTn +O("2).Therefore, (19) implies(20) ZKhx; Txidx � trTn ZK jxj2dx:15



By symmetry we see that(21) ZKhx; Txidx = trTn ZK jxj2dxfor every T 2 L(Rn ;Rn ). This is equivalent to(22) ZKhx; �i2dx = 1n ZK jxj2dx ; � 2 Sn�1:Conversely, if K is isotropi
 and if T is any volume preserving transformation, then(23)ZTK jxj2dx = ZK jTxj2dx = ZKhx; T �Txidx = tr(T �T )n ZK jxj2dx � ZK jxj2dx;whi
h shows that K solves our minimization problem. We 
an have equality in (23)if and only if T 2 O(n). 2It is easily proved that LK � LDn � 
 > 0 for every body K in Rn , where 
 > 0is an absolute 
onstant. An important open question having its origin in [22℄ is thefollowing:Problem. Does there exist an absolute 
onstant C > 0 su
h that LK � C for everybody K?A simple argument based on John's theorem shows that LK � 
pn for everybodyK. Uniform boundedness of LK is known for some 
lasses of bodies: unit ballsof spa
es with a 1-un
onditional basis, zonoids and their polars, et
. For partialanswers to the question, see [13℄, [47℄, [48℄, [95℄, [96℄, [106℄, [146℄. The best knowngeneral upper estimate is due to Bourgain [24℄: LK � 
 4pn logn for every body Kin Rn . In the Appendix we give a brief presentation of Bourgain's result.The problem we have just stated has many equivalent reformulations, whi
h aredeeply 
onne
ted with problems from 
lassi
al 
onvexity. For a detailed dis
ussion,see [146℄. An interesting property of the isotropi
 position is that if K is isotropi
then all 
entral se
tionsK\�?, � 2 Sn�1 are equivalent up to an absolute 
onstant.This 
omes from the fa
t that(24) ZKhx; �i2dx = L2K ' 1jK \ �?j2 ; � 2 Sn�1a 
onsequen
e of the log-
on
avity of �K . This was �rst observed in [91℄. Then, uni-form boundedness of LK is equivalent to the statement that an isotropi
 body hasall its (n� 1)-dimensional 
entral se
tions bounded below by an absolute 
onstant.This is equivalent to theHyperplane Conje
ture: Is it true that a body K of volume 1 must have an(n � 1)-dimensional 
entral se
tion with volume bounded below by an absolute
onstant?(
) Minimal surfa
e position. Let K be a 
onvex body in Rn with normalizedvolume jKj = 1. We now 
onsider the following minimization problem:16



Find the minimum of �(uK) over all volume preserving transformations u.This minimum is attained for some u0 and will be denoted by �K (the minimalsurfa
e invariant of K). We say that K has minimal surfa
e if �(K) = �K jKjn�1n .Re
all that the area measure �K of K is de�ned on Sn�1 and 
orresponds tothe usual surfa
e measure on K via the Gauss map: For every Borel A � Sn�1, wehave(25) �K(A) = � (fx 2 bd(K) : the outer normal to K at x is in Ag) ;where � is the (n � 1)-dimensional surfa
e measure on K. We obviously have�(K) = �K(Sn�1).A 
hara
terization of the minimal surfa
e position through the area measurewas given by Petty [157℄:Theorem 2.3.7. Let K be a 
onvex body in Rn with jKj = 1. Then, �(K) = �Kif and only if �K is isotropi
. Moreover, this minimal surfa
e position is unique upto orthogonal transformations.The proof makes use of the same variational argument. The basi
 observation isthat if u is any volume preserving transformation, then(26) �((u�1)�K) = ZSn�1 juxj�K(dx):K. Ball [15℄ has proved that the minimal surfa
e invariant �K is maximal whenK is a 
ube in the symmetri
 
ase, and when K is a simplex in the general 
ase.It follows that �K � 2n for every body K in Rn . For appli
ations of the minimalsurfa
e position to the study of hyperplane proje
tions of 
onvex bodies, see [85℄(also, [14℄ for an approa
h through the notion of volume ratio).(d) Minimal mean width position. Let K be a 
onvex body in Rn . The mean widthof K is de�ned by(27) w(K) = 2 ZSn�1 hK(u)�(du);where hK(x) = maxy2Khx; yi is the support fun
tion of K. We say that K hasminimal mean width if w(TK) � w(K) for every volume preserving linear trans-formation T of Rn . Our standard variational argument gives the following 
hara
-terization of the minimal mean width position:Proposition 2.3.8. A smooth body K in Rn has minimal mean width if and onlyif(28) ZSn�1hrhK(u); Tui�(du) = trTn w(K)2for every linear transformation T . Moreover, this minimal mean width position isuniquely determined up to orthogonal transformations. 217



Consider the measure wK on Sn�1 with density hK with respe
t to �. If wede�ne(29) IK(�) = ZSn�1hrhK(u); �ihu; �i�(du) ; � 2 Sn�1;an appli
ation of Green's formula shows that(30) w(K)2 + IK(�) = (n+ 1) ZSn�1 hK(u)hu; �i2�(du):Combining this identity with Proposition 2.3.8, we obtain an isotropi
 
hara
teri-zation of the minimal mean width position (see [82℄):Theorem 2.3.9. A 
onvex body K in Rn has minimal mean width if and only ifwK is isotropi
. Moreover, the position is uniquely determined up to orthogonaltransformations. 2Note. It is natural to ask for an upper bound for the minimal width parameter, ifwe restri
t ourselves to bodies of �xed volume. It is known that every body K hasa linear image ~K with j ~Kj = jDnj su
h that(31) w( ~K) � 
 log(2d(XK ; `n2 )) � 
 log(2n);where 
 > 0 is an absolute 
onstant. This statement follows from an inequalityof Pisier [159℄ after work of Lewis [109℄, Figiel and Tom
zak-Jaegermann [60℄, andplays a 
entral role in the theory. We shall use the minimal mean width positionand 
ome ba
k to the estimate (31) in Se
tion 5.3 Ba
kground from 
lassi
al 
onvexity3.1 Steiner's formula and Urysohn's inequality3.1.1. Let Kn denote the set of all non-empty, 
ompa
t 
onvex subsets of Rn . Wemay view Kn as a 
onvex 
one under Minkowski addition and multipli
ation bynonnegative real numbers. Minkowski's theorem (and the de�nition of the mixedvolumes) asserts that if K1; : : : ;Km 2 Kn, m 2 N, then the volume of t1K1+ : : :+tmKm is a homogeneous polynomial of degree n in ti � 0 (see [35℄, [177℄). That is,jt1K1 + : : :+ tmKmj = X1�i1;:::;in�mV (Ki1 ; : : : ;Kin)ti1 : : : tin ;where the 
oeÆ
ients V (Ki1 ; : : : ;Kin) are 
hosen to be invariant under permuta-tions of their arguments. The 
oeÆ
ient V (K1; : : : ;Kn) is 
alled the mixed volumeof K1; : : : ;Kn. 18



Steiner's formula, whi
h was already 
onsidered in 1840, may be seen as a spe
ial
ase of Minkowski's theorem. The volume of K + tDn, t > 0, 
an be expanded asa polynomial in t:(1) jK + tDnj = nXi=0 �ni�Wi(K)ti;where Wi(K) = V (K;n� i;Dn; i) is the i-th Quermassintegral of K. It is easy tosee that the surfa
e area of K is given by(2) �(K) = nW1(K):Kubota's integral formula(3) Wi(K) = jDnjjDn�ijn�i ZGn;n�i jP�Kjn�id�n;n�i(�)applied for i = n� 1 shows that(4) Wn�1(K) = jDnj2 w(K):3.1.2. The Alexandrov-Fen
hel inequalities 
onstitute a far rea
hing general-ization of the Brunn-Minkowski inequality and its 
onsequen
es:If K;L;K3; : : : ;Kn 2 Kn, then(5) V (K;L;K3; : : : ;Kn)2 � V (K;K;K3; : : : ;Kn)V (L;L;K3; : : : ;Kn):The proof is due to Alexandrov [1℄, [2℄ (Fen
hel sket
hed an alternative proof, see[58℄). From (5) one 
an re
over the Brunn-Minkowski inequality as well as thefollowing generalization for the quermassintegrals:(6) Wi(K + L) 1n�i �Wi(K) 1n�i +Wi(L) 1n�i ; i = 0; : : : ; n� 1for any pair of 
onvex bodies in Rn .If we take L = tDn, t > 0, then Steiner's formula and the Brunn-Minkowskiinequality give(7) nXi=0 �ni�Wi(K)jDnj ti = jK + tDnjjDnj �  � jKjjDnj�1=n + t!n= nXi=0 �ni�� jKjjDnj�n�in tifor every t > 0. Sin
e the �rst and the last term are equal on both sides of thisinequality, we must have(8) W1(K)jDnj � � jKjjDnj�n�1n19



whi
h is the isoperimetri
 inequality for 
onvex bodies, and(9) w(K) = 2Wn�1(K)jDnj � 2� jKjjDnj� 1n ;whi
h is Urysohn's inequality. Both inequalities are spe
ial 
ases of the set ofAlexandrov inequalities(10) �Wi(K)jDnj � 1n�i � �Wj(K)jDnj � 1n�j ; n > i > j � 0:3.1.3. Let K be a body in Rn . We de�ne(11) M�(K) = ZSn�1 kxk��(dx) = w(K)2 :The Blas
hke-Santal�o inequality asserts that the volume produ
t jKjjKÆj is maxi-mized over all symmetri
 
onvex bodies in Rn exa
tly when K is an ellipsoid:(12) jKjjKÆj � jDnj2:A proof of this fa
t via Steiner symmetrization was given in [12℄ (see also [129℄, [130℄where the non-symmetri
 
ase is treated). H�older's inequality and polar integrationshow that(13) 1M�(K) � �ZSn�1 kxk�n� �1=n = � jKÆjjDnj�1=n :Combining with (12) and applying (13) for K instead of KÆ, we obtain(14) 1M(K) � � jKjjDnj�1=n �M�(K);that is, Urysohn's inequality.3.1.4. A third proof of Urysohn's inequality 
an be given as follows: Letui 2 O(n), i = 1; : : : ;m and �i > 0 with Pmi=1 �i = 1. It is easily 
he
ked thatM��Pmi=1 �iui(K)� =M�(K). It follows that(15) M� ZO(n) u(K)d�(u)! =M�(K):But, T = RO(n) u(K)d�(u) is a ball of radius (jT j=jDnj)1=n, and the Brunn-Minkowskiinequality implies that jT j � jKj. Therefore,(16) M�(K) = � jT jjDnj�1=n � � jKjjDnj�1=n :20



3.1.5. For any (n� 1)-tuple C = K1; : : : ;Kn�1 2 Kn, the Riesz representationtheorem shows the existen
e of a Borel measure S(C; �) on the unit sphere Sn�1su
h that(17) V (L;K1; : : : ;Kn�1) = 1n ZSn�1 hL(u)dS(C; u)for every L 2 Kn. If K 2 Kn, the j-th area measure of K is de�ned by Sj(K; �) =S(K; j;Dn;n � j � 1; �), j = 0; 1; : : : ; n � 1. It follows that the quermassintegralsWi(K) 
an be written in the form(18) Wi(K) = 1n ZSn�1 hK(u)dSn�i�1(K;u) ; i = 0; 1; : : : ; n� 1or, alternatively,(19) Wi(K) = 1n ZSn�1 dSn�i(K;u) ; i = 1; : : : ; n:If we assume that hK is twi
e 
ontinuously di�erentiable, then Sj(K; �) has a 
on-tinuous density sj(K;u), the j-th elementary symmetri
 fun
tion of the eigenvaluesof the Hessian of hK at u.In the spirit of 2.3, we say that a body K minimizes Wi if Wi(K) � Wi(TK)for every volume preserving linear transformation T of Rn . The 
ases i = 1 and i =n�1 
orrespond to the minimal surfa
e area and minimal mean width respe
tively.For every i = 1; : : : ; n � 1 one 
an prove that, if K minimizes Wi then Sn�i(K; �)is isotropi
 (see [82℄, where other ne
essary isotropi
 
onditions are also given).3.2 Geometri
 inequalities of \hyperboli
" typeThe Alexandrov-Fen
hel inequalities are the most advan
ed representatives of aseries of very important inequalities. They should perhaps be 
alled \hyperboli
"inequalities in 
ontrast to the more often used in analysis \ellipti
" inequalities:Cau
hy-S
hwarz, H�older, and their 
onsequen
es (various triangle inequalities). A
onsequen
e of \hyperboli
" inequalities is 
on
avity of some important quantities.3.2.1. Let us start this short review by re
alling some old and 
lassi
al, butnot well remembered, inequalities due to Newton. Let x1; : : : ; xn be real numbers.We de�ne the elementary symmetri
 fun
tions e0(x1; : : : ; xn) = 1, and(1) ei(x1; : : : ; xn) = X1�j1<:::<ji�nxj1xj2 : : : xji ; 1 � i � n:In parti
ular, e1(x1; : : : ; xn) = Pni=1 xi, en(x1; : : : ; xn) = Qni=1 xi. We then 
on-sider the normalized fun
tions(2) Ei(x1; : : : ; xn) = 1�ni�ei(x1; : : : ; xn):21



