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Abstra
tIf X is an n-dimensional normed spa
e and " 2 (0; 1), there exists m �(1 � ")n su
h that the formal identity i2;1 : `m2 ! `m1 
an be written asi2;1 = �o�, � : `m2 ! X;� : X ! `m1, with k�k k�k � 
=". This is provedas a 
onsequen
e of a Sauer-Shelah type theorem for ellipsoids.1 Introdu
tionA version of the 
lassi
al Dvoretzky-Rogers lemma [DR℄ asserts that, if (X; k:k) isan n-dimensional normed spa
e, then there exist ve
tors x1; : : : ; xm 2 X ,m = [pn℄,su
h that for any 
hoi
e of real numbers t1; : : : ; tm,maxj�m jtj j � kXj�m tjxjkX � 
(Xj�m t2j )1=2;where 
 > 0 is an absolute 
onstant. Towards a strengthening of this result for mproportional to n, J. Bourgain-S.J. Szarek [BS℄ and later S.J. Szarek-M. Talagrand[ST℄ proved the following:Theorem 1. If (X; k:k) is an n-dimensional normed spa
e and " 2 (0; 1), thereexist ve
tors x1; : : : ; xm 2 X; m � (1� ")n, su
h that for any reals t1; : : : ; tm,maxj�m jtj j � kXj�m tjxjkX � 
"�d(Xj�m t2j )1=2;where 
; d > 0 are absolute 
onstants. Equivalently, the formal identity i2;1 :`m2 ! `m1 
an be written as i2;1 = �o�, where � : `m2 ! X, � : X ! `m1, andk�k k�k � 
"�d. The same holds true for i1;2 : `m1 ! `m2 .The best possible dependen
e on " is not known. As shown by S.J. Szarek [Sz.1℄,there exists an n-dimensional normed spa
e X su
h that k�k k�k � 
(n= logn)1=10whenever i2;1 : `n2 ! `n1 is written as i2;1 = �o� (�; � as above), and this implies1



that d in Theorem 1 has to be at least 1/10. On the other hand, in [ST℄ it isproved that Theorem 1 holds with d = 2, and in [G℄ we obtain a similar result withd = 3=2. Here we shall show that the same holds true with d = 1.Let us note that the method establishing this \proportional Dvoretzky-Rogersfa
torization" is 
losely related to the problem of the Bana
h-Mazur distan
e tothe 
ube. A detailed exposition of the te
hniques used so far for both problems isgiven in [Sz.2℄.The sour
e of the improvement on the estimates in Theorem 1 is a Sauer-Shelahtype theorem for ellipsoids, whi
h we feel is of independent interest: The well-known
ombinatorial Sauer-Shelah lemma [Sa℄, [Sh℄, states that if 0 � l < s and if M isa subset of f�1; 1gs of 
ardinality jM j > �s0� + �s1� + : : : + �sl�, then there exists� � f1; : : : ; sg; j�j > l, su
h that P�(M) = f�1; 1g�, where P� is the restri
tionmap: (Æj)j�s ! (Æj)j2� . A spe
ial 
ase of this lemma is of parti
ular interest: IfM � f�1; 1gs and jM j � 2s�1, then we 
an �nd � � f1; : : : ; sg; j�j � s2 , withP�(M) = f�1; 1g�.In 
onne
tion with their work on the Bana
h-Mazur distan
e to the 
ube, S.J.Szarek-M. Talagrand [ST℄ proved an isomorphi
 variant of the Sauer-Shelah lemma:If M � f�1; 1gs, viewed now as a set of points in Rs , and if jM j � 2s�1; " 2 (0; 1),then there exists � � f1; : : : ; sg; j�j � (1� ")s, su
h thatabs
onv(P�(M)) � 
"[�1; 1℄�;where 
 > 0 is an absolute 
onstant (and the absolute 
onvex hull is taken in R� ).For our purposes we need to 
onsider the following situation: Let u1; : : : ; us beve
tors in Rn , of Eu
lidean norm juj jn � 1; j = 1; : : : ; s. De�ne the symmetri

onvex set E = f(Æj)j�s 2 Rs : j sXj=1 Æjuj jn � 1g:(Note that if s � n and the ve
tors uj are linearly independent in Rn , then E is anellipsoid in Rs . This will be the 
ontext in the proof of Theorem 1). Again, we areinterested in the \size" of the image P�(E) of E for \large" subsets � of f1; : : : ; sg.Our main result is then the following:Theorem 2. If uj 2 Rn ; juj jn � 1; j = 1; : : : ; s, andE = f(Æj)j�s 2 Rs : j sXj=1 Æjuj jn � 1g;then for every " 2 (0; 1) we 
an �nd � � f1; : : : ; sg; j�j � (1� ")s, su
h thatP�(E) � 
p"D�;where D� is the Eu
lidean unit ball in R� , and 
 > 0 is an absolute 
onstant.2



