Polynomial estimates towards a sharp Helly-type theorem for the diameter of convex sets

Silouanos Brazitikos

Abstract

We discuss a problem posed by Bárány, Katchalski and Pach: if $\left\{P_{i}: i \in I\right\}$ is a family of closed convex sets in \mathbb{R}^{n} such that diam $\left(\bigcap_{i \in I} P_{i}\right)=1$ then there exist $s \leqslant 2 n$ and $i_{1}, \ldots, i_{s} \in I$ such that $\operatorname{diam}\left(P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right) \leqslant C_{n}$,

where $C_{n} \leqslant c \sqrt{n}$ for an absolute constant $c>0$. We prove that this statement holds true with $C_{n} \leqslant c n^{11 / 2}$. All the previously known estimates for C_{n} were exponential or superexponential in the dimension n.

1 Introduction

In this note we provide a polynomial estimate for a question of Bárány, Katchalski and Pach on the quantitative version of Helly's theorem for the diameter of convex sets in Euclidean space. Helly's theorem states that, if $\mathcal{P}=\left\{P_{i}: i \in I\right\}$ is a finite family of at least $n+1$ convex sets in \mathbb{R}^{n} and if every $n+1$ or fewer members of \mathcal{P} have non-empty intersection, then $\bigcap_{i \in I} P_{i} \neq \emptyset$. This classical result and its variants have found important applications in discrete and computational geometry (see e.g. [9, [10] and [1]).

Bárány, Katchalski and Pach obtained in [3] a quantitative version of Helly's theorem for the diameter:
Theorem 1.1. Let $\left\{P_{i}: i \in I\right\}$ be a family of closed convex sets in \mathbb{R}^{n} such that diam $\left(\bigcap_{i \in I} P_{i}\right)=1$. There exist $s \leqslant 2 n$ and $i_{1}, \ldots, i_{s} \in I$ such that

$$
\begin{equation*}
\operatorname{diam}\left(P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right) \leqslant C_{n}, \tag{1.1}
\end{equation*}
$$

where $C_{n}>0$ is a constant depending only on the dimension.
The example of the cube $[-1,1]^{n}$ in \mathbb{R}^{n}, expressed as an intersection of exactly $2 n$ closed half-spaces, shows that one cannot replace $2 n$ by $2 n-1$ in the statement above. The optimal growth of the constant C_{n} as a function of n is not completely understood. In [3] the authors established the bound $C_{n} \leqslant(c n)^{n / 2}$ and conjectured that the bound should be polynomial in n; in fact they asked if $(c n)^{n / 2}$ can be replaced by $c \sqrt{n}$.

In [8] we proved that there exists an absolute constant $\alpha>2$ with the following property: if $\left\{P_{i}: i \in I\right\}$ is a finite family of convex bodies in \mathbb{R}^{n} with $\operatorname{diam}\left(\bigcap_{i \in I} P_{i}\right)=1$, then there exist $s \leqslant \alpha n$ and $i_{1}, \ldots, i_{s} \in I$ such that

$$
\begin{equation*}
\operatorname{diam}\left(P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right) \leqslant c n^{3 / 2} \tag{1.2}
\end{equation*}
$$

where $c>0$ is an absolute constant. Note that the estimate is polynomial in the dimension but the restriction $s \leqslant 2 n$ is relaxed to $s \leqslant \alpha n$ for some absolute constant $\alpha>2$. In this note we consider the original question of Bárány, Katchalski and Pach, and provide a polynomial estimate.

Theorem 1.2. Let $\left\{P_{i}: i \in I\right\}$ be a finite family of convex bodies in \mathbb{R}^{n} with $\operatorname{diam}\left(\bigcap_{i \in I} P_{i}\right)=1$. We can find $s \leqslant 2 n$ and $i_{1}, \ldots, i_{s} \in I$ such that

$$
\begin{equation*}
\operatorname{diam}\left(P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right) \leqslant c n^{11 / 2} \tag{1.3}
\end{equation*}
$$

where $c>0$ is an absolute constant.

All the previously known estimates for the question were exponential or superexponential in the dimension. The main step for the proof of Theorem 1.2 is a Helly-type inclusion theorem.

