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1. Prologue 

In the year 1989, in a not yet well identified country of the world, a violent 
revolution exploded, unleashed by the excessive privileges of the upper class. 
The interim government, instituted by the democratic rebels, decided to reintroduce 
capital punishment by decapitation, in analogy to what was done in France two 
centuries before, and consequently the guillotine made its reappearance in history. 

A man called *** was appointed superintendent of the executions and was 
charged with deciding the political and technical questions generated by the 
cruel decision of the government. Mr. *** was absolutely unable to carry out 
his task. He was an aristocrat masquerading as a populist, interested only in his 
own theoretical studies, and, above all, pathologically revolted by human blood. 

Unfortunately he was not courageous enough to resign from his position 
for fear of raising suspicions about his past. He thus decided to exploit his knowl- 
edge of mechanics so as to render the guillotine more efficient and, perhaps, 
as painless as possible. In terms customary in his time, he solved an "optimization 
problem" in solid mechanics. 

2. The Problem of Mr. *** 

The traditional shape of the blade of the guillotine is trapezoidal (Figure 1) 
with the skew side sharpened in order to make penetration easier. The typical 
cross section of the blade, hatched in the figure, has a sharp lower edge where the 
first contact with the neck of the condemned occurs. But, while the lengths of 
the sides and thickness of the blade are prescribed, there is a certain freedom in 
modelling the profile which bounds the lower part of the cross section. Though in 
machines of the past it was an interval of a straight line, it is not necessarily 
true that this is the most favorable form of penetration. Granted that the thickness 
must be constant, the question arises whether a sharp or a blunt edge is more 
convenient. 

Converted into more abstract terms, the problem faced by Mr. *** was that 
of optimizing the profile of the cutting edge of a rigid blade in order that, the load 
being equal, the penetration into a soft body would be highest, avoiding breaks. 
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Figure 1 
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In practice the first contact does not occur along the entire lower side of the 
blade, but on a subinterval a,~. If, however, the diameter of the body that must be 
cut is sufficiently large, this interval of first contact should be large enough that a 
substantial part of the edge enters into action at the same instant. On the other 
hand, if the blade is sufficiently thin, and the height of the sharpened part of the 
edge is also small compared with the thickness, the transverse penetration of the 
blade will be equal to its thickness just after the first instant of contact. These 
two considerations make plausible the assumption of regarding the state of de- 
formation induced by the cross section of the blade into the flesh of a fat neck 
as that generated by the complete indentation of a rigid punch of variable profile 
on an elastic half-plane in a state of plane strain. The scheme of the position of 
the punch with respect to the half-plane after the first penetration is that indicated 
in Figure 2, where the length of AC, the thickness of the blade, and that of AB, 
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the height of the sharpened edge, are prescribed, while the shape of B C  must be 
determined so as to improve the elastic penetration of the punch under constant 
load P. 

Of course such a model requires other tacit simplifications which must be kept 
in mind: the assumption that all the cross sections of the blade have the same initial 
penetration of magntiude H implies that the obliqueness of the lower side has been 
neglected; in addition, it is assumed that the contact is so smooth that the possible 
tangential stress due to friction can be disregarded; finally, the process is suffi- 
ciently slow to ignore dynamic effects. It must be also recalled that the hypothesis 
that His small with respect to the thickness 2a is necessary to infer the strains small 
enough to be regarded as infinitesimal and consequently to determine them by 
the methods of plane linear elasticity. For, in particular, a flat punch (H = zero), 
the first solution of the corresponding elastic problem is due to SADOWS~I [1928]; 
and the same result wasfound through other techniques by MUSKHELISHVILI [1941] 
and by L. F6t'PL [1941]. 

The problem of modelling the shape of the edge is, however, different. In 
this case of force P acting on the punch, its thickness and height are prescribed, 
and the profile B C  must be found which yields the largest penetration, that is 
the maximum displacement in the direction of the y-axis of a characteristic point 
of the blade taken to be the point with initial coordinates (0, 0). It may appear 
that the best shape is such that the profile B C  has a very sharp vertex at B, but this 
solution is not physically acceptable for, if the vertex is too pointed, the excess 
of localized stress may cause the blade to break. The conclusion is that the solution 
must be a compromise between the need to sharpen the profile at B to favor 
penetration and the need to maintain a certain slope to avoid rupture. 

