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Abstract

We give a different proof of a recent result of Klartag [12] concerning the con-
centration of the volume of a convex body within a thin Euclidean shell and proving
a conjecture of Anttila, Ball and Perissinaki [1]. It is based on the study of the
Lp-centroid bodies. We prove an almost isometric reverse Hölder inequality for their
mean width and a refined form of a stability result.

1 Introduction

In this paper we study how the volume of a symmetric convex body concentrates within a very
thin Euclidean shell. Let K be an isotropic convex body in Rn i.e. a symmetric convex body of
volume 1 such that for some fixed LK > 0,

∀θ ∈ Sn−1,

∫

K
〈x, θ〉2dx = L2

K .

It is known that every symmetric convex body has an affine image which is isotropic. We denote
by |x|2 the Euclidean norm of x ∈ Rn. In the paper [1], Anttila, Ball and Perissinaki asked if
every isotropic convex body in Rn satisfy an ε-concentration hypothesis namely:
Concentration hypothesis. Does there exist εn such that limn→∞ εn = 0 and

∣∣∣∣
{

x ∈ K,

∣∣∣∣
|x|2

LK
√

n
− 1

∣∣∣∣ ≥ εn

}∣∣∣∣ ≤ εn?

We will prove the following

Theorem 1. There exists c and c′ such that for every isotropic convex body K in Rn, and every
p ≤ (log n)1/3,

1 ≤
(∫

K
|x|p2dx

)1/p/(∫

K
|x|2dx

)
≤ 1 + c p/(log n)1/3.

In particular, for every ε ∈ (0, 1),
∣∣∣∣
{

x ∈ K,

∣∣∣∣
|x|2√
nLK

− 1

∣∣∣∣ ≥ ε

}∣∣∣∣ ≤ 2e− c
√

ε(log n)1/12

. (1)
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This implies that the concentration hypothesis holds with εn = c(log log n)2/(log n)1/6. This result
has been very recently obtained in full generality by Klartag [12], where he proved that (1) holds
true with 2e−ε2 log n for every isotropic convex body with center of mass at the origin. Our goal
is to present a different approach via the notion of Lp-centroid bodies. To any star shape body
with respect to the origin, L ⊂ Rn, we associate its Lp-centroid body Zp(L) which is a symmetric
convex body defined by its support function:

∀y ∈ Rn, hZp(L)(y) =

(∫

L
|〈x, y〉|pdx

)1/p

.

This body is homothetic to the Lp-centroid body defined by Lutwak and Zhang in [16] (see also
[15]). For any symmetric convex body C, we define the p-th mean width as

Wp(C) =

(∫

Sn−1

hC(θ)pdσ(θ)

)1/p

.

The main result of this paper compares the mean width of the Lp-centroid bodies of an isotropic
convex body to the mean width of the Lp-centroid bodies of the Euclidean unit ball of volume 1.

Theorem 2. There exists a constant c such that for any n, for every isotropic convex body K in
Rn, if D̃ denotes the Euclidean unit ball in Rn of volume 1, for every p ≤ (log n)1/3

W1(Zp(K))

W1(Z1(K))

W1(Z1(D̃))

W1(Zp(D̃))
≤ 1 + cp/(log n)1/3.

Regarding K as a probability space, these techniques were used by the third named author
[20] to prove that the Lq-norms of the Euclidean norm are almost constant for any q ≤ √

n, i.e.
(see theorem 1.2 in [20])

∃C ≥ 1, ∀q ≤ c
√

n,

(∫

K
|x|q2dx

)1/q

≤ C

(∫

K
|x|22dx

)1/2

= C
√

n LK . (2)

Theorem 1 is in fact an almost isometric version of this result (although it does not recover the
full isomorphic one). It is also related to a weak form of Kannan, Lovász and Simonovits [11]
conjecture about the Cheeger-type isoperimetric constant for convex bodies: does there exist
c > 0 such that for any isotropic convex body K,

σ2
K :=

V ar(|X|22)
nL4

K

≤ c

where X is a random vector uniformly distributed on K? We refer to the paper of Bobkov [4]
for more details between the full KLS-conjecture and this weaker form. Theorem 1 implies that
limn→∞ σ2

K/n = 0. Up to now, the only known upper bound was the trivial one, σK ≤ c
√

n.