Theorem 1.3. Let $\left\{P_{i}: i \in I\right\}$ be a finite family of convex bodies in \mathbb{R}^{n} with int $\left(\bigcap_{i \in I} P_{i}\right) \neq \emptyset$. For any $k>n$ there exist $z \in \mathbb{R}^{n}, s \leqslant k+n$ and $i_{1}, \ldots, i_{s} \in I$ such that

$$
\begin{equation*}
z+P_{i_{1}} \cap \cdots \cap P_{i_{s}} \subseteq \gamma_{k, n} n(n+2)\left(z+\bigcap_{i \in I} P_{i}\right), \tag{1.4}
\end{equation*}
$$

where $\gamma_{k, n}=\left(\frac{\sqrt{k}+\sqrt{n}}{\sqrt{k}-\sqrt{n}}\right)^{2}$.
A main tool for the proof of Theorem 1.3 is the following theorem of Batson, Spielman and Srivastava [6: If $v_{1}, \ldots, v_{m} \in S^{n-1}$ and $a_{1}, \ldots, a_{m}>0$ satisfy "John's decomposition of the identity" $I_{n}=\sum_{j=1}^{m} a_{j} v_{j} \otimes v_{j}$, where $\left(v_{j} \otimes v_{j}\right)(y)=\left\langle v_{j}, y\right\rangle v_{j}$, then for every $d>1$ there exists a subset $\sigma \subseteq\{1, \ldots, m\}$ with $|\sigma| \leqslant d n$ and $b_{j}>0, j \in \sigma$, such that $I_{n} \preceq \sum_{j \in \sigma} b_{j} a_{j} v_{j} \otimes v_{j} \preceq \gamma_{d}^{2} I_{n}$, where $\gamma_{d}:=\frac{\sqrt{d}+1}{\sqrt{d}-1}$.

It is clear that if we apply Theorem 1.3 with $k=n+1$ then we obtain polynomial estimates (of order $O\left(n^{4}\right)$) for the diameter with $s \leqslant 2 n+1$. In order to reduce the number of the bodies $P_{i_{j}}$ from $2 n+1$ to $2 n$, and get the precise statement of Theorem 1.2 , we use the idea of a lemma from [3] (see Lemma 2.3 in the next section).

In a different direction, Soberón proved in [15] that for any finite family of convex sets in \mathbb{R}^{n} with the property that the intersection of every $2 n$ of them has diameter at least 1 , one can partition the family into a fixed number of subfamilies (depending only on n and $\varepsilon>0$), each having an intersection with diameter at least $1-\varepsilon$.

Closing this introductory section we mention that Bárány, Katchalski and Pach in 3] obtained also a quantitative Helly-type result for volume (see also 4). They proved that if $\left\{P_{i}: i \in I\right\}$ is a family of closed convex sets in \mathbb{R}^{n} such that $\left|\bigcap_{i \in I} P_{i}\right|>0$ then we may find $s \leqslant 2 n$ and $i_{1}, \ldots, i_{s} \in I$ such that

$$
\left|P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right| \leqslant D_{n}\left|\bigcap_{i \in I} P_{i}\right|
$$

where $D_{n}>0$ is a constant depending only on n. The bound in 3] was $O\left(n^{2 n^{2}}\right)$ and it was conjectured that one might actually have $D_{n} \leqslant n^{c n}$ for an absolute constant $c>0$. Naszódi [13] has recently proved a volume version of Helly's theorem with $D_{n} \leqslant(c n)^{2 n}$, where $c>0$ is an absolute constant. In fact, a slight modification of Naszódi's argument leads to the exponent $\frac{3 n}{2}$ instead of $2 n$. In [7, relaxing the requirement that $s \leqslant 2 n$ to the weaker one that $s=O(n)$, we showed that there exists an absolute constant $\alpha>2$ with the following property: for every family $\left\{P_{i}: i \in I\right\}$ of closed convex sets in \mathbb{R}^{n}, such that $P=\bigcap_{i \in I} P_{i}$ has positive volume, there exist $s \leqslant \alpha n$ and $i_{1}, \ldots, i_{s} \in I$ such that

$$
\begin{equation*}
\left|P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right| \leqslant(c n)^{n}|P| \tag{1.5}
\end{equation*}
$$

