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Abstra
tLetK be a 
onvex body in Rn and letWi(K), i = 1; : : : ; n�1 be its quer-massintegrals. We study minimization problems of the form minfWi(TK) :T 2 SLng and show that bodies whi
h appear as solutions of su
h prob-lems satisfy isotropi
 
onditions or even admit an isotropi
 
hara
terizationfor appropriate measures. This shows that several well known positions of
onvex bodies whi
h play an important role in the lo
al theory may be de-s
ribed in terms of 
lassi
al 
onvexity as isotropi
 ones. We provide newappli
ations of this point of view for the minimal mean width position.1 Introdu
tionGiven a 
onvex body K in Rn we 
onsider the family fTK j T 2 SLng of itspositions. One of the main problems in the asymptoti
 theory of �nite dimensionalnormed spa
es is introdu
ing the right position of the unit ball KX of a spa
e X .There exist many well-known positions whi
h have been introdu
ed and used fordi�erent purposes in this theory: John's position, the `-position, M -positions areamong them (see [MS
h1℄, [Pi2℄ and [TJ℄ for a des
ription and important appli
a-tions). Be
ause of the isomorphi
 nature of the results of the asymptoti
 theory,an isomorphi
 point of view dominates the study of these spe
ial positions as well.Even the de�nition of some of them (the M -position is su
h an example) is donein isomorphi
 form.The purpose of this paper is to dis
uss the possibility of an isometri
 approa
hto these questions. The standard isotropi
 position of a 
onvex body provides agood example for our point of view:�The se
ond named author was supported in part by the Israel S
ien
e Foundationfounded by the A
ademy of S
ien
es and Humanities. Part of this work was done whileboth authors were visiting the Erwin S
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Let K be a 
onvex body in Rn with 
entroid at the origin and volume equal toone. We say that K is in isotropi
 position ifZKhx; �i2dx = L2Kfor every � 2 Sn�1. It is not hard to see that every body K of volume one has aposition whi
h is isotropi
. Moreover, this position is uniquely determined up toan orthogonal transformation. Therefore, LK is an aÆne invariant whi
h is 
alledthe isotropi
 
onstant of K.The isotropi
 position is well studied and has several 
onne
tions with 
lassi
al
onvexity problems (see [MP1℄). In parti
ular, the question if LK � 
 for someabsolute positive 
onstant and every bodyK is a major open problem. The startingpoint of our present dis
ussion is the following remark:Fa
t I A body K is isotropi
 if and only if RK jxj2dx � RTK jxj2dx for everyT 2 SLn, where j � j is the standard Eu
lidean norm.The proof of the \if" part is given by a simple variational argument: If T 2L(Rn ;Rn ) and " > 0 is small enough, then (I + "T )=[det(I + "T )℄1=n is volumepreserving, therefore(1) ZK jx+ "Txj2dx � [det(I + "T )℄2=n ZK jxj2dx:Writting jx+ "Txj2 = jxj2 +2"hx; Txi+O("2) and [det(I + "T )℄2=n = 1+ 2" trTn +O("2), and letting "! 0+ we get(2) ZKhx; Txidx � trTn ZK jxj2dx;and repla
ing T by �T we see that there must be equality in (2) for every T 2L(Rn ;Rn ). This in turn implies that K is isotropi
.Starting with the fun
tional T ! f(TK) = RTK jxj2dx on SLn we saw thatits minimum is a
hieved on some isotropi
 position (for the Lebesgue measure onK). In this paper we show that this is a general s
heme whi
h produ
es isometri
des
riptions for many 
lassi
al positions of the theory.As a se
ond example, we mention the minimal surfa
e area position: Let K bea 
onvex body, and write �(K) for its surfa
e area. We say that K has minimalsurfa
e area if �(K) � �(TK) for every T 2 SLn.A 
hara
terization of the minimal surfa
e area position was given by Petty([Pe℄, see also [GP℄):Fa
t II A 
onvex body K has minimal surfa
e area if and only if(3) ZSn�1hu; �i2�K(du) = �(K)nfor every � 2 Sn�1, where �K is the area measure of K.2



Re
all that the area measure �K of K is de�ned on Sn�1 by(4) �K(A) = �(fx 2 bd(K) : the outer normal to K at x is in Ag);where � is the (n � 1)-dimensional surfa
e measure on K. The key point for theproof of the fa
t is the observation that(5) �((T�1)�K) = ZSn�1 jTxj�K(dx):Then, we employ a variational argument identi
al to the one used for Fa
t I. One
an also 
he
k that the minimal surfa
e position is unique up to orthogonal trans-formations (see [GP℄ for the details).In view of the above result we give the following de�nition:De�nition A Borel measure � on Sn�1 will be 
alled isotropi
 if(6) ZSn�1hu; �i2�(du) = �(Sn�1)nfor every � 2 Sn�1.In this terminology, a body K has minimal surfa
e area if and only if its areameasure is isotropi
: The minimum of the fun
tional T ! �(TK); T 2 SLn is againa
hieved on an isotropi
 position (for the appropriate measure on the sphere).Surfa
e area is one of the quermassintegralsWi(K) of the body K (see Se
tion2 for notation and de�nitions). We 
onsider the minimization problems(7) minfWi(TK) j T 2 SLng ; i = 1; : : : ; n� 1:In every 
ase, a ne
essary 
ondition for the minimal position is that the 
orre-sponding mixed area measure Sn�i(K; �) should be isotropi
 (see Se
tion 4). Inparti
ular, in Se
tion 3 we �nd a ne
essary and suÆ
ient 
ondition for the minimalmean width position: a body K has minimal mean width if and only ifZSn�1 hK(u)hu; �i2�(du)does not depend on � 2 Sn�1, where hK is the support fun
tion of K and � is therotationally invariant probability measure on the sphere. In the symmetri
 
ase,using a 
lassi
al estimate of Pisier [Pi1℄ (after work of Lewis [L℄ and Figiel andTom
zak-Jaegermann [FT℄) we see that isotropi
ity of the measure hKd� impliesthe inequality(8) ZSn�1 hK(u)�(du) � 
 log d(XK ; `n2 )� jKjjDnj�1=n :In Se
tion 5 we see the maximal volume ellipsoid position (John's position) asa solution of the problem(9) minfkT : `n2 ! XKk j T 2 SLng:3