On the way, we will need a new type of stability result for the Lp-centroid bodies. Let K and
L be symmetric convex bodies of volume 1 in Rd, if Zp(L) is close to Zp(K) for the geometric
distance, what can we say about the geometric distance between K and L? This type of question
has been studied by Bourgain and Lindenstrauss [6] in the case of projection bodies i.e. p = 1.
We will prove a more precise result when one of the bodies is the Euclidean unit ball D. The
geometric distance between two symmetric convex bodies K and L is defined by

d(K, L) = inf {ab | a, b > 0 and 1/aK ⊂ L ⊂ bK} .
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Theorem 3. There exists c > 0 such that for every integer d greater than 3 and any odd integer
p ≤ d, we have the following property:
if K is a symmetric convex body in Rd such that for some α > 1 and ε ∈ (0, (c α)−2d3

)

d(K, D) ≤ α and d(Zp(D̃), Zp(K̃)) ≤ 1 + ε

where K̃ = |K|−1/dK and D̃ = |D|−1/dD then

d(K, D) ≤ 1 + h(ε) and (1 − h(ε))Zp(D̃) ⊂ Zp(K̃) ⊂ (1 + h(ε))Zp(D̃)

where h(ε) = (c α)d+p+1ε1/d2

.

It was proved in [1] that the concentration hypothesis implies some type of central limit
theorem. The conjecture about a central limit theorem for convex sets stated by Anttila, Ball,
Perissinaki [1] and Brehm, Voigt [7] has been recently proved by Klartag [12] and we refer to that
paper for more precise references on this subject.

The paper is organized as follows. In Section 2, we shall explain how we reduce the study of
concentration of the volume of an isotropic convex body to the study of its Lp-centroid bodies.
We shall prove the main Theorem 2 in Section 3. The proof of Theorem 3 is given in Section 4
and uses standard tools coming from the theory of spherical harmonics.

Notations. Throughout this paper, D will be the Euclidean ball in Rn and Sn−1 the unit
sphere. The volume is denoted by | · |. We write ωn for the volume of D and σ for the rotationally
invariant probability measure on Sn−1. By L̃ we denote the convex body that is homothetic to
L ⊂ Rn and has volume 1, that is L̃ = |L|−1/nL and R(L) will be the circumradius of L i.e. the
smallest real number such that L ⊂ R(L)D. The letter c will allways be used as being a universal
constant and it can change from line to line.

Acknowledgement. The authors would like to thank K. Ball for several useful discussions.

2 Reduction to Lp centroid bodies.

For any isotropic convex body K, we define Ip(K) =
(∫

K |x|p2dx
)1/p

. It is easy to check that there
exists a constant cn,p such that for every θ ∈ Sn−1

cp
n,p

∫

Sn−1

|〈θ, x〉|pdσ(θ) = |x|p2, i.e. cn,p =

( √
π Γ(p+n

2 )

Γ(p+1
2 ) Γ(n

2 )

)1/p

.

Note that cn,p is of the same magnitude than
√

(n + p)/p. By the Fubini theorem and the
definition of Wp(Zp(K)), Ip(K) = cn,p Wp(Zp(K)). We first need some precise computations in
the case of the Euclidean ball of volume 1.

