
Extremal problems and isotropi positionsof onvex bodiesA. Giannopoulos and V.D. Milman�
AbstratLetK be a onvex body in Rn and letWi(K), i = 1; : : : ; n�1 be its quer-massintegrals. We study minimization problems of the form minfWi(TK) :T 2 SLng and show that bodies whih appear as solutions of suh prob-lems satisfy isotropi onditions or even admit an isotropi haraterizationfor appropriate measures. This shows that several well known positions ofonvex bodies whih play an important role in the loal theory may be de-sribed in terms of lassial onvexity as isotropi ones. We provide newappliations of this point of view for the minimal mean width position.1 IntrodutionGiven a onvex body K in Rn we onsider the family fTK j T 2 SLng of itspositions. One of the main problems in the asymptoti theory of �nite dimensionalnormed spaes is introduing the right position of the unit ball KX of a spae X .There exist many well-known positions whih have been introdued and used fordi�erent purposes in this theory: John's position, the `-position, M -positions areamong them (see [MSh1℄, [Pi2℄ and [TJ℄ for a desription and important applia-tions). Beause of the isomorphi nature of the results of the asymptoti theory,an isomorphi point of view dominates the study of these speial positions as well.Even the de�nition of some of them (the M -position is suh an example) is donein isomorphi form.The purpose of this paper is to disuss the possibility of an isometri approahto these questions. The standard isotropi position of a onvex body provides agood example for our point of view:�The seond named author was supported in part by the Israel Siene Foundationfounded by the Aademy of Sienes and Humanities. Part of this work was done whileboth authors were visiting the Erwin Shroedinger International Institute for Mathemat-ial Physis in Vienna. 1



Let K be a onvex body in Rn with entroid at the origin and volume equal toone. We say that K is in isotropi position ifZKhx; �i2dx = L2Kfor every � 2 Sn�1. It is not hard to see that every body K of volume one has aposition whih is isotropi. Moreover, this position is uniquely determined up toan orthogonal transformation. Therefore, LK is an aÆne invariant whih is alledthe isotropi onstant of K.The isotropi position is well studied and has several onnetions with lassialonvexity problems (see [MP1℄). In partiular, the question if LK �  for someabsolute positive onstant and every bodyK is a major open problem. The startingpoint of our present disussion is the following remark:Fat I A body K is isotropi if and only if RK jxj2dx � RTK jxj2dx for everyT 2 SLn, where j � j is the standard Eulidean norm.The proof of the \if" part is given by a simple variational argument: If T 2L(Rn ;Rn ) and " > 0 is small enough, then (I + "T )=[det(I + "T )℄1=n is volumepreserving, therefore(1) ZK jx+ "Txj2dx � [det(I + "T )℄2=n ZK jxj2dx:Writting jx+ "Txj2 = jxj2 +2"hx; Txi+O("2) and [det(I + "T )℄2=n = 1+ 2" trTn +O("2), and letting "! 0+ we get(2) ZKhx; Txidx � trTn ZK jxj2dx;and replaing T by �T we see that there must be equality in (2) for every T 2L(Rn ;Rn ). This in turn implies that K is isotropi.Starting with the funtional T ! f(TK) = RTK jxj2dx on SLn we saw thatits minimum is ahieved on some isotropi position (for the Lebesgue measure onK). In this paper we show that this is a general sheme whih produes isometridesriptions for many lassial positions of the theory.As a seond example, we mention the minimal surfae area position: Let K bea onvex body, and write �(K) for its surfae area. We say that K has minimalsurfae area if �(K) � �(TK) for every T 2 SLn.A haraterization of the minimal surfae area position was given by Petty([Pe℄, see also [GP℄):Fat II A onvex body K has minimal surfae area if and only if(3) ZSn�1hu; �i2�K(du) = �(K)nfor every � 2 Sn�1, where �K is the area measure of K.2



Reall that the area measure �K of K is de�ned on Sn�1 by(4) �K(A) = �(fx 2 bd(K) : the outer normal to K at x is in Ag);where � is the (n � 1)-dimensional surfae measure on K. The key point for theproof of the fat is the observation that(5) �((T�1)�K) = ZSn�1 jTxj�K(dx):Then, we employ a variational argument idential to the one used for Fat I. Onean also hek that the minimal surfae position is unique up to orthogonal trans-formations (see [GP℄ for the details).In view of the above result we give the following de�nition:De�nition A Borel measure � on Sn�1 will be alled isotropi if(6) ZSn�1hu; �i2�(du) = �(Sn�1)nfor every � 2 Sn�1.In this terminology, a body K has minimal surfae area if and only if its areameasure is isotropi: The minimum of the funtional T ! �(TK); T 2 SLn is againahieved on an isotropi position (for the appropriate measure on the sphere).Surfae area is one of the quermassintegralsWi(K) of the body K (see Setion2 for notation and de�nitions). We onsider the minimization problems(7) minfWi(TK) j T 2 SLng ; i = 1; : : : ; n� 1:In every ase, a neessary ondition for the minimal position is that the orre-sponding mixed area measure Sn�i(K; �) should be isotropi (see Setion 4). Inpartiular, in Setion 3 we �nd a neessary and suÆient ondition for the minimalmean width position: a body K has minimal mean width if and only ifZSn�1 hK(u)hu; �i2�(du)does not depend on � 2 Sn�1, where hK is the support funtion of K and � is therotationally invariant probability measure on the sphere. In the symmetri ase,using a lassial estimate of Pisier [Pi1℄ (after work of Lewis [L℄ and Figiel andTomzak-Jaegermann [FT℄) we see that isotropiity of the measure hKd� impliesthe inequality(8) ZSn�1 hK(u)�(du) �  log d(XK ; `n2 )� jKjjDnj�1=n :In Setion 5 we see the maximal volume ellipsoid position (John's position) asa solution of the problem(9) minfkT : `n2 ! XKk j T 2 SLng:3