Newton proved that, for k = 1; : : : ; n� 1,(3) E2k(x1; : : : ; xn) � Ek�1(x1; : : : ; xn)Ek+1(x1; : : : ; xn);with equality if and only if all the xi's are equal. An immediate 
orollary of (3),observed by Newton's student Ma
laurin, is the string of inequalities(4) E1(x1; : : : ; xn) � E1=22 (x1; : : : ; xn) � : : : � E1=nn (x1; : : : ; xn);whi
h holds true for any n-tuple (x1; : : : ; xn) of positive reals. Note the similaritybetween (3), (4) and the Alexandrov-Fen
hel and Alexandrov inequalities 3.1.2(5)and (10) respe
tively.To prove (3) we 
onsider the polynomial(5) P (x) = nYi=1(x� xi) = nXj=0(�1)j�nj�Ej(x1; : : : ; xn)xn�j ;or in homogeneous form,(6) Q(t; �) = �nP ( t� ) = nXj=0(�1)j�nj�Ej(x1; : : : ; xn)tn�j� j :Sin
e P has only real roots, the same is true for the derivatives of P (with respe
tto t or �) of any order. If we di�erentiate (6) (n � k � 1)-times with respe
t to tand then (k � 1)-times with respe
t to � , we obtain the polynomial(7) n!2 Ek�1(x1; : : : ; xn)t2 � n!Ek(x1; : : : ; xn)t� + n!2 Ek+1(x1; : : : ; xn)�2;whi
h has two real roots for �xed � = 1. This is exa
tly Newton's inequality (3).We refer to [167℄ for a very ni
e di�erent proof and generalizations.3.2.2. Let us now turn to a multidimensional, but still numeri
al, analogue ofNewton's inequalities. Consider the spa
e Sn of real symmetri
 n�n matri
es. Wepolarize the fun
tion A! detA to obtain the symmetri
 multilinear form(8) D(A1; : : : ; An) = 1n! X"2f0;1gn(�1)n+P "idet �X "iAi� ;where Ai 2 Sn. Then, if t1; : : : ; tm > 0 and A1; : : : ; Am 2 Sn, the determinant oft1A1 + : : :+ tmAm is a homogeneous polynomial of degree n in ti:(9) det(t1A1 + : : :+ tmAm) = X1�i1�:::�in�mn!D(Ai1 ; : : : ; Ain)ti1 : : : tin :The 
oeÆ
ient D(A1; : : : ; An) is 
alled the mixed dis
riminant of A1; : : : ; An. Thefa
t that the polynomial P (t) = det(A+tI) has only real roots for any A 2 Sn playsthe 
entral role in the proof of a number of very interesting inequalities 
onne
ting22



mixed dis
riminants, whi
h are quite similar to Newton's inequalities. They were�rst dis
overed by Alexandrov [2℄ in one of his approa
hes to what is now 
alledAlexandrov-Fen
hel inequalities. Today, they are part of a more general theory (seee.g. [93℄). We mention some of them: If Ai; i = 1; : : : ; n are positive, then(10) D(A1; A2; : : : ; An) � nYi=1[detA℄ 1n :Also, the following 
on
avity prin
iple (reverse triangle inequality) is true: Thefun
tion [detA℄1=n is 
on
ave in the positive 
one of Sn. This is in fa
t easy todemonstrate dire
tly. We want to show that, if A1; A2 are positive then(11) [det(A1 +A2)℄ 1n � [detA1℄ 1n + [detA2℄ 1n :We may bring two positive matri
es to diagonal form without 
hanging their de-terminants. Then, we should show that for �i; �i > 0,(12)  nYi=1(�i + �i)!1=n �  nYi=1 �i!1=n + nYi=1�i!1=n ;whi
h is a 
onsequen
e of the arithmeti
-geometri
 means inequality.3.2.3. We now return to 
onvex sets. The results of 3.2.1 and 3.2.2 have theiranalogues in this setting, but the parallel results for mixed volumes are mu
h morediÆ
ult and look unrelated. Even the fa
t that the volume of t1K1 + : : : + tmKmis a homogeneous polynomial in ti � 0 is a non-trivial statement, while the parallelresult for determinants follows by de�nition.To see the 
onne
tion between the two theories we follow [11℄. Consider n �xed
onvex open bounded bodies Ki with normalized volume jKij = 1. As in Se
tion2.2(a), 
onsider the Brenier maps(13)  i : (Rn ; 
n)! Ki;where 
n is the standard Gaussian probability density on Rn . We have  i = rfi,where fi are 
onvex fun
tions on Rn . By Ca�arelli's regularity result, all the  i'sare smooth maps. Then, Fa
t 2 from 2.2(a) shows that the image of (Rn ; 
n) byP ti i is the interior of P tiKi. Sin
e ea
h  i is a measure preserving map, wehave(14) det� �2fi�xk�xl� (x) = 
n(x) ; i = 1; : : : ; n:It follows that(15) ��� nXi=1 tiKi��� = ZRn det nXi=1 ti( �2fi�xk�xl )! dx23



= nXi1;:::;in=1 ti1 : : : tin ZRnD��2fi1(x)�xk�xl ; : : : ; �2fin(x)�xk�xl � dx:In parti
ular, we re
over Minkowski's theorem on polynomiality of jP tiKij, andsee the 
onne
tion between the mixed dis
riminants D(Hessfi1 ; : : : ;Hessfin) andthe mixed volumes(16) V (Ki1 ; : : : ;Kin) = ZRnD(Hessfi1(x); : : : ;Hessfin(x))dx:The Alexandrov-Fen
hel inequalities do not follow from the 
orresponding mixeddis
riminant inequalities, but the deep 
onne
tion between the two theories is ob-vious. Also, some parti
ular 
ases are indeed simple 
onsequen
es. For example, in[11℄ it is proved (as a 
onsequen
e of (16)) that(17) V (K1; : : : ;Kn) � nYi=1 jKij1=n:3.3 Continuous valuations on 
ompa
t 
onvex sets(a) Polynomial valuations. We denote by Kn the set of all non-empty 
ompa
t
onvex subsets of Rn and write L for a �nite dimensional ve
tor spa
e over R or C .A fun
tion ' : Kn ! L is 
alled a valuation, if '(K1 [ K2) + '(K1 \ K2) ='(K1) + '(K2) whenever K1;K2 2 Kn are su
h that K1 [ K2 2 Kn. We shall
onsider only 
ontinuous valuations: valuations whi
h are 
ontinuous with respe
tto the Hausdor� metri
.The notion of valuation may be viewed as a generalization of the notion ofmeasure de�ned only on the 
lass of 
ompa
t 
onvex sets. Mixed volumes providea �rst important example of valuations.A valuation ' : Kn ! L is 
alled polynomial of degree at most l if '(K + x) isa polynomial in x of degree at most l for every K 2 Kn. The following theorem ofKhovanskii and Pukhlikov [105℄ generalizes Minkowski's theorem on mixed volumes(see also [126℄, [4℄):Theorem 3.3.1. Let ' : Kn ! L be a 
ontinuous valuation, whi
h is polynomial ofdegree at most l. Then, if K1; : : : ;Km 2 Kn, '(t1K1+ : : :+ tmKm) is a polynomialin tj � 0 of degree at most n+ l. 2Let ~K = (K1; : : : ;Ks) be an s-tuple of 
ompa
t 
onvex sets in Rn , and F :Rn ! C be a 
ontinuous fun
tion. Alesker studied the Minkowski operator M ~Kwhi
h maps F to M ~KF : Rs+ ! C with(M ~KF )(�1; : : : ; �s) = ZPi�s �iKi F (x)dx:Let A(C n ) be the Fre
het spa
e of entire fun
tions of n variables and Cr(Rn ) bethe Fre
het spa
e of r-times di�erentiable fun
tions on Rn , with the topology ofuniform 
onvergen
e on 
ompa
t sets. The following fa
ts are established in [3℄:24



(i) If F 2 A(C n ), then M ~KF has a unique extension to an entire fun
tion onC s , and the operator M ~K : A(C n )! A(C s ) is 
ontinuous. It follows that if F is apolynomial of degree d then M ~KF is a polynomial of degree at most d+ n.(ii) If F 2 Cr(Rn ), then M ~KF 2 Cr(Rs+ ), and M ~K is a 
ontinuous operator.Moreover, 
ontinuity of the map ~K 7!M ~K with respe
t to the Hausdor� metri
is established.(b) Translation invariant valuations. A valuation of degree 0 is simply trans-lation invariant. If '(uK) = '(K) for every K 2 Kn and every u 2 SO(n), we saythat ' is SO(n)-invariant. Hadwiger [89℄ 
hara
terized the translation and SO(n)invariant valuations as follows (see also [101℄ for a simpler proof):Theorem 3.3.2. A valuation ' is translation and SO(n)-invariant if and only ifthere exist 
onstants 
i, i = 0; : : : ; n su
h that(1) '(K) = nXi=0 
iWi(K)for every K 2 Kn. 2After Hadwiger's 
lassi
al result, two natural questions arise: to 
hara
ter-ize translation invariant valuations without any assumption on rotations, and to
hara
terize O(n) or SO(n) invariant valuations without any assumption on trans-lations. Both questions are of obvious interest in translative integral geometry andin the asymptoti
 theory of �nite dimensional normed spa
es respe
tively (
onsider,for example, the valuation '(K) = RK jxj2dx whi
h was dis
ussed in 2.3(b)).It is a 
onje
ture of M
Mullen [127℄ that every 
ontinuous translation invariantvaluation 
an be approximated (in a 
ertain sense) by linear 
ombinations of mixedvolumes. This is known to be true in dimension n � 3. In [126℄, [127℄ it is provedthat every translation invariant valuation ' 
an be uniquely expressed as a sum' = Pni=0 'i, where 'i are translation invariant 
ontinuous valuations satisfying'i(tK) = ti'(K) (homogeneous of degree i). Moreover, in the 
ase L = R, ho-mogeneous valuations 'i as above 
an be des
ribed in some 
ases: '0 is always a
onstant, 'n is always a multiple of volume, 'n�1 is always of the form(2) 'n�1(K) = ZSn�1 f(u)dSn�1(K;u);where f : Sn�1 ! R is a 
ontinuous fun
tion (whi
h 
an be 
hosen to be orthogonalto every linear fun
tional, and then it is uniquely determined).Under the additional assumption that ' is simple ('(K) = 0 if dimK < n), are
ent theorem of S
hneider [178℄ 
ompletely des
ribes ':Theorem 3.3.3. Every simple, 
ontinuous translation invariant valuation ' :Kn ! R has the form(3) '(K) = 
jKj+ ZSn�1 f(u)dSn�1(K;u);25



where f : Sn�1 ! R is a 
ontinuous odd fun
tion. 2Remark: M
Mullen's 
onje
ture was re
ently proved by Alesker [5℄ in dimensionn = 4.Added in Proofs: Even more re
ently, Alesker [6℄ gave a des
ription of transla-tion invariant valuations on 
onvex sets, whi
h in parti
ular 
on�rms M
Mullen's
onje
ture in all dimensions.(
) Rotation invariant valuations. Alesker [4℄ has re
ently obtained a 
har-a
terization of O(n) (respe
tively SO(n)) invariant 
ontinuous valuations. The�rst main point is that every su
h valuation 
an be approximated uniformly onthe 
ompa
t subsets of Kn by 
ontinuous polynomial O(n) (or SO(n)) invariantvaluations.Then, one 
an des
ribe polynomial rotation invariant valuations in a 
on
reteway. To this end, let us introdu
e some spe
i�
 examples of su
h valuations. Wewrite � for the (n � 1)-dimensional surfa
e measure on K and n(x) for the outernormal at bd(K) (this is uniquely determined �-almost everywhere). If p; q arenon-negative integers, we 
onsider a valuation  p;q : Kn ! R with(4)  p;q(K) = Zbd(K)hx; n(x)ipjxj2qd�(x):All  p;q are 
ontinuous, polynomial of degree at most p+2q+n, and O(n)-invariant.Theorem 3.3.1 shows that, for every K 2 Kn,  p;q(K + "Dn) is a polynomial in" � 0, therefore it 
an be written in the form(5)  p;q(K + "Dn) = p+2q+nXi=0  (i)p;q(K)"i:All  (i)p;q are 
ontinuous, polynomial and O(n)-invariant. These parti
ular valuationssuÆ
e for a des
ription of all rotation invariant polynomial valuations [4℄:Theorem 3.3.4. If n � 3, then every SO(n)-invariant 
ontinuous polynomialvaluation ' : Kn ! R is a linear 
ombination of the  (i)p;q. 2Sin
e  (i)p;q are O(n)-invariant, Theorem 3.3.4 des
ribes O(n)-invariant valua-tions as well. The 
ase n = 2 is also 
ompletely des
ribed in [4℄ (and the samestatements hold true if R is repla
ed by C ).4 Dvoretzky's theorem and 
on
entration of mea-sure4.1 Introdu
tionA version of the Dvoretzky-Rogers Lemma [53℄ asserts that for every body K whosemaximal volume ellipsoid is Dn, there exist k ' pn and a k-dimensional subspa
e26



Ek of Rn su
h that Dk � K \ Ek � 2Qk, where Dk denotes the Eu
lidean ball inEk and Qk the unit 
ube in Ek (for an appropriately 
hosen 
oordinate system).Inspired by this, Grothendie
k asked whether Qk 
an be repla
ed by Dk in thisstatement. He did not spe
ify what the dependen
e of k on n might be, asking justthat k should in
rease to in�nity with n. A short time after, Dvoretzky [51℄, [52℄proved Grothendie
k's 
onje
ture:Theorem 4.1.1. Let " > 0 and k be a positive integer. There exists N = N(k; ")with the following property: Whenever X is a normed spa
e of dimension n � Nwe 
an �nd a k-dimensional subspa
e Ek of X with d(Ek; `k2) � 1 + ".Geometri
ally speaking, every high-dimensional body has 
entral se
tions ofhigh dimension whi
h are almost ellipsoidal. The dependen
e of N(k; ") on k and" be
ame a very important question, and Dvoretzky's theorem took a mu
h morepre
ise quantitative form:Theorem 4.1.2. Let X be an n-dimensional normed spa
e and " > 0. Thereexist an integer k � 
"2 logn and a k-dimensional subspa
e Ek of X whi
h satis�esd(Ek ; `k2) � 1 + ".This means that Theorem 4.1.1 holds true with N(k; ") = exp(
"�2k). Dvoret-zky's original proof gave an estimate N(k; ") = exp(
"�2k2 log k). Later, Milman[131℄ established the estimateN(k; ") = exp(
"�2j log "jk) with a di�erent approa
h.The logarithmi
 in " term was removed by Gordon [68℄, and then by S
he
htman[174℄. Other proofs and extensions of Dvoretzky's theorem in di�erent dire
tionswere given in [59℄, [185℄, [112℄ (see also the surveys [110℄, [113℄, [142℄).The logarithmi
 dependen
e of k on n is best possible for small values of ". One
an see this by analyzing the example of `n1. Every k-dimensional 
entral se
tion ofQn is a polytope with at most 2n fa
ets. If we assume that we 
an �nd a subspa
eEk of `n1 with d(Ek ; `k2) � 1+", then there exists a polytope Pk in Rk with m � 2nfa
ets satisfying Dk � Pk � (1+")Dk. The hyperplanes supporting the fa
ets of Pk
reate m spheri
al 
aps J1; : : : ; Jm on (1+")Sk�1 su
h that (1+")Sk�1 � Smi=1 Ji.On the other hand, sin
e Dk � Pk, if we assume that " is small, then ea
h Jihas angular radius of the order of p". An elementary 
omputation shows that thenormalized measure of su
h a 
ap does not ex
eed (
") k�12 . Therefore, we musthave 2n � (
")� k�12 whi
h shows that(1) k � 
 logn= log(1="):The same argument shows that if P is a symmetri
 polytope and f(P ) is the numberof its fa
ets, then k � 
(") log f(P ).The right dependen
e of N(k; ") on " for a �xed (even small) positive integer kis not 
lear. It seems reasonable that `n1 is the worst 
ase and that the 
omputationwe have just made gives the 
orre
t order:Question 4.1.3. Can we take N(k; ") = 
(k)"� k�12 in Theorem 4.1.1?Using ideas from the theory of irregularities of distribution, Bourgain and Lin-denstrauss [29℄ have shown that the 
hoi
e N(k; ") = 
(k)"� k�12 j log "j is possible27