The problem formulated in these terms is no longer a classical problem but 
one of shape optimization. Although these problems are very common in technical 
mechanics, their solution is difficult. That found here is only partial as it is assumed 
that the curve B C  can be expressed by a polynomial, keeping in mind the obvious 
fact that, if the properties of regularity imposed on minimizing functions are re- 
moved, the minimum may be much lower or even not exist at all. 

3. The Rectilinear Profile 

Before adressing the case in which the profile is analytically represented by 
a polynomial it is expedient to consider a simpler example, like that in which B C  

is rectilinear and, therefore, the punch is triangular. The shape of the profile 
being prescribed, the question of optimizing it does not arise, since B C  is simply 
the segment connecting these two points. Again, the condition that the angle with 
vertex at B is not too small imposes a limit on the magnitude of H. 

With the x and y axes chosen as is shown in Figure 2, the Cartesian equation 
of B C  is 

y = f ( x )  = -~- 1 - -  4:- G, - - a  < x <-- a,  (3.1) 

where G is a constant for the moment not determined. This curve also represents 
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the normal displacement v(x,  0) imparted to the boundary of the half-plane y ~ 0 
in the interval - -a  ~< x --< a, the remaining part being free from stresses. Under 
the hypothesis that the half-plane is linearly elastic with Young's modulus E and 
Poisson's ratio tr, the problem was solved by Fr-ORIN [1936]. The very simple 
solution is found by assuming the normal pressure p(x) ,  exerted upon the interval 
where penetration occurs, to have the form 

X 
c o - -  c 1 

a 

where Co, c~ are two indeterminate constants. This pressure is singular at the ends 
of the interval where the boundary conditions change type. The constants co, c~ 
are determined by imposing the condition that the displacement v(x,  0), or, better, 

Ov 
its derivative ~ (x, O) is f ' ( x ) :  

2(1 - f 5@ H (3.3) 
-~x (X, O) - -  :rE a x - -  u = 2a " 

- - a  

In addition to this relation, it is known that the resultant of the pressure p ( x )  is 
equivalent to the vertical load for unit of length P, that is 

Q 

f p (u)  du = P .  (3.4) 
- - a  

When the expression (3.2) for p(u)  is put into the above equations, with the ab- 
:rE 

breviation 0 -  they become 
2(1 - -  (7 2 )  

t l  

1 f Co--Cl-- a d u =  H t j 3  )'~.'" 

--a 1 - -  ( X - - . )  

u 

a C O - -  C 1 - -  

f 
- a  1 - 

du = P ,  (3.6) 

and these integrals can be evaluated in finite form by the change of variables 
X = - - a  c O S  oc,  t t  : - - a  c o s  fl (el G R O B N E R  8 r  H O F R E I T E R  [1966, lI 332]). After 
introducing the values of the integrals it is possible to derive Co and c,: 

P OH 
Co : - - ,  cl : . (3.7) 

~a 2z~a 
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This is FLomN's result, but the method used here is due to L. FOwL (cf. SZAB6 
[1964, w 11]). 

Once the local pressure is known, the partial resultant of  this pressure starting 
from the end point x = --a, is given by 

U 
x ; C O - -  

.~(x)= j pOOdu= J - - c l  a du 

: arcsin - -  q- + 1 --  
a 2:~ V a ' 

(3.8) 

which, of  course, is P for x = a. 
Still from the formula giving the pressure it is possible to obtain the displace- 

ment v(x, 0) in the load region - - a  ~ x ~< a: 

1 a 

f p(u) In (x -- u) du + constant; (3.9) v(x, O) -- 0 _ 

since this displacement is defined to within a constant, it is customary to designate 
two points of  the boundary (4-e, 0) with c > a as fixed (of. Gm~:MANN [1963, 
w 32]). Thus v(x, 0) assumes the form 