Using the same general method we give a simple proof of John's theorem in itsfull strength. In our present setting, John's representation of the identity may beinterpreted as an isotropi ondition: a symmetri body K is in John's position ifand only if there is an isotropi measure supported by its ontat points with theinsribed ball.Finally, in Setion 6 we show that M -position may also be desribed in anisometri way. If jKj = jDnj, we study the problem(10) minfjTK +Dnj j T 2 SLngand show that if K is a solution, then K +Dn must have minimal surfae area. Inview of Petty's result, this opens the possibility of an isotropi M -position.K. Ball [Ba1,2,3℄ realized that John's representation of the identity ould beombined with the Brasamp-Lieb inequality. This led him to sharp bounds forthe volume ratio, the volume of the entral setions of the ube, and an exatreverse isoperimetri inequality. The reverse Brasamp-Lieb inequality [Bar℄ hasbeen reently applied for an estimate of the volume of the entral setions of thedi�erene body of a non-symmetri body [Ru℄. Petty's isotropi desription ofthe minimal surfae area position (ombined with the Brasamp-Lieb inequality)leads to sharp inequalities for the volume of the projetion body and its polarin terms of the minimal surfae parameter [GP℄. All these results show that thegeneral isotropi point of view we propose in this paper might help towards a newunderstanding of several isomorphi results of the theory.2 De�nitions and preliminariesWe �rst reall some fats about mixed volumes and mixed area measures. Fordetailed proofs we refer the reader to [Sh℄.2.1. Let Kn denote the set of all non-empty, ompat onvex subsets of Rn . Wemay view Kn as a onvex one under Minkowski addition and multipliation bynonnegative real numbers. Minkowski's theorem (and the de�nition of the mixedvolumes) asserts that if K1; : : : ;Km 2 Kn;m 2 N, then the volume of t1K1+ : : :+tmKm is a homogeneous polynomial of degree n in ti > 0. That is,(1) jt1K1 + : : :+ tmKmj = X1�i1;:::;in�mV (Ki1 ; : : : ;Kin)ti1 : : : tin ;where the oeÆients V (Ki1 ; : : : ;Kin) are hosen to be invariant under permuta-tions of their arguments. The oeÆient V (K1; : : : ;Kn) is alled the mixed volumeof K1; : : : ;Kn.2.2. Steiner's formula may be seen as a speial ase of Minkowski's theorem. Thevolume of K + tDn, t > 0, an be expanded as a polynomial in t:(2) jK + tDnj = nXi=0 �ni�Wi(K)ti;4



where Wi(K) = V (K;n � i;Dn; i) is the i-th quermassintegral of K. Here andelsewhere we use the notation L; j for L; : : : ; L j-times. The quermassintegralsinherit properties of mixed volumes: they are monotone, ontinuous with respetto the Hausdor� metri, and homogeneous of degree n� i.2.3. The mixed area measures were introdued by Alexandrov [Al1,2℄ and maybe viewed as a loal generalization of the mixed volumes. For any (n � 1)-tupleC = K1; : : : ;Kn�1 2 Kn, the Riesz representation theorem guarantees the existeneof a Borel measure S(C; �) on the unit sphere Sn�1 suh that(3) V (L;K1; : : : ;Kn�1) = 1n ZSn�1 hL(u)dS(C; u)for every L 2 Kn, where hL is the support funtion of L. The loal analogue ofMinkowski's theorem is(4) Sn�1( mXi=1 tiKi; !) = X1�i1;:::;in�mS(Ki1 ; : : : ;Kin�1 ; !)ti1 : : : tin�1for all Borel ! � Sn�1, ti > 0;Ki 2 Kn, m 2 N (see below for the de�nition ofSn�1).The j-th area measure of K is de�ned by Sj(K; �) = S(K; j;Dn;n � j � 1; �),j = 0; 1; : : : ; n � 1. It follows that the quermassintegrals of K an be representedby(5) Wi(K) = 1n ZSn�1 hK(u)dSn�i�1(K;u) ; i = 0; 1; : : : ; n� 1or, alternatively,(6) Wi(K) = 1n ZSn�1 dSn�i(K;u) ; i = 1; : : : ; n:2.4. Let Ki 2 Kn and assume for simpliity that hKi is twie ontinuouslydi�erentiable. Then, the mixed area measure of K1; : : : ;Kn�1 has a ontinu-ous density s(K1; : : : ;Kn�1; �) with respet to the Lebesgue measure on Sn�1,the mixed disriminant of the seond di�erentials of hKi . We write sj(K;u) fors(K; j;Dn;n� j � 1; u). It follows that(7) ZSn�1 hK1(u)s(K2;K3; : : : ;Kn; u)du = ZSn�1 hK2(u)s(K1;K3; : : : ;Kn; u)du:In partiular, for i = 1; : : : ; n� 1 we have(8) Wi(K) = 1n ZSn�1 sn�i(K;u)du = 1n ZSn�1 hK(u)sn�i�1(K;u)du:5



2.5. Let f be a real funtion on Rnnfog. We write f̂ for the restrition of f toSn�1. If F is de�ned on Sn�1, the radial extension f of F to Rnnfog is given byf(x) = F (x=jxj). If F is a twie di�erentiable funtion on Sn�1, we de�ne(9) �oF = ^(�f) and roF = ^(rf);where f is the radial extension of F . The operator �o is usually alled the Laplae-Beltrami operator, while ro is referred to as the gradient. As a onsequene ofGreen's formula we have(10) ZSn�1 F�oG = ZSn�1 G�oF = � ZSn�1(roF ) � (roG):For more details we refer the reader to [Gr℄.2.6. If K is an origin symmetri onvex body in Rn , then K indues a normk � kK on Rn in a natural way. We shall write XK for the normed spae withunit ball K, and KX for the unit ball of X . The polar body of K is de�ned bykxkKÆ = maxy2K jhx; yij = hK(x), and will be denoted by KÆ.We onsider the average(11) M(K) = ZSn�1 kxkK�(dx)of the norm k � kK on Sn�1, and de�ne M�(K) =M(KÆ).If K and L are bodies in Rn , their multipliative distane d(K;L) is de�ned by(12) d(K;L) = inffab : a; b > 0;K � bL; L � aKg:The Banah-Mazur distane between XK and XL is(13) d(XK ; XL) = inffd(K;TL) j T 2 GLng:Whenever we write (1=a)jxj � kxkK � bjxj, we assume that a; b are the smallestpositive numbers for whih this inequality holds true for every x 2 Rn . In partiular,we then have d(K;Dn) = ab.Finally, we denote by Gn;k the Grassmannian of all k-dimensional subspaes ofRn , equipped with the Haar probability measure �n;k. We write jKj for the volumeof K, and !n for the volume of the Eulidean unit ball. The letters ; 0; C et. arereserved for absolute positive onstants.3 Minimal mean widthLet K be a onvex body in Rn (without loss of generality we may assume thato 2 intK). The mean width w(K) of K is the quantity(1) w(K) = 2 ZSn�1 hK(u)�(du):6