Lemma 1. Let D be the Euclidean unit ball in Rn, then for any p ≤ n,

Ip(D̃)/I1(D̃) ≤ 1 + cp/n2. (3)

Let k be an integer and p ≤ k ≤ n and denote by D̃F the Euclidean unit ball of volume 1 in any
k-dimensional subspace F of Rn then

(
W1(Z1(D̃))/W1(Zp(D̃))

) (
W1(Zp(D̃F ))/W1(Z1(D̃F ))

)
≤ 1 + c p/k.
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Proof. For any 1 ≤ p ≤ n, we have

cn,p

cn,1

Wp(Zp(D̃))

W1(Z1(D̃))
=

(∫

eD
|x|p2dx

)1/p/∫

eD
|x|2dx = (1 + 1/n)(1 + p/n)−1/p ≤ 1 + cp/n2.

Since for any p ≥ 1, W1(Zp(D̃)) = Wp(Zp(D̃)) and xΓ(x) = Γ(x + 1), we get

W1(Z1(D̃)) W1(Zp(D̃F ))

W1(Zp(D̃)) W1(Z1(D̃F ))
=


 Γ

(
1 + n+p

2

)
Γ
(
1 + k

2

)

Γ
(
1 + n

2

)
Γ
(
1 + k+p

2

)




1/p

Γ
(
1 + n

2

)
Γ
(
1 + k+1

2

)

Γ
(
1 + n+1

2

)
Γ
(
1 + k

2

) .

Easy computations involving the Γ function give the stated estimate when p ≤ k. 2

For any fixed symmetric convex body L, Litvak, Milman and Schechtman [14] studied the
behavior of Wp(L) as a function of p.

Lemma [14] Let L be a symmetric convex body of Rn then for any p ≤ c1n (W1(L)/R(L))2,

|Wp(L) − W1(L)| ≤ ‖hL(u) − W1(L)‖p ≤ c2

√
p

n
R(L) (4)

where c1 and c2 are universal constants.
The next lemma was essentially proved in [20].

Lemma 2. There exists c > 0 such that for every isotropic convex body K ⊂ Rn, for every
1 ≤ p ≤ c

√
n,

R(Zp(K)) ≤ c
√

p W1(Zp(K)). (5)

Proof. We briefly indicate a proof. In isotropic position, R(Zp(K)) ≤ cpR(Z2(K)) = cpLK .
Corollary 3.11 in [20] means that if p ≤ c

√
n, Wp(Zp(K)) is similar up to universal constants to

W1(Zp(K)). Observe that Wp(Zp(K) ≥ c
√

p/nIp(K) ≥ c
√

pLK and
√

pW1(Zp(K)) ≥ cpLK ≥
cR(Zp(K)). 2

Proof of Theorem 1. We write

Ip(K)I1(D̃)

I1(K)Ip(D̃)
=

Wp(Zp(K))

W1(Zp(K))

(
W1(Zp(K))

W1(Z1(K))

W1(Z1(D̃))

W1(Zp(D̃))

)
. (6)

From (4) and (5), we get 1 ≤ Wp(Zp(K))/W1(Zp(K)) ≤ 1 + c p√
n

if p ≤ c
√

n. Hence Theorem 1

is proved using (3), (6) and Theorem 2. In particular,

∫

K

( |x|22
nL2

K

− 1

)2

dx =
I4
4 (K)

I4
2 (K)

− 1 ≤ c/(log n)1/3. (7)

The function f(x) =
(

|x|2
2

nL2
K
− 1
)

is a polynomial of degree 2 and we can use the results of Bobkov

[3] about Lr-norms of polynomials. Indeed, theorem 1 of [3] states that there exists a universal

constant c > 0 such that
∫
K ef̂(x)/c

R
K f̂(x)dxdx ≤ 2 where f̂ = |f |1/2. For every ε ∈ (0, 1), since∫

K f̂(x)dx ≤
(∫

K f2(x)dx
)1/4

, we get by (7) and by the Chebychev inequality

∣∣∣∣
{

x ∈ K,

∣∣∣∣
|x|2√
nLK

− 1

∣∣∣∣ ≥ ε

}∣∣∣∣ ≤
∣∣∣∣
{

x ∈ K,

∣∣∣∣
|x|22
nL2

K

− 1

∣∣∣∣ ≥ ε

}∣∣∣∣ ≤ 2e− c
√

ε (log n)1/12

.