where $c>0$ is an absolute constant.
Notation. We work in \mathbb{R}^{n}, which is equipped with a Euclidean inner product $\langle\cdot, \cdot\rangle$. We denote by $\|\cdot\|_{2}$ the corresponding Euclidean norm, and write B_{2}^{n} for the Euclidean unit ball and S^{n-1} for the unit sphere. Volume is denoted by $|\cdot|$ and the circumradius of K is the radius of the smallest ball which is centered at the origin and contains K :

$$
R(K)=\max \left\{\|x\|_{2}: x \in K\right\} .
$$

Finally, given two symmetric positive definite matrices A and B we write $A \preceq B$ if $\langle A x, x\rangle \leqslant\langle B x, x\rangle$ for all $x \in \mathbb{R}^{n}$. We refer to the books [14] and [2] for basic facts from convex geometry.

2 Proof of the theorem

The proof of Theorem 1.3 is based on an extension to the non-symmetric case of the following fact, obtained by Gluskin-Litvak in 11 and Barvinok in [5: If K is a symmetric convex body in \mathbb{R}^{n} then for any $k>n$ there exist $N \leqslant k$ points $x_{1}, \ldots, x_{N} \in K$ such that

$$
\begin{equation*}
\operatorname{absconv}\left(\left\{x_{1}, \ldots, x_{N}\right\}\right) \subseteq K \subseteq \gamma_{k, n} \sqrt{n} \operatorname{absconv}\left(\left\{x_{1}, \ldots, x_{N}\right\}\right) \tag{2.1}
\end{equation*}
$$

We shall first prove the next proposition, which is a variant of a result from 8].
Proposition 2.1. Let K be a convex body in \mathbb{R}^{n}, such that the ellipsoid of minimal volume containing K is the Euclidean unit ball B_{2}^{n}. For every $k>n$ there is a subset $X \subseteq K \cap S^{n-1}$ of cardinality $\operatorname{card}(X) \leqslant k+n$ such that

$$
\begin{equation*}
K \subseteq B_{2}^{n} \subseteq\left(\frac{\sqrt{k}+\sqrt{n}}{\sqrt{k}-\sqrt{n}}\right)^{2} n(n+2) \operatorname{conv}(X) \tag{2.2}
\end{equation*}
$$

Proof. Since B_{2}^{n} is the minimal volume ellipsoid of K, by John's theorem [12] we may find $v_{j} \in K \cap S^{n-1}$ and $a_{j}>0, j \in J$, such that

$$
\begin{equation*}
I_{n}=\sum_{j \in J} a_{j} v_{j} \otimes v_{j} \quad \text { and } \quad \sum_{j \in J} a_{j} v_{j}=0 . \tag{2.3}
\end{equation*}
$$

It is well-known that 2.3 implies that

$$
\begin{equation*}
\operatorname{conv}\left\{v_{1}, \ldots, v_{m}\right\} \supseteq \frac{1}{n} B_{2}^{n} \tag{2.4}
\end{equation*}
$$

Set $d=k / n>1$ and $\gamma_{k, n}:=\gamma_{d}=\left(\frac{\sqrt{k}+\sqrt{n}}{\sqrt{k}-\sqrt{n}}\right)^{2}$ and apply the theorem of Batson, Spielman and Srivastava to find a subset $\sigma \subseteq J$ with $|\sigma| \leqslant k$ and positive scalars $b_{j}, j \in \sigma$, such that $T:=\sum_{j \in \sigma} b_{j} v_{j} \otimes v_{j}$ satisfies

$$
I_{n} \preceq \sum_{j \in \sigma} b_{j} v_{j} \otimes v_{j} \preceq \gamma_{k, n} I_{n} .
$$