This is equal to 2M�(K) in the symmetri ase. From 2.3 we see that(2) Wn�1(K) = 1n ZSn�1 hK(u)du = !n ZSn�1 hK(u)�(du);hene,(3) w(K) = 2Wn�1(K)!n :We say that K has minimal mean width if w(K) � w(TK) for every T 2 SLn. Thisnotion was heavily used in the literature under a di�erent name: K has minimalmean width if and only if the `-ellipsoid ofKÆ is a multiple of Dn [FT℄. Our purposeis to �nd neessary and suÆient onditions for a body K to have minimal meanwidth. We assume for simpliity that hK is twie ontinuously di�erentiable (wethen say that K is smooth enough).Theorem 3.1 A smooth enough onvex body K in Rn has minimal mean width ifand only if(4) 2 ZSn�1hrhK(u); Tui�(du) = trTn w(K)for every T 2 L(Rn ;Rn ). Moreover, this minimal mean width position is unique upto an orthogonal transformation.Proof: Assume �rst that K has minimal mean width. Let T 2 L(Rn ;Rn ) and" > 0 be small enough. Then (I + "T )�=[det(I + "T )℄1=n is volume preserving, andthis means that(5) ZSn�1 hK(u+ "Tu)�(du) � [det(I + "T )℄1=n ZSn�1 hK(u)�(du):Sine hK(u + "Tu) = hK(u) + "hrhK(u); Tui + O("2) and [det(I + "T )℄1=n =1 + " trTn +O("2), letting "! 0+ we obtain(6) 2 ZSn�1hrhK(u); Tui�(du) � trTn w(K):Replaing T by �T in (6) we see that there must be equality in (4) for everyT 2 L(Rn ;Rn ).Conversely, assume that (4) is satis�ed and let T 2 SLn. Up to an orthogonaltransformation we may assume that T � is symmetri positive-de�nite. Then,(7) w(TK) = 2 ZSn�1 hTK(u)�(du) = 2 ZSn�1 hK(T �u)�(du):It is a known fat that rhK(u) is the unique point on the boundary of K at whihu is the outer normal to K (see [Sh℄, pp.40). In partiular, rhK(u) 2 K, whihimplies(8) hrhK(u); zi � hK(z)7



for every z 2 Rn . Therefore, by (7),(8) and (4) we get(9) w(TK) � 2 ZSn�1hrhK(u); T �ui�(du) = trT �n w(K) � w(K):This shows that K has minimal mean width. Moreover, we an have equality in(9) only if T is the identity. This proves uniqueness of the minimal mean widthposition up to U 2 O(n). 2Consider the measure �K on Sn�1 with density hK with respet to �. We shallprove that a smooth enough onvex body K has minimal mean width if and onlyif �K is isotropi.Lemma 3.2 Let K be a smooth enough onvex body in Rn . We de�ne(10) IK(�) = ZSn�1hrhK(u); �ihu; �i�(du) ; � 2 Sn�1:Then,(11) w(K)2 + IK(�) = (n+ 1) ZSn�1 hK(u)hu; �i2�(du)for every � 2 Sn�1.Proof: Let � 2 Sn�1, and onsider the funtion f(x) = hx; �i2=2. A diret om-putation shows that(12) (rÆf̂)(u) = hu; �i� � hu; �i2uand(13) (�Æf̂)(u) = 1� nhu; �i2:Sine hK is positively homogeneous of degree 1, we have (rÆĥK)(u) = rhK(u) �hK(u)u and hK(u) = hrhK(u); ui, u 2 Sn�1. Taking into aount (12) we obtain(14) h(rÆf̂)(u); (rÆĥK)(u)i = hrhK(u); �ihu; �i � hK(u)hu; �i2:Integrating on the sphere and using Green's formula (see 2.5), we have(15) IK(�)� ZSn�1 hK(u)hu; �i2�(du) = � ZSn�1 hK(u)(�Æf̂)(u)�(du);whih is equal to �w(K)2 + n ZSn�1 hK(u)hu; �i2�(du)by (13). This proves (11). 28



Theorem 3.3 A smooth enough onvex body K has minimal mean width if andonly if(16) ZSn�1 hK(u)hu; �i2�(du) = w(K)2nfor every � 2 Sn�1 (equivalently, if �K is isotropi).Proof: It is not hard to hek that (4) is true for every T 2 L(Rn ;Rn ) if and onlyif(17) IK(�) = w(K)2nfor every � 2 Sn�1. The result now follows from Theorem 3.1 and Lemma 3.2. 2Remark. The smoothness assumption in Theorem 3.3 is not really needed. Assumefor example that K is any onvex body for whih �K is isotropi. Given " > 0,we may approximate K by a smooth body K" so that IK"(�) is up to " onstanton Sn�1. If T"(K") has minimal mean width for some symmetri and positiveT" 2 SLn, we easily hek from (9) that trT � (1 + O("))n, and the stability ofthe arithmeti-geometri means inequality implies that T" is lose to the identity.Passing to the limit as " ! 0+ and taking into aount the fat that T"(K") hasminimal mean width, we see that K has the same property. The other diretionan be treated in a similar way.The fat that (4) and (16) are linear in K has the following immediate onse-quene:Corollary 3.4 Let K1 and K2 be smooth enough onvex bodies in Rn .(i) If K1 and K2 have minimal mean width, then their Minkowski sum K1+K2has also minimal mean width.(ii) If K1 and K1 +K2 have minimal mean width, then K2 has also minimalmean width.Proof: Obvious from Theorem 3.1 or 3.3, sine hK1+K2 = hK1 + hK2 and w(K1 +K2) = w(K1) + w(K2). 2In the symmetri ase, it is a well-known fat [L℄, [FT℄, [Pi1℄ that if W hasminimal mean width then M(W )M�(W ) �  log d(XW ; `n2 ). As an appliation ofthis estimate and of Corollary 3.4 we obtain:Theorem 3.5 Let k � k be a norm on Rn and assume that its unit ball K has theproperty M(K) � M(TK) for every T 2 SLn. Then, for every � 2 (0; 1), thereexists a [(1� �)n℄-dimensional setion K \ E of K suh that(18) d(K \ E;Dn \ E) �  bMp� log� 2bMp�� ;where  > 0 is an absolute onstant. 9



Proof: Without loss of generality we may assume that M(K) = 1 and � < 1=2.Let t0 be the smallest integer t for whih log(t)(bM�(K)) � 2 (where log(t) denotesthe t-th iterated logarithm). The Low M�-estimate [M1℄, [PT℄, [Go℄ implies that,for some absolute onstant Æ > 0,(19) kxk � Æp�=2t0M�(K) jxjfor all x 2 E0 or x 2 E?0 , where E0 is in a subset L0 of Gn;[(1�2�t0�)n℄ of mea-sure greater than p(�; n; t0) = 1 � 1 exp(�22�t0�n), and 1; 2 > 0 are absoluteonstants.Consider the orthogonal transformation U = U(E0) = PE0 � PE?0 , E0 2 L0.Then,(20) kxk+ kUxk2 � Æp�=2t0p2M�(K) jxjfor all x 2 Rn . De�ne a new body K1 = K1(E0) by KÆ1 = KÆ+U�KÆ2 . Then, byCorollary 3.4, KÆ1 has minimal mean width equal to M(K1) = 1. It follows that(21) M�(K1) =M(K1)M�(K1) �  log p2t0+1M�(K)bÆp� ! :Observe that kxkK = kxkK1(E0) on E0, for every E0 2 L0.We now iterate this step: assume that Li � Gn;[(1�2�t0+i�)n℄; Ei 2 Li, andKi+1(E0; : : : ; Ei), i = 0; : : : ; s� 1 have been de�ned and satisfy the following:(i) (Ki+1)Æ has minimal mean width, and M(Ki+1) = 1.(ii) M�(Ki+1) �  log(p2t0�i+1M�(Ki)b=Æp�).(iii) kxkKi+1 = kxkKi = : : : = kxk, for all x 2 Fi = E0 \ : : : \ Ei.We apply the Low M�-estimate to Ks, and �nd Ls � Gn;[(1�2�t0+s�)n℄ withmeasure p(�; n; t0 � s) suh that(22) bjxj � kxkKs � Æp�=2t0�sM�(Ks) jxjon Es and on E?s , for every Es 2 Ls. If Es 2 Ls, we de�ne Ks+1 by KÆs+1 =KÆs+U�(Es)KÆs2 . Then,(23) bjxj � kxkKs+1 � Æp�=2t0�sp2M�(Ks) jxjon Rn , and(24) kxkKs+1 = kxkKs = : : : = kxk10