2
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3 Proof of Theorem 2

We now introduce some notations and recall some well known facts from local theory of Banach
spaces. For a given subspace F ⊂ Rn, denote by E the orthogonal subspace to F and for every
φ ∈ SF , the Euclidean sphere in F , we define E(φ) to be {x ∈ span{E, φ}, 〈x, φ〉 ≥ 0}. For any
q ≥ 0, define the star body Bq by its radial function

∀φ ∈ SF , rBq(φ) =

(∫

K∩E(φ)
|〈x, φ〉|qdx

)1/(q+1)

.

A theorem of Ball [2] asserts that when K is a symmetric convex body in Rn, this radial function
defines a symmetric convex body in F . These balls are related to the Lp-centroid bodies by the
following proposition (see proposition 4.3 in [20]).

Proposition [20] Let K be a symmetric convex body in Rn and let 1 ≤ k ≤ n − 1. For every
subspace F of Rn of dimension k and every q ≥ 1, we have

PF (Zq(K)) = (k + q)1/q Zq(Bk+q−1) = (k + q)1/q |Bk+q−1|1/k+1/qZq(B̃k+q−1). (8)

Moreover, an application of a result of Borell [5] gives comparison between these norms.

Lemma [5] For f being a log-concave non-increasing function on [0, +∞), define

F : t 7→ 1

Γ(t)

∫ +∞

0
xt−1f(x)dx, G : t 7→ t

∫ +∞

0
xt−1f(x)dx

then F is log-concave and G is log-convex on (0, +∞).

Proposition 3. Let K be a symmetric convex body in Rn, let F be a k-dimensional subspace of
Rn, and for any t ≥ 1, define the symmetric convex body Bt−1 in F as before. For every φ ∈ SF

and every 1 ≤ s ≤ t ≤ u, we have

‖φ‖t
Bt−1

≤ Γ(s)(1−λ)Γ(u)λ

Γ(t)
‖φ‖(1−λ)s

Bs−1
‖φ‖uλ

Bu−1
and ‖φ‖t

Bt−1
≥ t

s(1−λ)uλ
‖φ‖(1−λ)s

Bs−1
‖φ‖uλ

Bu−1

where t = (1 − λ)s + λu.

Proof. Let fφ(y) = |K ∩ (E + yφ)}| for y ∈ R+ then by the Brunn-Minkowski inequality, fφ is a
log-concave function and non-increasing. By Fubini, for every φ ∈ SF ,

‖φ‖−t
Bt−1

=

∫ +∞

0
yt−1fφ(y)dy = t−1G(t) = Γ(t)F (t)

and the conclusion follows easily by the above lemma. 2

We will also use a refinement of Dvoretzky’s theorem proved by Milman [17] (see also [18]).

Theorem [17] There exist constants c1, c2 such that for any n, any ε > 0 and any symmetric
convex body L ⊂ Rn, if k ≤ c1

(
ε2/ log(1/ε)

)
n (W1(L)/R(L))2, the set of subspaces F ∈ Gn,k such

that
(1 − ε)W1(L)DF ⊂ PF L ⊂ (1 + ε)W1(L)DF

(where DF is the Euclidean unit ball of F ) has Haar measure greater than 1 − e−c2k.

It was proved by Gordon [9] that we may take ε2 instead of ε2/ log(1/ε).
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Proof of Theorem 2. Let K be an isotropic convex body in Rn. Hence from (5), for every
1 ≤ q ≤ c

√
n, R(Zq(K)) ≤ c

√
q W1(Zq(K)). Without loss of generality, we can assume that p is

an odd integer. Let k and ε ∈ (0, 1/3) (to be chosen later) be such that k2 ≤ cε2n and k ≥ p.
Since Dvoretzky’s theorem holds with high probability, we can choose a subspace F of Rn of
dimension k such that five conditions hold simultaneously: for every q ∈ {1, p, k, 2k − p, 2k},

(1 − ε)
W1(Zq(K))

W1(Zq(D̃F ))
Zq(D̃F ) ⊂ PF Zq(K) ⊂ (1 + ε)

W1(Zq(K))

W1(Zq(D̃F ))
Zq(D̃F ).

