
On the isotropi onstant ofnon-symmetri onvex bodiesG. PaourisAbstratWe show that Bourgain's estimate LK �  4pn log n for the isotropionstant holds true for non-symmetri onvex bodies as well.1 IntrodutionLet K be a onvex body in Rn with volume jKj = 1. Then, K is alled isotropi ifthere exists a onstant LK > 0 suh that(1) ZKhx; �i2dx = L2Kfor every � 2 Sn�1. It is not hard to hek (see [MP℄ for the origin symmetriase) that every onvex body has an isotropi image under GL(n). Moreover, thisisotropi position is uniquely determined up to orthogonal transformations, henethe isotropi onstant LK is an invariant for the lass fTK : T 2 GL(n)g.An important problem asks if there exists an absolute onstant C > 0 suhthat LK � C for every isotropi onvex body K with entroid at the origin o.This question has many equivalent reformulations: Let us mention the hyperplaneproblem whih asks if every onvex body of volume 1 has a hyperplane setionthrough its entroid with \area" greater than an absolute onstant.Bourgain [B℄ has shown that LK �  4pn logn for every origin symmetriisotropi onvex body K in Rn . This is the best known general estimate for theisotropi onstant. Dar [D1℄ proved that LK � 0pn for every onvex body withentroid at the origin. The purpose of this note is to extend Bourgain's estimateto non-symmetri isotropi bodies:Theorem. If K is an isotropi onvex body in Rn , then LK �  4pn logn.We shall atually follow Bourgain's argument, as presented in [D2℄. We willmake no assumption about the origin. 1



2 Proof of the TheoremIn what follows, K is an isotropi, not neessarily symmetri onvex body in Rn .The letters ; 0; 1; 2 et. will denote absolute positive onstants.Observe that (1) is equivalent to(2) ZKhx; Txidx = (trT )L2Kfor every T 2 L(Rn ). In partiular, if T 2 SL(n) is symmetri and positive, thearithmeti-geometri means inequality gives nL2K � (trT )L2K , whih implies thefollowing:Lemma 1. For every symmetri and positive T 2 SL(n) we have(3) nL2K � ZKhx; Txidx: 2Lemma 2. For every � 2 Sn�1,(4) ZK exp� jhx; �ij1LK � dx � 2:Proof: This is a onsequene of Borell's lemma (see [MS℄, Appendix III): Thereexists 2 > 0 suh that(5) �ZK jhx; �ijpdx�1=p � 2p ZK jhx; �ijdxfor every p � 1 and � 2 Sn�1. If K is isotropi, then RK jhx; �ijdx � LK for every� 2 Sn�1, and the Lemma follows from (5). 2If V is a onvex body in Rn , the mean width w(V ) of V is the quantityw(V ) = ZSn�1 �maxz2V hz; �i �minz2V hz; �i��(d�);where � is the rotationally invariant probability measure on Sn�1. Well-knownresults from [L℄, [FT℄ and [P℄ show that for every symmetri onvex body V in Rnthere exists T 2 SL(n) for whih(6) w(TV )w((TV )Æ) � 3 logn;where (TV )Æ is the polar body of TV . We will need the following extension to thenon-symmetri ase:Lemma 3. Let K be a onvex body in Rn with jKj = 1. There exists a symmetriand positive T 2 SL(n) suh that(7) w(TK) � 23pn logn:2



Proof: Consider the di�erene body V = K�K ofK. Then, we an �nd T 2 SL(n)suh that w(TV )w((TV )Æ) � 3 logn. Sine mean width is invariant under orthog-onal transformations, we may learly assume that T is symmetri and positive.Now, if k � k is the norm indued to Rn by TV ,w((TV )Æ) = ZSn�1 k�k�(d�)� �ZSn�1 k�k�n�(d�)��1=n = � jDnjjTV j�1=n ;where Dn is the Eulidean unit ball. Hene,(8) w(TV ) � 3� jTV jjDnj�1=n logn � 3pnjTV j1=n logn:Observe that TV = T (K�K) = TK�TK. From the Rogers-Shephard inequality[RS℄ we have jTV j � �2nn �jTKj � 4n. Hene,(9) w(TV ) � 43pn logn:Finally,w(TV ) = 2 ZSn�1 maxz2TK�TKhz; �i�(d�) = 2 ZSn�1 �maxz2TKhz; �i � minz2TKhz; �i��(d�)= 2w(TK):This shows that w(TK) � 23pn logn. 2The last ingredient of the proof is the Dudley-Fernique deomposition of aonvex body A:Lemma 4. Let A � RDn be a onvex body in Rn , where R > 0. There exist �nitesets Zj � Rn , j 2 N with log jZj j � 5n�2jw(A)R �2 ;whih satisfy the following: For every x 2 A and every m 2 N we an �nd zj 2Zj \ (3R=2j)Dn, j = 1; : : : ;m and wm 2 (R=2m)Dn suh thatx = z1 + : : :+ zm + wm:Proof: Reall that the overing number N(A; tDn) is the smallest integer N forwhih there exist N translates of tDn whose union overs A. Using Sudakov'sinequality [S℄ we see thatlogN(A; tDn) � logN(A�A; tDn) � 4n�w(A�A)t �2 = 44n�w(A)t �2 :3



For every j 2 N we �nd Nj � Rn with jNj j = N(A; (R=2j)Dn) suh that A �[y2Nj (y + (R=2j)Dn), and set Zj = Nj �Nj�1, j � 1 (and N0 = fog). If x 2 Aand m 2 N, for every j � m there exists yj 2 Nj suh that jx � yj j � R=2j . Wewrite x = y1 + (y2 � y1) + : : :+ (ym � ym�1) + (x� ym);and onlude the proof with zj = yj � yj�1 and wm = x� ym. 2Proof of the Theorem: LetK be an isotropi onvex body. By Lemma 3, there existsa symmetri and positive T 2 SL(n) suh that w(TK) � 23pn logn. Lemma 1shows that(10) nL2K � ZKhx; Txidx � ZK maxz2TK jhz; xijdx:Let A = TK in Lemma 4, and onsider the sets Zj , j 2 N. Then, for every x 2 K,maxz2TK jhz; xij � mXj=1 maxz2Zj\(3R=2j )Dn jhz; xij+ maxw2(R=2m)Dn jhw; xij� mXj=1 3R2j maxz2Zj\(3R=2j )Dn jhz; xij+ R2m jxj;where z is the unit vetor parallel to z. Using the above and taking into aountthe fat that RK jxjdx � pnLK , we see that(11) nL2K � mXj=1 3R2j ZK maxz2Zj jhz; xijdx + R2mpnLK :Now, Lemma 2 shows that for every t > 0Prob�x 2 K : maxz2Zj jhz; xij � t� � 2jZj j exp(�t=1LK);and this implies thatZK maxz2Zj jhz; xijdx � 6LK log jZj j � 7nLK �w(TK)2jR �2 :Inserting this information into (11) we see thatnL2K � 8LK �nw2(TK)2mR +pn R2m� :Choosing m 2 N suh that R=2m ' 4pnw(TK), we getnL2K � 9n 34w(TK)LK ;4
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