for spa
es X with a 1-symmetri
 basis. There are numerous 
onne
tions of thisquestion with other bran
hes of mathemati
s (algebrai
 topology, number theory,harmoni
 analysis). For instan
e, an aÆrmative answer to Question 4.1.3 wouldbe a 
onsequen
e of the following hypothesis of Knaster: Let f : Sk�1 ! R be a
ontinuous fun
tion and x1; : : : ; xk be points on Sk�1. Does there exist a rotationu su
h that f is 
onstant on the set fuxi : i � kg? This hypothesis has been settledonly in spe
ial 
ases (see [137℄ for a dis
ussion of this and other problems relatedto Question 4.1.3).Note. Bourgain and Szarek [33℄ proved a stronger form of the Dvoretzky-RogersLemma: If Dn is the ellipsoid of minimal volume 
ontaining K, then for everyÆ 2 (0; 1) one 
an 
hoose x1; : : : ; xm, m � (1� Æ)n, among the 
onta
t points of Kand Dn su
h that for every 
hoi
e of s
alars (ti)i�m,(2) f(Æ) mXi=1 t2i!1=2 ���� mXi=1 tixi ����www mXi=1 tixi wwwK� mXi=1 jtij:This is a Dvoretzky-Rogers Lemma for arbitrary proportion of the dimension. It
an also be stated as a fa
torization result: For any n-dimensional normed spa
eX and any Æ 2 (0; 1), one 
an �nd m � (1 � Æ)n and two operators � : `m2 ! X ,� : X ! `n1 su
h that the identity id2;1 : `m2 ! `m1 
an be written as id2;1 = � Æ�and k�kk�k � 1=f(Æ). For an extension to the non-symmetri
 
ase see [116℄.Using this result, Bourgain and Szarek answered in the negative the questionof uniqueness, up to a 
onstant, of the 
entre of the Bana
h-Mazur 
ompa
tum,and gave the �rst non-trivial estimate o(n) for the Bana
h-Mazur distan
e from ann-dimensional spa
e X to `n1. It is now known [186℄, [63℄ that (2) holds true withf(Æ) = 
Æ. The question about the best possible exponent of Æ in the Dvoretzky-Rogers fa
torization is also open. By [63℄, [169℄ it must lie between 1/2 and 1.In the Appendix we give a brief a

ount on these and other questions relatedto the geometry of the Bana
h-Mazur 
ompa
tum.4.2 Con
entration of measure on the sphere and a proof ofDvoretzky's theoremWe shall outline the approa
h of [131℄ to Dvoretzky's theorem. The method usesthe 
on
entration of measure on the sphere and was further developed in [61℄. Weneed to introdu
e the average parameter(1) M =M(XK) = ZSn�1 kxk �(dx);the average on the sphere Sn�1 of the norm that K indu
es on Rn .Remarks on M . (i) It is 
lear from the de�nition that M depends not only on thebody K but also on the Eu
lidean stru
ture we have 
hosen in Rn . If we assume28



that 1a jxj � kxk � bjxj and that a; b > 0 are the smallest 
onstants for whi
h thisis true for all x 2 Rn , then we have the trivial bounds 1a �M � b.(ii) For every p > 0 we de�ne(2) Mp =Mp(XK) = �ZSn�1 kxkp�(dx)� 1p :In this notationM =M1 and as a 
onsequen
e of the Kahane-Khin
hine inequalityone 
an 
he
k that M1 ' M2 independently from the dimension and the norm. It
an be a
tually shown [118℄ that, for every 1 � p � n,(3) maxnM1; 
1 bpppn o �Mp � maxn2M1; 
2 bpppn o;where 
1; 
2 > 0 are absolute 
onstants.(iii) Let g1; : : : ; gn be independent standard Gaussian random variables on someprobability spa
e 
 and fe01; : : : ; e0ng be any orthonormal basis in Rn . Integrationin polar 
oordinates establishes the identity(4)  Z
 www nXi=1 gi(!)e0i www2 d!!1=2 = pnM2:Using the symmetry of the gi's and the triangle inequality for k � k we get(5) Z
 www kXi=1 gi(!)e0i www d! � Z
 www nXi=1 gi(!)e0i www d!;for every 1 � k � n, and 
ombining with the previous observations we have(6) M(Ek) � 
pn=kMfor every k-dimensional subspa
e Ek of XK .� The main step for our proof of Theorem 4.1.2 will be the following [131℄:Theorem 4.2.1. Let X be an n-dimensional normed spa
e satisfying 1a jxj � kxk �bjxj. For every " 2 (0; 1) there exist k � 
"2n(M=b)2 and a k-dimensional subspa
eEk of Rn su
h that 11 + "Ljxj � kxk � (1 + ")Ljxj ; x 2 Ek:The 
onstant L appearing in the statement above is the L�evy mean (or median)of the fun
tion f(x) = kxk on Sn�1. This is the unique real number L = Lf forwhi
h �(fx : f(x) � Lg) � 12 and �(fx : f(x) � Lg) � 12 :A few observations arise dire
tly from this statement: Assume that x 2 Sn�1has maximal norm kxk = b. Consider the one-dimensional subspa
e E1 spanned by29



x. We have b = M(E1) � 
pnM , and this shows that n(M=b)2 � 
 > 0 for everynorm. This is of 
ourse not enough for a proof of Dvoretzky's theorem.On the other hand, re
all that M � 1=a. By Theorem 4.2.1, every X hasa subspa
e of dimension k � 
"2n=(ab)2 on whi
h k � k is (1 + ")-equivalent tothe Eu
lidean norm. Sin
e we 
an 
hoose a linear transformation of KX so thatab � d(X; `n2 ), we obtain the following 
orollary [131℄:Corollary 4.2.2. For every n-dimensional spa
e X and every " 2 (0; 1) we 
an �nda subspa
e Ek of X with dimEk = k � 
"2n=d2(X; `n2 ) su
h that d(Ek ; `k2) � 1 + ".2 This already shows that spa
es with small Bana
h-Mazur distan
e from `n2have Eu
lidean se
tions of dimension mu
h larger than logn (even proportional ton). However, sin
e John's theorem is sharp this observation is not enough for thegeneral 
ase.� The proof of Theorem 4.2.1 is based on the 
on
entration of measure on thesphere. Re
all that as a 
onsequen
e of the spheri
al isoperimetri
 inequality wehave the following fa
t:If A � Sn�1 and �(A) = 12 , then �(A") � 1� 
1 exp(�
2"2n).This inequality explains the term \
on
entration of measure": However small " > 0may be, the measure of the set outside a \strip" of width " around the boundaryof any subset of the sphere of half measure is less than 2
1 exp(�
2"2n), whi
h de-
reases exponentially fast to 0 as the dimension n grows to in�nity. This surprisingfa
t was observed and used by P. L�evy [108℄:Let f be a 
ontinuous fun
tion on the sphere. By !f (�) we denote the modulusof 
ontinuity of f :!f (t) = maxfjf(x)� f(y)j : �(x; y) � t; x; y 2 Sn�1g:Consider the L�evy mean Lf of f . It is not hard to see thatfx : f = Lfg" = (fx : f � Lfg)" \ (fx : f � Lfg)":Sin
e jf(x) � Lf j � !f (") on fx : f = Lfg", the spheri
al isoperimetri
 inequalityhas the following dire
t 
onsequen
e:Fa
t 1. For every 
ontinuous fun
tion f : Sn�1 ! R and every " > 0,(7) � �x 2 Sn�1 : jf(x)� Lf j � !f (")� � 
1 exp(�
2"2n): 2If the modulus of 
ontinuity of f behaves well, then Fa
t 1 implies strong
on
entration of the values of f around its median. Moreover, from a set of bigmeasure on whi
h f is almost 
onstant we 
an extra
t a subspa
e of high dimension,on the sphere of whi
h f is almost 
onstant:Fa
t 2. Let f : Sn�1 ! R be a 
ontinuous fun
tion and Æ; � > 0. There exists asubspa
e F of Rn with dimF = k � 
Æ2n= log(3=�) su
h thatjf(x)� Lf j � !f (Æ) + !f (�)30



for every x 2 S(F ) := Sn�1 \ F .Proof: Fix k < n (to be determined) and Fk 2 Gn;k. A standard argumentshows that there exists a �-net N of S(Fk) with 
ardinality jN j � (1 + 2� )k �exp(k log(3=�)). If x 2 N , then(8) � (u 2 O(n) : jf(ux)� Lf j > !f (Æ)) � 
1 exp(�
2Æ2n):Therefore, if 
1jN j exp(�
2Æ2n) < 1 then most u 2 O(n) satisfy(9) jf(ux)� Lf j � !f (Æ)for every x 2 N . It follows that jf(x)�Lf j � !f (Æ) + !f (�) for every x 2 S(uFk).A simple 
omputation shows that the ne
essary 
ondition will be satis�ed for somek � 
Æ2n= log(3=�). 2For the proof of Theorem 4.2.1 we are going to apply this fa
t to the normf(x) = kxk. In this 
ase, one 
an say even more (see [149, pp. 12℄):Fa
t 3. Let X = (Rn ; k � k) and assume that kxk � bjxj. For every " 2 (0; 1) thereexists a subspa
e Ek with dimEk = k � 
"2log(1=")n(Lfb )2 su
h that11 + "Lf jxj � kxk � (1 + ")Lf jxjfor every x 2 Ek. 2The proof of Theorem 4.2.1 is now 
omplete. We just have to observe that iff(x) = kxk on Sn�1, then Lf 'M . By Markov's inequality, �(x : f(x) � 2M) � 12and this shows that Lf � 2M . It 
an be 
he
ked that Lf � 
M as well, where
 > 0 is an absolute 
onstant [149℄. It follows that we 
an have almost spheri
alse
tions of dimension k � 
"2log(1=")n(Mb )2 in Theorem 4.2.1. In order to remove thelogarithmi
 in " term, one needs to put additional e�ort (see [68℄, [174℄). 2From Theorem 4.2.1 we may dedu
e Dvoretzky's theorem (Theorem 4.1.2): Forevery n-dimensional spa
e X and any " 2 (0; 1) there exists a subspa
e Ek of Xwith dimEk = k � 
"2 logn, su
h that d(Ek; `k2) � 1 + ".Proof: We may assume that Dn is the maximal volume ellipsoid of KX . Then,kxk � jxj on Rn and in view of Theorem 4.2.1 we only need to show that M2 �
 logn=n. This is a 
onsequen
e of the Dvoretzky-Rogers lemma: There exists anorthonormal basis y1; : : : ; yn in Rn with kyik � (n�i+1n )1=2. In parti
ular, kyik � 12 ,i = 1; : : : ; n4 .From the equivalen
e of M1 and M2 we see that(10) M � 
pn Z
 www nXi=1 gi(!)yi www d! � 
pn Z
 www n=4Xi=1 gi(!)yi www d!� 
pn Z
 maxi�n=4 www gi(!)yi www d! � 
0pn Z
 maxi�n=4 jgi(!)jd! � 
00plognpn ;where we have used the fa
t (see e.g. [115, pp. 79℄) that if g1; : : : ; gm are inde-pendent standard Gaussian random variables on 
 then R
maxi�m jgij ' plogm.2 31



4.3 Probabilisti
 and global form of Dvoretzky's TheoremThe proof of Theorem 4.2.1, being probabilisti
 in nature, gives that a subspa
e Ekof X with dimEk = [
"2n(M=b)2℄ is (1 + ")-Eu
lidean with high probability. Thisleads to the de�nition of the following 
hara
teristi
 of X :De�nition. Let X be an n-dimensional normed spa
e. We set k(X) to be the largestpositive integer k � n for whi
h(1) Prob�Ek 2 Gn;k : 12M jxj � kxk � 2M jxj; x 2 Ek� � 1� kn+ k :In other words, k(X) is the largest possible dimension k � n for whi
h themajority of k-dimensional subspa
es of X are 4-Eu
lidean. Note that the presen
eof M in the de�nition 
orresponds to the right normalization, sin
e the average ofM(Ek) over Gn;k is equal to M for all 1 � k � n.Theorem 4.2.1 implies that k(X) � 
n(M=b)2. What is surprisingly simpleis the observation [151℄ that an inverse inequality holds true. The estimate inTheorem 4.2.1 is sharp in full generality:Theorem 4.3.1. k(X) � 4n(M=b)2.Proof: Fix orthogonal subspa
es E1; : : : ; Et of dimension k(X) su
h that Rn =Pti=1Ei (there is no big loss in assuming that k(X) divides n). By the de�nition ofk(X), most orthogonal images of ea
h Ei are 4-Eu
lidean, so we 
an �nd u 2 O(n)su
h that(2) 12M jxj � kxk � 2M jxj ; x 2 uEifor every i = 1; : : : ; t. Every x 2 Rn 
an be written in the form x =Pti=1 xi, wherexi 2 uEi. Sin
e the xi's are orthogonal, we get(3) kxk � 2M tXi=1 jxij � 2Mptjxj:This means that b � 2Mpt, and sin
e t = n=k(X) we see that k(X) � 4n(M=b)2.2In other words, the following asymptoti
 formula holds true:Theorem 4.3.2. Let X be an n-dimensional normed spa
e. Then,k(X) ' n(M=b)2: 2Dvoretzky's theorem gives information about the 
entral se
tions of a body, orequivalently, about the lo
al stru
ture of the 
orresponding normed spa
e. By aglobal result we mean a statement about the full body or spa
e. In order to des
ribethe global version of Dvoretzky's theorem, we need to introdu
e a new quantity:32