1 ~ f -"l 
v(x, O) -- ( p ( u )  In du. (3.10) 

0 C 

The displacement of a characteristic point of the base, for example, the origin 
(0, 0) can be taken as a measure of  the penetration of the blade under the load P. 
Then the formula (3.10) becomes 

U 

- - _ _  a In -- In du, (3.11) Vo = v(O, O) = 0 2 

that is, by again using the results of  Ge,6BNER & HOFRE1TER [1966, II 324, 60] 

(a) Vo = - ~ - c o l n  2 = - ~ - l n  2 . (3.12) 

Because Vo is determined~ also the constant G is known since f(0) must be 

equal to Vo, and its value is G ~ - 0 - I n  2 2 " 

At this point the problem would be solved if not for the fact that, if  H is too 
large and the edge too sharp, the blade may break from excess pressure. In prac- 
tice, since the pressure is infinite at B (as well at C), this condition must be rendered 
more precise: what is important to bound is the product 

V - K =  lim_p(x) 1 + - - ,  (3.13) 
a 
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which is called the "stress concentration factor" and is a measure of how the 
pressure tends to infinity in the neighborhood of  the vertex B. This quantity 
must obey a constraint of the type K ~ Ko, this latter being a constant of the 
material composing the blade. Then, recalling (3.2), it is found that 

1 _~___~(P OHI< 
K = ~ (Co + cl) = ~ q- 2xa ] = Ko. (3.14) 

The concluding result is thus the following: at constant load P, the penetration 
Vo is independent of H, but this cannot be too large in order to not violate (3.14) 
and the condition f ( a )  = G >= O, ensuring complete penetration. 

4. The Parabolic Profile 

An alternative solution of the problem is that of adopting for BC,  instead of  
a rectilinear profile, a parabolic one, described by the equation 

x)2 
y = f ( x )  = --~- 1 - -  - t -G,  - - a  <-- x <-- a ,  (4.1) 

where G is a constant. 
Also in this case an integral equation like (3.3) must be solved, but with the 

difference thatf ' (x)  is now -- ~ -  1 -- . By taking the expression for the pres- 
sure to be 

x (x)2 
Co - c l  --a- + c2 

p ( x )  = , (4.2) 
V I  _ ( ~ ) z  

with Co, c~, c2, being new constants, and placing it into (3.3) after modifying 
the term f ' ( x ) ,  we obtain the new equation 

, fco -(1 x) 
a du - -  (4.3) 

-"  1 -- (x -- u) 

The condition that the resultant pressure is still P is 

a C O 

f 
- - a  

- -  C l - - t -  C2 
a 

d u =  P .  (4.4) 



A Mathematical Theory of the Guillotine 99 

By again using the tables of GR•BNER ~; HOFREITER the two foregoing integrals 
can be evaluated explicitly so as to arrive at the two equations 

e t - - c 2  l - - a /  Co+ ~_ - - - - ,  
a 2 x a  \ ' ~a  

and hence 
P OH OH OH 

co -- cl = c, = . (4.5) 
~ra 4z~a ' 2eta ' - 2~a  

The constants Co, cl, c2 being known, penetration is now given by the expression 

f In In du,  Vo = v(O, O) --  0 2 a 1/,-(-;) 
the calculation of which furnishes 

V o = ~ - c o l n  2 - - -~ -c  2 � 88189  2 , (4.4) 

or, after introducing the values of  Co and c2, 

Vo ~ -0-1n 2 + - ~ - ,  

and a comparison with the formula (3.12) shows that penetration is increased by 
H 

the amount --~ for a parabolic profile. From (4.5) the derivatioa of the constant 

G ----- ~ - I n  2 --  -~- is also immediate, and G must be non-negative in order 

to guarantee complete penetration. 
The factor K, which is still defined by (3.13), becomes 

1 
K = ~ -  (Co -k cl -k Cz) = ~ ~aa -1- 4--~-a]' (4.6) 

and, to prevent possible ruptures, K must not be larger than Ko. 
Since K is now higher than in the case of  a rectilinear profile, the conclusion 

is that a parabolic profile improves the elastic penetration but worsens the specific 
pressure at the vertex. 