We shall use the standard notation from [MS℄ or [TJ℄. By j:j we denote the
ardinality of a �nite set. The letter 
 will always denote an absolute positive
onstant, not ne
essarily the same in all its o

urren
es. For basi
 fa
ts about p-absolutely summing operators, used in the proof of Theorem 2, we refer the readerto [LT℄, [Pi℄, and [TJ℄.2 Proof of Theorem 2First, we introdu
e some additional notation: The set S = f1; : : : ; sg, as well asRs , will be �xed throughout the proof. If ' � S, then R' = f(Æj)j�s 2 Rs : Æj =0 if j =2 'g. A point in Rs denoted by (Æj)j2' is assumed to satisfy Æj = 0 if j =2 '.If A � R' and �; ' are disjoint subsets of S, we sometimes write 0� �A, to indi
atethat A is to be understood as a subset of R'[� . In parti
ular, if ' � S1 � S andL > 0, thenIL;';S1 = 0'�f�L;LgS1n' = f(Æj)j2S1 2 RS1 : Æj = 0 if j 2 �; Æj = �L if j 2 S1n�g:Note that jIL;';S1 j = 2jS1n'j. If a 2 R' ; b 2 R� , and �; ' are disjoint subsets of S,then (a; b) 2 R'[� is the sum a+ b. Finally, if S1 is a non-empty subset of S, wede�ne ES1 = f(Æj)j2S1 2 RS1 : jXj2S1 Æjuj jn � 1g:Our starting point is then an immediate 
onsequen
e of the Sauer-Shelah lemma:Lemma 1. If L > 0; ' � S1 � S, and M � 0' � f�L;LgS1n', with jM j �2jS1n'j�1, then there exists � � S1n'; j�j � jS1n'j2 , su
h thatP'[�(M) = 0' � f�L;Lg�: 2Using an indu
tive argument based on Lemma 1, we obtain a �rst result on thesize of the proje
tions of ES1 , for an arbitrary S1 � S. This step is 
ru
ial for ourproof of Theorem 2, so we state it as our next lemma and give its proof, althoughit 
an essentially be found in [G℄:Lemma 2. If ; 6= S1 � S and " 2 (0; 1) are given, then there exists � � S1, withj�j � (1� ")jS1j, su
h that P�(ES1) � 
p"pjS1j [�1; 1℄�;where 
 > 0 is an absolute 
onstant.Proof: Set �k = Pk�1r=0 2r=2; �k = Pk�1r=0 2r = 2k�1, and Q� = [�1; 1℄� for everynon-empty � � S1. 3



We shall prove by indu
tion that:(�) For k = 1; 2; : : : , one 
an �nd �k � S1, with j�kj � (1� 12k )jS1j, su
h thatQ�k � P�k (�kp2jS1jES1 \ �kQS1):Sin
e �k � 2k=2p2�1 , 
ondition (�) 
learly implies that, for k = 1; 2; : : : ,P�k (ES1) � 
pjS1jr 12k [�1; 1℄�kwith 
 = 1� 1p2 , whi
h is the assertion of the lemma for " = 1=2k. The 
ontinuousversion will easily follow with a worse 
onstant 
.Indu
tive step: Consider the set Jk = 0�k � f�2k=2; 2k=2gS1n�k , where �k is thesubset of S1 given by (�). Note that jJkj = 2jS1n�kj. By the parallelogram law andthe fa
t that jS1n�kj � jS1j=2k, we haveAve(Æj )2Jk jXj2S1 Æjuj j2n = 2k Xj2S1n�k juj j2n � jS1j;and Markov's inequality implies that there exists Mk+1 � Jk \p2jS1jES1 withjMk+1j � 2jS1n�k j�1. Then, by Lemma 1 we 
an �nd ��k+1 � S1n�k of 
ardinalityj��k+1j � jS1n�k j2 for whi
hP�k[��k+1(Mk+1) = 0�k � f�2k=2; 2k=2g��k+1 :Sin
e Mk+1 �p2jS1jES1 \ 2k=2QS1 , it follows that(��) 0�k � 2kQ��k+1 � P�k[��k+1(2k=2p2jS1jES1 \ 2kQS1):Suppose now that a 2 Q�k ; b 2 Q��k+1 . From the indu
tive hypothesis (�), we 
an�nd wa 2 �kQ��k+1 su
h that(a; wa) 2 P�k[��k+1(�kp2jS1jES1 \ �kQS1):If va;b = b� wa, it is 
lear that va;b 2 Q��k+1 + �kQ��k+1 = 2kQ��k+1 , and therefore,by (��), (0�k ; va;b) 2 P�k[��k+1(2k=2p2jS1jES1 \ 2kQS1):Then, (a; b) = (a; wa) + (0�k ; va;b) 2 P�k[��k+1(�kp2jS1jES1 \ �kQS1)++P�k[��k+1(2k=2p2jS1jES1 \ 2kQS1) � P�k[��k+1(�k+1p2jS1jES1 \ �k+1QS1):4