De�nition. Let X = (Rn ; k � k). We de�ne t(X) to be the smallest positive integert for whi
h there exist u1; : : : ; ut 2 O(n) su
h that12M jxj � 1t tXi=1 kuixk � 2M jxjfor every x 2 Rn .Geometri
ally speaking, t(X) is the smallest integer t for whi
h there exist rota-tions v1; : : : ; vt su
h that the average Minkowski sum of viKÆ is 4-Eu
lidean. On
eagain, the presen
e ofM in the de�nition 
orresponds to the 
orre
t normalization.It is proved in [38℄ that t(X) � 
(b=M)2 (we postpone a proof of this fa
t untilSe
tion 4.5). It was re
ently observed in [151℄ that a reverse inequality is true infull generality:Theorem 4.3.3. t(X) � 14 (b=M)2.For the proof of this assertion we shall make use of the following lemma:Lemma. Let x1; : : : ; xt 2 Sn�1. There exists y 2 Sn�1 su
h that Pti=1 jhy; xiij �pt.Proof: We 
onsider all ve
tors of the form z(") = Pti=1 "ixi, where "i = �1.If z = z(") has maximal length among them, the parallelogram law shows thatjzj � pt. Also,(4) tXi=1 jhz; xiij � tXi=1hz; "ixii = jzj2 � jzjpt:Choosing y = z=jzj we 
on
lude the proof. 2Proof of Theorem 4.3.3: Assume that we 
an �nd t orthogonal transformationsu1; : : : ; ut su
h that 1t Pti=1 kuixk � 2M jxj for every x 2 Rn . We �nd x0 2 Sn�1with kx0k = b (minimal distan
e from the origin). It is 
lear that 1 = kx0k�kx0k =bkx0k�. We set xi = u�1i x0 and use the Lemma to �nd y 2 Sn�1 su
h thatPti=1 jhy; xiij � pt. Then, we have(5) pt � tXi=1 jhy; u�1i x0ij = tXi=1 jhuiy; x0ij � kx0k� tXi=1 kuiyk � 2Mtb :This shows that 4t � (b=M)2. 2Combining Theorem 4.3.3 with the upper bound for t(X) we obtain a se
ondasymptoti
 formula:Theorem 4.3.4. For every �nite dimensional normed spa
e X we havet(X) ' (b=M)2: 2Theorems 4.3.2 and 4.3.4 give a very pre
ise asymptoti
 relation between a lo
aland a global parameter of X [151℄: 33



Fa
t. There exists an absolute 
onstant 
 > 0 su
h that1
n � k(X)t(X) � 
nfor every n-dimensional normed spa
e X. 24.4 Appli
ations of the 
on
entration of measure on the sphereWe used the 
on
entration of measure on Sn�1 for the proof of Dvoretzky's theorem.The same prin
iple applies in very di�erent situations. We shall demonstrate thisby two more examples.(a) Bana
h-Mazur distan
e. Re
all that by John's theorem d(X; `n2 ) � pn forevery n-dimensional spa
e X . Then, the multipli
ative triangle inequality for dshows that d(X;Y ) � n for every pair of spa
es X and Y . On the other hand,E.D. Gluskin [64℄ has proved that the diameter of the Bana
h-Mazur 
ompa
tumis roughly equal to n:There exists an absolute 
onstant 
 > 0 su
h that for every n we 
an �nd twon-dimensional spa
es Xn; Yn with d(Xn; Yn) � 
n.The spa
es Xn; Yn in Gluskin's example are random and of the same nature:random symmetri
 polytopes with �n verti
es. We shall show that spa
es whoseunit balls are geometri
ally quite di�erent obje
ts have \small" distan
e [55℄:Theorem 4.4.1. Let X and Y be two n-dimensional normed spa
es su
h that#Extr(KX) � n� and #Extr(KY �) � n� for some �; � > 0, where #Extr(�)denotes the number of extreme points. Then,d(X;Y ) � 
p�+ �pn logn:[In other words, if a body has few extreme points and a se
ond body has few fa
ets,then their distan
e is not more than pn logn.℄Proof: Wemay assume that 1pnDn � KX � Dn � KY � pnDn. Then,KY � � Dn.If u 2 O(n), it is 
lear that ku�1 : Y ! Xk � n. We are going to show thatku : X ! Y k is small for a random u.We estimate the norm of u as follows:ku : X ! Y k = supx2KX kuxkY = maxx2Extr(KX) maxy�2Extr(KY � ) jhux; y�ij:Observe that if x 2 Extr(KX) and y� 2 Extr(KY �), then ux; y� 2 Dn. It followsthat �(u 2 O(n) : jhux; y�ij � ") � 
 exp(�"2n=2):Therefore, if 
n�+� exp(�"2n=2) < 1, we 
an �nd u 2 O(n) su
h that ku : X !Y k � ". Solving for " we see that we 
an 
hoose" 'p�+ �plogn=n:34



Hen
e, there exists u 2 O(n) for whi
hd(X;Y ) � ku : X ! Y k ku�1 : Y ! Xk � 
p�+ �pn logn: 2(b) Random proje
tions. Let 1 � k � n, and E 2 Gn;k. A simple 
omputationshows that ZSn�1 jPE(x)j2�(dx) = kn;and sin
e PE is a 1-Lips
hitz fun
tion, 
on
entration of measure on the sphereshows that � �x 2 Sn�1 : j jPE(x)j �pk=n j > "� � 
1 exp(�
2"2n)for every " > 0. Double integration and the 
hoi
e " = Æpk=n show that for any�xed subset fy1; : : : ; yNg of Sn�1 and any Æ 2 (0; 1) we have�n;k �E 2 Gn;k : (1� Æ)pk=n < jPE(yj)j < (1 + Æ)pk=n ; j � N�> 1� 
1N exp(�
2Æ2k):If N � 
�11 exp(
2Æ2k), then we 
an �nd a k-dimensional subspa
e E su
h thatjPE(yj)j ' q kn for every j � N . It 
an be also arranged so that the distan
es ofthe yj 's will shrink in a uniform way under PE (this appli
ation 
omes from [97℄).4.5 The 
on
entration phenomenon: L�evy familiesThe 
on
entration of measure on the sphere is just an example of the 
on
entrationphenomenon of invariant measures on high-dimensional stru
tures. Assume that(X; d; �) is a 
ompa
t metri
 spa
e with metri
 d and diameter diam(X) � 1,whi
h is also equipped with a Borel probability measure �. We then de�ne the
on
entration fun
tion (or \isoperimetri
 
onstant") of X by�(X ; ") = 1� inf��(A") : A Borel subset of X;�(A) � 12	;where A" = fx 2 X : d(x;A) � "g is the "-extension of A. As a 
onsequen
e of theisoperimetri
 inequality on Sn+1 we saw that�(Sn+1; ") �p�=8 exp(�"2n=2);an estimate whi
h was 
ru
ial for the proof of Dvoretzky's theorem and the appli-
ations in Se
tion 4.4.P. L�evy [108℄ was the �rst to observe the role of the dimension in this parti
ularexample. For this reason, a family (Xn; dn; �n) of metri
 probability spa
es is 
alleda normal L�evy family with 
onstants (
1; 
2) (see [84℄ and [9℄) if�(Xn; ") � 
1 exp(�
2"2n);35



or, more generally, a L�evy family if for every " > 0�(Xn; ")! 0as n!1. There are many examples of L�evy families whi
h have been dis
overedand used for lo
al theory purposes. In most 
ases, new and very interesting te
h-niques were invented in order to estimate the 
on
entration fun
tion �(X ; "). Welist some of them (and refer the reader to [175℄ in this volume for more information;see also [73℄, [74℄ for a development in a di�erent dire
tion):(1) The family of the orthogonal groups (SO(n); �n; �n) equipped with theHilbert-S
hmidt metri
 and the Haar probability measure is a L�evy family with
onstants 
1 =p�=8 and 
2 = 1=8.(2) The family Xn = Qmni=1 Sn with the natural Riemannian metri
 and theprodu
t probability measure is a L�evy family with 
onstants 
1 =p�=8 and 
2 =1=2.(3) All homogeneous spa
es of SO(n) inherit the property of forming L�evyfamilies. In parti
ular, any family of Stiefel manifolds Wn;kn or any family ofGrassman manifolds Gn;kn is a L�evy family with the same 
onstants as in (1).[All these examples of normal L�evy families 
ome from [84℄.℄(4) The spa
e Fn = f�1; 1gn with the normalized Hamming distan
e d(�; �0) =#fi � n : �i 6= �0ig=n and the normalized 
ounting measure is a L�evy family with
onstants 
1 = 1=2 and 
2 = 2. This follows from an isoperimetri
 inequality ofHarper [90℄, and was �rst put in su
h form and used in [8℄.(5) The group �n of permutations of f1; : : : ; ng with the normalized Hammingdistan
e d(�; �) = #fi � n : �(i) 6= �(i)g=n and the normalized 
ounting measuresatis�es �(�n; ") � 2 exp(�"2n=64). This was proved by Maurey [119℄ with amartingale method, whi
h was further developed in [172℄.� We shall give two more examples of situations where L�evy families are used.In parti
ular, we shall 
omplete the proof of the global form of Dvoretzky's theoremusing the 
on
entration phenomenon for produ
ts of spheres.(a) A topologi
al appli
ation. Let 1 � k � n and Vk = f(�; x) : � 2 Gn;k; x 2S(�)g be the 
anoni
al sphere bundle over Gn;k. Assume that f : Sn�1 ! R is aLips
hitz fun
tion with the following property:For every � 2 Gn;k we 
an �nd x 2 S(�) su
h that f(x) = 0.One 
an easily 
he
k that Vk is a homogeneous spa
e of SO(n) whose 
on
entrationfun
tion satis�es �(Vk ; ") �p�=8 exp(�"2n=8):A standard argument shows that given Æ > 0, if k � 
Æ2n= log(3=Æ) then we 
an�nd a subspa
e � 2 Gn;k and a Æ-net N of S(�) su
h that f(x) = 0 for every x 2 N .Assuming that the Lips
hitz 
onstant of f is not large, we get [84℄:There exists � 2 Gn;k su
h that jf(x)j � 
Æ for every x 2 S(�).36



(b)Global form of Dvoretzky's Theorem. Re
all that t(X) is the least positiveinteger for whi
h there exist u1; : : : ; ut 2 O(n) su
h that 12M jxj � 1t Pti=1 kuixk �2M jxj for every x 2 Rn .We saw that 4t(X) � (b=M)2. We shall now prove the reverse inequality (whi
his stated in Theorem 4.3.4) following [118℄:Consider the spa
e ~St = fx = (x1; : : : ; xt) : xi 2 Sn�1g. De�ne f(x) =1t Pti=1 kxik. Then, for every x; y 2 ~St we have:jf(x)� f(y)j � 1t tXi=1 kxi � yik �  1t tXi=1 kxi � yik2!1=2 � bpt�(x; y):The 
on
entration estimate for produ
ts of spheres givesProb ��� 1t tXi=1 kxik � Lf ���> ÆLf! � exp(�
Æ2tL2fn=b2)for every Æ 2 (0; 1). Equivalently, if x 2 Sn�1 then(1� Æ)Lf � 1t tXi=1 kuixk � (1 + Æ)Lffor all (ui)i�t in a subset of [O(n)℄t of measure greater than 1� exp(�
Æ2tL2fn=b2).If N is a Æ-net for Sn�1, we 
an �nd u1; : : : ; ut 2 O(n) su
h that 1t P kuixk ' Lf forall x 2 N , provided that n= log(3=Æ) � 
Æ2tL2fn=b2. We 
hoose Æ > 0 small enoughso that su

essive approximation will give 1t P kuixk ' Lf for all x 2 Sn�1, andwe verify that the 
ondition will be satis�ed for some t � 
0(b=Lf )2. Sin
e M ' Lfup to a multipli
ative 
onstant, the proof is 
omplete. 24.6 Dvoretzky's theorem and duality4.6.1. Re
all that if X = (Rn ; k � k) is a normed spa
e, then the dual norm isde�ned by kxk� = supfjhx; yij : kyk � 1g. It is 
lear that 1b jxj � kxk� � ajxj, hen
eif we de�ne k� = k(X�) and M� =M(X�) then Theorem 4.3.2 shows thatk� ' n(M�=a)2:On the other hand, it is a trivial 
onsequen
e of the Cau
hy-S
hwarz inequalitythat(1) MM� � �ZSn�1 kxk 12� kxk 12�(dx)�2 � �ZSn�1 jhx; xij 12 �(dx)�2 = 1:Multiplying the estimates for k and k� we obtain(2) kk� � 
n2 (MM�)2(ab)2 � 
n2=(ab)2:37



Sin
e we 
an always assume that ab � pn, we have proved:Theorem 4.6.1. [61℄ Let X be an n-dimensional normed spa
e. Then,k(X)k(X�) � 
n: 2This already shows that for every pair (X;X�) at least one of the quantitiesk; k� is greater than 
pn. Re
all that for X = `n1 we have k(`n1) ' logn, thereforek(`n1 ) � 
n= logn { almost proportional to n. In fa
t, a dire
t 
omputation showsthat M(`n1 ) ' b(`n1 ) ' pn, therefore k(`n1 ) ' n. Although d(X; `n1 ) is the maximalpossible, `n1 has Eu
lidean se
tions of dimension proportional to n.4.6.2. Let k = minfk; k�g. Sin
e Dvoretzky's theorem holds for random sub-spa
es of the appropriate dimension, we 
an �nd a subspa
e E 2 Gn;k on whi
h wehave(3) 12M jxj � kxk � 2M jxj ; 12M�jxj � kxk� � 2M�jxjsimultaneously. This implies that kPE : X ! Ek � 4MM�. We see this as follows:let x 2 Rn . Then,(4) jPE(x)j2 = hPE(x); xi � kPE(x)k�kxk � 2M�jPE(x)j kxk;sin
e PE(x) 2 E. For the same reason,(5) kPE(x)k � 2M jPE(x)j � 4MM�kxk:But then,(6) kk� ' n2 (MM�)2(ab)2 � 
n2 kPEk2(ab)2 ;whi
h is a strengthening of Theorem 4.6.1 [61℄. In the example of X = `n1 we knowthat k ' logn, therefore our estimate shows that for a random subspa
e E(logn)of dimension roughly equal to logn we must havek(`n1 ) logn � 
nkPE(logn)k2:On the other hand, the norm of a random proje
tion of `n1 of rank logn is knownto ex
eed plogn, so we get the 
orre
t estimate k(`n1 ) � 
n.4.6.3. Another example where the pre
eding 
omputation gives pre
ise infor-mation on several parameters of X is the 
ase X = `np ; 1 < p < 2. Let q be the
onjugate exponent of p. We need the following result [43℄ (see also [149, pp. 22℄):Theorem 4.6.2. k(`nq ) � 
(q)n2=q . 2It is a simple 
onsequen
e of H�older's inequality that (ab)2 � n1� 2q for X = `np .Our 
omputation in 4.6.2 and Theorem 4.6.2 show that if k = minfk(`np ); k(`nq )g,then(7) 
(q)n2=qk(`np ) � n1+ 2q kPE(k)k2:38