for every x 2 Fs = E0 \ : : : \ Es. This means that(25) d(K \ Fs; Dn \ Fs) � Æp2t0�s+1=�bM�(Ks):We stop the proedure when s = t0. Note that if (E0; E1; : : : ; Et0) is a sequeneas above, we have dimFt0 � (1 � �)n. Also, sine eah (Ks)Æ has minimal meanwidth, exatly as in (21) we get(26) M�(Ks+1) �  log p2t0�s+1M�(Ks)bÆp� ! ;and this implies that M�(Kt0) � C log� bp��. By (25), we haved(K \ Ft0 ; Dn \ Ft0) �  bp� log� b�� : 2Theorem 3.5 should be ompared to an analogous result for the M -position: In[MSh2℄ it is proved that if K is in M -position of order � > 1=2, and if there existt orthogonal transformations U1; : : : ; Ut suh that 1t Pti=1 UiKÆ is -equivalent toa ball, then for every � 2 (0; 1) there exists a subspae F 2 Gn;(1��)n suh thatd(K \ F;Dn \ F ) � C(t; �; ). We an now show that the same is true for theminimal mean width position:Corollary 3.6 Let k � k be a norm on Rn and assume that its unit ball K has theproperty M(K) � M(TK) for every T 2 SLn. Assume further that for some torthogonal transformations U1; : : : ; Ut and for some 0 < r;C <1,(27) rjxj � 1t tXi=1 kUixk � Crjxjfor all x 2 Rn . Then, for every � 2 (0; 1), there exists a [(1 � �)n℄-dimensionalsetion K \ E of K suh that(28) d(K \E;Dn \ E) � C ptp� log�2Cptp� � :Proof: Lemma 2.1 from [MSh2℄ and (27) imply that(29) b(K) = maxx2Sn�1 kxk � Crpt:Sine M(K) � r, we have(30) b(K)M(K) � Cpt:The result is now a onsequene of Theorem 3.5. 211



An inspetion of the argument we used for Theorem 3.5 shows that the state-ment holds true for a random [(1 � �)n℄-dimensional setion of K. This allows a\global" reformulation of Corollary 3.6:Corollary 3.7 With the same hypotheses as in Corollary 3.6, there exists oneorthogonal transformation U suh that, for some r0 > 0,(31) r0jxj � kxk+ kUxk � r0Cpt log(2Cpt)jxjfor all x 2 Rn . 2The example of X = `n=101 � `9n=101 from [MSh2℄ shows that suh a statementannot hold in general.Let t(K) be the smallest integer t for whih there exist orthogonal transforma-tions U1; : : : ; Ut suh thatM(K)2 jxj � 1t tXi=1 kUixk � 2M(K)jxjfor all x 2 Rn . In [MSh2℄ it is shown that t(K) ' (b=M(K))2. We will provebelow an \isomorphi" version of this fat for bodies in `-position. We �x s 2f2; : : : ; t(K)g and ask how lose to Eulidean an a norm kxks = 1sPsi=1 kUixk,Ui 2 O(n) be. More preisely, let gK(s) be the smallest A > 0 for whih there existr > 0, m � s, and U1; : : : ; Um 2 O(n) satisfyingrjxj � 1m mXi=1 kUixk � rAjxj ; x 2 Rn :From Lemma 2.1 in [MSh2℄ (see also the proof of Corollary 3.6), we must haveb(K) � rApm �M(K)Aps. This shows that(32) gK(s) � pt(K)=s:We shall show that if KÆ has minimal mean width (if K has minimal M), then thisestimate is sharp:Theorem 3.8 Let k �k be a norm on Rn suh that its unit ball K satis�es M(K) �M(TK), T 2 SLn. Then,(33) 1r t(K)s � gK(s) � 2r t(K)s log�2t(K)s � ;where 1; 2 > 0 are absolute onstants.Proof: Let s 2 f2; : : : ; t(K)g, and set b = b(K), M = M(K). Following the proofof Theorem 2 in [BLM℄, one an hek that there exist s1 = [s=2℄ and U1; : : : ; Us1 2O(n) suh that(34) kxks1 := 1s1 s1Xi=1 kUixk �  bps1 jxj � 0 bps jxj12



for all x 2 Rn . Let K1 be the unit ball of k � ks1 and set b1 = b(K1), M1 =M(K1).Sine M1 =M , (34) implies that(35) t(K1) � 00t(K)=s:Observe that K1 has minimal M , therefore we an apply Corollary 3.7 with C = 4and t = t(K1) to �nd r > 0 and V 2 O(n) suh that(36) rjxj � kxks1 + kV xks1 � 000rpt(K1) log(2t(K1))jxjfor all x 2 Rn . Setting Us1+i = UiV , i = 1; : : : ; s1, and taking into aount (35) weonlude the proof. 2Remark. Let k(K) be the largest integer k for whih a random k-dimensionalentral setion of K is 4-equivalent to Eulidean. In [Msh2℄ it is proved that 1Cn �t(K)k(K) � Cn, where C > 0 is an absolute onstant. Having this duality in mind,one may view Theorem 3.8 as a global analogue (for bodies with minimal M) ofthe isomorphi version of Dvoretzky's theorem proved in [MSh3℄ (see also [GGM℄):There exists a onstant  > 0 suh that, for every k �  logn every n-dimensionalspae K has a k-dimensional subspae F with d(F; `k2) � pk= log(n=k).Let us also mention the following ommon property of the M -position andthe minimal mean width position: If both a=M� and b=M are bounded by someonstant C, then the spae is f(C)-isomorphi to `n2 . This is proved in [MSh2℄ forthe M -position, and follows from Pisier's inequality(37) MM� �  log(ab) �  log(C2MM�)for the minimal mean width position. The spae X = `n=21 � `n=21 shows that theposition of the unit ball is ruial for this statement as well.We lose this setion with a variation of the minimal mean width position:Consider a symmetri onvex body K in Rn , and the problem of minimizingM(TK)M�(TK) over all T 2 SLn. Repeating the proedure of Theorems 3.1and 3.3 we obtain the following ondition for the minimum position:Theorem 3.9 LetK be a symmetri onvex body in Rn , and assume thatM(K)M�(K) �M(TK)M�(TK) for every T 2 SLn. Then,(38) 1M ZSn�1 kukKhu; �i2�(du) = 1M� ZSn�1 kukKÆhu; �i2�(du);for every � 2 Sn�1.Proof: Without loss of generality we may assume that K is smooth enough. LetR 2 L(Rn ;Rn ) and " > 0 be small enough, and write T�1 = I + "R. Then,T � = (I + "R�)�1 = I +P1k=1(�1)k"k(Rk)�, and our assumption about K takesthe form(39) M(K)M�(K) � ZSn�1 ku+ "RukK�(du) ZSn�1 ku� "R�ukKÆ�(du) +O("2);13