Sin
e a 2 Q�k ; b 2 Q��k+1 were arbitrary, this means thatQ�k[��k+1 � P�k[��k+1(�k+1p2jS1jES1 \ �k+1QS1):If we de�ne �k+1 = �k [ ��k+1, we readily see that j�k+1j � (1� 12k+1 )jS1j, and this
ompletes the indu
tive step. The �rst step (k = 1) is mu
h simpler. 2For our next two lemmas we shall need to assume that the ve
tors u1; : : : ; usare linearly independent:Lemma 3. Let S1 be a non-empty subset of S. Then, for every � 2 (0; 14 ) we 
an�nd disjoint �; � � S1 with j�j � jS1j2 ; j� j � �jS1j su
h thatPS1n� (ES1) � 0S1n(�[�) � 
p�D� ;where 
 > 0 is an absolute 
onstant.Proof: Set VS1 = spanfuj ; j 2 S1g. Then, there exist xi 2 VS1 ; i 2 S1, su
h thathx1; uji = Æij ; for any pair of i; j 2 S1:Applying Lemma 2 for the ellipsoid ES1 we obtain � � S1; j� j � �jS1j, for whi
hPS1n� (ES1) � 
p�pjS1j [�1; 1℄S1n� :Then, for any 
hoi
e of s
alars (ti)i2S1n� we 
an �nd a ve
tor (Æj)j2S1 in ES1 whoserestri
tion in RS1n� is ( 
p�pjS1j signtj)j2S1n� . In view of the orthogonality relationsbetween the xi's and the uj 's, we see thatXi2S1n� jtij = h Xi2S1n� tixi; Xj2S1n�(signtj)uji= pjS1j
p� h Xi2S1n� tixi;Xj2S1 Æjuji = pjS1j
p� j Xi2S1n� tixijnjXj2S1 Æjuj jn� pjS1j
p� j Xi2S1n� tixijn:It follows that the operator T : spanfxi; i 2 S1n�g � `n2 ! `jS1n� j1 , de�ned byTxi = ei (where feig is the 
anoni
al orthonormal basis in RjS1n� j), has normnot ex
eeding pjS1j=
p�. Then, T � : `jS1n� j1 ! `n2 is a 2-absolutely summingoperator with 2-summing norm �2(T �) � KGpjS1j
p� , where KG is Grothendie
k's
onstant. From Piet
h's fa
torization theorem, applied in the same 
ontext as inthe proof of Theorem 1.2 [BT℄, we 
an �nd positive real numbers �i; i 2 S1n� , withPi2S1n� �2i = 1, su
h that for any reals ti; i 2 S1n� ,5