Sin
e k(`np ) � n (!), we immediately get:Theorem 4.6.3. Let 1 < p < 2 and q be its 
onjugate exponent. Then,k(`np ) ' n ; k(`nq ) ' pqn2=q ; d(`np ; `n2 ) = d(`nq ; `n2 ) ' n 12� 1q : 24.6.4. A 
ombinatorial appli
ation. We saw that the logn estimate inDvoretzky's theorem is optimal by studying the example of `n1. The argument weused for the 
ube shows something more general: Let P be a symmetri
 polytope,and denote its number of fa
ets by f(P ) and its number of verti
es by v(P ). Then,k � log f(P ) and sin
e v(P ) = f(P Æ) we also get k� � log v(P ). We have seen thatkk� � 
n, and this proves the following fa
t [61℄:Theorem 4.6.4. Let P be a symmetri
 polytope in Rn . Then,log f(P ) log v(P ) � 
n: 24.7 Isomorphi
 versions of Dvoretzky's Theorem4.7.1. Bounded volume ratio. Let K be a body in Rn . The volume ratio of Kis the quantity vr(K) = infn� jKjjEj�1=n : E � Ko;where the inf is over all ellipsoids 
ontained in K. It is easily 
he
ked that vr(K)is an aÆne invariant.We shall show that if a body K has small volume ratio, then the spa
e XK hassubspa
es F of dimension proportional to n whi
h are \well-isomorphi
" to `dimF2 :Theorem 4.7.2. Let K be a body in Rn with vr(K) = A. Then, for every k � nthere exists a k-dimensional subspa
e F of XK su
h thatd(F; `k2) � (
A) nn�k :Proof: We may assume that Dn is the maximal volume ellipsoid of K. Then,kxk � jxj for every x 2 Rn . Given k � n, double integration shows that thereexists F 2 Gn;k satisfying(1) ZSn�1\F kxk�n�k(dx) � vr(K)n = An:Then, Markov's inequality shows that for any r > 0, �kfx 2 Sn�1\F : kxk < rg �(rA)n. If we 
onsider just one point x in Sn�1 \F , then the r=2 neighbourhood ofx with respe
t to j � j has �k measure greater than (
r)k , for some absolute 
onstant
 > 0. This means that if (rA)n < (
r)k then the set fx 2 Sn�1 \ F : kxk � rg isan r=2 net for Sn�1 \ F : if y 2 Sn�1 \ F , we 
an �nd x with jx � yj � r=2 andkxk � r, and the triangle inequality shows that(2) kyk � kxk � kx� yk � r � jx� yj � r=2:39



This shows that d(F; `k2) � 2r . Analyzing the ne
essary 
ondition on r we obtain(3) d(F; `k2) � (
A) nn�k : 2Theorem 4.7.2 has its origin in the work of Kashin [100℄, who proved that thereexist 
(�)-Eu
lidean subspa
es of `n1 of dimension [�n℄, for every � 2 (0; 1). Szarek[180℄ realized the fa
t that bounded volume ratio is responsible for this propertyof `n1 , while the notion of volume ratio was formally introdu
ed somewhat later in[187℄.4.7.3. A natural question related to Dvoretzky's theorem is to give an estimatefor maxdimX=nminfd(F; `k2) : F � X; dimF = kg:for ea
h 1 � k � n. Su
h an \isomorphi
" version was proved by Milman andS
he
htman [150℄ who showed the following:Theorem 4.7.4. There exists an absolute 
onstant C > 0 su
h that, for every n andevery k � C logn, every n-dimensional normed spa
e X 
ontains a k-dimensionalsubspa
e F for whi
h d(F; `k2) � Cpk= log(n=k): 2For an extension to the non-symmetri
 
ase, see [75℄, [86℄.5 The Low M�-estimate and the Quotient of Sub-spa
e Theorem5.1 The Low M�-estimateDvoretzky's theorem gives very strong information about the Eu
lidean stru
ture ofk-dimensional subspa
es of an arbitrary n-dimensional spa
e when their dimensionk is up to the order of logn. In some 
ases one 
an �nd Eu
lidean subspa
es ofdimension even proportional to n, but no \proportional theory" 
an be expe
ted insu
h a strong sense. However, surprisingly enough, there is non trivial Eu
lideanstru
ture in subspa
es of dimension �n, � 2 (0; 1), even for � very 
lose to 1. The�rst step in this dire
tion is the Low M�-estimate:Theorem 5.1.1. There exists a fun
tion f : (0; 1) ! R+ su
h that for every� 2 (0; 1) and every n-dimensional normed spa
e X, a random subspa
e E 2 Gn;[�n℄satis�es(1) f(�)M� jxj � kxk ; x 2 E;where 
 > 0 is an absolute 
onstant.Theorem 5.1.1 was originally proved in [132℄ and a se
ond proof using theisoperimetri
 inequality on Sn�1 was given in [133℄, where (1) was shown to hold40



with f(�) � 
(1 � �) for some absolute 
onstant 
 > 0 (and with an estimatef(�) � 1 � � + o(�) as � ! 0+). This was later improved to f(�) � 
p1� � in[164℄ (see also [139℄ for a di�erent proof with this best possible p1� � dependen
e).Finally, it was proved in [69℄ that one 
an have(2) f(�) � p1� ��1 +O( 1(1� �)n )� :Geometri
ally speaking, Theorem 5.1.1 says that for a random �n-dimensional se
-tion of KX we have(3) KX \E � M�f(�)Dn \ E;that is, the diameter of a random se
tion of a body of dimension proportional ton is 
ontrolled by the mean width M� of the body (a random se
tion does not feelthe diameter a of KX but the radius M� whi
h is roughly the level r at whi
h halfof the supporting hyperplanes of rDn 
ut the body KX).The dual formulation of the theorem has an interesting geometri
 interpretation.A random �n-dimensional proje
tion of KX 
ontains a ball of radius of the orderof 1=M . More pre
isely, for a random E 2 Gn;�n we have(4) PE(KX) � f(�)M Dn \ E:We shall present the proof from [133℄ whi
h gives linear dependen
e in � andis based on the isoperimetri
 inequality for Sn�1:Proof of the Low M�-estimate: Consider the set A = fy 2 Sn�1 : kyk� � 2M�g.We obviously have �(A) � 12 .Claim:For every � 2 (0; 1) there exists a subspa
e E of dimension k = [�n℄ su
hthat(5) E \ Sn�1 � A( �2�Æ);where Æ � 
(1� �).Proof of the 
laim: We have �(A�=4) � 1 � 
pn R �=40 sinn�2 tdt, and double inte-gration through Gn;k shows that a random E 2 Gn;k satis�es(6) �k(A�=4 \E) � 1� 
pn Z �=40 sinn�2 tdt:On the other hand, for every x 2 Sn�1 \ E we have(7) �k(B(x; �4 � Æ)) ' pk Z �4�Æ0 sink�2 tdt:41



This means that if(8) p� Z �4�Æ0 sink�2 tdt ' Z �40 sinn�2 tdt;then A�=4\B(x; �4�Æ) 6= ;, and hen
e x 2 A�2�Æ. Analyzing the suÆ
ient 
ondition(8) we see that we 
an 
hoose Æ � 
(1� �). 2We 
omplete the proof of Theorem 5.1.1 as follows: Let x 2 Sn�1 \ E. Thereexists y 2 A su
h that(9) sin Æ � jhx; yij � kyk�kxk � 2M�kxk;and sin
e sin Æ � 2�Æ � 
0(1� �), the theorem follows. 25.2 The `-positionLet X be an n-dimensional normed spa
e. Figiel and Tom
zak-Jaegermann [60℄de�ned the `-norm of T 2 L(`n2 ; X) by(1) `(T ) = pn�ZSn�1 kTyk2�(dy)�1=2 :Alternatively, if fejg is any orthonormal basis in Rn , and if g1; : : : ; gn are indepen-dent standard Gaussian random variables on some probability spa
e 
, we have(2) `(T ) =  E ww nXi=1 giT (ei) ww!1=2 ;where E denotes expe
tation.Let now RadnX be the subspa
e of L2(
; X) 
onsisting of fun
tions of theform Pni=1 gi(!)xi where xi 2 X (the notation here is perhaps not 
anoni
al, but
onvenient). The natural proje
tion from L2(
; X) onto RadnX is de�ned by(3) Radnf = nXi=1 �Z
 gif� gi:We write kRadnkX for the norm of this proje
tion as an operator in L2(
; X).The dual norm `� is de�ned on L(X; `n2 ) by(4) `�(S) = supf tr(ST ) : T 2 L(`n2 ; X); `(T ) � 1g:From a general result of Lewis [109℄ it follows that for some T 2 L(`n2 ; X) one has`(T )`�(T�1) = n. Using this fa
t, Figiel and Tom
zak-Jaegermann proved that forevery n-dimensional spa
e X there exists T : `n2 ! X su
h that(5) `(T )`((T�1)�) � nkRadnkX :42



The norm of the proje
tion Radn was estimated by Pisier [159℄: For every n-dimensional spa
e X ,(6) kRadnkX � 
 log[d(X; `n2 ) + 1℄:This implies that for every X = (Rn ; k � k) we 
an de�ne a Eu
lidean stru
ture h�; �i(
alled the `-stru
ture) on Rn , for whi
h(7) M(X)M�(X) � 
 log[d(X; `n2 ) + 1℄:Equivalently, we 
an state the following theorem:Theorem 5.2.1. Let K be a symmetri
 
onvex body in Rn . There exists a position~K of K for whi
h(8) M( ~K)M�( ~K) � 
 log[d(XK ; `n2 ) + 1℄;where 
 > 0 is an absolute 
onstant. 2Pisier's argument uses symmetry in an essential way, therefore one 
annot trans-fer dire
tly this line of thinking to the non-symmetri
 
ase. For re
ent progress onthe non-symmetri
 MM�-estimate, see Appendix 7.2.5.3 The quotient of subspa
e theoremThe quotient of subspa
e theorem [134℄ states that by performing two operationson an n-dimensional spa
e, taking �rst a subspa
e and then a quotient of it, we 
analways arrive at a new spa
e of dimension proportional to n whi
h is (independentlyof n) 
lose to Eu
lidean:Theorem 5.3.1.(Milman) Let X be an n-dimensional normed spa
e and � 2 [ 12 ; 1).Then, there exist subspa
es E � F of X for whi
h(1) k = dim(E=F ) � �n ; d(E=F; `k2) � 
(1� �)�1j log(1� �)j:Geometri
ally, this means that for every body K in Rn and any � 2 [ 12 ; 1), we 
an�nd subspa
es G � E with dimG � �n and an ellipsoid E su
h that(2) E � PG(K \ E) � 
(1� �)�1j log(1� �)jE :The proof of the theorem is based on the Low M�-estimate and an iteration pro-
edure whi
h makes essential use of the `-position.Proof: We may assume that KX is in `-position: then, by Theorem 5.2.1 we haveM(X)M�(X) � 
 log[d(X; `n2 ) + 1℄.Step 1: Let � 2 (0; 1). We shall show that there exist a subspa
e E of X ,dimE � �n, and a subspa
e F of E�, dimF = k � �2n, su
h that d(F; `k2) �
(1� �)�1 log[d(X; `n2 ) + 1℄. 43



The proof of this fa
t is a double appli
ation of the Low M�-estimate. ByTheorem 5.1.1, a random �n-dimensional subspa
e E of X satis�es(3) 
1p1� �M�(X) jxj � kxk � bjxj ; x 2 E:Moreover, sin
e (3) holds for a random E 2 Gn;�n, we may also assume thatM(E) � 
2M(X). Therefore, repeating the same argument for E�, we may �nd asubspa
e F of E� with dimF = k � �2n and(4) 
3p1� �M(X) jxj � 
1p1� �M�(E�) jxj � kxkE� � M�(X)
1p1� � jxjfor every x 2 F . Sin
e KX is in `-position, we obtain(5) d(F; `k2) � 
4(1� �)�1M(X)M�(X) � 
(1� �)�1 log[d(X; `n2 ) + 1℄:Step 2: Denote by QS(X) the 
lass of all quotient spa
es of a subspa
e of X , andde�ne a fun
tion f : (0; 1)! R+ by(6) f(�) = inffd(F; `k2) : F 2 QS(X); dimF � �ng:Then, what we have really proved in Step 1 is the estimate(7) f(�2�) � 
(1� �)�1 log f(�):An iteration lemma (see [134℄ or [162, pp. 130℄) allows us to 
on
lude thatf(�) � 
(1� �)�1j log(1� �)j: 25.4 Variants and appli
ations of the Low M�-estimate1. An almost dire
t 
onsequen
e of the Low M�-estimate is the existen
e of afun
tion f : (0; 1)! R+ with the following property [141℄:If K is a body in Rn and if � 2 (0; 1), then a random �n-dimensional se
tionK \ F of K satis�es diam(K \ F ) � 2r, where r is the solution of the equation(1) M�(K \ rDn) = f(�)r:One 
an 
hoose f(�) = (1�")p1� � for any " 2 (0; 1), and then (1) is satis�edfor all F in a subset of Gn;[�n℄ of measure greater than 1� 
1 exp(�
2"2(1� �)n).2. Let t(r) = t(XK ; r) be the greatest integer k for whi
h a random subspa
eF 2 Gn;k satis�es diam(K \ F ) � 2r. The following linear duality relation wasproved in [140℄:If t�(r) = t(X�; r), then for any � > 0 and any r > 0 we have(2) t(r) + t�� 1�r� � (1� �)n� C;44



where C > 0 is an absolute 
onstant.This surprisingly pre
ise 
onne
tion between the stru
ture of proportional se
-tions of a body and its polar is also expressed as follows [81℄:Let � > 0 and k; l be integers with k+ l � (1� �)n. Then, for every body K inRn we have(3) ZGn;kM�(K \ F )d�n;k(F ) ZGn;lM�(KÆ \ F 0)d�n;l(F 0) � C� ;where C > 0 is an absolute 
onstant.3. An estimate dual to (1) was established in [79℄. There exists a se
ondfun
tion g : (0; 1) ! R su
h that: for every body K in Rn and every � 2 ( 12 ; 1), arandom �n-dimensional se
tion K \ F of K satis�es diam(K \ F ) � 2r, where r isthe solution of the equation(4) M�(K \ rDn) = g(�)r:This double sided estimate provided by (1) and (4) may be viewed as an (in
om-plete) asymptoti
 formula for the diameter of random proportional se
tions of K,whi
h is of interest from the 
omputational geometry point of view sin
e the fun
-tion r !M�(K \ rDn) is easily 
omputable.4. The diameter of proportional dimensional se
tions of K is 
onne
ted withthe following global parameter of K: For every integer t � 2 we de�ne rt(K) to bethe smallest r > 0 for whi
h there exist rotations u1; : : : ; ut su
h that u1(K)\ : : :\ut(K) � rDn.If Rt(K) is the smallest R > 0 for whi
h most of the [n=t℄-dimensional se
tionsof K satisfy diam(K \ F ) � 2R, then it is proved in [141℄ that r2t(K) � ptRt(K).The fa
t that a reverse 
omparison of these two parameters is possible was estab-lished in [80℄: There exists an absolute 
onstant C > 1 su
h that(5) RCt(K) � Ctrt(K)for every t � 2.5. Fix an orthonormal basis fe1; : : : ; eng of Rn . Then, for every non empty� � f1; : : : ; ng we de�ne the 
oordinate subspa
e R� = spanfej : j 2 �g.We are often interested in analogues of the Low M�-estimate with the addi-tional restri
tion that the subspa
e E should be a 
oordinate subspa
e of a givenproportional dimension (see [63℄ for appli
ations to Dvoretzky-Rogers fa
torizationquestions). Su
h estimates are sometimes possible [78℄:If K is an ellipsoid in Rn , then for every � 2 (0; 1) we 
an �nd � � f1; : : : ; ngof 
ardinality j�j � (1� �)n su
h that(6) PR�(K) � [�= log(1=�)℄1=2MK Dn \ R� :Analogues of this hold true if the volume ratio of K or the 
otype-2 
onstant ofXK is small. 45