Indeed, observe that ∀q ∈ {1, p, k, 2k−p, 2k}, k ≤ cε2n/q ≤ c1ε
2n(W1(Zq(K))/R(Zq(K)))2. From

(8), these inclusions mean that for every q ∈ {1, p, k, , 2k − p, 2k},

(1 − ε)γqZq(D̃F ) ⊂ Zq(B̃k+q−1) ⊂ (1 + ε)γqZq(D̃F ) (9)

where

γq =
W1(Zq(K))

(k + q)1/q|Bk+q−1|1/k+1/qW1(Zq(D̃F ))
. (10)

The first step is to prove the following
Claim: there is a universal constant c such that, for q ∈ {1, p}, d(Bk+q−1, DF ) ≤ c.

Indeed, since Bk+q−1 is a symmetric convex body in a k-dimensional space, it is well known

that there exists a universal constant c such that cB̃k+q−1 ⊂ Zq(B̃k+q−1) ⊂ B̃k+q−1 for q ≥ k (see
for example lemma 4.1 in [19] or lemma 3.1.1 in [8]). For q ∈ {k, 2k − p, 2k}, we deduce from (9)
that d(Bk+q−1, DF ) ≤ c where c is a universal constant. Now, for q ∈ {1, p}, Proposition 3 with
s = k + q, t = 2k, u = 3k − q (i.e. t = (1 − λ)s + λu with λ = 1/2) gives

‖φ‖2k
B2k−1

≤ Γ(k + q)1/2 Γ(3k − q)1/2

Γ(2k)
‖φ‖(k+q)/2

Bk+q−1
‖φ‖(3k−q)/2

B3k−q−1
,

‖φ‖2k
B2k−1

≥ 2k

(k + q)1/2 (3k − q)1/2
‖φ‖(k+q)/2

Bk+q−1
‖φ‖(3k−q)/2

B3k−q−1

for every φ ∈ SF . Since q ≤ p ≤ k, it is easy to conclude the proof of the claim.
In the second step, we apply Theorem 3. Indeed, for q ∈ {1, p}, we get from (9) that

d(Zq(B̃k+q−1), Zq(D̃F )) ≤ (1 + ε)/(1 − ε) ≤ 1 + 3ε and we have seen that d(Bk+q−1, DF ) ≤ c
therefore, Theorem 3 (since q is a non even number) states that there exists a universal constant
c such that

1 − hk(ε) ≤ γq ≤ 1 + hk(ε) (11)

and for every θ, θ0 ∈ SF ,

(1 + hk(ε))
−1‖θ0‖Bk+q−1

≤ ‖θ‖Bk+q−1
≤ (1 + hk(ε))‖θ0‖Bk+q−1

(12)

where hk(ε) = c2k(3ε)1/k2

. We want that this last quantity goes to 0 when k goes to infinity hence
we choose ε = (2c)−2k3

in such a way that hk(ε) ≤ e−k. In order to use Dvoretzky’s theorem, k
has been chosen such that k2 = cε2n which means that k ≥ c′(log n)1/3. By (10) and (11),

W1(Zp(K))

W1(Z1(K))

W1(Z1(D̃F ))

W1(Zp(D̃F ))
≤ (1 + e−k)(k + p)1/p|Bk+p−1|1/k+1/p

(1 − e−k)(k + 1)|Bk|1/k
. (13)