5. The Optimal Profile 

As the two simple cases of  rectilinear and parabolic profile are, in some 
sense, in conflict with each othe L the first more effective for local pressure con- 
centration at the vertex, the second for elastic penetration, it is natural to ask 
whether it is possible to design a mixed profile, effecting a compromise between 
the two counterpoised requirements. 
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For this purpose it is convenient to start with a profile having the equation 

(x) 
y =  f(x)  = at 1 - -  + a2 1- -  + G, (5.1) 

where, this time, at and a2 are constants to be determined and G is the constant 
introduced before. However, the coefficient of the equation (5.1) must obey the 
condition that the height remains H, that is 

f ( - -a )  - - f ( a )  = 2at + 4a2 ----- H;  (5.2) 

and that the graph of BC nowhere crosses the x-axis within the interval 
- -a  ~< x --< a. A simple, though more restrictive, condition ensuring the latter 
constraint is that 

f(a) >= O, i f (x)  <= O, 

or, in terms of  the coefficients at, a2, G, 

G ~ 0, at >= 0, at + 2a2 ~ 0. (5.3) 

The pressure p(x) can still be assumed to have the form (4.2), determining it 
in terms of  the three constants Co, ct, c2, which must satisfy an equation like 

(4.3) but with the right-hand side modified: f ' ( x ) - -  ata 2 a--~2 ( l a  - - - ~ ) "  The 

condition on the resultant remains (4.4). Calculation of the integrals yields the 
relations 

c ~ - - c ~ - - - -  at + 2a2 1 - -  , Co + - ~ - ~ - ~ a ,  
a u"~a 

and hence 

c O 

P On2 0 0 
cl ----- ~a  (a~ + 2a2), c2 = + ~ 2a2. 

3"ga 7 g a  ' 2/7a 

The elastic penetration is still given by (4.4), but, with the new values for the 
constants it becomes 

Vo = -0-1n 2 + -~--, 

and the goemetrieal condition Vo = f ( 0 ) ,  gives the relation determining G: 

v o = a l  + a 2 + G .  

Lastly, (4.6) gives the factor of pressure concentration, while the condition of 
safety against breaking assumes the form 

, ( ,  0 0 ) --at + 3--a~ <:Ko. (5.5) x= (Co + c1+ = 

The optimum profile will then be that which maximizes Vo, regarded as a func- 
tion of a,, an, G, with the condition (5.2) and the constraints (5.3), (5.5). Since 
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(5.2) permits the elimination of  0'2, the other constraints reduce to: 

a,  = T-~- ln  2 6 '  

and Vo can be written 

3 P ] / -  z~a 
a~ >: O, a, >= ~ H + 2--~- -- 2 2 -~- Ko, (5.6) 

V o = - ~ l n  2 -~ 8 4 "  (5.7) 

The discussion of the problem is simple. It is clear that the constraints are com- 
patible only if 

4 P / c \  H I P / - ~ a  1 y - ~  In/2--~-) -- --~- ~ max , 0 ' 3 H +  2--~- -- 2 ~ 2 -~- Koj. (5.8) 

Provided that this inequality is satisfied, two cases are possible: if the maximum 
H 

of  the right-hand side is 0, then the solution is a~ ---- 0 and a2 = --4--, which cor- 

responds to the simple parabola; if, alternatively, the second term on the right- 

(5.8) is the maximum, then the solution is at = 3 H + 2 0  --  2 hand side of 

~ra - - -  na P H 
-~-Ko, a2 = 1/2 -~-Ko 0 2 ' and the profile is mixed. In either case it 

is convenient to thin the profile at the vertex. 

6. Epilogue 

The reprisals of 1989 never took place because every citizen could be proven 
to be a revolutionary. Mr. *** received solemn awards and his theory was 
applied to grind knives for slicing bread and salami. Only the pigs protested. 
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