Finally, let us mention that Bourgain's solution of the �(p) problem [23℄ (seealso [189℄ and [25℄) is 
losely related to the following \
oordinate" result:Let (�i)i�n be a sequen
e of fun
tions on [0; 1℄ whi
h is orthogonal in L2. Ifk�ik1 � 1 and k�ik2 � 
 > 0 for every i � n, then for every p > 2 most of thesubsets � � f1; : : : ; ng of 
ardinality [n2=p℄ satisfy(7) 
 Xi2� t2i!1=2 �wwwXi2� ti�i wwwp� K(p) Xi2� t2i!1=2for every 
hoi
e of reals (ti)i2� . We refer the reader to the arti
le [99℄ in this
olle
tion for the results of Bourgain-Tzafriri on restri
ted invertibility, whi
h are
losely related to the above.6 Isomorphi
 symmetrization and appli
ations to
lassi
al 
onvexity6.1 Estimates on 
overing numbersLet K1 and K2 be 
onvex bodies in Rn . The 
overing number N(K1;K2) of K1 byK2 is the least positive integer N for whi
h there exist x1; : : : ; xN 2 Rn su
h that(1) K1 � N[i=1(xi +K2):We shall formulate and sket
h the proofs of a few important results on 
overingnumbers whi
h we need in the next se
tion.The well known Sudakov inequality [179℄ estimates N(K; tDn):Theorem 6.1.1. Let K be a body in Rn . Then,(2) N(K; tDn) � exp(
n(M�=t)2)for every t > 0, where 
 > 0 is an absolute 
onstant.The dual Sudakov inequality, proved by Pajor and Tom
zak-Jaegermann [163℄,gives an upper bound for N(Dn; tK):Theorem 6.1.2. Let K be a symmetri
 
onvex body in Rn . Then,(3) N(Dn; tK) � exp(
n(M=t)2)for every t > 0, where 
 > 0 is an absolute 
onstant.We shall give a simple proof of Theorem 6.1.2 whi
h is due to Talagrand (see[115, pp. 82℄). 46



Proof of Theorem 6.1.2: We 
onsider the standard Gaussian probability measure
n on Rn , with density d
n = (2�)�n=2 exp(�jxj2=2)dx:A dire
t 
omputation shows that R kxkd
n(x) = �nM , where �n=pn ! 1 asn!1. Markov's inequality shows that(4) 
n(x : kxk � 2M�n) � 12 :Let fx1; : : : ; xNg be a subset of Dn whi
h is maximal under the requirement thatkxi � xjk � t, i 6= j. Then, the sets xi + t2K have disjoint interiors. The sameholds true for the sets yi + 2M�nK, yi = (4M�n=t)xi. Therefore,(5) NXi=1 
n(yi + 2M�nK) � 1:Using the 
onvexity of e�s, the symmetry of K and (4), we 
an then estimate
n(yi + 2M�nK) from below as follows:(6) 
n(yi + 2M�nK) � 12 exp(�(4M�n=t)2):Now, (5) shows that(7) N � 2 exp((4M�n=t)2);and sin
e �n ' pn we 
on
lude the proof. 2Sudakov's inequality (Theorem 6.1.1) 
an be dedu
ed from Theorem 6.1.2 witha duality argument of Tom
zak-Jaegermann [194℄: Let(8) A = supt>0 t(logN(Dn; tKÆ))1=2:We 
he
k that 2K \ ( t22 KÆ) � tDn for every t > 0, and this implies that(9) N(K; tDn) � N(K; 2K \ ( t22 KÆ)) = N(K; t24 KÆ)� N(K; 2tDn)N(Dn; t8KÆ):This shows that(10) t(logN(K; tDn))1=2 � t(logN(K; 2tDn))1=2 + 8A;from whi
h we easily get(11) supt>0 t(logN(K; tDn))1=2 � 16A:47



This is equivalent to the assertion of Theorem 6.1.1 (just observe that M�(K) =M(KÆ)). 2A weaker version of Sudakov's inequality 
an be proved if we use Urysohn'sinequality: For every body K and any t > 0, we have(12) N(K; tDn) � exp(2nM�=t):Proof: Consider a set fx1; : : : ; xNg � K whi
h is maximal under the requirementint(xi + t2Dn) \ int(xj + t2Dn) = ;. Then,(13) N(K; tDn) � N � jK + t2Dnjj t2Dnj = �2t�n jK + t2DnjjDnj ;and Urysohn's inequality shows that(14) N(K; tDn) � �2t�n (M�(K + (t=2)Dn))n= �2t�n�M� + t2�n = �1 + 2M�t �n � exp(2nM�=t): 2Using the 
overing numbers one 
an 
ompare volumes of 
onvex bodies in vari-ous situations. A main ingredient of the proof of the lemmas below (whi
h may befound in [138℄) is the Brunn-Minkowski inequality:Lemma 1. Let K;T , and P be symmetri
 
onvex bodies in Rn . Then,(15) jK \ (T + x) + P j � jK \ T + P jfor every x 2 Rn .Proof: Let Tx = K \ (T + x) + P . We easily 
he
k that Tx + T�x � 2T0, and thenapply the Brunn-Minkowski inequality. 2Lemma 2. Let K and P be symmetri
 
onvex bodies in Rn . If t > 0, then(16) jK + P j � N(K; tDn)j(K \ tDn) + P j:Proof: If K � Si�N K \ (xi + tDn), then K +P � Si�N [(xi + tDn)\K +P ℄. We
ompare volumes using the information from Lemma 1. 2Lemma 3. Let K and L be symmetri
 
onvex bodies in Rn . Assume that L � bKfor some b � 1. Then,(17) N �
o(K [ L); (1 + 1n )K� � 2bnN(L;K): 2Using Lemma 3 with L = 1tDn and 
ombining with Lemma 2, we have:Lemma 4. LetK and P be symmetri
 
onvex bodies in Rn . Assume that Dn � tbKfor some t > 0. Then,(18) j
o(K [ (1=t)Dn) + P ) � 2ebnN(Dn; tK)jK + P j: 248



6.2 Isomorphi
 symmetrization and appli
ations to 
lassi
al
onvexityThe fun
tional analyti
 approa
h and the methods of lo
al theory lead to newisomorphi
 geometri
 inequalities. In this way, the ideas we des
ribed in previousse
tions �nd appli
ations to 
lassi
al 
onvexity theory in Rn . We shall des
ribe tworesults in this dire
tion:6.2.1. The inverse Blas
hke-Santal�o inequality[32℄ There exists an absolute
onstant 
 > 0 su
h that(1) 0 < 
 � � jKjjKÆjjDnjjDnj� 1n � 1for every body in Rn .The inequality on the right is the Blas
hke-Santal�o inequality: the volumeprodu
t s(K) = jKjjKÆj is maximized (among symmetri
 
onvex bodies) exa
tlywhenK is an ellipsoid. A well-known 
onje
ture of Mahler states that s(K) � 4n=n!for every K. This has been veri�ed for some 
lasses of bodies, e.g. zonoids and1-un
onditional bodies (see [165℄, [128℄, [171℄, [87℄). The left handside inequality
omes from [32℄ and answers the question of Mahler in the asymptoti
 sense: Forevery body K, the aÆne invariant s(K)1=n is of the order of 1=n.6.2.2. The inverse Brunn-Minkowski inequality[135℄ There exists an absolute
onstant C > 0 with the following property: For every body K in Rn there existsan ellipsoid MK su
h that jKj = jMK j and for every body T in Rn(2) 1C ��MK + T ��1=n � ��K + T ��1=n � C��MK + T ��1=n:This implies that for every body K in Rn there exists a position ~K = uK(K)of volume j ~Kj = jKj su
h that the following reverse Brunn-Minkowski inequalityholds true:\If K1 and K2 are bodies in Rn , then(3) jt1 ~K1 + t2 ~K2j1=n � C �t1j ~K1j1=n + t2j ~K2j1=n� ;for all t1; t2 > 0, where C > 0 is an absolute 
onstant".The ellipsoidMK in 6.2.2 is 
alled anM-ellipsoid forK. Analogously, the body~K = uK(K) is 
alled an M-position of K (and then, one may take M ~K = �Dn).The symmetry of K is not really needed in 6.2.1 and 6.2.2 (see e.g. [147℄).Both results were originally proved by a dimension des
ending pro
edure whi
hwas based on the quotient of subspa
e theorem. We shall present a se
ond approa
h,whi
h appeared in [138℄ and introdu
ed an \isomorphi
 symmetrization" te
hnique.This is a symmetrization s
heme whi
h is in many ways di�erent from the 
lassi
alsymmetrizations. In ea
h step, none of the natural parameters of the body is being49



preserved, but the ones whi
h are of interest remain under 
ontrol. After a �nitenumber of steps, the body has 
ome 
lose to an ellipsoid and this is suÆ
ient forour purposes, but there is no natural notion of 
onvergen
e to an ellipsoid.6.2.3. Remarks. Applying (2) for T =MK we get(4) jK +MK j1=n � CjKj1=n:This is equivalent to Theorem 6.2.2 and to ea
h one of the following statements:(i) There exists a 
onstant C > 0 su
h that for every body K we 
an �nd anellipsoid MK with jMK j = jKj andN(K;MK) � exp(Cn):(ii) There exists a 
onstant C > 0 su
h that for every body K we 
an �nd anellipsoid MK with jMK j = jKj andN(MK ;K) � exp(Cn):We 
an also pass to polars and show that for every body T in Rn ,1C jMÆK + T j1=n � jKÆ + T j1=n � CjMÆK + T j1=n:Sin
e the M -position is isomorphi
ally de�ned, one may ask for stronger regularityon the 
overing numbers estimates (i) and (ii): Pisier proved (see [162, Chapter7℄) that, for every � > 1=2 and every body K there exists an aÆne image ~K of Kwhi
h satis�es j ~Kj = jDnj andmaxfN(K; tDn); N(Dn; tK); N(KÆ; tDn); N(Dn; tKÆ)g � exp(
(�)nt�1=�)for every t � 1, where 
(�) is a 
onstant depending only on �, with 
(�) = O((��12 )�1=2) as � ! 12 . We then say that K is in M-position of order � (�-regular inthe terminology of [162℄).Proof of the Theorems: Sin
e s(K) is an aÆne invariant, we may assume that K isin a position su
h thatM(K)M�(K) � 
 log[d(XK ; `n2 )+1℄. We may also normalizeso that M(K) = 1. We de�ne(5) �1 =M�(K)a1 ; �01 =M(K)a1;for some a1 > 1, and 
onsider the new body(6) K1 = 
o[(K \ �1Dn) [ 1�01Dn℄:Using Sudakov's inequality and Lemma 2 with P = f0g, we see that(7) jK1j � jK \ �1Dnj � jKj=N(K;�1Dn) � jKj exp(�
n=a21);50



while using the dual Sudakov inequality and Lemma 3 we get(8) jK1j � j
o(K [ 1�01Dn)j � 2e b�01nN(Dn; �01K)jKj � exp(
n=a21):The same 
omputation 
an be applied to KÆ1 , and this shows that(9) exp(�
n=a21) � s(K1)s(K) � exp(
n=a21):We 
ontinue in the same way. We now know that d(XK1 ; `n2 ) � M(K)M�(K)a21and, sin
e s(K1) is an aÆne invariant, we may assume that M(K1)M�(K1) �
 log[d(XK1 ; `n2 ) + 1℄ and M(K1) = 1. We then de�ne(10) �2 =M�(K1)a2 ; �02 =M(K1)a2;and 
onsider the body K2 = 
o[(K1 \ �2Dn) [ 1�02Dn℄. Estimating volumes, we seethat(11) exp(�
n=a22) � s(K2)s(K1) � exp(
n=a22):We iterate this s
heme, 
hoosing a1 = logn, a2 = log logn; : : : ; at = log(t) n { thet-iterated logarithm of n, and stop the pro
edure at the �rst t for whi
h at < 2. Itis easy to 
he
k that d(XKt ; `n2 ) � C, therefore(12) 1C � s(Kt)1=n � C:On the other hand, 
ombining our volume estimates we see that(13) 
1 � exp(�
( 1a21 + : : :+ 1a2t )) � s(Kt)1=ns(K)1=n � exp(
( 1a21 + : : :+ 1a2t ));whi
h proves Theorem 6.1.1 sin
e the series 1a21 + : : :+ 1a2t + : : : remains bounded byan absolute 
onstant. 2The proof of Theorem 6.2.2 follows the same pattern. In ea
h step, we verifythat for every 
onvex body T(14) exp(�
n=a2s) � jKs + T jjKs�1 + T j � exp(
n=a2s);and the same holds true for KÆs . At the t-th step, we arrive at a body Kt whi
his C-isomorphi
 to an ellipsoid M , and (14) shows that jKtj1=n ' jKj1=n up to anabsolute 
onstant. If we de�ne MK = �M where � > 0 is su
h that jMK j = jKj,then � ' 1 and using (14) we 
on
lude the proof. 2Note. The existen
e of the M -ellipsoid MK of K in the non-symmetri
 
ase wasestablished in [147℄. The key lemma is the observation that if 0 is the 
entroid ofthe 
onvex body K, then jK \ (�K)j � 2�njKj.51