Using the same general method we give a simple proof of John's theorem in itsfull strength. In our present setting, John's representation of the identity may beinterpreted as an isotropi
 
ondition: a symmetri
 body K is in John's position ifand only if there is an isotropi
 measure supported by its 
onta
t points with theins
ribed ball.Finally, in Se
tion 6 we show that M -position may also be des
ribed in anisometri
 way. If jKj = jDnj, we study the problem(10) minfjTK +Dnj j T 2 SLngand show that if K is a solution, then K +Dn must have minimal surfa
e area. Inview of Petty's result, this opens the possibility of an isotropi
 M -position.K. Ball [Ba1,2,3℄ realized that John's representation of the identity 
ould be
ombined with the Bras
amp-Lieb inequality. This led him to sharp bounds forthe volume ratio, the volume of the 
entral se
tions of the 
ube, and an exa
treverse isoperimetri
 inequality. The reverse Bras
amp-Lieb inequality [Bar℄ hasbeen re
ently applied for an estimate of the volume of the 
entral se
tions of thedi�eren
e body of a non-symmetri
 body [Ru℄. Petty's isotropi
 des
ription ofthe minimal surfa
e area position (
ombined with the Bras
amp-Lieb inequality)leads to sharp inequalities for the volume of the proje
tion body and its polarin terms of the minimal surfa
e parameter [GP℄. All these results show that thegeneral isotropi
 point of view we propose in this paper might help towards a newunderstanding of several isomorphi
 results of the theory.2 De�nitions and preliminariesWe �rst re
all some fa
ts about mixed volumes and mixed area measures. Fordetailed proofs we refer the reader to [S
h℄.2.1. Let Kn denote the set of all non-empty, 
ompa
t 
onvex subsets of Rn . Wemay view Kn as a 
onvex 
one under Minkowski addition and multipli
ation bynonnegative real numbers. Minkowski's theorem (and the de�nition of the mixedvolumes) asserts that if K1; : : : ;Km 2 Kn;m 2 N, then the volume of t1K1+ : : :+tmKm is a homogeneous polynomial of degree n in ti > 0. That is,(1) jt1K1 + : : :+ tmKmj = X1�i1;:::;in�mV (Ki1 ; : : : ;Kin)ti1 : : : tin ;where the 
oeÆ
ients V (Ki1 ; : : : ;Kin) are 
hosen to be invariant under permuta-tions of their arguments. The 
oeÆ
ient V (K1; : : : ;Kn) is 
alled the mixed volumeof K1; : : : ;Kn.2.2. Steiner's formula may be seen as a spe
ial 
ase of Minkowski's theorem. Thevolume of K + tDn, t > 0, 
an be expanded as a polynomial in t:(2) jK + tDnj = nXi=0 �ni�Wi(K)ti;4



where Wi(K) = V (K;n � i;Dn; i) is the i-th quermassintegral of K. Here andelsewhere we use the notation L; j for L; : : : ; L j-times. The quermassintegralsinherit properties of mixed volumes: they are monotone, 
ontinuous with respe
tto the Hausdor� metri
, and homogeneous of degree n� i.2.3. The mixed area measures were introdu
ed by Alexandrov [Al1,2℄ and maybe viewed as a lo
al generalization of the mixed volumes. For any (n � 1)-tupleC = K1; : : : ;Kn�1 2 Kn, the Riesz representation theorem guarantees the existen
eof a Borel measure S(C; �) on the unit sphere Sn�1 su
h that(3) V (L;K1; : : : ;Kn�1) = 1n ZSn�1 hL(u)dS(C; u)for every L 2 Kn, where hL is the support fun
tion of L. The lo
al analogue ofMinkowski's theorem is(4) Sn�1( mXi=1 tiKi; !) = X1�i1;:::;in�mS(Ki1 ; : : : ;Kin�1 ; !)ti1 : : : tin�1for all Borel ! � Sn�1, ti > 0;Ki 2 Kn, m 2 N (see below for the de�nition ofSn�1).The j-th area measure of K is de�ned by Sj(K; �) = S(K; j;Dn;n � j � 1; �),j = 0; 1; : : : ; n � 1. It follows that the quermassintegrals of K 
an be representedby(5) Wi(K) = 1n ZSn�1 hK(u)dSn�i�1(K;u) ; i = 0; 1; : : : ; n� 1or, alternatively,(6) Wi(K) = 1n ZSn�1 dSn�i(K;u) ; i = 1; : : : ; n:2.4. Let Ki 2 Kn and assume for simpli
ity that hKi is twi
e 
ontinuouslydi�erentiable. Then, the mixed area measure of K1; : : : ;Kn�1 has a 
ontinu-ous density s(K1; : : : ;Kn�1; �) with respe
t to the Lebesgue measure on Sn�1,the mixed dis
riminant of the se
ond di�erentials of hKi . We write sj(K;u) fors(K; j;Dn;n� j � 1; u). It follows that(7) ZSn�1 hK1(u)s(K2;K3; : : : ;Kn; u)du = ZSn�1 hK2(u)s(K1;K3; : : : ;Kn; u)du:In parti
ular, for i = 1; : : : ; n� 1 we have(8) Wi(K) = 1n ZSn�1 sn�i(K;u)du = 1n ZSn�1 hK(u)sn�i�1(K;u)du:5



2.5. Let f be a real fun
tion on Rnnfog. We write f̂ for the restri
tion of f toSn�1. If F is de�ned on Sn�1, the radial extension f of F to Rnnfog is given byf(x) = F (x=jxj). If F is a twi
e di�erentiable fun
tion on Sn�1, we de�ne(9) �oF = ^(�f) and roF = ^(rf);where f is the radial extension of F . The operator �o is usually 
alled the Lapla
e-Beltrami operator, while ro is referred to as the gradient. As a 
onsequen
e ofGreen's formula we have(10) ZSn�1 F�oG = ZSn�1 G�oF = � ZSn�1(roF ) � (roG):For more details we refer the reader to [Gr℄.2.6. If K is an origin symmetri
 
onvex body in Rn , then K indu
es a normk � kK on Rn in a natural way. We shall write XK for the normed spa
e withunit ball K, and KX for the unit ball of X . The polar body of K is de�ned bykxkKÆ = maxy2K jhx; yij = hK(x), and will be denoted by KÆ.We 
onsider the average(11) M(K) = ZSn�1 kxkK�(dx)of the norm k � kK on Sn�1, and de�ne M�(K) =M(KÆ).If K and L are bodies in Rn , their multipli
ative distan
e d(K;L) is de�ned by(12) d(K;L) = inffab : a; b > 0;K � bL; L � aKg:The Bana
h-Mazur distan
e between XK and XL is(13) d(XK ; XL) = inffd(K;TL) j T 2 GLng:Whenever we write (1=a)jxj � kxkK � bjxj, we assume that a; b are the smallestpositive numbers for whi
h this inequality holds true for every x 2 Rn . In parti
ular,we then have d(K;Dn) = ab.Finally, we denote by Gn;k the Grassmannian of all k-dimensional subspa
es ofRn , equipped with the Haar probability measure �n;k. We write jKj for the volumeof K, and !n for the volume of the Eu
lidean unit ball. The letters 
; 
0; C et
. arereserved for absolute positive 
onstants.3 Minimal mean widthLet K be a 
onvex body in Rn (without loss of generality we may assume thato 2 intK). The mean width w(K) of K is the quantity(1) w(K) = 2 ZSn�1 hK(u)�(du):6