To conclude, it is left to observe that |K| = 1 can be written as

1 = |K| = kωk

∫

SF

∫

K∩E(θ)
|〈x, θ〉|k−1dx dσF (θ) = kωk

∫

SF

‖θ‖−k
Bk−1

dσF (φ)
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so that there exists a θ0 ∈ SF such that 1 = kωk‖θ0‖−k
Bk−1

. Using relation (12),

(k + p)1/p|Bk+p−1|1/k+1/p

(k + 1)|Bk|1+1/k
=

(k + p)1/p
(
ωk

∫
SF

‖θ‖−k
Bk+p−1

dσF (θ)
)1/k+1/p

(k + 1)
(
ωk

∫
SF

‖θ‖−k
Bk

dσF (θ)
)1+1/k

≤
(
1 + e−k

)k+2+k/p
(k + p)1/p ‖θ0‖k+1

Bk

(k + 1) ω
1−1/p
k ‖θ0‖1+k/p

Bk+p−1

.

Proposition 3 with s = k, t = k + 1, u = k + p (i.e. t = (1 − λ)s + λu with λ = 1/p) gives

‖θ0‖k+1
Bk

≤ Γ(k)1−1/p Γ(k + p)1/p

Γ(k + 1)
‖θ0‖k(1−1/p)

Bk−1
‖θ0‖1+k/p

Bk+p−1
.

Since ‖θ0‖k
Bk−1

= kωk and p ≤ k, easy computations involving the Γ function gives

(k + p)1/p|Bk+p−1|1/k+1/p

(k + 1)|Bk|1+1/k
≤

(
1 + e−k

)2k (1 + p/k)1/p

(1 + 1/k)

Γ(k)1−1/p Γ(k + p)1/p

Γ(k + 1)

=
(
1 + e−k

)2k 1

k + 1

(
Γ(k + p + 1)

Γ(k + 1)

)1/p

≤ 1 + cp/k.

Combining this last inequality with (13) and with Lemma 1, we conclude that if p ≤ k

W1(Zp(K))

W1(Z1(K))

W1(Z1(D̃))

W1(Zp(D̃))
≤ 1 + cp/(log n)1/3

for a universal constant c. 2

4 Stability result for Lp-centroid bodies

In Theorem 3, the equality case (i.e. ε = 0) may be treated via the use of the Funck-Hecke
theorem. This is why we will follow an approach using the decomposition in spherical harmonics
and we refer to the chapter 3 of the book of Groemer [10] for more detailed explanation. This
technique was also used by Bourgain and Lindenstrauss [6].

Let p be an odd integer with p ≤ d, we consider the function φ : R → R defined by φ(t) = |t|p
and we define the operator Jφ on L2(S

d−1) by

Jφ(F )(u) =

∫

Sd−1

φ(〈u, v〉)F (v)dσ(v)

for any u ∈ Sd−1. By the Funck-Hecke theorem, for every harmonic polynomial H homogeneous
of degree l on the sphere Sd−1 we have 〈Jφ(F ), H〉 = αd,l(φ)〈F, H〉, where 〈·, ·〉 denotes the usual
scalar product in L2(S

d−1) and

αd,l(φ) =
(−1)lπ(d−1)/2

2l−1Γ(l + d−1
2 )

∫ 1

−1
φ(t)

dl

dtl
(1 − t2)(l+

d−3

2 )dt.

These coefficients are known, see [21] or Lemma 1 in [13]. Hence, for any odd values of l,
αd,l(φ) = 0 and for any even values of l,

αd,l(φ) =
πd/2−1Γ(p + 1) sin(π(l − p)/2)Γ((l − p)/2)

2p−1Γ((l + d + p)/2)
.

7



Standard computations involving the Γ function give a universal constant c such that for any even
integer l,

1

αd,l(φ)1/(p+d/2)
≤ c max(d, l). (14)

For a continuous function F : Sd−1 → R such that F∨ : Rd → R defined by F∨(x) = F (x/|x|2) is
differentiable on Rd \ {0}, we set for any u ∈ Sd−1, ∇0F (u) = ∇F∨(u). The next proposition is
a standard trick using spherical harmonics [10].

