On the isotropic constant of non-symmetric convex bodies

G. Paouris

Abstract

We show that Bourgain's estimate $L_{K} \leq c \sqrt[4]{n} \log n$ for the isotropic constant holds true for non-symmetric convex bodies as well.

1 Introduction

Let K be a convex body in \mathbb{R}^{n} with volume $|K|=1$. Then, K is called isotropic if there exists a constant $L_{K}>0$ such that

$$
\begin{equation*}
\int_{K}\langle x, \theta\rangle^{2} d x=L_{K}^{2} \tag{1}
\end{equation*}
$$

for every $\theta \in S^{n-1}$. It is not hard to check (see [MP] for the origin symmetric case) that every convex body has an isotropic image under $G L(n)$. Moreover, this isotropic position is uniquely determined up to orthogonal transformations, hence the isotropic constant L_{K} is an invariant for the class $\{T K: T \in G L(n)\}$.

An important problem asks if there exists an absolute constant $C>0$ such that $L_{K} \leq C$ for every isotropic convex body K with centroid at the origin o. This question has many equivalent reformulations: Let us mention the hyperplane problem which asks if every convex body of volume 1 has a hyperplane section through its centroid with "area" greater than an absolute constant.

Bourgain [B] has shown that $L_{K} \leq c \sqrt[4]{n} \log n$ for every origin symmetric isotropic convex body K in \mathbb{R}^{n}. This is the best known general estimate for the isotropic constant. Dar [D1] proved that $L_{K} \leq c^{\prime} \sqrt{n}$ for every convex body with centroid at the origin. The purpose of this note is to extend Bourgain's estimate to non-symmetric isotropic bodies:
Theorem. If K is an isotropic convex body in \mathbb{R}^{n}, then $L_{K} \leq c \sqrt[4]{n} \log n$.
We shall actually follow Bourgain's argument, as presented in [D2]. We will make no assumption about the origin.

2 Proof of the Theorem

In what follows, K is an isotropic, not necessarily symmetric convex body in \mathbb{R}^{n}. The letters $c, c^{\prime}, c_{1}, c_{2}$ etc. will denote absolute positive constants. Observe that (1) is equivalent to

$$
\begin{equation*}
\int_{K}\langle x, T x\rangle d x=(\operatorname{tr} T) L_{K}^{2} \tag{2}
\end{equation*}
$$

for every $T \in L\left(\mathbb{R}^{n}\right)$. In particular, if $T \in S L(n)$ is symmetric and positive, the arithmetic-geometric means inequality gives $n L_{K}^{2} \leq(\operatorname{tr} T) L_{K}^{2}$, which implies the following:
Lemma 1. For every symmetric and positive $T \in S L(n)$ we have

$$
\begin{equation*}
n L_{K}^{2} \leq \int_{K}\langle x, T x\rangle d x \tag{3}
\end{equation*}
$$

Lemma 2. For every $\theta \in S^{n-1}$,

$$
\begin{equation*}
\int_{K} \exp \left(\frac{|\langle x, \theta\rangle|}{c_{1} L_{K}}\right) d x \leq 2 \tag{4}
\end{equation*}
$$

Proof: This is a consequence of Borell's lemma (see [MS], Appendix III): There exists $c_{2}>0$ such that

$$
\begin{equation*}
\left(\int_{K}|\langle x, \theta\rangle|^{p} d x\right)^{1 / p} \leq c_{2} p \int_{K}|\langle x, \theta\rangle| d x \tag{5}
\end{equation*}
$$

for every $p \geq 1$ and $\theta \in S^{n-1}$. If K is isotropic, then $\int_{K}|\langle x, \theta\rangle| d x \leq L_{K}$ for every $\theta \in S^{n-1}$, and the Lemma follows from (5).

If V is a convex body in \mathbb{R}^{n}, the mean width $w(V)$ of V is the quantity

$$
w(V)=\int_{S^{n-1}}\left\{\max _{z \in V}\langle z, \theta\rangle-\min _{z \in V}\langle z, \theta\rangle\right\} \sigma(d \theta)
$$

where σ is the rotationally invariant probability measure on S^{n-1}. Well-known results from $[\mathrm{L}],[\mathrm{FT}]$ and $[\mathrm{P}]$ show that for every symmetric convex body V in \mathbb{R}^{n} there exists $T \in S L(n)$ for which

$$
\begin{equation*}
w(T V) w\left((T V)^{\circ}\right) \leq c_{3} \log n \tag{6}
\end{equation*}
$$

where $(T V)^{\circ}$ is the polar body of $T V$. We will need the following extension to the non-symmetric case:

Lemma 3. Let K be a convex body in \mathbb{R}^{n} with $|K|=1$. There exists a symmetric and positive $T \in S L(n)$ such that

$$
\begin{equation*}
w(T K) \leq 2 c_{3} \sqrt{n} \log n \tag{7}
\end{equation*}
$$