This is equal to 2M�(K) in the symmetri
 
ase. From 2.3 we see that(2) Wn�1(K) = 1n ZSn�1 hK(u)du = !n ZSn�1 hK(u)�(du);hen
e,(3) w(K) = 2Wn�1(K)!n :We say that K has minimal mean width if w(K) � w(TK) for every T 2 SLn. Thisnotion was heavily used in the literature under a di�erent name: K has minimalmean width if and only if the `-ellipsoid ofKÆ is a multiple of Dn [FT℄. Our purposeis to �nd ne
essary and suÆ
ient 
onditions for a body K to have minimal meanwidth. We assume for simpli
ity that hK is twi
e 
ontinuously di�erentiable (wethen say that K is smooth enough).Theorem 3.1 A smooth enough 
onvex body K in Rn has minimal mean width ifand only if(4) 2 ZSn�1hrhK(u); Tui�(du) = trTn w(K)for every T 2 L(Rn ;Rn ). Moreover, this minimal mean width position is unique upto an orthogonal transformation.Proof: Assume �rst that K has minimal mean width. Let T 2 L(Rn ;Rn ) and" > 0 be small enough. Then (I + "T )�=[det(I + "T )℄1=n is volume preserving, andthis means that(5) ZSn�1 hK(u+ "Tu)�(du) � [det(I + "T )℄1=n ZSn�1 hK(u)�(du):Sin
e hK(u + "Tu) = hK(u) + "hrhK(u); Tui + O("2) and [det(I + "T )℄1=n =1 + " trTn +O("2), letting "! 0+ we obtain(6) 2 ZSn�1hrhK(u); Tui�(du) � trTn w(K):Repla
ing T by �T in (6) we see that there must be equality in (4) for everyT 2 L(Rn ;Rn ).Conversely, assume that (4) is satis�ed and let T 2 SLn. Up to an orthogonaltransformation we may assume that T � is symmetri
 positive-de�nite. Then,(7) w(TK) = 2 ZSn�1 hTK(u)�(du) = 2 ZSn�1 hK(T �u)�(du):It is a known fa
t that rhK(u) is the unique point on the boundary of K at whi
hu is the outer normal to K (see [S
h℄, pp.40). In parti
ular, rhK(u) 2 K, whi
himplies(8) hrhK(u); zi � hK(z)7



for every z 2 Rn . Therefore, by (7),(8) and (4) we get(9) w(TK) � 2 ZSn�1hrhK(u); T �ui�(du) = trT �n w(K) � w(K):This shows that K has minimal mean width. Moreover, we 
an have equality in(9) only if T is the identity. This proves uniqueness of the minimal mean widthposition up to U 2 O(n). 2Consider the measure �K on Sn�1 with density hK with respe
t to �. We shallprove that a smooth enough 
onvex body K has minimal mean width if and onlyif �K is isotropi
.Lemma 3.2 Let K be a smooth enough 
onvex body in Rn . We de�ne(10) IK(�) = ZSn�1hrhK(u); �ihu; �i�(du) ; � 2 Sn�1:Then,(11) w(K)2 + IK(�) = (n+ 1) ZSn�1 hK(u)hu; �i2�(du)for every � 2 Sn�1.Proof: Let � 2 Sn�1, and 
onsider the fun
tion f(x) = hx; �i2=2. A dire
t 
om-putation shows that(12) (rÆf̂)(u) = hu; �i� � hu; �i2uand(13) (�Æf̂)(u) = 1� nhu; �i2:Sin
e hK is positively homogeneous of degree 1, we have (rÆĥK)(u) = rhK(u) �hK(u)u and hK(u) = hrhK(u); ui, u 2 Sn�1. Taking into a

ount (12) we obtain(14) h(rÆf̂)(u); (rÆĥK)(u)i = hrhK(u); �ihu; �i � hK(u)hu; �i2:Integrating on the sphere and using Green's formula (see 2.5), we have(15) IK(�)� ZSn�1 hK(u)hu; �i2�(du) = � ZSn�1 hK(u)(�Æf̂)(u)�(du);whi
h is equal to �w(K)2 + n ZSn�1 hK(u)hu; �i2�(du)by (13). This proves (11). 28



Theorem 3.3 A smooth enough 
onvex body K has minimal mean width if andonly if(16) ZSn�1 hK(u)hu; �i2�(du) = w(K)2nfor every � 2 Sn�1 (equivalently, if �K is isotropi
).Proof: It is not hard to 
he
k that (4) is true for every T 2 L(Rn ;Rn ) if and onlyif(17) IK(�) = w(K)2nfor every � 2 Sn�1. The result now follows from Theorem 3.1 and Lemma 3.2. 2Remark. The smoothness assumption in Theorem 3.3 is not really needed. Assumefor example that K is any 
onvex body for whi
h �K is isotropi
. Given " > 0,we may approximate K by a smooth body K" so that IK"(�) is up to " 
onstanton Sn�1. If T"(K") has minimal mean width for some symmetri
 and positiveT" 2 SLn, we easily 
he
k from (9) that trT � (1 + O("))n, and the stability ofthe arithmeti
-geometri
 means inequality implies that T" is 
lose to the identity.Passing to the limit as " ! 0+ and taking into a

ount the fa
t that T"(K") hasminimal mean width, we see that K has the same property. The other dire
tion
an be treated in a similar way.The fa
t that (4) and (16) are linear in K has the following immediate 
onse-quen
e:Corollary 3.4 Let K1 and K2 be smooth enough 
onvex bodies in Rn .(i) If K1 and K2 have minimal mean width, then their Minkowski sum K1+K2has also minimal mean width.(ii) If K1 and K1 +K2 have minimal mean width, then K2 has also minimalmean width.Proof: Obvious from Theorem 3.1 or 3.3, sin
e hK1+K2 = hK1 + hK2 and w(K1 +K2) = w(K1) + w(K2). 2In the symmetri
 
ase, it is a well-known fa
t [L℄, [FT℄, [Pi1℄ that if W hasminimal mean width then M(W )M�(W ) � 
 log d(XW ; `n2 ). As an appli
ation ofthis estimate and of Corollary 3.4 we obtain:Theorem 3.5 Let k � k be a norm on Rn and assume that its unit ball K has theproperty M(K) � M(TK) for every T 2 SLn. Then, for every � 2 (0; 1), thereexists a [(1� �)n℄-dimensional se
tion K \ E of K su
h that(18) d(K \ E;Dn \ E) � 
 bMp� log� 2bMp�� ;where 
 > 0 is an absolute 
onstant. 9



Proof: Without loss of generality we may assume that M(K) = 1 and � < 1=2.Let t0 be the smallest integer t for whi
h log(t)(bM�(K)) � 2 (where log(t) denotesthe t-th iterated logarithm). The Low M�-estimate [M1℄, [PT℄, [Go℄ implies that,for some absolute 
onstant Æ > 0,(19) kxk � Æp�=2t0M�(K) jxjfor all x 2 E0 or x 2 E?0 , where E0 is in a subset L0 of Gn;[(1�2�t0�)n℄ of mea-sure greater than p(�; n; t0) = 1 � 
1 exp(�
22�t0�n), and 
1; 
2 > 0 are absolute
onstants.Consider the orthogonal transformation U = U(E0) = PE0 � PE?0 , E0 2 L0.Then,(20) kxk+ kUxk2 � Æp�=2t0p2M�(K) jxjfor all x 2 Rn . De�ne a new body K1 = K1(E0) by KÆ1 = KÆ+U�KÆ2 . Then, byCorollary 3.4, KÆ1 has minimal mean width equal to M(K1) = 1. It follows that(21) M�(K1) =M(K1)M�(K1) � 
 log p2t0+1M�(K)bÆp� ! :Observe that kxkK = kxkK1(E0) on E0, for every E0 2 L0.We now iterate this step: assume that Li � Gn;[(1�2�t0+i�)n℄; Ei 2 Li, andKi+1(E0; : : : ; Ei), i = 0; : : : ; s� 1 have been de�ned and satisfy the following:(i) (Ki+1)Æ has minimal mean width, and M(Ki+1) = 1.(ii) M�(Ki+1) � 
 log(p2t0�i+1M�(Ki)b=Æp�).(iii) kxkKi+1 = kxkKi = : : : = kxk, for all x 2 Fi = E0 \ : : : \ Ei.We apply the Low M�-estimate to Ks, and �nd Ls � Gn;[(1�2�t0+s�)n℄ withmeasure p(�; n; t0 � s) su
h that(22) bjxj � kxkKs � Æp�=2t0�sM�(Ks) jxjon Es and on E?s , for every Es 2 Ls. If Es 2 Ls, we de�ne Ks+1 by KÆs+1 =KÆs+U�(Es)KÆs2 . Then,(23) bjxj � kxkKs+1 � Æp�=2t0�sp2M�(Ks) jxjon Rn , and(24) kxkKs+1 = kxkKs = : : : = kxk10