Proposition 4. There exists a universal constant c such that for any continuous even function
F : Sd−1 → R such that ∇0F exists,

‖F‖2 ≤ c‖Jφ(F )‖2/(d+2p+2)
2

(
‖∇0F‖2

2 + d2‖F‖2
2

) 1

2
(1−2/(d+2p+2))

.

Proof. Let F ∼∑Ql(F ) be the decomposition in spherical harmonics of F (with Ql(F ) spherical
harmonics of degree l) then by Corollary 3.2.12 in [10]

‖∇0F‖2
2 =

∑

l≥0

l(l + d − 2)‖Ql(F )‖2
2.

For any odd l, αd,l(φ) = 0 and since F is even, Ql(F ) = 0. Hence from the Parseval equality

‖F‖2
2 =

∑

l even

‖Ql(F )‖2
2 =

∑

l even

(αd,l(φ)‖Ql(F )‖2)
β ‖Ql(F )‖2−β

2 αd,l(φ)−β

where β ∈ (0, 2) is chosen such that 2β/(2 − β) = 2/(p + d/2). By the Hölder inequality,

‖F‖2
2 ≤

(
∑

l even

αd,l(φ)2‖Ql(F )‖2
2

)β/2(∑

l even

‖Ql(F )‖2
2αd,l(φ)−2β/(2−β)

)1−β/2

.

By the Funck-Hecke theorem, ‖Jφ(F )‖2
2 =

∑

l even

αd,l(φ)2‖Ql(F )‖2
2 and by the inequality (14),

∑

l even

‖Ql(F )‖2
2αd,l(φ)−2/(p+d/2) ≤ c2

∑

l even

max(d2, l2)‖Ql(F )‖2
2

≤ c2

(
d2

∑

l even, l≤d

‖Ql(F )‖2
2 +

∑

l even, l≥d

l2‖Ql(F )‖2
2

)
≤ c2

(
d2‖F‖2

2 + ‖∇0(F )‖2
2

)
.

This proves that ‖F‖2 ≤ c‖Jφ(F )‖2/(d+2p+2)
2

(
‖∇0F‖2

2 + d2‖F‖2
2

) 1

2
(1−2/(d+2p+2))

. 2

We will also need the following simple lemma.

Lemma 5. Let F : Sd−1 → R be a Lipschitz function and let M = max(‖F‖2, ‖F‖Lip) then

‖F‖∞ ≤ 5M (d−1)/(d+1)‖F‖2/(d+1)
2 .

Proof. Let u ∈ Sd−1 such that |F (u)| = ‖F‖∞ and let C(u, R) be the spherical cap of radius R
centered at u. For any δ ≥ 1, define Aδ = {v ∈ Sd−1, |F (v)| ≤ δ‖F‖2} then by the Chebychev

inequality, σ(Aδ) ≥ 1− 1/δ2. For any R ∈ (0, 2), it is well known that σ(C(u, R)) ≥ 1
2

(
R
2

)d−1
. If

R is chosen such that 1
2

(
R
2

)d−1
= 1

δ2 then Aδ ∩ C(u, R) 6= ∅. In that case, take v ∈ Aδ ∩ C(u, R)
then

|F (u)| ≤ |F (u) − F (v)| + |F (v)| ≤ ‖F‖Lip|u − v|2 + δ‖F‖2 ≤ RM + δ‖F‖2.
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Since R = 2(2/δ2)1/(d−1), we get the estimate taking δ = (M/‖F‖2)
(d−1)/(d+1) ≥ 1. 2

Proof of Theorem 3. Using the support functions, d(Zp(K̃), Zp(D̃)) ≤ 1 + ε implies that there
exists γ > 0 such that

γh
Zp( eD)

≤ h
Zp( eK)