0� Xi2S1n�( ti�i )21A1=2 � KGpjS1j
p� j Xi2S1n� tixijn:Sin
e Pi2S1n� �2i = 1 and � < 14 , we apply Markov's inequality to obtain � �S1n�; j�j � jS1j2 , with �i � 2pjS1j for every i 2 �. Suppose now that (Æj)j2� 2 D� isgiven, i.e Pj2� Æ2j � 1. The set fuj ; j 2 �g [ fxi; i 2 S1n�g is linearly independentin VS1 , hen
e a basis, so we 
an writeXj2� Æjuj +Xj2� �juj = Xi2S1n� tixifor suitable (�j)j2� ; (ti)i2S1n� . Then,jXj2� Æjuj +Xj2� �juj j2n = hXj2� Æjuj +Xj2� �juj ; Xi2S1n� tixii= hXj2� Æjuj ;Xi2� tixii =Xi2� Æiti � (Xi2� t2i )1=2�  Xi2�( ti�i )2!1=2 2pjS1j � 0� Xi2S1n�( ti�i )21A1=2 2pjS1j � 2KG
 1p� j Xi2S1n� tixijn;and therefore, jXj2� Æjuj +Xj2� �juj jn � 2KG
 1p� :This means that 0S1n(�[�) � (Æj)j2� 2 1
1p�PS1n� (ES1) with 
1 = 
=2KG. Sin
e(Æj)j2� was arbitrary in D�, the lemma follows. 2We are now ready to prove Theorem 2 in the 
ase of independent uj 's:Lemma 4. For every " 2 (0; 1) one 
an �nd � � S; j�j � (1� ")s, su
h thatP�(E) � 
p"D�;where 
 > 0 is an absolute 
onstant.Proof: Given " 2 (0; 1) we set � = "=7. Let also k be the non-negative integer forwhi
h 12k+1 � " < 12k . To obtain � we shall follow an indu
tive pro
edure based onLemma 3:Step 1: We set S0 = S and �1 = �. Sin
e �1 2 (0; 14 ), we 
an �nd a pair(�1; �1) of disjoint subsets of S0 with j�1j � �1jS0j; j�1j � 12 jS0j, and PS0n�1(ES0) �6



0S0n(�1[�1) � 
p�1D�1 , where 
 is the 
onstant from Lemma 3. Finally, we de�neS1 = S0n(�1 [ �1). Note that jS1j � 12 jS0j = s2 .Indu
tive step: Suppose that Sl has been de�ned, and jSlj > "2s. If in additionl < k + 2, we de�ne �l+1 = 2l=2�. Note that then �l+1 � p27 2k=2" < p27 p" < 14 ,and therefore we 
an apply Lemma 3 to ESl ; �l+1 to obtain a pair (�l+1; �l+1) ofdisjoint subsets of Sl, with j�l+1j � �l+1jSlj; j�l+1j � 12 jSlj, and PSln�l+1(ESl) �0Sln(�l+1[�l+1) � 
p�l+1D�l+1 . To 
omplete the indu
tive step, we de�ne Sl+1 =Sln(�l+1 [ �l+1). Note also that jSl+1j � 12 jSlj and hen
e, as far as we 
ontinueperforming these steps, jSlj � s2l .We end this indu
tive 
onstru
tion when we arrive at a set Sl of 
ardinalityjSlj � "2s. This will 
ertainly happen after at most (k + 2)-steps, sin
e 12k+2 � "2and our 
onstru
tion implies that jSlj < s2l for every admissible l.Suppose that l� is the �rst index for whi
h jSl� j � "2s. We de�ne � = �1 [ : : :[�l� .Claim 1. j�j � (1� ")s.[Proof: Note that S1�l�l�(�l [ �l) = SnSl� , hen
ejSn�j = jSl� j+ X1�l�l� j�lj � "2s+ X1�l�l� �ljSl�1j � "2s+ � X1�l�l� 2 l�12 s2l�1< "2s+ "7s( 1Xl=0 12 l2 ) < "s:℄Claim 2. If 1 � l � l�, thenP�(E) � 0�n�l � 
2 l�14 p�D�l :[Proof: Suppose that �l = (Æj)j2�l 2 
2 l�14 p�D�l . Then, our 
onstru
tion impliesthat 0Sl�1n(�l[�l) ��l 2 PSl�1n�l(ESl�1). Hen
e, we 
an �nd (�i)i2�l su
h thatjXj2�l Æjuj +Xi2�l �iuijn � 1:Sin
e � \ �l = ;, it is 
lear that 0�n�l ��l 2 P�(E).℄To 
on
lude the proof of the lemma, suppose that � = (Æj)j2� is an arbitrarypoint in D�, i.e Pj2� Æ2j � 1. Consider the restri
tion �l = 0�n�l � (Æj)j2�l of �in R�l , and set j�lj = (Pj2�l Æ2j )1=2; 1 � l < l�. By Claim 2, ea
h �l belongs toj�lj
2 l�14 p�P�(E), thus� = X1�l�l��l 2 0� X1�l�l� j�lj
2 l�14 p�1A P�(E)7