Taking traces we see that

$$
b:=\sum_{j \in \sigma} b_{j} \leqslant \gamma_{k, n} n .
$$

Note that the vector $w=-\frac{1}{b n} \sum_{j \in \sigma} b_{j} v_{j}$ has length $\|w\|_{2} \leqslant \frac{1}{b n} \sum_{j \in \sigma} b_{j}=\frac{1}{n}$, and hence $w \in \operatorname{conv}\left\{v_{j}, j \in J\right\}$ by (2.4). Therefore, we may find $\kappa \geqslant 1$ such that κw belongs to some facet of $\operatorname{conv}\left\{v_{j}, j \in J\right\}$. Then, we apply Carathéodory's theorem to find $\tau \subseteq J$ with $|\tau| \leqslant n$ and $\rho_{i}>0, i \in \tau$ such that

$$
\begin{equation*}
\kappa w=\sum_{i \in \tau} \rho_{i} v_{i} \text { and } \sum_{i \in \tau} \rho_{i}=1 \tag{2.5}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
C:=\operatorname{conv}\left(\left\{v_{j}: j \in \sigma \cup \tau\right\}\right) \supseteq \frac{1}{\gamma_{k, n} n(n+2)} B_{2}^{n} \tag{2.6}
\end{equation*}
$$

Recall that the Minkowski functional of C, defined by $p_{C}(y)=\min \{t \geqslant 0: y \in t C\}$, is subadditive and positively homogeneous. Given $x \in S^{n-1}$ we set $\delta=\min \left\{\left\langle x, v_{j}\right\rangle: j \in \sigma\right\}$ and observe that $|\delta| \leqslant 1$ and $\left\langle x, v_{j}\right\rangle-\delta \leqslant 2$ for all $j \in \sigma$. If $\delta<0$, we write

$$
\begin{aligned}
p_{C}(T(x)) & \leqslant p_{C}\left(T(x)-\delta \sum_{j \in \sigma} b_{j} v_{j}\right)+p_{C}\left(\delta \sum_{j \in \sigma} b_{j} v_{j}\right)=p_{C}\left(\sum_{j \in \sigma} b_{j}\left(\left\langle x, v_{j}\right\rangle-\delta\right) v_{j}\right)+p_{C}(|\delta| b n w) \\
& \leqslant \sum_{j \in \sigma} b_{j}\left(\left\langle x, v_{j}\right\rangle-\delta\right) p_{C}\left(v_{j}\right)+|\delta| b n p_{C}(w)
\end{aligned}
$$

Since $p_{C}\left(v_{j}\right) \leqslant 1$ and $\left\langle x, v_{j}\right\rangle-\delta \leqslant 2$ for all $j \in \sigma$, we see that $\sum_{j \in \sigma} b_{j}\left(\left\langle x, v_{j}\right\rangle-\delta\right) p_{C}\left(v_{j}\right) \leqslant 2 \sum_{j \in \sigma} b_{j}=2 b$. Since $w \in C$ we have $p_{C}(w) \leqslant 1$ and we also have $|\delta| b n p_{K}(w) \leqslant b n$. Therefore, if $\delta<0$ then we finally get

$$
p_{C}(T(x)) \leqslant 2 b+b n=b(n+2) \leqslant \gamma_{k, n} n(n+2)
$$

If $\delta \geqslant 0$ then $\left\langle x, v_{j}\right\rangle \geqslant 0$ for all $j \in \sigma$, therefore

$$
\begin{equation*}
p_{C}(T(x))=p_{C}\left(\sum_{j \in \sigma} b_{j}\left\langle x, v_{j}\right\rangle v_{j}\right) \leqslant \sum_{j \in \sigma} b_{j}\left\langle x, v_{j}\right\rangle p_{C}\left(v_{j}\right) \leqslant \sum_{j \in \sigma} b_{j} \leqslant \gamma_{k, n} n \tag{2.7}
\end{equation*}
$$

In any case,

$$
\begin{equation*}
p_{T^{-1}(C)}(x) \leqslant \gamma_{k, n} n(n+2) p_{B_{2}^{n}}(x) \tag{2.8}
\end{equation*}
$$

for all $x \in S^{n-1}$. Since $I_{n} \preceq T$, we also have $B_{2}^{n} \subseteq T\left(B_{2}^{n}\right)$, and hence

$$
\begin{equation*}
K \subseteq B_{2}^{n} \subseteq T\left(B_{2}^{n}\right) \subseteq \gamma_{k, n} n(n+2) C \tag{2.9}
\end{equation*}
$$

Since $\operatorname{card}(\sigma \cup \tau) \leqslant k+n$, the proof is complete.