for every x 2 Fs = E0 \ : : : \ Es. This means that(25) d(K \ Fs; Dn \ Fs) � Æp2t0�s+1=�bM�(Ks):We stop the pro
edure when s = t0. Note that if (E0; E1; : : : ; Et0) is a sequen
eas above, we have dimFt0 � (1 � �)n. Also, sin
e ea
h (Ks)Æ has minimal meanwidth, exa
tly as in (21) we get(26) M�(Ks+1) � 
 log p2t0�s+1M�(Ks)bÆp� ! ;and this implies that M�(Kt0) � C log� bp��. By (25), we haved(K \ Ft0 ; Dn \ Ft0) � 
 bp� log� b�� : 2Theorem 3.5 should be 
ompared to an analogous result for the M -position: In[MS
h2℄ it is proved that if K is in M -position of order � > 1=2, and if there existt orthogonal transformations U1; : : : ; Ut su
h that 1t Pti=1 UiKÆ is 
-equivalent toa ball, then for every � 2 (0; 1) there exists a subspa
e F 2 Gn;(1��)n su
h thatd(K \ F;Dn \ F ) � C(t; �; 
). We 
an now show that the same is true for theminimal mean width position:Corollary 3.6 Let k � k be a norm on Rn and assume that its unit ball K has theproperty M(K) � M(TK) for every T 2 SLn. Assume further that for some torthogonal transformations U1; : : : ; Ut and for some 0 < r;C <1,(27) rjxj � 1t tXi=1 kUixk � Crjxjfor all x 2 Rn . Then, for every � 2 (0; 1), there exists a [(1 � �)n℄-dimensionalse
tion K \ E of K su
h that(28) d(K \E;Dn \ E) � 
C ptp� log�2Cptp� � :Proof: Lemma 2.1 from [MS
h2℄ and (27) imply that(29) b(K) = maxx2Sn�1 kxk � Crpt:Sin
e M(K) � r, we have(30) b(K)M(K) � Cpt:The result is now a 
onsequen
e of Theorem 3.5. 211



An inspe
tion of the argument we used for Theorem 3.5 shows that the state-ment holds true for a random [(1 � �)n℄-dimensional se
tion of K. This allows a\global" reformulation of Corollary 3.6:Corollary 3.7 With the same hypotheses as in Corollary 3.6, there exists oneorthogonal transformation U su
h that, for some r0 > 0,(31) r0jxj � kxk+ kUxk � r0Cpt log(2Cpt)jxjfor all x 2 Rn . 2The example of X = `n=101 � `9n=101 from [MS
h2℄ shows that su
h a statement
annot hold in general.Let t(K) be the smallest integer t for whi
h there exist orthogonal transforma-tions U1; : : : ; Ut su
h thatM(K)2 jxj � 1t tXi=1 kUixk � 2M(K)jxjfor all x 2 Rn . In [MS
h2℄ it is shown that t(K) ' (b=M(K))2. We will provebelow an \isomorphi
" version of this fa
t for bodies in `-position. We �x s 2f2; : : : ; t(K)g and ask how 
lose to Eu
lidean 
an a norm kxks = 1sPsi=1 kUixk,Ui 2 O(n) be. More pre
isely, let gK(s) be the smallest A > 0 for whi
h there existr > 0, m � s, and U1; : : : ; Um 2 O(n) satisfyingrjxj � 1m mXi=1 kUixk � rAjxj ; x 2 Rn :From Lemma 2.1 in [MS
h2℄ (see also the proof of Corollary 3.6), we must haveb(K) � rApm �M(K)Aps. This shows that(32) gK(s) � 
pt(K)=s:We shall show that if KÆ has minimal mean width (if K has minimal M), then thisestimate is sharp:Theorem 3.8 Let k �k be a norm on Rn su
h that its unit ball K satis�es M(K) �M(TK), T 2 SLn. Then,(33) 
1r t(K)s � gK(s) � 
2r t(K)s log�2t(K)s � ;where 
1; 
2 > 0 are absolute 
onstants.Proof: Let s 2 f2; : : : ; t(K)g, and set b = b(K), M = M(K). Following the proofof Theorem 2 in [BLM℄, one 
an 
he
k that there exist s1 = [s=2℄ and U1; : : : ; Us1 2O(n) su
h that(34) kxks1 := 1s1 s1Xi=1 kUixk � 
 bps1 jxj � 
0 bps jxj12



for all x 2 Rn . Let K1 be the unit ball of k � ks1 and set b1 = b(K1), M1 =M(K1).Sin
e M1 =M , (34) implies that(35) t(K1) � 
00t(K)=s:Observe that K1 has minimal M , therefore we 
an apply Corollary 3.7 with C = 4and t = t(K1) to �nd r > 0 and V 2 O(n) su
h that(36) rjxj � kxks1 + kV xks1 � 
000rpt(K1) log(2t(K1))jxjfor all x 2 Rn . Setting Us1+i = UiV , i = 1; : : : ; s1, and taking into a

ount (35) we
on
lude the proof. 2Remark. Let k(K) be the largest integer k for whi
h a random k-dimensional
entral se
tion of K is 4-equivalent to Eu
lidean. In [Ms
h2℄ it is proved that 1Cn �t(K)k(K) � Cn, where C > 0 is an absolute 
onstant. Having this duality in mind,one may view Theorem 3.8 as a global analogue (for bodies with minimal M) ofthe isomorphi
 version of Dvoretzky's theorem proved in [MS
h3℄ (see also [GGM℄):There exists a 
onstant 
 > 0 su
h that, for every k � 
 logn every n-dimensionalspa
e K has a k-dimensional subspa
e F with d(F; `k2) � 
pk= log(n=k).Let us also mention the following 
ommon property of the M -position andthe minimal mean width position: If both a=M� and b=M are bounded by some
onstant C, then the spa
e is f(C)-isomorphi
 to `n2 . This is proved in [MS
h2℄ forthe M -position, and follows from Pisier's inequality(37) MM� � 
 log(ab) � 
 log(C2MM�)for the minimal mean width position. The spa
e X = `n=21 � `n=21 shows that theposition of the unit ball is 
ru
ial for this statement as well.We 
lose this se
tion with a variation of the minimal mean width position:Consider a symmetri
 
onvex body K in Rn , and the problem of minimizingM(TK)M�(TK) over all T 2 SLn. Repeating the pro
edure of Theorems 3.1and 3.3 we obtain the following 
ondition for the minimum position:Theorem 3.9 LetK be a symmetri
 