≤ (1 + ε)γh
Zp( eD)

. (15)

For any symmetric convex body L ⊂ Rd, by integration in polar coordinates,

hZp(L)(u)p =

∫

L
|〈x, u〉|pdx =

dωd

d + p

∫

Sd−1

|〈v, u〉|p 1

‖v‖d+p
L

dσ(v)

hence applying it for L = K̃ and L = D̃, we get for any u ∈ Sd−1,

∣∣∣∣
∫

Sd−1

|〈v, u〉|p
(

1

‖v‖d+p
− γp

ω
1+p/d
d

)
dσ(v)

∣∣∣∣ ≤ ((1 + ε)p − 1)
γp

ω
1+p/d
d

∫

Sd−1

|〈v, u〉|pdσ(v)

where ‖ · ‖ is the norm with unit ball K̃. For every u ∈ Sd−1, let F (u) =
ω

1+p/d
d

γp‖u‖p+d − 1. Since

∀u ∈ Sd−1,
∫
Sd−1 |〈v, u〉|pdσ(v) ≤ 1, we get

‖Jφ(F )‖2 ≤ ‖Jφ(F )‖∞ ≤ ((1 + ε)p − 1). (16)

Since d(K, D) ≤ α, there exits a, b > 1 such that 1/aD̃ ⊂ K̃ ⊂ bD̃ and ab = α.

∀y ∈ Sd−1, γp(1 + ε)php

Zp( eD)
(y) ≥ hp

Zp( eK)
(y) ≥

∫

eD/a
|〈x, y〉|pdx = hp

Zp( eD)
(y)/ad+p

therefore 1/γp ≤ ad+p(1 + ε)p. For any x ∈ Rd, ω
1/d
d b−1|x|2 ≤ ‖x‖ ≤ aω

1/d
d |x|2 and for u ∈ Sd−1,

∇F∨(u) =
ω

1+p/d
d
γp

(p+d)
‖u‖p+d

(
u − ∇‖·‖(u)

‖u‖

)
, therefore

‖∇0F‖2 ≤ ‖∇0F‖∞ ≤ (p + d)bp+d

γp
(1 + ab) ≤ 4 d αd+p+1(1 + ε)p. (17)

We also have ‖F‖2 ≤ ‖F‖∞ ≤ 1 + bp+d/γp ≤ 2αp+d(1 + ε)p. Using Proposition 4 with (16) and
(17), we get

‖F‖2 ≤ c((1 + ε)p − 1)2/(d+2p+2)(6 d αd+p+1(1 + ε)p)1−2/(d+2p+2) ≤ cε2/(d+2p+2)(4α)d+p+1.

Moreover, for any u, v ∈ Sd−1, F (u) − F (v) = ω
1+p/d
d /γp

(
1/‖u‖p+d − 1/‖v‖p+d

)
and

|F (u) − F (v)| ≤ ω
1+p/d
d

γp
‖u − v‖

d+p−1∑

i=0

‖u‖−(d+p−i)‖v‖−(i+1) ≤ 2 d αd+p+1(1 + ε)p|u − v|2.

Therefore max(‖F‖2, ‖F‖Lip) ≤ (4α)d+p+1 and by Lemma 5,

‖F‖∞ ≤ c(4α)d+p+1ε4/(d+1)(d+2p+2) ≤ c(4α)d+p+1ε1/d2

:= f(ε).

Recalling the definition of F , F (u) = −1 + ω
1+p/d
d /γp‖u‖p+d, ∀u ∈ Sd−1, we have proved

(1 − f(ε))1/d+pγp/d+pD̃ ⊂ K̃ ⊂ (1 + f(ε))1/d+pγp/d+pD̃. (18)

Since |K̃| = |D̃| = 1, (1 + f(ε))−1 ≤ γp ≤ (1 − f(ε))−1 and choosing ε ≤ (cα)−2d3

, (15) and (18)
prove the assertions of Theorem 3. 2
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