Theorem 2.2. Let $\left\{P_{i}: i \in I\right\}$ be a finite family of convex bodies in \mathbb{R}^{n} with $\operatorname{int}\left(\bigcap_{i \in I} P_{i}\right) \neq \emptyset$. For any $k>n$ there exist $z \in \mathbb{R}^{n}, s \leqslant k+n$ and $i_{1}, \ldots i_{s} \in I$ such that

$$
\begin{equation*}
z+P_{i_{1}} \cap \cdots \cap P_{i_{s}} \subseteq \gamma_{k, n} n(n+2)\left(z+\bigcap_{i \in I} P_{i}\right) \tag{2.10}
\end{equation*}
$$

In particular, assuming that $\operatorname{diam}\left(\bigcap_{i \in I} P_{i}\right)=1$ we get that for every $k>n$ there exist $s \leqslant k+n$ and $i_{1}, \ldots i_{s} \in I$ such that

$$
\begin{equation*}
\operatorname{diam}\left(P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right) \leqslant \gamma_{k, n} n(n+2) \tag{2.11}
\end{equation*}
$$

Therefore, if we choose $k=n+1$, we get that there exist $s \leqslant 2 n+1$ and $i_{1}, \ldots i_{s} \in I$ such that

$$
\begin{equation*}
\operatorname{diam}\left(P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right) \leqslant 16 n(n+2)(n+1)^{2} \tag{2.12}
\end{equation*}
$$

Proof. Let $P=\bigcap_{i \in I} P_{i}$. We may assume that $0 \in \operatorname{int}(P)$ and that the minimal volume ellipsoid of the polar body

$$
\begin{equation*}
P^{\circ}=\operatorname{conv}\left(\bigcup_{i \in I} P_{i}^{\circ}\right) \tag{2.13}
\end{equation*}
$$

of P is the Euclidean unit ball. Using Proposition 2.1 for $K=P^{\circ}$ we may find $X=\left\{v_{1}, \ldots, v_{s}\right\} \subset P^{\circ} \cap S^{n-1}$ with $\operatorname{card}(X)=s \leqslant k+n$ such that

$$
\begin{equation*}
P^{\circ} \subseteq \gamma_{k, n} n(n+2) \operatorname{conv}\left(\left\{v_{1}, \ldots, v_{s}\right\}\right) \tag{2.14}
\end{equation*}
$$

Since v_{1}, \ldots, v_{s} are contact points of P° with B_{2}^{n}, we can easily check that we actually have $v_{j} \in \bigcup_{i \in I} P_{i}^{\circ}$ for all $j=1, \ldots, s$. In other words, we may find $i_{1}, \ldots, i_{s} \in I$ such that $v_{j} \in P_{i_{j}}^{\circ}, j=1, \ldots, s$. Then, (2.14) implies that

$$
\begin{equation*}
P^{\circ} \subseteq \gamma_{k, n} n(n+2) \operatorname{conv}\left(P_{i_{1}}^{\circ} \cup \cdots \cup P_{i_{s}}^{\circ}\right) \tag{2.15}
\end{equation*}
$$

and passing to the polar bodies, we get

$$
\begin{equation*}
P_{i_{1}} \cap \cdots \cap P_{i_{s}} \subseteq \gamma_{k, n} n(n+2) P \tag{2.16}
\end{equation*}
$$

as claimed. Since $\gamma_{n+1, n}=(\sqrt{n+1}+\sqrt{n})^{4} \leqslant 16(n+1)^{2}$, the proof is complete.

For the final step of the proof of Theorem 1.2 we use the idea of a lemma from [3] which will allow us to further reduce the number of the bodies $P_{i_{j}}$ from $2 n+1$ to $2 n$. We include a sketch of its proof for the reader's convenience.