onvex body in Rn , and assume thatM(K)M�(K) �M(TK)M�(TK) for every T 2 SLn. Then,(38) 1M ZSn�1 kukKhu; �i2�(du) = 1M� ZSn�1 kukKÆhu; �i2�(du);for every � 2 Sn�1.Proof: Without loss of generality we may assume that K is smooth enough. LetR 2 L(Rn ;Rn ) and " > 0 be small enough, and write T�1 = I + "R. Then,T � = (I + "R�)�1 = I +P1k=1(�1)k"k(Rk)�, and our assumption about K takesthe form(39) M(K)M�(K) � ZSn�1 ku+ "RukK�(du) ZSn�1 ku� "R�ukKÆ�(du) +O("2);13



whi
h implies(40)MM� � �M + " ZSn�1hrhKÆ(u); Rui��M� � " ZSn�1hrhK(u); R�ui�+O("2):Letting "! 0+ and repla
ing R by �R, we have(41) 1M ZSn�1hrhKÆ(u); Rui�(du) = 1M� ZSn�1hrhK(u); R�ui�(du)for every R 2 GLn. Using (40) with R�(x) = hx; �i�, � 2 Sn�1, we get(42) 1M ZSn�1hrhKÆ(u); �ihu; �i�(du) = 1M� ZSn�1hrhK(u); �ihu; �i�(du)for every � 2 Sn�1. Taking into a

ount Lemma 3.2, we 
on
lude the proof. 2We do not know if (38) implies the minimality 
ondition of Theorem 3.9 (nev-ertheless, we �nd (38) quite appealing, sin
e it demonstrates on
e again the deeprelation between a body and its polar).4 Quermassintegrals and volume preserving trans-formationsWe say that a 
onvex body K minimizes Wi if Wi(K) �Wi(TK) for every volumepreserving linear transformation T . Sin
e nW1(K) = �(K), a body K minimizesW1 if and only if it has minimal surfa
e area. Also, sin
e 2Wn�1(K) = !nw(K); abody K minimizes Wn�1 if and only if it has minimal mean width.Our purpose is to �nd ne
essary and suÆ
ient 
onditions for a 
onvex body Kto minimize Wi, i = 1; : : : ; n� 1. We �rst show that su
h a body is a solution of amu
h more general problem:Proposition 4.1 Let i = 1; : : : ; n�1, and assume that the 
onvex body K minimizesWi. Then,(1) V (T1K; : : : ; Tn�iK;Dn; i) �Wi(K)for any T1; : : : ; Tn�i 2 SLn.Proof: We have Wi(TjK) � Wi(K), j = 1; : : : ; n � i. As a 
onsequen
e of theAlexandrov-Fen
hel inequality we see that(2) V (T1K; : : : ; Tn�iK;Dn; i) �Wi(T1K) 1n�i : : :Wi(Tn�iK) 1n�i ;and this proves our 
laim. 214



The arguments we used for the surfa
e area and the mean width apply to everyquermassintegral and provide ne
essary 
onditions for the minimal position:Proposition 4.2 Assume that K is smooth enough and minimizes Wi. Then,(3) ZSn�1hrhK(u); RuidSn�i�1(K;u) = [trR℄Wi(K)for any R 2 L(Rn ;Rn ).Proof: Let T 2 L(Rn ;Rn ) and " > 0 be small enough. Then, (I + "T )=[det(I +"T )℄1=n is volume preserving. Therefore,(4) [det(I + "T )℄n�in Wi(K) � V ((I + "T )K;n� i;Dn; i):Sin
e (I + "T )K � K + "TK, using the monotoni
ity of the mixed volumes we get(5) [det(I + "T )℄n�in Wi(K) � V (K + "TK;n� i;Dn; i):We have [det(I + "T )℄n�in = 1 + "n�in trT + O("2), and linearity of the mixedvolumes with respe
t to its arguments shows that V (K + "TK;n � i;Dn; i) =Wi(K) + (n� i)"V (TK;K;n� i� 1; Dn; i) +O("2). Letting "! 0+ we see that(6) trTn Wi(K) � V (TK;K;n� i� 1; Dn; i) = 1n ZSn�1 hTK(u)dSn�i�1(K;u):Now, let R 2 L(Rn ;Rn ) and set T � = I + "R where " > 0. Sin
e hTK(u) =hK(T �u) = hK(u+ "Ru), we get(7) Wi(K) + " trRn Wi(K) � 1n ZSn�1 hK(u+ "Ru)dSn�i�1(K;u):But, hK(u+ "Ru) = hK(u) + "hrhK(u); Rui+O("2), so letting "! 0+ and using(2.5), we have(8) trRn Wi(K) � 1n ZSn�1hrhK(u); RuidSn�i�1(K;u):Repla
ing R by �R we get the reverse inequality, therefore(9) [trR℄Wi(K) = ZSn�1hrhK(u); RuidSn�i�1(K;u)for every R 2 L(Rn ;Rn ). 2Proposition 4.3 Let i = 1; : : : ; n � 1. If a 
onvex body K in Rn minimizes Wi,then Sn�i(K; �) is isotropi
.Proof: Assume that K minimizes Wi. For every U 2 SLn we have(10) Wi(UK) = V (K;n� i; U�1Dn; i) �Wi(K):15



Let T 2 L(Rn ;Rn ) and " > 0 be small enough. Then, U�1 = (I + "T )=[det(I +"T )℄1=n is volume preserving, therefore(11) V (K;n� i;Dn + "TDn; i) � [det(I + "T )℄i=nWi(K):Observe that the right hand side is Wi(K) + i"trTn Wi(K) + O("2), while the lefthand side is Wi(K) + i"V (K;n� i;Dn; i� 1; TDn) + O("2). Letting " ! 0+ andtaking into a

ount (2.3) we get(12) 1n ZSn�1 hTDn(u)dSn�i(K;u) � trTn Wi(K)for every T 2 L(Rn ;Rn ). Let R 2 L(Rn ;Rn ) and set T � = I + "R. We havehTDn(u) = jT �uj = ju+ "Ruj = 1 + "hu;Rui+O("2), so (12) be
omes(13) ZSn�1f1 + "hu;Rui+O("2)gdSn�i(K;u) � nWi(K) + "[trR℄Wi(K):Letting "! 0+, using (2.6) and repla
ing R by �R we 
on
lude that(14) ZSn�1hu;RuidSn�i(K;u) = [trR℄Wi(K)for every R 2 L(Rn ;Rn ). This shows that Sn�i(K; �) is isotropi
. 2In order to pro
eed we need to introdu
e some terminology and notation. If Ais a selfadjoint linear transformation of Rn , we denote by sj(A) the j-th elementarysymmetri
 fun
tion sj(�1; : : : ; �n) of the eigenvalues �1; : : : ; �n of A:(15) sj(A) = X1�k1<:::<kj�n�k1 : : : �kj :The j-th Newton operator of A is de�ned by(16) Tj(A) = sj(A)I � sj�1(A)A+ : : :+ (�1)jAj :We set s0(A) = 1 and T0(A) = I . We also agree that Tj(A) = 0 if j < 0.Some known properties of sj(A) and Tj(A) are listed in the Proposition below(see e.g. Reilly [Re℄):Proposition 4.4 Let A 2 L(Rn ;Rn ) be selfadjoint, and assume that it has matrix(akl) with respe
t to some basis of Rn . Then, Tj(A) is selfadjoint and(i) sj(A) = 1j! P Æk1:::kjl1:::lj ak1l1 : : : akj lj .(ii) [Tj(A)℄kl = 1j! P Æk1:::kjkl1:::lj l ak1l1 : : : akj lj .(iii) tr(Tj(A) ÆA) = (j + 1)sj+1(A).(iv) Tj(A) = sj(A)I � Tj�1(A) ÆA.(v) tr(Tj(A)) = (n� j)sj(A). 16