Proof: Consider the difference body $V=K-K$ of K. Then, we can find $T \in S L(n)$ such that $w(T V) w\left((T V)^{\circ}\right) \leq c_{3} \log n$. Since mean width is invariant under orthogonal transformations, we may clearly assume that T is symmetric and positive. Now, if $\|\cdot\|$ is the norm induced to \mathbb{R}^{n} by $T V$,

$$
\begin{aligned}
w\left((T V)^{\circ}\right) & =\int_{S^{n-1}}\|\theta\| \sigma(d \theta) \\
& \geq\left(\int_{S^{n-1}}\|\theta\|^{-n} \sigma(d \theta)\right)^{-1 / n}=\left(\frac{\left|D_{n}\right|}{|T V|}\right)^{1 / n}
\end{aligned}
$$

where D_{n} is the Euclidean unit ball. Hence,

$$
\begin{equation*}
w(T V) \leq c_{3}\left(\frac{|T V|}{\left|D_{n}\right|}\right)^{1 / n} \log n \leq c_{3} \sqrt{n}|T V|^{1 / n} \log n \tag{8}
\end{equation*}
$$

Observe that $T V=T(K-K)=T K-T K$. From the Rogers-Shephard inequality [RS] we have $|T V| \leq\binom{ 2 n}{n}|T K| \leq 4^{n}$. Hence,

$$
\begin{equation*}
w(T V) \leq 4 c_{3} \sqrt{n} \log n \tag{9}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
w(T V) & =2 \int_{S^{n-1}} \max _{z \in T K-T K}\langle z, \theta\rangle \sigma(d \theta)=2 \int_{S^{n-1}}\left\{\max _{z \in T K}\langle z, \theta\rangle-\min _{z \in T K}\langle z, \theta\rangle\right\} \sigma(d \theta) \\
& =2 w(T K)
\end{aligned}
$$

This shows that $w(T K) \leq 2 c_{3} \sqrt{n} \log n$.
The last ingredient of the proof is the Dudley-Fernique decomposition of a convex body A :
Lemma 4. Let $A \subseteq R D_{n}$ be a convex body in \mathbb{R}^{n}, where $R>0$. There exist finite sets $Z_{j} \subset \mathbb{R}^{n}, j \in \mathbb{N}$ with

$$
\log \left|Z_{j}\right| \leq c_{5} n\left(\frac{2^{j} w(A)}{R}\right)^{2}
$$

which satisfy the following: For every $x \in A$ and every $m \in \mathbb{N}$ we can find $z_{j} \in$ $Z_{j} \cap\left(3 R / 2^{j}\right) D_{n}, j=1, \ldots, m$ and $w_{m} \in\left(R / 2^{m}\right) D_{n}$ such that

$$
x=z_{1}+\ldots+z_{m}+w_{m}
$$

Proof: Recall that the covering number $N\left(A, t D_{n}\right)$ is the smallest integer N for which there exist N translates of $t D_{n}$ whose union covers A. Using Sudakov's inequality $[\mathrm{S}]$ we see that

$$
\log N\left(A, t D_{n}\right) \leq \log N\left(A-A, t D_{n}\right) \leq c_{4} n\left(\frac{w(A-A)}{t}\right)^{2}=4 c_{4} n\left(\frac{w(A)}{t}\right)^{2}
$$

For every $j \in \mathbb{N}$ we find $N_{j} \subset \mathbb{R}^{n}$ with $\left|N_{j}\right|=N\left(A,\left(R / 2^{j}\right) D_{n}\right)$ such that $A \subset$ $\cup_{y \in N_{j}}\left(y+\left(R / 2^{j}\right) D_{n}\right)$, and set $Z_{j}=N_{j}-N_{j-1}, j \geq 1$ (and $\left.N_{0}=\{o\}\right)$. If $x \in A$ and $m \in \mathbb{N}$, for every $j \leq m$ there exists $y_{j} \in N_{j}$ such that $\left|x-y_{j}\right| \leq R / 2^{j}$. We write

$$
x=y_{1}+\left(y_{2}-y_{1}\right)+\ldots+\left(y_{m}-y_{m-1}\right)+\left(x-y_{m}\right),
$$

and conclude the proof with $z_{j}=y_{j}-y_{j-1}$ and $w_{m}=x-y_{m}$.
Proof of the Theorem: Let K be an isotropic convex body. By Lemma 3, there exists a symmetric and positive $T \in S L(n)$ such that $w(T K) \leq 2 c_{3} \sqrt{n} \log n$. Lemma 1 shows that

$$
\begin{equation*}
n L_{K}^{2} \leq \int_{K}\langle x, T x\rangle d x \leq \int_{K} \max _{z \in T K}|\langle z, x\rangle| d x \tag{10}
\end{equation*}
$$

