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Abstract

If X is an n-dimensional normed space and € € (0, 1), there exists m >
(1 — &)n such that the formal identity 42, : €5 — £ can be written as
2,00 = @0f3, B : 05" = X, : X — L7, with ||a| ||B]| < ¢/e. This is proved
as a consequence of a Sauer-Shelah type theorem for ellipsoids.

1 Introduction

A version of the classical Dvoretzky-Rogers lemma [DR] asserts that, if (X,]|.|]) is
an n-dimensional normed space, then there exist vectors z1, ...,z € X, m = [/n],
such that for any choice of real numbers t1, ..., ¢,

max|t;| < || Y tallx < e(Y )",
I= j<m Jj<m

where ¢ > 0 is an absolute constant. Towards a strengthening of this result for m
proportional to n, J. Bourgain-S.J. Szarek [BS] and later S.J. Szarek-M. Talagrand
[ST] proved the following:

Theorem 1. If (X,||.||) is an n-dimensional normed space and € € (0,1), there

exist vectors xy,...,x, € X, m > (1 —¢)n, such that for any reals t1,...,tm,,
max [t;] < | D tiwgllx < e )V,
= j<m j<m

where ¢,d > 0 are absolute constants. Equivalently, the formal identity is o :
05 — L7 can be written as iz = aof3, where f : 03 = X, o : X = {7, and
llel| 118]] < ce=?. The same holds true for iy : €5 — (3.

The best possible dependence on ¢ is not known. As shown by S.J. Szarek [Sz.1],
there exists an n-dimensional normed space X such that ||c|| ||3]| > ¢(n/logn)*/1©
whenever iy o : €% — €2 is written as is o = aof (a, S as above), and this implies



that d in Theorem 1 has to be at least 1/10. On the other hand, in [ST] it is
proved that Theorem 1 holds with d = 2, and in [G] we obtain a similar result with
d = 3/2. Here we shall show that the same holds true with d = 1.

Let us note that the method establishing this “proportional Dvoretzky-Rogers
factorization” is closely related to the problem of the Banach-Mazur distance to
the cube. A detailed exposition of the techniques used so far for both problems is
given in [Sz.2].

The source of the improvement on the estimates in Theorem 1 is a Sauer-Shelah
type theorem for ellipsoids, which we feel is of independent interest: The well-known
combinatorial Sauer-Shelah lemma [Sa], [Sh], states that if 0 <1 < s and if M is
a subset of {—1,1}* of cardinality [M| > () + ({) +... + (), then there exists
o C{1,...,s}, |o| > 1, such that P,(M) = {—1,1}°, where P, is the restriction
map: (6;)j<s = (0;)jes- A special case of this lemma is of particular interest: If
M C {-1,1}* and |M| > 257!, then we can find o C {1,...,s}, |o| > &, with
P,(M)={-1,1}°.

In connection with their work on the Banach-Mazur distance to the cube, S.J.
Szarek-M. Talagrand [ST] proved an isomorphic variant of the Sauer-Shelah lemma:
If M C {-1,1}*, viewed now as a set of points in R®, and if |M| > 251, ¢ € (0,1),
then there exists o C {1,...,s},|o| > (1 — ¢)s, such that

absconv(P,(M)) D ce[—1,1]7,

where ¢ > 0 is an absolute constant (and the absolute convex hull is taken in R”).

For our purposes we need to consider the following situation: Let uq,...,us be
vectors in R”, of Euclidean norm |uj|, < 1, j = 1,...,s. Define the symmetric
convex set

={(0)j<s ER’ : Zéujlnsl}

(Note that if s < n and the vectors u; are linearly independent in R", then E is an
ellipsoid in R®. This will be the context in the proof of Theorem 1). Again, we are
interested in the “size” of the image P, (E) of E for “large” subsets o of {1,...,s}.
Our main result is then the following:

Theorem 2. Ifu; € R?,|u], <1,j=1,...,s, and

={(0))j<s € R° |Z‘5 ujln <1},

j=1

then for every € € (0,1) we can find o C {1,...,s}, |o| > (1 —¢€)s, such that

P,(E) 2 ¢VzD,,

where D, is the Fuclidean unit ball in R”, and ¢ > 0 is an absolute constant.



We shall use the standard notation from [MS] or [TJ]. By |.| we denote the
cardinality of a finite set. The letter ¢ will always denote an absolute positive
constant, not necessarily the same in all its occurrences. For basic facts about p-

absolutely summing operators, used in the proof of Theorem 2, we refer the reader
to [LT], [Pi], and [TJ].

2 Proof of Theorem 2

First, we introduce some additional notation: The set S = {1,...,s}, as well as
R?, will be fixed throughout the proof. If ¢ C S, then R? = {(d;);j<s € R® : §; =
0if j ¢ p}. A point in R® denoted by (J;), e, is assumed to satisfy §; = 0if j ¢ .
If A C R” and 7, p are disjoint subsets of S, we sometimes write 0, x A, to indicate
that A is to be understood as a subset of R*Y7. In particular, if ¢ C S; C S and
L > 0, then

I o5, = 0,x{—=L,L}"\? = {(§;)jes, € RS : 0; = 0if j € ¢,0; = L if j € S;\p}.