Here, we denote by Æk1:::kjl1:::lj ; 1 � j � n, the Krone
ker symbol whi
h has the value +1(respe
tively, �1) if k1; : : : ; kj are distin
t and (l1; : : : ; lj) is an even (respe
tively,odd) permutation of (k1; : : : ; kj). If not, then the symbol takes the value 0. 2We will also use the following 
onsequen
e of Green's formula (see [Fi℄):Proposition 4.5 Let f : Rnnfog ! R and F : Rnnfog ! Rn be homogeneousfun
tions of degree p and q respe
tively. Assume that rf and divF are 
ontinuous.Then,(17) ZSn�1 f(u)divF (u)�(du) = (p+ q + n� 1) ZSn�1hf(u)F (u); ui�(du)� ZSn�1hrf(u); F (u)i�(du): 2Note that Lemma 3.2 is a spe
ial 
ase of Proposition 4.5: 
hoose f(x) = hK(x)and F (x) = hx; �i�.Let K be a 
onvex body in Rn , and assume that hK is a C3-fun
tion. Forevery x 2 Rnnfog the Hessian Hx := (�2klhK) of hK de�nes a selfadjoint lineartransformation of Rn . If u 2 Sn�1, then sj(Hu) = sj(K;u) (for simpli
ity we willwrite sj(u)). In this 
ontext, one has the following additional properties of theNewton operator Tj(Hu) (see [BH℄):Proposition 4.6 Assume that hK has 
ontinuous partial derivatives of order threein Rnnfog. Then,(i) (j + 1)sj+1(x) = div[(Tj(Hx))(rhK(x))℄; j = 0; : : : ; n� 2.(ii) Hx(x) = o ; (Tj(Hx))(x) = sj(x)x. 2Combining the above results we obtain the following:Theorem 4.7 Let K be a 
onvex body in Rn , whose support fun
tion hK is C3.Then, for every j = 0; 1; : : : ; n� 2 and any � 2 Sn�1, we have(18) ZSn�1 [(n+ 1� j)hK(u)sj(u)� (j + 1)sj+1(u)℄hu; �i2�(du)= 2 ZSn�1h(Tj(Hu))(rhK(u)); �ihu; �i�(du):Proof: Let f(x) = hx; �i2. By Proposition 4.6(i),(19) ZSn�1(j + 1)sj+1(u)hu; �i2�(du) = ZSn�1 f(u)div[(Tj(Hu)(rhK(u)))℄�(du):Sin
e f and Tj are homogeneous of degree 2 and �j respe
tively, Proposition 4.5shows that this last integral is equal to(20)(n+1� j) ZSn�1hTj(rhK(u)); uihu; �i2�(du)� 2 ZSn�1hTj(rhK(u)); �ihu; �i�(du):17



To 
omplete the proof, observe that sin
e Tj is selfadjoint by Proposition 4.6(ii) wehavehTj(rhK(u)); ui = hrhK(u); Tj(u)i = sj(u)hrhK(u); ui = sj(u)hK(u): 2Note �rst that Theorem 3.3 is a 
onsequen
e of Theorem 4.7: When j = 0, (18)takes the form(21) (n+ 1) ZSn�1 hK(u)hu; �i2�(du)= ZSn�1hu; �i2dS1(K;u) + 2 ZSn�1hrhK(u); �ihu; �i�(du):By Theorem 3.1 and Proposition 4.3, the last two integrals are independent of� 2 Sn�1, hen
e �K = hKd� is isotropi
.We now 
onsider the 
ase j = 1, whi
h 
orresponds to the quermassintegralWn�2:Theorem 4.8 Let K be a 
onvex body in Rn , whose support fun
tion hK is C3. If Kminimizes Wn�2, then the measures s2(u)�(du) and [hK(u)s1(u)+jrhK(u)j2℄�(du)are isotropi
.Proof: We have T1(Hu)(rhK(u)) = s1(u)rhK(u)�Hu(rhK(u)). Then, Theorem4.7 implies that for every � 2 Sn�1,(22) n ZSn�1 hK(u)s1(u)hu; �i2�(du) + 2 ZSn�1hHu(rhK(u)); �ihu; �i�(du)= 2 ZSn�1hu; �i2dS2(K;u) + 2 ZSn�1hrhK(u); �ihu; �idS1(K;u):Assume that K minimizes Wn�2. By Propositions 4.2 and 4.3, the expression onthe right handside of (22) does not depend on �. On the other hand, it is easy to
he
k that(23) 2Hu(rhK(u)) = r �jrhK(u)j2� :Applying Proposition 4.5 with F (x) = hx; �i� and f(x) = jrhK(x)j2, we get(24) ZSn�1 jrhK(u)j2�(du) = n ZSn�1 jrhK(u)j2hu; �i2�(du)�2 ZSn�1hHu(rhK(u)); �ihu; �i�(du):Inserting this into (22) we see thatZSn�1 [s1(u)hK(u) + jrhK(u)j2℄hu; �i2�(du)18



does not depend on �. This 
ompletes the proof. 2Using the same tools one 
an obtain analogous ne
essary isotropi
 
onditions forthe position whi
h minimizes ea
h quermassintegral. It is an interesting questionto determine a set of ne
essary and suÆ
ient isotropi
 
onditions for the positionminimizing Wi, i = 2; : : : ; n� 2.5 John's theoremA 
lassi
al result of F. John [Jo℄ states that d(X; `n2 ) � pn for every n-dimensionalnormed spa
e X , where `n2 is Eu
lidean spa
e, and d stands for the Bana
h-Mazurdistan
e. One 
omes up with this estimate while studying the following extremalproblem:Let K be a symmetri
 
onvex body in Rn . Maximize jdetT j over all T : `n2 !X = XK with kTk = 1.If T0 is a solution of this problem, then T0Dn is the ellipsoid of maximal volumewhi
h is ins
ribed in K. One 
an easily establish existen
e and uniqueness of su
han ellipsoid. In the spirit of our dis
ussion, we may equivalently formulate theproblem as follows:Let K be a symmetri
 
onvex body in Rn . Minimize kT : `n2 ! XKk over allvolume preserving transformations T .We shall see that our standard variational argument provides all the availableinformation about this \maximal volume ellipsoid position". In parti
ular, onemay naturally interpret the well-known John's representation of the identity as anisotropi
 
ondition.To this end, assume that the identity map I is a solution of the problem, andnormalize so that(1) kI : `n2 ! XKk = 1 = minfkT : `n2 ! XKk : jdetT j = 1g:This means that the Eu
lidean unit ball Dn is the maximal volume ellipsoid of K.Our �rst result provides a ne
essary \tra
e 
ondition" on K:Theorem 5.1 Let K be a smooth enough symmetri
 
onvex body in Rn and assumethat Dn is the maximal volume ellipsoid of K. Then, for every T 2 L(Rn ;Rn ) we
an �nd a 
onta
t point x of K and Dn su
h that(2) hx; Txi � trTn :Proof: Let S 2 L(Rn ;Rn ). We shall �rst show that there exists a 
onta
t point xof K and Dn su
h that(3) kSxkK � trSn :19