Let $A=T K$ in Lemma 4 , and consider the sets $Z_{j}, j \in \mathbb{N}$. Then, for every $x \in K$,

$$
\begin{aligned}
\max _{z \in T K}|\langle z, x\rangle| & \leq \sum_{j=1}^{m} \max _{z \in Z_{j} \cap\left(3 R / 2^{j}\right) D_{n}}|\langle z, x\rangle|+\max _{w \in\left(R / 2^{m}\right) D_{n}}|\langle w, x\rangle| \\
& \leq \sum_{j=1}^{m} \frac{3 R}{2^{j}} \max _{z \in Z_{j} \cap\left(3 R / 2^{j}\right) D_{n}}|\langle\bar{z}, x\rangle|+\frac{R}{2^{m}}|x|,
\end{aligned}
$$

where \bar{z} is the unit vector parallel to z. Using the above and taking into account the fact that $\int_{K}|x| d x \leq \sqrt{n} L_{K}$, we see that

$$
\begin{equation*}
n L_{K}^{2} \leq \sum_{j=1}^{m} \frac{3 R}{2^{j}} \int_{K} \max _{z \in Z_{j}}|\langle\bar{z}, x\rangle| d x+\frac{R}{2^{m}} \sqrt{n} L_{K} \tag{11}
\end{equation*}
$$

Now, Lemma 2 shows that for every $t>0$

$$
\operatorname{Prob}\left(x \in K: \max _{z \in Z_{j}}|\langle\bar{z}, x\rangle| \geq t\right) \leq 2\left|Z_{j}\right| \exp \left(-t / c_{1} L_{K}\right)
$$

and this implies that

$$
\int_{K} \max _{z \in Z_{j}}|\langle\bar{z}, x\rangle| d x \leq c_{6} L_{K} \log \left|Z_{j}\right| \leq c_{7} n L_{K}\left(\frac{w(T K) 2^{j}}{R}\right)^{2}
$$

Inserting this information into (11) we see that

$$
n L_{K}^{2} \leq c_{8} L_{K}\left(n w^{2}(T K) \frac{2^{m}}{R}+\sqrt{n} \frac{R}{2^{m}}\right)
$$

Choosing $m \in \mathbb{N}$ such that $R / 2^{m} \simeq \sqrt[4]{n} w(T K)$, we get

$$
n L_{K}^{2} \leq c_{9} n^{\frac{3}{4}} w(T K) L_{K}
$$

and the estimate $w(T K) \leq 2 c_{3} \sqrt{n} \log n$ completes the proof.
Remark. If K is isotropic and has its centroid at the origin, then

$$
L_{K} \simeq \int_{K}|\langle x, \theta\rangle| d x \simeq\left|K \cap \theta^{\perp}\right|^{-1}
$$

for every $\theta \in S^{n-1}$ (see $[\mathrm{F}]$ for precise estimates). Therefore, in this case, the Theorem implies that all hyperplane sections of K through the origin have "area" greater than $1 / c \sqrt[4]{n} \log n$, where $c>0$ is an absolute constant.

Acknowledgement. The author wants to thank the Erwin Schrödinger International Institute for Mathematical Physics, Vienna, for the hospitality and support.

References

[B] J. Bourgain, On the distribution of polynomials on high dimensional convex sets, Lecture Notes in Mathematics 1469, Springer, Berlin (1991), 127-137.
[D1] S. Dar, On the isotropic constant of non-symmetric convex bodies, Israel J. Math. 97 (1997), 151-156.
[D2] S. Dar, Remarks on Bourgain's problem on slicing of convex bodies, in Geometric Aspects of Functional Analysis, Operator Theory: Advances and Applications 77 (1995), 61-66.
[F] M. Fradelizi, Hyperplane sections of convex bodies in isotropic position, Beiträge Algebra Geom. 40 (1999), No. 1, 163-183.
[FT] T. Figiel and N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979), 155-171.
[L] D.R. Lewis, Ellipsoids defined by Banach ideal norms, Mathematika 26 (1979), 18-29.
[MP] V.D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, Lecture Notes in Mathematics 1376, Springer, Berlin (1989), 64-104.
[MS] V.D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics 1200 (1986), Springer, Berlin.
[P] G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces, Ann. of Math. 115 (1982), 375-392.
[RS] C.A. Rogers and G. Shephard, The difference body of a convex body, Arch. Math. 8 (1957), 220-233.
[S] V.N. Sudakov, Gaussian random processes and measures of solid angles in Hilbert spaces, Soviet Math. Dokl. 12 (1971), 412-415.

[^0]
[^0]: G. Paouris: Department of Mathematics, University of Crete, Iraklion 714-09, Greece. E-mail: paouris@math.uch.gr