� 1
p� 0� X1�l�l� j�lj21A1=2 1Xl=0 12 l2 !1=2 P�(E)� p7
  p2p2� 1!1=2 1p"P�(E);and the lemma is proved with 
0 = 
=5. 2Proof of Theorem 2. Assume that u1; : : : ; us are arbitrary ve
tors in Rnwith juj jn � 1; j = 1; : : : ; s. Set vi = ui + ei+n; i = 1; : : : ; s, where feigi�n+s isthe 
anoni
al orthonormal basis in Rn+s . Then, the vi's are linearly independentp2-norm ve
tors in Rn+s , and ifE� = f(Æj)j�s : jXj�s Æjvj jn+s � 1g;Lemma 4 implies that, given " 2 (0; 1), there exists � � S; j�j � (1� ")s, for whi
hP�(E�) � 
00p"D�with 
00 = 
=p2, 
 the 
onstant from Lemma 4. Sin
e jPj�s Æjvj j2n+s = jPj�s Æjuj j2n+Pj�s Æ2j , we readily see that P�(E) � 
00p"D�and Theorem 2 is proved. 23 Proof of Theorem 1 with d = 1For the proof of the proportional Dvoretzky-Rogers fa
torization result, we shall
ombine Theorem 2 with the method used in [ST℄: Let X = (Rn ; k:k) be an n-dimensional normed spa
e and " 2 (0; 1) be given. Without loss of generality, wemay assume that the ellipsoid of minimal volume 
ontaining the unit ball BX of Xis the Eu
lidean unit ball D. By John's theorem [J℄, D � pnBX . We 
an also �nd
onta
t points yi; i � N; kyikX = jyijn = 1; N = O(n2), and positive real numbers�i; i � N , su
h that the following representation of the identity holds: for everyx 2 Rn ; x =Pi�N �ihx; yiiyi. Now, if s is the smallest integer � (1� "2 )n, we 
an
hoose x1; : : : ; xs among the yi's so thatLemma 5 [ST℄: dist(xi; spanfxj : j 6= ig) �p "2 ; i = 1; : : : ; s: 2Hen
e, there exist vj ; j � s, in spanfxi; i � sg satisfying(i) jvj jn �p2="; j = 1; : : : ; s 8



(ii) hxi; vji = Æij ; i; j = 1; : : : ; s.Set uj =p"=2vj and de�ne E = f(Æj)j�s : jPj�s Æjuj jn � 1g. From Theorem2 we obtain � � S; j�j � (1� "2 )s, with P�(E) � 
p"D�. Then j�j � (1� ")n, andfor any 
hoi
e of s
alars t = (ti)i2� we havejtj2 =Xi2� t2i = hXi2� tixi;Xj2� tjvji =r2" hXi2� tixi;Xj2� tjuji:We 
an extend ( 
p"jtj tj)j2� to a ve
tor (Æj)j�s in E. Hen
e,jtj2 =r2" jtj
p" hXi2� tixi;Xj�s Æjuji � 
0" jtjjXi2� tixijnand sin
e j:j � k:k and the xi's are of k:k-norm one, we have Xi2� t2i!1=2 � 
0" jXi2� tixijn � 
0" kXi2� tixikX � 
0" Xi2� jtij:De�ning � : `j�j1 ! X with �(ei) = xi; i 2 �, and � : X ! `j�j2 with � = TP� whereP� is the orthogonal proje
tion of X onto spanfxi; i 2 �g and Txi = ei, we have afa
torization i1;2 = �o� of the identity i1;2 : `j�j1 ! `j�j2 with k�k k�k � 
0=". Byduality and by the extension property of `n1, this is then equivalent to the assertionof the theorem. 24 Remarks(1) The p"-dependen
e on " in Theorem 2 is best possible: Set n = s + 1 anduj = 1p2 (ej + en); j = 1; : : : ; s, where fejgj�n is the usual orthonormal basis of Rn .Given " 2 (0; 1) and given any � � S with j�j � (1 � ")s, a point (t; t; : : : ; t) is inP�(E) only if jtj � 
p"ps (S.J. Szarek [Sz.3℄).(2) The argument used in the proof of Theorem 1 and an appli
ation of theCau
hy-S
hwartz inequality give us the following:Corollary 1. If X = (Rn ; k:k) is su
h that the ellipsoid of minimal volume 
on-taining BX is D and if " 2 (0; 1), then we 
an �nd x1; : : : ; xm 2 X; kxikX =jxijn = 1;m � (1� ")n, su
h that for any reals t1; : : : ; tm,j mXi=1 tixijn � 
"pm mXi=1 jtij: 2Corollary 1, 
ombined with the method of S.J. Szarek-M. Talagrand [ST℄ givesthe upper estimate d(X; `n1) � 
n5=6 for the Bana
h-Mazur distan
e to the 
ube(Corollary 1 
an be dedu
ed from Lemma 2: this was the main result in [G℄).9
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