Let " > 0 be small enough. From (1) we have(4) kI + "S : `n2 ! XKk � [det(I + "S)℄1=n = 1 + " trSn +O("2):Choose any x" 2 Sn�1 su
h that kx" + "Sx"kK = kI + "Sk. Sin
e Dn � K, wehave kx"kK � 1. Therefore, 
ombining (4) with the triangle inequality for k � kKwe see that(5) kSx"kK � trSn +O("):By 
ompa
tness, we may �nd x 2 Sn�1 and a sequen
e "m ! 0 su
h that x"m ! x.By (5) we obviously have kSxkK � trSn . On the other hand,(6) kxkK = limm!1 kx"m + "mSx"mkK = limm!1 kI + "mSk = kIk = 1:This shows that x is a 
onta
t point of K and Dn, whi
h proves (3).Now, let T 2 L(Rn ;Rn ) and write S = I + "T , " > 0. We 
an �nd x" su
h thatkx"kK = jx"j = 1 and(7) kx" + "Tx"kK � tr(I + "T )n = 1+ " trTn :We write kx" + "Tx"kK = 1 + "hrkx"kK ; Tx"i + O("2), and from (7) we gethrkx"kK ; Tx"i � trTn +O("). Choosing again "m ! 0+ su
h that x"m ! x 2 Sn�1,we see that x is a 
onta
t point of K and Dn whi
h satis�es(8) hrkxkK ; Txi � trTn :Moreover, sin
e rkxkK is the point on the boundary of KÆ at whi
h the outerunit normal is parallel to x and x is a 
onta
t point of K and Dn, we must haverkxkK = x. This proves the theorem. 2From Theorem 5.1 we 
an easily re
over all the well-known properties of themaximal volume ellipsoid:Theorem 5.2 Let Dn be the maximal volume ellipsoid of K. Then, K � pnDn.Proof: Let x 2 Rn and 
onsider the map Ty = hy; xix. By Theorem 5.1, we 
an�nd a 
onta
t point z of K and Dn su
h that(9) hz; T zi � trTn = jxj2n :But,(10) hz; T zi = hz; xi2 � kzk2KÆkxk2K = kxk2K :Therefore, jxj � pnkxkK . This is equivalent to the assertion of the theorem. 220



Theorem 5.2 provides the estimate d(X; `n2 ) � pn for the Bana
h-Mazur dis-tan
e from an arbitrary n-dimensional normed spa
e to `n2 . From Theorem 5.1 we
an also dedu
e the Dvoretzky-Rogers lemma:Theorem 5.3 Let Dn be the maximal volume ellipsoid of K. There exist pairwiseorthogonal ve
tors y1; : : : ; yn in Rn su
h that�n� i+ 1n �1=2 � kyikK � jyij = 1 ; i = 1; : : : ; n:Proof: We de�ne the yi's indu
tively. The �rst ve
tor y1 
an be any of the
onta
t points of K and Dn. Assume that y1; : : : ; yi�1 have been de�ned. LetFi = spanfy1; : : : ; yi�1g. Then, tr(PF?i ) = n � i + 1, and by Theorem 5.1 thereexists a 
onta
t point xi su
h that(11) jPF?i xij2 = hxi; PF?i xii � n� i+ 1n :It follows that kPFixik � jPFixij � p(i� 1)=n. We set yi = PF?i xi=jPF?i xij.Then,(12) 1 = jyij � kyikK � hxi; yii = jPF?i xij � �n� i+ 1n �1=2 : 2Note that the argument shows that for every k-dimensional subspa
e F thereexists a 
onta
t point x of K and Dn su
h that jPFxj2 = hx; PF xi � k=n.Finally, a separation argument and Theorem 5.1 give us John's representationof the identity:Theorem 5.4 Let Dn be the maximal volume ellipsoid of K. There exist 
onta
tpoints x1; : : : ; xm of K and Dn and positive real numbers �1; : : : ; �m su
h thatI = mXi=1 �ixi 
 xi:Proof: Consider the 
onvex hull C of all operators x
x, where x is a 
onta
t pointof K and Dn. One 
an easily see that the assertion of the theorem is equivalent toI=n 2 C. If this is not true, there exists T 2 L(Rn ;Rn ) su
h that(13) hT; I=ni > hx
 x; T ifor every 
onta
t point x. But, hT; I=ni = trT=n and hx 
 x; T i = hx; Txi. There-fore, (13) would 
ontradi
t Theorem 5.1. 2Theorem 5.4 implies that(14) mXi=1 �ihxi; �i2 = 121



for every � 2 Sn�1. In our terminology, the measure � on Sn�1 that gives mass�i to the point xi, i = 1; : : : ;m, is isotropi
. In this sense, John's position is anisotropi
 position. Conversely, following [Ba4℄ we have:Proposition 5.5 Let K be a symmetri
 
onvex body in Rn whi
h 
ontains theEu
lidean unit ball Dn. Assume that there exists an isotropi
 Borel measure �on Sn�1 whi
h is supported by the 
onta
t points of K and Dn. Then, Dn is themaximal volume ellipsoid of K.Proof: Let k�k = �(Sn�1) and A � Sn�1 be the support of �. De�ne(15) L = fy 2 Rn : jhx; yij � 1; x 2 Ag:Sin
e K � L, it 
learly suÆ
es to prove that Dn is the maximal volume ellipsoidof L. Let(16) E = fy 2 Rn : nXj=1 ��2j hy; vji2 � 1g;where fvjg is an orthonormal basis of Rn and �j > 0. Assume that E � L. Forevery x 2 A we have(17) y(x) = 0� nXj=1 �2j hx; vji21A�1=2 nXj=1 �jhx; vjivj 2 E � L;hen
e, jhx; y(x)ij � 1 gives(18) nXj=1 �2j hx; vji2 � 1 ; x 2 A:Our hypotheses imply that(19) nXj=1 �j = nXj=1 �j nk�k ZSn�1hx; vji2�(dx)= nk�k ZSn�1 nXj=1 �jhx; vji2�(dx):Using (18) and the Cau
hy-S
hwarz inequality we see that(20) nXj=1 �jhx; vji2 � 0� nXj=1 �2j hx; vji21A1=20� nXj=1hx; vji21A1=2 � 1for every x 2 A. Then, (19) be
omes(21) nXj=1 �j � n:22