Lemma 2.3. Let $P_{1}, \ldots, P_{2 n+1}$ be convex bodies in \mathbb{R}^{n} such that $0 \in P_{1} \cap \cdots \cap P_{2 n+1}$. If the circumradius of $P_{1} \cap \cdots \cap P_{2 n+1}$ is equal to R then we can find $1 \leqslant j \leqslant 2 n+1$ such that the circumradius of $\bigcap_{i=1, i \neq j}^{2 n+1} P_{i}$ is at most R / t_{n}, where $t_{n}=\sin \left(\left(2 n^{3 / 2}\right)^{-1}\right) \geqslant \frac{1}{\pi n^{3 / 2}}$.
Proof. If C is a spherical cap such that $\operatorname{dist}(0, \operatorname{conv}(C))=t$ then we can write it as a geodesic ball $C=$ $B(v, \pi / 2-\delta)$ (for some $v \in S^{n-1}$) where $t=\sin \delta$. Then,

$$
\sigma(C)=\sigma(B(v, \delta))=\frac{1}{2 I_{n-1}} \int_{0}^{\frac{\pi}{2}-\delta}(\sin \theta)^{n-1} d \theta
$$

where σ is the standard rotationally invariant probability measure on the sphere and $I_{k}=\int_{0}^{\pi / 2}(\cos \theta)^{k} d \theta$ (see e.g. [2, Chapter 3]). Therefore, we will have $\sigma(C)>\frac{n}{2 n+1}$ if

$$
\frac{1}{I_{n-1}} \int_{0}^{\frac{\pi}{2}-\delta}(\sin \theta)^{n-1} d \theta=\frac{1}{I_{n-1}} \int_{\delta}^{\pi / 2}(\cos u)^{n-1} d u>\frac{2 n}{2 n+1}
$$

or equivalently

$$
\frac{1}{I_{n-1}} \int_{0}^{\delta}(\cos u)^{n-1} d u<\frac{1}{2 n+1}
$$

It is known $\sqrt{k} I_{k} \geqslant 1$ for all $k \geqslant 1$ and we trivially have $\cos u \leqslant 1$ for all $u \in[0, \delta]$. If we choose $\delta_{n}=\frac{1}{2 n^{3 / 2}}$ then we get

$$
\int_{0}^{\delta_{n}}(\cos u)^{n-1} d u \leqslant \delta_{n}=\frac{1}{2 n^{3 / 2}}<\frac{1}{(2 n+1) \sqrt{n-1}} \leqslant I_{n-1} \cdot \frac{1}{2 n+1}
$$

Therefore, if $\operatorname{dist}(0, \operatorname{conv}(C))=t_{n}=\sin \delta_{n}$ we have that

$$
\sigma(C)>\frac{n}{2 n+1}
$$

We assume that for any $1 \leqslant j \leqslant 2 n+1$ the circumradius of $\bigcap_{i=1, i \neq j}^{2 n+1} P_{i}$ is greater than 1 and we will show that the circumradius of $P_{1} \cap \cdots \cap P_{2 n+1}$ is greater than t_{n}. We can choose $y_{j} \in \bigcap_{i=1, i \neq j}^{2 n+1} P_{i}$ with $\left\|y_{j}\right\|_{2}=1$ and then we consider the spherical cap C_{j} with center y_{j} and $\operatorname{dist}\left(0, \operatorname{conv}\left(C_{j}\right)\right)=t_{n}$. We claim that there exists $v \in S^{n-1}$ which belongs to at least $n+1$ of the C_{j} 's; otherwise, each point of S^{n-1} would be covered by at most n of the C_{j} 's and this would imply that

$$
n \geqslant \sum_{j=1}^{2 n+1} \sigma\left(C_{j}\right)>(2 n+1) \cdot \frac{n}{2 n+1}=n
$$

a contradiction. Now, consider the spherical cap $C(v)$ with center v and $\operatorname{dist}(0, \operatorname{conv}(C(v)))=t_{n}$. We have at least $n+1$ of the y_{j} 's in $C(v)$, and we may assume that $y_{1}, \ldots, y_{n+1} \in C(v)$. Each line segment $\left[0, y_{j}\right]$, $j \leqslant n+1$, meets the bounding hyperplane H of $C(v)$ at some point $w_{j} \in \bigcap_{i=1, i \neq j}^{2 n+1} P_{i}$. Applying Radon's theorem for the points w_{1}, \ldots, w_{n+1} in H, we find a point $u \in \bigcap_{j=1}^{n+1}\left(\bigcap_{i=1, i \neq j}^{2 n+1} P_{i}\right)=P_{1} \cap \cdots \cap P_{2 n+1}$. Since $u \in H$, we have $\|u\|_{2} \geqslant t_{n}$.