whih implies(40)MM� � �M + " ZSn�1hrhKÆ(u); Rui��M� � " ZSn�1hrhK(u); R�ui�+O("2):Letting "! 0+ and replaing R by �R, we have(41) 1M ZSn�1hrhKÆ(u); Rui�(du) = 1M� ZSn�1hrhK(u); R�ui�(du)for every R 2 GLn. Using (40) with R�(x) = hx; �i�, � 2 Sn�1, we get(42) 1M ZSn�1hrhKÆ(u); �ihu; �i�(du) = 1M� ZSn�1hrhK(u); �ihu; �i�(du)for every � 2 Sn�1. Taking into aount Lemma 3.2, we onlude the proof. 2We do not know if (38) implies the minimality ondition of Theorem 3.9 (nev-ertheless, we �nd (38) quite appealing, sine it demonstrates one again the deeprelation between a body and its polar).4 Quermassintegrals and volume preserving trans-formationsWe say that a onvex body K minimizes Wi if Wi(K) �Wi(TK) for every volumepreserving linear transformation T . Sine nW1(K) = �(K), a body K minimizesW1 if and only if it has minimal surfae area. Also, sine 2Wn�1(K) = !nw(K); abody K minimizes Wn�1 if and only if it has minimal mean width.Our purpose is to �nd neessary and suÆient onditions for a onvex body Kto minimize Wi, i = 1; : : : ; n� 1. We �rst show that suh a body is a solution of amuh more general problem:Proposition 4.1 Let i = 1; : : : ; n�1, and assume that the onvex body K minimizesWi. Then,(1) V (T1K; : : : ; Tn�iK;Dn; i) �Wi(K)for any T1; : : : ; Tn�i 2 SLn.Proof: We have Wi(TjK) � Wi(K), j = 1; : : : ; n � i. As a onsequene of theAlexandrov-Fenhel inequality we see that(2) V (T1K; : : : ; Tn�iK;Dn; i) �Wi(T1K) 1n�i : : :Wi(Tn�iK) 1n�i ;and this proves our laim. 214



The arguments we used for the surfae area and the mean width apply to everyquermassintegral and provide neessary onditions for the minimal position:Proposition 4.2 Assume that K is smooth enough and minimizes Wi. Then,(3) ZSn�1hrhK(u); RuidSn�i�1(K;u) = [trR℄Wi(K)for any R 2 L(Rn ;Rn ).Proof: Let T 2 L(Rn ;Rn ) and " > 0 be small enough. Then, (I + "T )=[det(I +"T )℄1=n is volume preserving. Therefore,(4) [det(I + "T )℄n�in Wi(K) � V ((I + "T )K;n� i;Dn; i):Sine (I + "T )K � K + "TK, using the monotoniity of the mixed volumes we get(5) [det(I + "T )℄n�in Wi(K) � V (K + "TK;n� i;Dn; i):We have [det(I + "T )℄n�in = 1 + "n�in trT + O("2), and linearity of the mixedvolumes with respet to its arguments shows that V (K + "TK;n � i;Dn; i) =Wi(K) + (n� i)"V (TK;K;n� i� 1; Dn; i) +O("2). Letting "! 0+ we see that(6) trTn Wi(K) � V (TK;K;n� i� 1; Dn; i) = 1n ZSn�1 hTK(u)dSn�i�1(K;u):Now, let R 2 L(Rn ;Rn ) and set T � = I + "R where " > 0. Sine hTK(u) =hK(T �u) = hK(u+ "Ru), we get(7) Wi(K) + " trRn Wi(K) � 1n ZSn�1 hK(u+ "Ru)dSn�i�1(K;u):But, hK(u+ "Ru) = hK(u) + "hrhK(u); Rui+O("2), so letting "! 0+ and using(2.5), we have(8) trRn Wi(K) � 1n ZSn�1hrhK(u); RuidSn�i�1(K;u):Replaing R by �R we get the reverse inequality, therefore(9) [trR℄Wi(K) = ZSn�1hrhK(u); RuidSn�i�1(K;u)for every R 2 L(Rn ;Rn ). 2Proposition 4.3 Let i = 1; : : : ; n � 1. If a onvex body K in Rn minimizes Wi,then Sn�i(K; �) is isotropi.Proof: Assume that K minimizes Wi. For every U 2 SLn we have(10) Wi(UK) = V (K;n� i; U�1Dn; i) �Wi(K):15