We 
lose this se
tion with a few geometri
 
onsequen
es of the M -position:1. Every body K has a position ~K with the following property: there existu; v 2 SO(n) su
h that if we set P = ~K + u( ~K) and Q = P Æ + v(P Æ), then Q isequivalent to a Eu
lidean ball up to an absolute 
onstant. A
tually, this statementis satis�ed for a random pair (u; v) 2 SO(n) � SO(n). This double operation maybe 
alled isomorphi
 Eu
lidean regularization.Compare with the following examples: If K is the unit 
ube, then P is alreadyequivalent to a ball for most u 2 SO(n) (this follows from [100℄, see 4.7.1). If K isthe unit ball of `n1 , the se
ond operation is 
ertainly needed.A 
losely related result from [141℄ is the following isomorphi
 inequality 
on-ne
ting K with KÆ:Let �t(K) = maxf� > 0 : �Dn � 1t Pti=1 ui(K) ; ui 2 O(n)g. Then, thereexists an absolute 
onstant 
 > 0 su
h that�2(K)�3(KÆ) � 
for every body K in Rn . Observe that Kashin's result is a 
onsequen
e of this fa
t:if K is the 
ube, then �3(KÆ) � 
=pn. Therefore, K + u(K) � 
pnDn for someu 2 O(n). It is not 
lear if two rotations of KÆ suÆ
e for a similar statement.2. One may use the M -position in order to obtain a random version of thequotient of subspa
e theorem: If K is in M -position, then using Remark 6.2.3(i)we see that every �n-dimensional proje
tion PE(K) of K has �nite volume ratio(whi
h depends on �). We 
an therefore apply Theorem 4.7.2 to 
on
lude that arandom �2n-dimensional se
tion PF (K)\E of PF (K) has distan
e depending onlyon � from the 
orresponding Eu
lidean ball.7 Appendix7.1 The hyperplane 
onje
tureIn 2.3 we saw that every body in Rn has an isotropi
 position K with jKj = 1,whi
h satis�es(1) ZKhx; �i2dx = L2Kfor every � 2 Sn�1. This position is uniquely determined up to orthogonal transfor-mations, and the aÆne invariant LK is 
alled the isotropi
 
onstant of K. It is anopen problem whether there exists an absolute 
onstant C > 0 su
h that LK � Cfor every body K.Let K be a body in Rn . Using Theorem 2.3.6, one 
an easily 
he
k that(2) nL2K � jdetujjuKj1+ 2n ZK juxj2dx52



for every invertible linear transformation u. For the same reason,(3) nL2KÆ � jdet(u�1)�jj(u�1)�(KÆ)j1+ 2n ZKÆ j(u�1)�(x)j2dx:We may 
hoose u : XK ! `n2 su
h that d(XK ; `n2 ) = kuk ku�1k. Then, (2) and (3)imply that(4) n2L2KL2KÆ � d2(XK ; `n2 ) �juKj j(u�1)�(KÆ)j��2=n ;and an appli
ation of the inverse Santal�o inequality shows that(5) LKLKÆ � 
d(XK ; `n2 ):Therefore, duality gives the following �rst estimates on the isotropi
 
onstant:Theorem 7.1.1. Let K be a body in Rn . Then, LK � 
d(XK ; `n2 ) � 
pn. More-over, either LK � 
 4pn or LKÆ � 
 4pn. 2Bourgain [24℄ has proved that LK � 
 4pn logn, where 
 > 0 is an absolute
onstant, for every body K. We shall give a proof of this fa
t following Dar'spresentation in [46℄. Re
all that for every � 2 Sn�1 and p > 1 we have(6) � 1jKj ZK jhx; �ijpdx�1=p � 
p 1jKj ZK jhx; �ijdx;where 
 > 0 is an absolute 
onstant. This is a 
onsequen
e of Borell's lemma (see2.3). It follows from 2.3 (25) that if K is isotropi
, then(7) ZK exp(jhx; �ij=
LK)dx � 2;for every � 2 Sn�1, where 
 > 0 is an absolute 
onstant. We shall use this infor-mation in the following form:Lemma 1. Let K be an isotropi
 body. If N is a �nite subset of Sn�1, then(8) ZK max�2N jhx; �ijdx � 
LK log jN j: 2Starting with an isotropi
 body K, we see from Theorem 2.3.6 that(9) nL2K � trTn ZK jxj2dx = ZKhx; Txidx� ZK kTxkKÆdx = ZK maxy2TK jhx; yijdxfor every symmetri
, positive-de�nite volume preserving transformation T of Rn .In order to estimate this last integral, we �rst redu
e the problem to a dis
rete oneusing the Dudley-Fernique de
omposition:53



Lemma 2. Let A be a body in Rn , and R be its diameter. For every r andj = 1; : : : ; r, we 
an �nd �nite subsets Nj of A with log jNj j � 
n(w(A)2j=R)2 withthe following property: every x 2 A 
an be written in the formx = z1 + : : :+ zr + wr ;where zj 2 Zj = (Nj �Nj�1)\ (3R=2j)Dn and wr 2 (R=2r)Dn (we set N0 = fog).2 The proof of this de
omposition is simple. The estimate on the 
ardinality ofNj 
omes from Sudakov's inequality (Theorem 6.1.1). We now 
hoose T in (9) sothat A = TK will have minimal mean width: Theorem 5.2.1 allows us to assumethat w(TK) � 
pn logn.From Lemma 2, we see that for every x 2 K,(10) maxy2TK jhy; xij � rXj=1maxz2Zj jhz; xij+ maxw2(R=2r)Dn jhw; xij� rXj=1 3R2j maxz2Zj jh~z; xij+ R2r jxj;where ~z = z=jzj 2 Sn�1. Now, Lemma 1 and the estimate on jNj j imply that(11) ZK maxz2Zj jh~z; xijdx � 
LK log jZj j � 
nLK �w(TK)2jR �2for every j = 1; : : : ; r. Going ba
k to (9), we 
on
lude that(12) nL2K � 
LK0� rXj=1 nw2(TK)2jR + R2rpn1A� 
0LK �nw2(TK)2rR + R2rpn� ;and the optimal 
hoi
e for r gives(13) nL2K � 
 4pnw(TK)pnLK :Sin
e w(TK) � 
pn logn, the proof is 
omplete:Theorem 7.1.2. For every body K in Rn we have LK � 
 4pn logn. 2Remark: The same holds true for non-symmetri
 
onvex bodies as well (see [155℄).
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7.2 Geometry of the Bana
h-Mazur 
ompa
tum1. Consider the set Bn of all equivalen
e 
lasses of n-dimensional normed spa
esX = (Rn ; k � k), where X is equivalent to X 0 if and only if X and X 0 are isometri
.Then, Bn be
omes a 
ompa
t metri
 spa
e with the metri
 log d, where d is theBana
h-Mazur distan
e (the Bana
h-Mazur 
ompa
tum).There are many interesting questions about the stru
ture of the Bana
h-Mazur
ompa
tum, and most of them remain open. Below, we des
ribe some fundamentalresults and problems in this area. The interested reader will �nd more informationin the book [195℄ and the surveys [67℄, [183℄.2. John's theorem shows that d(X;Y ) � n for every X;Y 2 Bn. Therefore,diam(Bn) � n. The natural question of the exa
t order of diam(Bn) remained openfor many years and was �nally answered by Gluskin [64℄: diam(Bn) � 
n.Gluskin does not des
ribe a pair X;Y 2 Bn with d(X;Y ) � 
n expli
itely(in fa
t, there is no 
on
rete example of spa
es with distan
e of order greaterthan pn). The idea of the proof is probabilisti
: a random T : `n1 ! `n1 satis�eskTk kT�1k � 
n, and this suggests that by \spoiling" `n1 it is possible to obtainX and Y with distan
e 
n. The spa
es whi
h were used in [64℄ have as their unitball a body of the form K = 
of�ei;�xj : 1 � j � 2ng, where feig is the standardorthonormal basis of Rn and the xj 's are 
hosen uniformly and independently fromthe unit sphere Sn�1. A random pair of su
h spa
es has the desired property.This method of 
onsidering random spa
es proved to be very fruitful in prob-lems where one needed to establish \pathologi
al behavior". We mention Szarek's�nite dimensional analogue of En
o's example [56℄ of a spa
e failing the approx-imation property: there exist n-dimensional normed spa
es whose basis 
onstantis of the order of pn [181℄. See also [65℄, [124℄ and subsequent work of Szarekand Mankiewi
z where random spa
es play a 
entral role. The arti
le [152℄ in this
olle
tion 
overs this topi
.3. Another natural question about the geometry of the Bana
h-Mazur 
om-pa
tum is that of the uniqueness of its 
enter: If dimX = n and d(X;Y ) � 
pnfor every Y 2 Bn, is it then true that X is \
lose" (depending on 
) to `n2 ?This question was answered in the negative by Bourgain and Szarek [33℄: LetX0 = `s2 � `n�s1 , where s = [n=2℄. Then, d(X0; Y ) � 
pn for every Y 2 Bn (and,
learly, d(X0; `n2 ) � 
0pn). The proof of the fa
t that X0 is an asymptoti
 
enterof the 
ompa
tum is based on the proportional version of the Dvoretzky-Rogerslemma (see 4.1).4. Fix X 2 Bn. Then, one 
an de�ne the radius of Bn with respe
t to X byR(X) = maxfd(X;Y ) : Y 2 Bng. Many problems of obvious geometri
 interestarise if one wants to give the order of the radius with respe
t to important 
on
rete
enters. For example, the problem of the distan
e to the 
ube R(`n1) remains open.It is known that R(`n1) � 
n5=6 (see [33℄, [186℄ and [62℄). On the other hand, Szarekhas proved [182℄ that R(`n1) � 
pn logn, therefore `n1 and `n1 are not asymptoti

enters of the 
ompa
tum (these are a
tually the only 
on
rete examples of spa
esfor whi
h this property has been established).55



5. If we restri
t ourselves to sub
lasses of Bn, then the diameter may be signif-i
antly smaller than n: Let An be the family of all 1-symmetri
 spa
es. Tom
zak-Jaegermann [192℄ (see also [66℄) proved that d(X;Y ) � 
pn whenever X;Y 2 An.This result is 
learly optimal: re
all that d(`n1 ; `n2 ) = pn. The analogous problem forthe family of 1-un
onditional spa
es remains open. Lindenstrauss and Szankowski[114℄ have shown that in this 
ase d(X;Y ) � 
n�, where � is a 
onstant 
lose to2=3. It is 
onje
tured that the right order is 
lose to pn.The diameter of other sub
lasses of Bn was estimated with the method of ran-dom orthogonal fa
torizations. The idea (whi
h has its origin in work of Tom
zak-Jaegermann [190℄, and was later developped and used by Benyamini and Gordon[27℄) is to use the average of kTkX!Y kT�1kY!X with respe
t to the probabilityHaar measure on SO(n) as an upper bound for d(X;Y ). Using this method one
an prove a general inequality in terms of the type-2 
onstants of the spa
es [27℄,[55℄: d(X;Y ) � 
pn[T2(X) + T2(Y �)℄for every X;Y 2 Bn. This was further improved by Bourgain and Milman [31℄ tod(X;Y ) � 
�d(Y; `n2 )T2(X) + d(X; `n2 )T2(Y �)�:In [31℄ it is also shown that d(X;X�) � 
(logn)
n5=6 for every X 2 Bn. Allthese results indi
ate that the distan
e between spa
es whose unit balls are \quitedi�erent" should be signi�
antly smaller than diam(Bn).6. The Bana
h-Mazur distan
e d(K;L) between two not ne
essarily symmetri

onvex bodies K and L is the smallest d > 0 for whi
h there exist z1; z2 2 Rn andT 2 GLn su
h that K � z1 � T (L� z2) � d(K � z1).The question of the maximal distan
e between non-symmetri
 bodies is open.John's theorem implies that d(K;L) � n2. Better estimates were obtained withthe method of random orthogonal fa
torizations and re
ent progress on the non-symmetri
 analogue of the MM�-estimate (Theorem 5.2.1). In [42℄ it was provedthat every 
onvex body K has an aÆne imageK1 su
h thatM(K1)M�(K1) � 
pn,a bound whi
h was improved to 
n1=3 log� n, � > 0 in [170℄. Using this fa
t,Rudelson showed that d(K;L) � 
n4=3 log� n for any K;L 2 Kn. See also re
entwork of Litvak and Tom
zak-Jaegermann [116℄ for related estimates in the non-symmetri
 
ase.7. Milman and Wolfson [153℄ studied spa
es X whose distan
e from `n2 isextremal. They showed that if d(X; `n2 ) = pn, thenX has a k-dimensional subspa
eF with k � 
 logn whi
h is isometri
 to `k1 . The example of X = `n1 shows thatthis estimate is exa
t.An isomorphi
 version of this result is also possible [153℄: If d(X; `n2 ) � �pnfor some � 2 (0; 1), then X has a k-dimensional subspa
e F (with k = h(n) ! 1as n ! 1) whi
h satis�es d(F; `k1) � 
(�), where 
(�) depends only on �. Theoriginal estimate for k in [153℄ was later improved to k � 
1(�) logn through workof Kashin, Bourgain and Tom
zak-Jaegermann (see [195, Se
tion 31℄ for details).56