Now, let $\left\{P_{i}: i \in I\right\}$ be a finite family of convex bodies in \mathbb{R}^{n} with $\operatorname{diam}\left(\bigcap_{i \in I} P_{i}\right)=1$. We may assume that $0 \in \bigcap_{i \in I} P_{i}$. First we apply Theorem 2.2 to find $s \leqslant 2 n+1$ and $i_{1}, \ldots i_{s} \in I$ such that

$$
\begin{equation*}
\operatorname{diam}\left(P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right) \leqslant c_{1} n^{4} \tag{2.17}
\end{equation*}
$$

where $c_{1}>0$ is an absolute constant. If $s \leqslant 2 n$ then there is nothing to do, otherwise $s=2 n+1$ and then we apply Lemma 2.3 and keep $2 n$ of the $P_{i_{j}}$'s so that the diameter of their intersection is bounded by

$$
\begin{equation*}
c_{1} n^{4} \cdot \pi n^{3 / 2} \leqslant c_{2} n^{11 / 2} \tag{2.18}
\end{equation*}
$$

where $c_{2}>0$ is an absolute constant. This completes the proof of Theorem 1.2
Acknowledgements. We acknowledge support from Onassis Foundation.

References

[1] N. Amenta, J. A, De Loera and P. Soberón, Helly's Theorem: New Variations and Applications, in "Algebraic and Geometric Methods in Discrete Mathematics", Contemporary Math. 685 (2017), 55-95.
[2] S. Artstein-Avidan, A. Giannopoulos and V. D. Milman, Asymptotic Geometric Analysis, Part I, Mathematical Surveys and Monographs 202, Amer. Math. Soc. (2015).
[3] I. Bárány, M. Katchalski and J. Pach, Quantitative Helly-type theorems, Proc. Amer. Math. Soc. 86 (1982), 109-114.
[4] I. Bárány, M. Katchalski and J. Pach, Helly's theorem with volumes, Amer. Math. Monthly 91 (1984), 362-365.
[5] A. Barvinok, Thrifty approximations of convex bodies by polytopes, Int. Math. Res. Not. IMRN 2014, no. 16, 4341-4356.
[6] J. Batson, D. Spielman and N. Srivastava, Twice-Ramanujan Sparsifiers, STOC' 2009: Proceedings of the 41st annual ACM Symposium on Theory of Computing (ACM, New York, 2009), pp. 255-262.
[7] S. Brazitikos, Brascamp-Lieb inequality and quantitative versions of Helly's theorem, Mathematika 63 (2017), 272-291.
[8] S. Brazitikos, Quantitative Helly-type theorem for the diameter of convex sets, Discrete and Computational Geometry 57 (2017), 494-505.
[9] L. Danzer, B. Grünbaum and V. Klee, Helly's theorem and its relatives, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 101-180.
[10] J. Eckhoff, Helly, Radon, and Carathéodory type theorems, Handbook of convex geometry, Vol. A, B, NorthHolland, Amsterdam, 1993, pp. 389-448.
[11] E. D. Gluskin and A. E. Litvak, A remark on vertex index of the convex bodies, in Geom. Aspects of Funct. Analysis, Lecture Notes in Math. 2050, Springer, Berlin (2012), 255-265.
[12] F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, Interscience, New York (1948), 187-204.
[13] M. Naszódi, Proof of a conjecture of Bárány, Katchalski and Pach, Discrete Comput. Geom. 55 (2016), 243-248.
[14] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Second expanded edition. Encyclopedia of Mathematics and Its Applications 151, Cambridge University Press, Cambridge, 2014.
[15] P. Soberón, Helly-type theorems for the diameter, Bull. Lond. Math. Soc. 48 (2016), no. 4, 577588.
Keywords: Convex bodies, Helly's theorem, approximate John's decomposition, polytopal approximation.
2010 MSC: Primary 52A23; Secondary 52A35, 46B06.

Silouanos Brazitikos: Department of Mathematics, University of Athens, Panepistimioupolis 157-84, Athens, Greece.
E-mail: silouanb@math.uoa.gr