Let T 2 L(Rn ;Rn ) and " > 0 be small enough. Then, U�1 = (I + "T )=[det(I +"T )℄1=n is volume preserving, therefore(11) V (K;n� i;Dn + "TDn; i) � [det(I + "T )℄i=nWi(K):Observe that the right hand side is Wi(K) + i"trTn Wi(K) + O("2), while the lefthand side is Wi(K) + i"V (K;n� i;Dn; i� 1; TDn) + O("2). Letting " ! 0+ andtaking into aount (2.3) we get(12) 1n ZSn�1 hTDn(u)dSn�i(K;u) � trTn Wi(K)for every T 2 L(Rn ;Rn ). Let R 2 L(Rn ;Rn ) and set T � = I + "R. We havehTDn(u) = jT �uj = ju+ "Ruj = 1 + "hu;Rui+O("2), so (12) beomes(13) ZSn�1f1 + "hu;Rui+O("2)gdSn�i(K;u) � nWi(K) + "[trR℄Wi(K):Letting "! 0+, using (2.6) and replaing R by �R we onlude that(14) ZSn�1hu;RuidSn�i(K;u) = [trR℄Wi(K)for every R 2 L(Rn ;Rn ). This shows that Sn�i(K; �) is isotropi. 2In order to proeed we need to introdue some terminology and notation. If Ais a selfadjoint linear transformation of Rn , we denote by sj(A) the j-th elementarysymmetri funtion sj(�1; : : : ; �n) of the eigenvalues �1; : : : ; �n of A:(15) sj(A) = X1�k1<:::<kj�n�k1 : : : �kj :The j-th Newton operator of A is de�ned by(16) Tj(A) = sj(A)I � sj�1(A)A+ : : :+ (�1)jAj :We set s0(A) = 1 and T0(A) = I . We also agree that Tj(A) = 0 if j < 0.Some known properties of sj(A) and Tj(A) are listed in the Proposition below(see e.g. Reilly [Re℄):Proposition 4.4 Let A 2 L(Rn ;Rn ) be selfadjoint, and assume that it has matrix(akl) with respet to some basis of Rn . Then, Tj(A) is selfadjoint and(i) sj(A) = 1j! P Æk1:::kjl1:::lj ak1l1 : : : akj lj .(ii) [Tj(A)℄kl = 1j! P Æk1:::kjkl1:::lj l ak1l1 : : : akj lj .(iii) tr(Tj(A) ÆA) = (j + 1)sj+1(A).(iv) Tj(A) = sj(A)I � Tj�1(A) ÆA.(v) tr(Tj(A)) = (n� j)sj(A). 16



Here, we denote by Æk1:::kjl1:::lj ; 1 � j � n, the Kroneker symbol whih has the value +1(respetively, �1) if k1; : : : ; kj are distint and (l1; : : : ; lj) is an even (respetively,odd) permutation of (k1; : : : ; kj). If not, then the symbol takes the value 0. 2We will also use the following onsequene of Green's formula (see [Fi℄):Proposition 4.5 Let f : Rnnfog ! R and F : Rnnfog ! Rn be homogeneousfuntions of degree p and q respetively. Assume that rf and divF are ontinuous.Then,(17) ZSn�1 f(u)divF (u)�(du) = (p+ q + n� 1) ZSn�1hf(u)F (u); ui�(du)� ZSn�1hrf(u); F (u)i�(du): 2Note that Lemma 3.2 is a speial ase of Proposition 4.5: hoose f(x) = hK(x)and F (x) = hx; �i�.Let K be a onvex body in Rn , and assume that hK is a C3-funtion. Forevery x 2 Rnnfog the Hessian Hx := (�2klhK) of hK de�nes a selfadjoint lineartransformation of Rn . If u 2 Sn�1, then sj(Hu) = sj(K;u) (for simpliity we willwrite sj(u)). In this ontext, one has the following additional properties of theNewton operator Tj(Hu) (see [BH℄):Proposition 4.6 Assume that hK has ontinuous partial derivatives of order threein Rnnfog. Then,(i) (j + 1)sj+1(x) = div[(Tj(Hx))(rhK(x))℄; j = 0; : : : ; n� 2.(ii) Hx(x) = o ; (Tj(Hx))(x) = sj(x)x. 2Combining the above results we obtain the following:Theorem 4.7 Let K be a onvex body in Rn , whose support funtion hK is C3.Then, for every j = 0; 1; : : : ; n� 2 and any � 2 Sn�1, we have(18) ZSn�1 [(n+ 1� j)hK(u)sj(u)� (j + 1)sj+1(u)℄hu; �i2�(du)= 2 ZSn�1h(Tj(Hu))(rhK(u)); �ihu; �i�(du):Proof: Let f(x) = hx; �i2. By Proposition 4.6(i),(19) ZSn�1(j + 1)sj+1(u)hu; �i2�(du) = ZSn�1 f(u)div[(Tj(Hu)(rhK(u)))℄�(du):Sine f and Tj are homogeneous of degree 2 and �j respetively, Proposition 4.5shows that this last integral is equal to(20)(n+1� j) ZSn�1hTj(rhK(u)); uihu; �i2�(du)� 2 ZSn�1hTj(rhK(u)); �ihu; �i�(du):17



To omplete the proof, observe that sine Tj is selfadjoint by Proposition 4.6(ii) wehavehTj(rhK(u)); ui = hrhK(u); Tj(u)i = sj(u)hrhK(u); ui = sj(u)hK(u): 2Note �rst that Theorem 3.3 is a onsequene of Theorem 4.7: When j = 0, (18)takes the form(21) (n+ 1) ZSn�1 hK(u)hu; �i2�(du)= ZSn�1hu; �i2dS1(K;u) + 2 ZSn�1hrhK(u); �ihu; �i�(du):By Theorem 3.1 and Proposition 4.3, the last two integrals are independent of� 2 Sn�1, hene �K = hKd� is isotropi.We now onsider the ase j = 1, whih orresponds to the quermassintegralWn�2:Theorem 4.8 Let K be a onvex body in Rn , whose support funtion hK is C3. If Kminimizes Wn�2, then the measures s2(u)�(du) and [hK(u)s1(u)+jrhK(u)j2℄�(du)are isotropi.Proof: We have T1(Hu)(rhK(u)) = s1(u)rhK(u)�Hu(rhK(u)). Then, Theorem4.7 implies that for every � 2 Sn�1,(22) n ZSn�1 hK(u)s1(u)hu; �i2�(du) + 2 ZSn�1hHu(rhK(u)); �ihu; �i�(du)= 2 ZSn�1hu; �i2dS2(K;u) + 2 ZSn�1hrhK(u); �ihu; �idS1(K;u):Assume that K minimizes Wn�2. By Propositions 4.2 and 4.3, the expression onthe right handside of (22) does not depend on �. On the other hand, it is easy tohek that(23) 2Hu(rhK(u)) = r �jrhK(u)j2� :Applying Proposition 4.5 with F (x) = hx; �i� and f(x) = jrhK(x)j2, we get(24) ZSn�1 jrhK(u)j2�(du) = n ZSn�1 jrhK(u)j2hu; �i2�(du)�2 ZSn�1hHu(rhK(u)); �ihu; �i�(du):Inserting this into (22) we see thatZSn�1 [s1(u)hK(u) + jrhK(u)j2℄hu; �i2�(du)18