An extension of this fa
t appears in [158℄: Re
all that a Bana
h spa
e X
ontains `n1 's uniformly if X 
ontains a sequen
e of subspa
es Fn; n 2 N withd(Fn; `n1 ) � C. Then, the following are equivalent:(i) X does not 
ontain `n1 's uniformly.(ii) supfd(F; `n2 ) : F � X ; dimF = ng = o(pn).(iii) There exists a sequen
e �n = o(pn) with the following property: If F is ann-dimensional subspa
e of X , there exists a proje
tion P : X ! F with kPk � �n.In the non-symmetri
 
ase the extremal distan
e to the ball is n. Palmon [156℄showed that d(K;Dn) = n if and only if K is a simplex.8. Tom
zak-Jaegermann [193℄ de�ned the weak distan
e wd(X;Y ) of two n-dimensional normed spa
es X and Y by wd(X;Y ) = maxfq(X;Y ); q(Y;X)g, whereq(X;Y ) = inf Z
 kS(!)k kT (!)k d!;and the inf is taken over all measure spa
es 
 and all maps T : 
 ! L(X;Y ),S : 
 ! L(Y;X) su
h that R
 S(!) Æ T (!)d! = idX . It is not hard to 
he
k thatwd(X;Y ) � d(X;Y ) and that with high probability the weak distan
e betweentwo Gluskin spa
es is bounded by 
pn. In fa
t, Rudelson [168℄ has proved thatwd(X;Y ) � 
n13=14 log15=7 n for all X;Y 2 Bn. It is 
onje
tured that the weakdistan
e in Bn is always bounded by 
pn.7.3 Symmetrization and approximationSymmetrization pro
edures play an important role in 
lassi
al 
onvexity. The ques-tion of how many su

essive symmetrizations of a 
ertain type are needed in orderto obtain from a given body K a body ~K whi
h is 
lose to a ball was extensivelystudied with the methods of lo
al theory. This study led to the surprising fa
t thatonly few su
h operations suÆ
e:Let K 2 Kn and u 2 Sn�1. Consider the re
e
tion �u with respe
t to thehyperplane orthogonal to u. The Minkowski symmetrization of K with respe
tto u is the 
onvex body 12 (K + �uK). Observe that this operation is linear andpreserves mean width. A random Minkowski symmetrization of K is a body �uK,where u is 
hosen randomly on Sn�1 with respe
t to the probability measure �.In [38℄ it was proved that for every " > 0 there exists n0(") su
h that for everyn � n0 and K 2 Kn, if we perform N = Cn logn + 
(")n independent randomMinkowski symmetrizations on K we re
eive a 
onvex body ~K su
h that(1� ")w(K)Dn � ~K � (1 + ")w(K)Dnwith probability greater than 1 � exp(�
1(")n). The method of proof is 
loselyrelated to the 
on
entration phenomenon for SO(n).The same question for Steiner symmetrization was studied in [39℄. Mani [123℄has proved that, starting with a body K 2 Kn, if we 
hoose an in�nite randomsequen
e of dire
tions uj 2 Sn�1 and apply su

essive Steiner symmetrizations �uj57



of K in these dire
tions, then we almost surely get a sequen
e of 
onvex bodies
onverging to a ball. The number of steps needed in order to bring K at a �xeddistan
e from a ball is mu
h smaller [39℄: If K 2 Kn with jKj = jDnj, we 
an �ndN � 
1n logn and u1; : : : ; uN 2 Sn�1 su
h that(1) 
�12 Dn � (�uN Æ : : : Æ �u1)(K) � 
2Dn;where 
1; 
2 > 0 are absolute 
onstants. It is not 
lear what the bound f(n; ") onN would be if we wanted to repla
e 
2 by 1�", " 2 (0; 1). The proof of (1) is basedon the previous result about Minkowski symmetrizations.Results of the same nature 
on
ern questions about approximation of 
onvexbodies by Minkowski sums. The global form of Dvoretzky's theorem is an isomor-phi
 statement of this type.Re
all that a zonotope is a Minkowski sum of line segments, and a zonoid is abody in Rn whi
h is the Hausdor� limit of a sequen
e of zonotopes. A body is azonoid if and only if its polar body is the unit ball of an n-dimensional subspa
e ofL1(0; 1) (for this and other 
hara
terizations of zonoids, see [20℄).The unit ball of `np is a zonoid if and only if 2 � p � 1 (see [50℄). In parti
-ular, the Eu
lidean unit ball Dn 
an be approximated arbitrarily well by sums ofsegments. The question of how many segments are needed in order to 
ome (1+")-
lose to Dn is equivalent to the problem of embedding `n2 into `N1 . From the resultsin [61℄ it follows that N � 
(")n segments are enough. In [40℄ it was shown that thesame bound on N allows us to 
hoose the segments having the same length. Thelinear dependen
e of N on n is optimal, but the best possible answer if we view Nas a fun
tion of both n and " is not known (see [28℄, [30℄, [40℄, [111℄, [196℄).If we repla
e the ball Dn by an arbitrary zonoid Z, then the same approxi-mation problem is equivalent to the question of embedding an n-dimensional sub-spa
e of L1(0; 1) into `N1 . Bourgain, Lindenstrauss and Milman [40℄ proved, byan adaptation of the empiri
al distribution method of S
he
htman [173℄, that forevery " 2 (0; 1) there exist N � 
"�2n logn and segments I1; : : : ; IN su
h that(1� ")Z �P Ij � (1 + ")Z. Moreover, if the norm of Z is stri
tly 
onvex then N
an be 
hosen to be of the order of n up to a fa
tor whi
h depends on " and themodulus of 
onvexity of k � kZ . Later, Talagrand [188℄ showed (with a 
onsiderablysimpler approa
h) that one 
an have N � 
kRadnk2X"�2n.For more information on this topi
, we refer the reader to the surveys [110℄,[113℄ and [99℄.7.4 Quasi-
onvex bodiesMany of the results that we presented about symmetri
 
onvex bodies 
an be ex-tended to a mu
h wider 
lass of bodies. We have already dis
ussed extensions of themain fa
ts to the non-symmetri
 
onvex 
ase. We now brie
y dis
uss extensions tothe 
lass of quasi-
onvex bodies.Re
all that a star body K is 
alled quasi-
onvex if K + K � 
K for some
onstant 
 > 0. Equivalently, if the gauge f of K satis�es (i) f(x) > 0 if x 6= 0, (ii)58



f(�x) = j�jf(x) for any x 2 Rn , and (iii) f 2 C(�) i.e. there exists � 2 (0; 1℄ su
hthat �f(x) � (f � f)(x) := infff(x1) + f(x2) ; x1 + x2 = xg ; x 2 Rn :A body K is 
alled p-
onvex, p 2 (0; 1), if for any x; y 2 K and �; � > 0 with�p + �p = 1 we have �x + �y 2 K. Every p-
onvex body K is quasi-
onvex, andK +K � 21=pK. Conversely, for every quasi-
onvex body K (with 
onstant C) we
an �nd a q-
onvex body K1 su
h that K � K1 � 2K, where 21=q = 2C (see [166℄).Most of the basi
 results we des
ribed in the previous se
tions were extended tothis 
ase. Versions of the Dvoretzky-Rogers lemma and Dvoretzky's theorem wereproved by Dilworth [49℄. For the low M�-estimate and the quotient of subspa
etheorem in the quasi-
onvex setting, see [117℄ and [77℄ respe
tively (see also [143℄for an isomorphi
 Eu
lidean regularization result and the random version of the QS-theorem). The reverse Brunn-Minkowski inequality is shown in [36℄. For resultson existen
e of M -ellipsoids, entropy estimates and asymptoti
 formulas, see [117℄,[118℄ and [147℄. In most of the 
ases, the tools whi
h were available from the
onvex 
ase were not enough, and new te
hniques had to be invented: some ofthem provided interesting alternative proofs of the known \
onvex results".7.5 Type and 
otypeThe notions of type and 
otype were introdu
ed by Ho�mann-Jorgensen [92℄ in
onne
tion with limit theorems for independent Bana
h spa
e valued random vari-ables. Their importan
e for the study of geometri
 properties of Bana
h spa
eswas realized through the work of Maurey and Pisier (see the arti
le [120℄ in this
olle
tion for a dis
ussion of the development of this theory).Given an n-dimensional normed spa
e X , and 1 � p � 2 (2 � q < 1, respe
-tively), the type-p (
otype-q) 
onstant Tp(X) (Cq(X)) of X is the smallest T > 0(C > 0) su
h that: for every m 2 N and x1; : : : ; xm 2 X , Z 10 



 mXi=1 ri(t)xi



2dt!1=2 � T  mXi=1 kxikp!1=p :0�respe
tively;  mXi=1 kxikq!1=q � C  Z 10 



 mXi=1 ri(t)xi



2!1=2 : 1AResults of Tom
zak-Jaegermann ([191℄ when p = q = 2), K�onig ([103℄ for any pand q not equal to 2, up to 
onstants depending on p; q) and Szarek [184℄ showthat in order to determine the (Gaussian) type-p or 
otype-q 
onstants of X up toan absolute 
onstant, it is enough to 
onsider n ve
tors. In the Radema
her 
ase,the de�nite answer is not yet known. It is 
lear that T2(`n2 ) = C2(`n2 ) = 1 and,
onversely, Kwapien [104℄ proved that d(X; `n2 ) � C2(X)T2(X).59



Let kp(X ; "), 1 � p � 1, be the largest integer k � n for whi
h `kp is 1 +"-isomorphi
 to a subspa
e of X (in this terminology, k(X) = k2(X ; 4)). Thefollowing results show how type and 
otype enter in the study of the linear stru
tureof a spa
e:(i) In [61℄ it is shown that k2(X) � 
n=C22(X) and k2(X) � 
n2=q=C2q (X). Thisgives another proof of the fa
ts k2(`np ) � 
n; 1 � p � 2, and k2(`nq ) ' n2=q ; q � 2.(ii) In [159℄ it is proved that kp(X ; ") � 
(p; ")Tp(X)q, where 1 < p < 2 and1p + 1q = 1. This generalizes the estimate kp(`n1 ; ") � 
(p; ")n, 1 � p � 2, of Johnsonand S
he
htman [98℄.(iii) A quantitative version of Krivine's theorem [9℄ states that, for every A � ",kp(X ; ") � 
("; A)[kp(X ;A)℄
1("=A)p :Gowers [70℄, [71℄ obtained related estimates on the length of (1+")-symmetri
 basi
sequen
es in X .(iv) In [121℄ it is shown that if no 
otype-q 
onstant of X is bounded by anumber independent of n, then X 
ontains (1+")-isomorphi
 
opies of `k1 for largek. Alon and Milman [7℄, using 
ombinatorial methods, provided a quantitativeform of this fa
t: k2(X ; 1)k1(X ; 1) � exp(
plogn).Bourgain and Milman [32℄ proved that vr(KX ) � f(C2(X)). Thus, spa
eswith bounded 
otype-2 
onstant satisfy all 
onsequen
es of bounded volume ratio(this had been independently observed, see e.g. [61℄,[54℄). Milman and Pisier [148℄introdu
ed the 
lass of spa
es with the weak 
otype 2 property: X is weak 
otype2 if there exists Æ > 0 su
h that k2(E) � ÆdimE for every E � X . One 
an thenprove that vr(E) � C(Æ) for every E � X [148℄.In 6.2 we saw that every n-dimensional normed spa
e X has a subspa
e E withdimE � n=2 su
h that vr(KE�) � C. This suÆ
es for a proof of the quotient ofsubspa
e theorem. However, the following question remains open: does every X
ontain a subspa
e E with dimE � n=2 su
h that C2(E�) � C? This problem isrelated to many open questions in the lo
al theory (for a dis
ussion see [136℄, [144℄).Finally, let us mention the 
onne
tion between Gaussian and Radema
her aver-ages [122℄: Let X be an n-dimensional normed spa
e, and fxjg be a �nite sequen
ein X . Then,r 2� 0�Z 10 wwwXj rj(t)xj www2 dt1A1=2 � 0�Z
 wwwXj gj(!)xj www2 d!1A1=2
� 
(1 + logn)1=20�Z 10 wwwXj rj(t)xj www2 dt1A1=2 :If X has bounded 
otype-q 
onstant Cq(X) for some q � 2, then the 
onstant inthe right hand side inequality may be repla
ed by 
pqCq(X).60



7.6 Non-linear type theoryLet (T; d) be a metri
 spa
e, and Fn = f�1; 1gn with the normalized 
ountingmeasure �n. An n-dimensional 
ube in T is a fun
tion f : Fn ! T . For any su
hf and i 2 f1; : : : ; ng, we de�ne(�if)(") = d(f("1; : : : ; "i; : : : ; "n); f("1; : : : ;�"i; : : : ; "n)):A metri
 spa
e (T; d) has metri
 type p, 1 � p � 2, if there exists a 
onstant C > 0su
h that, for every n 2 N and every f : Fn ! T we have�ZFn d(f("); f(�"))2d�n�1=2 � Cn 1p� 12 0� nXj=1 ZFn(�jf("))2d�n1A1=2 :Every metri
 spa
e has type 1, and if 1 � p1 � p2 � 2, metri
 type p2 impliesmetri
 type p1.Let � : (T1; d1) ! (T2; d2) be a map between metri
 spa
es. The Lips
hitznorm of � is de�ned by k�kLip = supt6=s d2(�(t); �(s))d1(t; s) :Let Fnp be the spa
e Fn equipped with the metri
 indu
ed by `np . We say that ametri
 spa
e (T; d) 
ontains Fnp 's (1 + ")-uniformly if for every n 2 N there exist asubset Tn � T and a bije
tion �n : Fnp ! Tn su
h that k�nkLipk��1n kLip � 1 + ".Bourgain, Milman and Wolfson [41℄ (see also [154℄) proved the following:Theorem 7.6.1. A metri
 spa
e (T; d) has metri
 type p for some p > 1 if andonly if there exists " > 0 su
h that T does not 
ontain Fn1 's (1 + ")-uniformly.A natural question whi
h arises is to 
ompare the notions of metri
 type andtype in the 
ase where T is a normed spa
e. An answer to this question was givenin [41℄, see also [161℄:Theorem 7.6.2. Let X be a Bana
h spa
e and let 1 < p < 2.(i) If X has type (respe
tively, metri
 type) p, then X has metri
 type (respe
-tively, type) p1 for all 1 � p1 < p.(ii) X 
ontains Fn1 's uniformly if and only if X 
ontains `n1 's uniformly.We refer the interested reader to [41℄, [161℄ for the proofs of these fa
ts, and a
omparison with another notion of metri
 type whi
h was earlier proposed by En
o[57℄. In [41℄ and [37℄ one 
an �nd a generalization of Dvoretzky's theorem for metri
spa
es: For every " > 0 there exists a 
onstant 
(") > 0 with the following property:every metri
 spa
e T of 
ardinality N 
ontains a subspa
e S with 
ardinality atleast 
(") logN su
h that for some ~S � `2 with jSj = j ~Sj we 
an �nd a bije
tion� : S ! ~S with k�kLipk��1kLip � 1+ " (this means that S is (1+ ")-isomorphi
 toa subset of a Hilbert spa
e). 61



Let us �nally mention an interesting 
onne
tion between non-linear problemsand a more advan
ed form of type and 
otype, the so-
alled Markov type and 
otypewhi
h was introdu
ed and studied by K. Ball [17℄.
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