By the arithmeti
-geometri
 means inequality we getQ�j � 1. That is jEj � jDnj.Moreover, we 
an have equality only if all �j 's are equal to 1, whi
h shows that Dnis the unique maximal volume ellipsoid of L. 2Theorem 5.4 and Proposition 5.5 provide the following 
hara
terization of John'sposition:\Let K be a symmetri
 
onvex body in Rn whi
h 
ontains the Eu
lidean unitball Dn. Then, Dn is the maximal volume ellipsoid of K if and only if there existsan isotropi
 measure � supported by the 
onta
t points of K and Dn."Let us dis
uss one more problem of the same nature: Let K be a symmetri

onvex body in Rn and k � k be the 
orresponding norm. Assume that (1=a)jxj �kxk � bjxj for every x 2 Rn . It is 
lear that M(K)a(K) � 1, and we are interestedin(22) minfM(TK) j T 2 GLn; a(TK) = 1g:The 
ondition a(TK) = 1 means that TK � Dn but there exist 
onta
t points ofTK and Dn. We then have the following 
ondition for the minimum position:Theorem 5.6 Let K be a symmetri
 
onvex body in Rn satisfying a(K) = 1 andM(K) � M(TK) for every T 2 GLn with a(TK) = 1. Then, for every � 2 Sn�1we 
an �nd 
onta
t points x1; x2 of K and Dn su
h that(23) 1 + hx1; �i2 � n+ 1M ZSn�1 kukKhu; �i2�(du) � 1 + hx2; �i2:Proof: Let T 2 L(Rn ;Rn ) and " > 0 be small enough. Then T1 := (minSn�1 kx+"Txk)(I + "T )�1 satis�es a(T1K) = 1. Therefore,(24) ZSn�1 ku+ "Tuk�(du) �M(K) minx2Sn�1 kx+ "Txk:If we write ku+ "Tuk = kuk+ "hrhKÆ(u); Tui+O("2), we see that(25) ZSn�1hrhKÆ(u); Tui�(du) +O(") �M(K)minSn�1 kx+ "Txk � 1" :Let x" be a point on Sn�1 at whi
h the minimum is attained. If x is a 
onta
t pointof K and Dn, we must have 1 + "kTk � kx+ "Txk � kx" + "Tx"k � kx"k � "kTk,where kTk := kT : `n2 ! XKk. It follows that(26) 1 � kx"k � 1 + 2"kTk:Sin
e x" 2 Sn�1 and k � k � j � j, (25) takes the form(27) ZSn�1hrhKÆ(u); Tui�(du) +O(") �M(K) jx" + "Tx"j � 1"23



=M(K)[hx"; Tx"i+O(")℄:Now, we 
an �nd a sequen
e "m ! 0 and a point x 2 Sn�1 su
h that x"m ! x.Letting m!1 in (27), we obtain(28) ZSn�1hrhKÆ(u); Tui�(du) �M(K)hx; Txi:Also, x 2 Sn�1 and using (26) we see that kxk = limm kx"mk = 1. That is, x is a
onta
t point of K and Dn. Repla
ing T by �T we �nd another 
onta
t point x0of K and Dn su
h that(29) ZSn�1hrhKÆ(u); Tui�(du) �M(K)hx0; Tx0i:Choosing T�(x) = hx; �i�, � 2 Sn�1, and applying Lemma 3.2, we obtain (23). 2The 
ondition of the Theorem shows in a sense that the minimum position ofthe problem is ri
h in 
onta
t points with the 
ir
ums
ribed ball. The dual problemof maximizing M under the 
ondition b = 1 has exa
tly the same answer.6 Minimal surfa
e area and M-positionIf K and L are 
onvex bodies in Rn , we write N(K;L) for the 
overing number ofK by L (that is, the minimum number of translates of L whose union 
overs K).If jKj = jDnj, we say that K is in M -position (with parameter Æ > 0) if(1) N(K;Dn) � exp(Æn):One 
an then prove (see [MP2℄ for the non-symmetri
 
ase) that(2) N(K;Dn) �N(Dn;K) �N(KÆ; Dn) �N(Dn;KÆ) � exp(Æ1n);where Æ1 = 
Æ, and 
 > 0 is an absolute 
onstant. Moreover, 
ondition (1) isequivalent to(3) jK +Dnj1=n � 
jDnj1=n:This isomorphi
ally de�ned position is the best representative of the aÆne 
lassof a body in volume 
omputations: this is mainly due to the fa
t that reverseBrunn-Minkowski inequalities hold for bodies in M -position [M2℄.We de�ne a fun
tion f : [0;+1)! R by(4) f(t) = minfjTK + tDnj j T 2 SLng:For every t > 0 there exists a volume preserving Tt su
h that jTtK + tDnj = f(t).It is 
lear that UTt has the same property for every U 2 O(n). By (3) we see24



that T1K is in M -position. This suggests that M -position 
an be des
ribed as thesolution of a minimum problem similar to the ones we dis
ussed in the previousse
tions.We start with the following observation:Lemma 6.1 Let K be a 
onvex body in Rn . Then,(5) jK + tA1Dn + sA2Dnj � minfjK + (t+ s)A1Dnj; jK + (t+ s)A2Dnjgfor every A1; A2 2 GLn and t; s > 0.Proof: It is an immediate 
onsequen
e of the Brunn-Minkowski inequality, sin
e(6)K + tA1Dn + sA2Dn � tt+ s (K + (t+ s)A1Dn) + st+ s (K + (t+ s)A2Dn) : 2Theorem 6.2 Let K be a 
onvex body in Rn . Assume that(7) jK + tDnj = f(t)for some t > 0. Then, K + tDn has minimal surfa
e area.Proof: Let T 2 SLn. From Steiner's formula we see that(8) jT (K + (t� ")Dn) + "Dnj � jT (K + (t� ")Dn)j= n"W1(T (K + (t� ")Dn) +O("2):By the 
ontinuity of W1 with respe
t to the Hausdor� metri
,(9) �(T (K + tDn)) = nW1(T (K + tDn)) = n lim"!0+W1(T (K + (t� ")Dn))= lim"!0+ jT (K + (t� ")Dn) + "Dnj � jT (K + (t� ")Dnj"= lim"!0+ jK + (t� ")Dn + "T�1Dnj � jK + (t� ")Dnj" :Sin
e jK + tDnj = f(t), Lemma 6.1 implies that jK + (t � ")Dn + "T�1Dnj �jK + tDnj. Hen
e,(10) �(T (K + tDn)) � lim"!0+ jK + tDnj � jK + (t� ")Dnj" = �(K + tDn):This shows that K + tDn has minimal surfa
e area. 2Remark. It is not hard to show that(11) f 0(t) = �(TtK + tDn)25



for every t > 0. It follows that for every t > s > 0 we have(12) Z ts �(TxK + xDn)dx � Z ts �(TtK + xDn)dx;with equality if s = 0.In the planar 
ase, a 
onvex body K has minimal perimeter (surfa
e area) ifand only if it has minimal mean width. Sin
e jTtK + tDnj = f(t), Theorem 6.2shows that TtK + tDn has minimal mean width and, using Corollary 3.4(ii) we seethat TtK has minimal mean width. Moreover, Tt is 
onstant up to an orthogonaltransformation. That is, the solution of Problem (4) is the minimal mean widthposition, independently of t > 0:Corollary 6.3 A 
onvex body K in R2 satis�es jK + tDnj � jTK+ tDnj for everyT 2 SLn and every t > 0 if and only if it has minimal mean width. 2It would be interesting to see if the minimal surfa
e area position is an M -position in higher dimensions. This would provide an isometri
 des
ription of theM -position. Observe that, by Theorem 6.2, the limit of TtK as t ! 0+ is theminimal surfa
e position and, by Steiner's formula, the limit of TtK as t! +1 isthe minimal mean width position.Referen
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