does not depend on �. This ompletes the proof. 2Using the same tools one an obtain analogous neessary isotropi onditions forthe position whih minimizes eah quermassintegral. It is an interesting questionto determine a set of neessary and suÆient isotropi onditions for the positionminimizing Wi, i = 2; : : : ; n� 2.5 John's theoremA lassial result of F. John [Jo℄ states that d(X; `n2 ) � pn for every n-dimensionalnormed spae X , where `n2 is Eulidean spae, and d stands for the Banah-Mazurdistane. One omes up with this estimate while studying the following extremalproblem:Let K be a symmetri onvex body in Rn . Maximize jdetT j over all T : `n2 !X = XK with kTk = 1.If T0 is a solution of this problem, then T0Dn is the ellipsoid of maximal volumewhih is insribed in K. One an easily establish existene and uniqueness of suhan ellipsoid. In the spirit of our disussion, we may equivalently formulate theproblem as follows:Let K be a symmetri onvex body in Rn . Minimize kT : `n2 ! XKk over allvolume preserving transformations T .We shall see that our standard variational argument provides all the availableinformation about this \maximal volume ellipsoid position". In partiular, onemay naturally interpret the well-known John's representation of the identity as anisotropi ondition.To this end, assume that the identity map I is a solution of the problem, andnormalize so that(1) kI : `n2 ! XKk = 1 = minfkT : `n2 ! XKk : jdetT j = 1g:This means that the Eulidean unit ball Dn is the maximal volume ellipsoid of K.Our �rst result provides a neessary \trae ondition" on K:Theorem 5.1 Let K be a smooth enough symmetri onvex body in Rn and assumethat Dn is the maximal volume ellipsoid of K. Then, for every T 2 L(Rn ;Rn ) wean �nd a ontat point x of K and Dn suh that(2) hx; Txi � trTn :Proof: Let S 2 L(Rn ;Rn ). We shall �rst show that there exists a ontat point xof K and Dn suh that(3) kSxkK � trSn :19



Let " > 0 be small enough. From (1) we have(4) kI + "S : `n2 ! XKk � [det(I + "S)℄1=n = 1 + " trSn +O("2):Choose any x" 2 Sn�1 suh that kx" + "Sx"kK = kI + "Sk. Sine Dn � K, wehave kx"kK � 1. Therefore, ombining (4) with the triangle inequality for k � kKwe see that(5) kSx"kK � trSn +O("):By ompatness, we may �nd x 2 Sn�1 and a sequene "m ! 0 suh that x"m ! x.By (5) we obviously have kSxkK � trSn . On the other hand,(6) kxkK = limm!1 kx"m + "mSx"mkK = limm!1 kI + "mSk = kIk = 1:This shows that x is a ontat point of K and Dn, whih proves (3).Now, let T 2 L(Rn ;Rn ) and write S = I + "T , " > 0. We an �nd x" suh thatkx"kK = jx"j = 1 and(7) kx" + "Tx"kK � tr(I + "T )n = 1+ " trTn :We write kx" + "Tx"kK = 1 + "hrkx"kK ; Tx"i + O("2), and from (7) we gethrkx"kK ; Tx"i � trTn +O("). Choosing again "m ! 0+ suh that x"m ! x 2 Sn�1,we see that x is a ontat point of K and Dn whih satis�es(8) hrkxkK ; Txi � trTn :Moreover, sine rkxkK is the point on the boundary of KÆ at whih the outerunit normal is parallel to x and x is a ontat point of K and Dn, we must haverkxkK = x. This proves the theorem. 2From Theorem 5.1 we an easily reover all the well-known properties of themaximal volume ellipsoid:Theorem 5.2 Let Dn be the maximal volume ellipsoid of K. Then, K � pnDn.Proof: Let x 2 Rn and onsider the map Ty = hy; xix. By Theorem 5.1, we an�nd a ontat point z of K and Dn suh that(9) hz; T zi � trTn = jxj2n :But,(10) hz; T zi = hz; xi2 � kzk2KÆkxk2K = kxk2K :Therefore, jxj � pnkxkK . This is equivalent to the assertion of the theorem. 220



Theorem 5.2 provides the estimate d(X; `n2 ) � pn for the Banah-Mazur dis-tane from an arbitrary n-dimensional normed spae to `n2 . From Theorem 5.1 wean also dedue the Dvoretzky-Rogers lemma:Theorem 5.3 Let Dn be the maximal volume ellipsoid of K. There exist pairwiseorthogonal vetors y1; : : : ; yn in Rn suh that�n� i+ 1n �1=2 � kyikK � jyij = 1 ; i = 1; : : : ; n:Proof: We de�ne the yi's indutively. The �rst vetor y1 an be any of theontat points of K and Dn. Assume that y1; : : : ; yi�1 have been de�ned. LetFi = spanfy1; : : : ; yi�1g. Then, tr(PF?i ) = n � i + 1, and by Theorem 5.1 thereexists a ontat point xi suh that(11) jPF?i xij2 = hxi; PF?i xii � n� i+ 1n :It follows that kPFixik � jPFixij � p(i� 1)=n. We set yi = PF?i xi=jPF?i xij.Then,(12) 1 = jyij � kyikK � hxi; yii = jPF?i xij � �n� i+ 1n �1=2 : 2Note that the argument shows that for every k-dimensional subspae F thereexists a ontat point x of K and Dn suh that jPFxj2 = hx; PF xi � k=n.Finally, a separation argument and Theorem 5.1 give us John's representationof the identity:Theorem 5.4 Let Dn be the maximal volume ellipsoid of K. There exist ontatpoints x1; : : : ; xm of K and Dn and positive real numbers �1; : : : ; �m suh thatI = mXi=1 �ixi 
 xi:Proof: Consider the onvex hull C of all operators x
x, where x is a ontat pointof K and Dn. One an easily see that the assertion of the theorem is equivalent toI=n 2 C. If this is not true, there exists T 2 L(Rn ;Rn ) suh that(13) hT; I=ni > hx
 x; T ifor every ontat point x. But, hT; I=ni = trT=n and hx 
 x; T i = hx; Txi. There-fore, (13) would ontradit Theorem 5.1. 2Theorem 5.4 implies that(14) mXi=1 �ihxi; �i2 = 121



for every � 2 Sn�1. In our terminology, the measure � on Sn�1 that gives mass�i to the point xi, i = 1; : : : ;m, is isotropi. In this sense, John's position is anisotropi position. Conversely, following [Ba4℄ we have:Proposition 5.5 Let K be a symmetri onvex body in Rn whih ontains theEulidean unit ball Dn. Assume that there exists an isotropi Borel measure �on Sn�1 whih is supported by the ontat points of K and Dn. Then, Dn is themaximal volume ellipsoid of K.Proof: Let k�k = �(Sn�1) and A � Sn�1 be the support of �. De�ne(15) L = fy 2 Rn : jhx; yij � 1; x 2 Ag:Sine K � L, it learly suÆes to prove that Dn is the maximal volume ellipsoidof L. Let(16) E = fy 2 Rn : nXj=1 ��2j hy; vji2 � 1g;where fvjg is an orthonormal basis of Rn and �j > 0. Assume that E � L. Forevery x 2 A we have(17) y(x) = 0� nXj=1 �2j hx; vji21A�1=2 nXj=1 �jhx; vjivj 2 E � L;hene, jhx; y(x)ij � 1 gives(18) nXj=1 �2j hx; vji2 � 1 ; x 2 A:Our hypotheses imply that(19) nXj=1 �j = nXj=1 �j nk�k ZSn�1hx; vji2�(dx)= nk�k ZSn�1 nXj=1 �jhx; vji2�(dx):Using (18) and the Cauhy-Shwarz inequality we see that(20) nXj=1 �jhx; vji2 � 0� nXj=1 �2j hx; vji21A1=20� nXj=1hx; vji21A1=2 � 1for every x 2 A. Then, (19) beomes(21) nXj=1 �j � n:22



By the arithmeti-geometri means inequality we getQ�j � 1. That is jEj � jDnj.Moreover, we an have equality only if all �j 's are equal to 1, whih shows that Dnis the unique maximal volume ellipsoid of L. 2Theorem 5.4 and Proposition 5.5 provide the following haraterization of John'sposition:\Let K be a symmetri onvex body in Rn whih ontains the Eulidean unitball Dn. Then, Dn is the maximal volume ellipsoid of K if and only if there existsan isotropi measure � supported by the ontat points of K and Dn."Let us disuss one more problem of the same nature: Let K be a symmetrionvex body in Rn and k � k be the orresponding norm. Assume that (1=a)jxj �kxk � bjxj for every x 2 Rn . It is lear that M(K)a(K) � 1, and we are interestedin(22) minfM(TK) j T 2 GLn; a(TK) = 1g:The ondition a(TK) = 1 means that TK � Dn but there exist ontat points ofTK and Dn. We then have the following ondition for the minimum position:Theorem 5.6 Let K be a symmetri onvex body in Rn satisfying a(K) = 1 andM(K) � M(TK) for every T 2 GLn with a(TK) = 1. Then, for every � 2 Sn�1we an �nd ontat points x1; x2 of K and Dn suh that(23) 1 + hx1; �i2 � n+ 1M ZSn�1 kukKhu; �i2�(du) � 1 + hx2; �i2:Proof: Let T 2 L(Rn ;Rn ) and " > 0 be small enough. Then T1 := (minSn�1 kx+"Txk)(I + "T )�1 satis�es a(T1K) = 1. Therefore,(24) ZSn�1 ku+ "Tuk�(du) �M(K) minx2Sn�1 kx+ "Txk:If we write ku+ "Tuk = kuk+ "hrhKÆ(u); Tui+O("2), we see that(25) ZSn�1hrhKÆ(u); Tui�(du) +O(") �M(K)minSn�1 kx+ "Txk � 1" :Let x" be a point on Sn�1 at whih the minimum is attained. If x is a ontat pointof K and Dn, we must have 1 + "kTk � kx+ "Txk � kx" + "Tx"k � kx"k � "kTk,where kTk := kT : `n2 ! XKk. It follows that(26) 1 � kx"k � 1 + 2"kTk:Sine x" 2 Sn�1 and k � k � j � j, (25) takes the form(27) ZSn�1hrhKÆ(u); Tui�(du) +O(") �M(K) jx" + "Tx"j � 1"23



=M(K)[hx"; Tx"i+O(")℄:Now, we an �nd a sequene "m ! 0 and a point x 2 Sn�1 suh that x"m ! x.Letting m!1 in (27), we obtain(28) ZSn�1hrhKÆ(u); Tui�(du) �M(K)hx; Txi:Also, x 2 Sn�1 and using (26) we see that kxk = limm kx"mk = 1. That is, x is aontat point of K and Dn. Replaing T by �T we �nd another ontat point x0of K and Dn suh that(29) ZSn�1hrhKÆ(u); Tui�(du) �M(K)hx0; Tx0i:Choosing T�(x) = hx; �i�, � 2 Sn�1, and applying Lemma 3.2, we obtain (23). 2The ondition of the Theorem shows in a sense that the minimum position ofthe problem is rih in ontat points with the irumsribed ball. The dual problemof maximizing M under the ondition b = 1 has exatly the same answer.6 Minimal surfae area and M-positionIf K and L are onvex bodies in Rn , we write N(K;L) for the overing number ofK by L (that is, the minimum number of translates of L whose union overs K).If jKj = jDnj, we say that K is in M -position (with parameter Æ > 0) if(1) N(K;Dn) � exp(Æn):One an then prove (see [MP2℄ for the non-symmetri ase) that(2) N(K;Dn) �N(Dn;K) �N(KÆ; Dn) �N(Dn;KÆ) � exp(Æ1n);where Æ1 = Æ, and  > 0 is an absolute onstant. Moreover, ondition (1) isequivalent to(3) jK +Dnj1=n � jDnj1=n:This isomorphially de�ned position is the best representative of the aÆne lassof a body in volume omputations: this is mainly due to the fat that reverseBrunn-Minkowski inequalities hold for bodies in M -position [M2℄.We de�ne a funtion f : [0;+1)! R by(4) f(t) = minfjTK + tDnj j T 2 SLng:For every t > 0 there exists a volume preserving Tt suh that jTtK + tDnj = f(t).It is lear that UTt has the same property for every U 2 O(n). By (3) we see24



that T1K is in M -position. This suggests that M -position an be desribed as thesolution of a minimum problem similar to the ones we disussed in the previoussetions.We start with the following observation:Lemma 6.1 Let K be a onvex body in Rn . Then,(5) jK + tA1Dn + sA2Dnj � minfjK + (t+ s)A1Dnj; jK + (t+ s)A2Dnjgfor every A1; A2 2 GLn and t; s > 0.Proof: It is an immediate onsequene of the Brunn-Minkowski inequality, sine(6)K + tA1Dn + sA2Dn � tt+ s (K + (t+ s)A1Dn) + st+ s (K + (t+ s)A2Dn) : 2Theorem 6.2 Let K be a onvex body in Rn . Assume that(7) jK + tDnj = f(t)for some t > 0. Then, K + tDn has minimal surfae area.Proof: Let T 2 SLn. From Steiner's formula we see that(8) jT (K + (t� ")Dn) + "Dnj � jT (K + (t� ")Dn)j= n"W1(T (K + (t� ")Dn) +O("2):By the ontinuity of W1 with respet to the Hausdor� metri,(9) �(T (K + tDn)) = nW1(T (K + tDn)) = n lim"!0+W1(T (K + (t� ")Dn))= lim"!0+ jT (K + (t� ")Dn) + "Dnj � jT (K + (t� ")Dnj"= lim"!0+ jK + (t� ")Dn + "T�1Dnj � jK + (t� ")Dnj" :Sine jK + tDnj = f(t), Lemma 6.1 implies that jK + (t � ")Dn + "T�1Dnj �jK + tDnj. Hene,(10) �(T (K + tDn)) � lim"!0+ jK + tDnj � jK + (t� ")Dnj" = �(K + tDn):This shows that K + tDn has minimal surfae area. 2Remark. It is not hard to show that(11) f 0(t) = �(TtK + tDn)25
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