Note that |I1,,.5,| = 2151\¢l If o € R?, b € R, and 7, ¢ are disjoint subsets of S,
then (a,b) € R?Y7 is the sum a + b. Finally, if S is a non-empty subset of S, we
define

Es, = {(6))jes: € R 1| Y Gjuln <1}
JES1

Our starting point is then an immediate consequence of the Sauer-Shelah lemma:
Lemma 1. If L >0, ¢ C S C S, and M C 0, x {—L,L}>"\*, with |M| >
215\e1=1 " then there exists o C Si\gp, |o| > w, such that

Pous(M) =0, x {—~L,L}*. O

Using an inductive argument based on Lemma 1, we obtain a first result on the
size of the projections of Eg,, for an arbitrary S; C S. This step is crucial for our
proof of Theorem 2, so we state it as our next lemma and give its proof, although
it can essentially be found in [G]:

Lemma 2. If ) # S, C S and e € (0,1) are given, then there exists o C Sy, with
lo] > (1 —¢)|S1|, such that

cVE
VISi

PO'(Esl) 2

[_171]07

where ¢ > 0 is an absolute constant.

Proof: Set oy = Ef;é 212 By = Zf;é 2" = 2k~ and Q, = [~1,1] for every
non-empty 7 C Sj.



We shall prove by induction that:
(¥) For k=1,2,..., one can find o, C Sy, with |o}| > (1 — 55)|S1], such that

Qak g Pak (Oék \Y 2|Sl|E'S1 N BkQS1)'

Since ay < \2[:—/_21, condition (x) clearly implies that, for k =1,2,...,

1
Pa'k(Esl) 2 —

2 =y gl L

with ¢ = 1 — = which is the assertion of the lemma for ¢ = 1/2*. The continuous
version will easily follow with a worse constant c.

Inductive step: Consider the set Jy = 0,, x {—28/2 2k/2191\o%  where oy, is the
subset of S; given by (x). Note that |.Ji| = 2/51\o*|. By the parallelogram law and
the fact that |S1\ox| < |S1|/2¥, we have

Aves el D juill =28 )" Juyl? <S4,

JES1 JjES1\o®

and Markov’s inequality implies that there exists M*t1 C Jp N +/2|Si|Es, with
|ME+Y > 2191\okl=1 Then, by Lemma 1 we can find o}, C S1\oy of cardinality

o1 | > %% for which
Pa'kUa',:+1 (MkJrl) = Oa'k X {_214/27 2’6/2}0’,:_'_1-

Since M**+! C /2|S1|Es, N2F/2Qs,, it follows that

() 05, x 2°Qoy,, C ngugz+1(2’“/2\/2|sl|E51 N2kQsg, ).

Suppose now that a € Q,,,b € Q"iﬂ‘ From the inductive hypothesis (x), we can
find w, € BkQU;H such that

(a,wa) € Poyuor, (ar\/2[S11Es, N BrQs,)-
+

If vop = b — w,, it is clear that vg € Q"Zﬂ + BkQa;“ = 2kQU;+1, and therefore,
by (),

(04, ,0ap) € PakUaZ+1(2’“/2\/2|Sl|E51 Nn2kQs,).
Then,

(aa b) = (aawa) + (Oa'kava,b) € Pa'kUa',:+1 (ak V 2|SI|ES1 N /BkQSI)_'_

+PrUor,, (27°V/2]811Es, N1 2%Qs,) C Poyuor,  (ari1V/2[S1|Es, N Bri1Qs,)-
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Since a € @4, ,b € Q(,—;:H were arbitrary, this means that

Qa'kUa';;+1 g Po'kUO';Jrl (ak)-‘rl V 2|‘Sfl|£ES1 N Bk+1QS1)'

If we define o411 = o, U0y, we readily see that |og41| > (1 — 2,}“ )|S1|, and this
completes the inductive step. The first step (k = 1) is much simpler. O

For our next two lemmas we shall need to assume that the vectors uy,...,us
are linearly independent:

Lemma 3. Let S be a non-empty subset of S. Then, for every 6 € (0, %) we can
find disjoint o, C Sy with |o| > %, |7| < 0]S1| such that
PS1\T(E51) D) 051\(0'UT) X C\/EDU,

where ¢ > 0 is an absolute constant.

Proof: Set Vs, = span{u;,j € S1}. Then, there exist z; € Vs,,i € Sy, such that

(x1,u;) = d;;, for any pair of 4,5 € Si.
Applying Lemma 2 for the ellipsoid Eg, we obtain 7 C Sy, |7| < 6]S1], for which

vl
VISi

Then, for any choice of scalars (¢;);cs,\» we can find a vector (J;);jes, in Es, whose
cv/o
AEN

between the x;’s and the u;’s, we see that

Z |ti] = ( Z tiwi, Z (signt; Ju;)

[—1,1]%\7.

PS1\T (ESI) )

restriction in RS\ ig (

signt;)jcs,\r- In view of the orthogonality relations

1€S1\7 €SI\ 1 JESI\T
Sl \/ Sl
\|/— Z L%, Z dju;j) \|/§|| Z tii] | Z djujln
¢ lGS1\T JESL ¢ iES1\T jEST

VIS
< S tiTiln.
< C\/§|Z ;]

It follows that the operator T : span{z;,i € Si\7} C ¢ — 5\131\7\7 defined by
Tz; = e; (where {e;} is the canonical orthonormal basis in RIS1\H, has norm

not exceeding /[S1[/cV@. Then, T* NV (% is a 2-absolutely summing

operator with 2-summing norm 7 (7T*) < Kg \/17, where K¢ is Grothendieck’s
constant. From Pietch’s factorization theorem, applied in the same context as in
the proof of Theorem 1.2 [BT], we can find positive real numbers \;,i € S;\7, with
Yiesi\» A7 = 1, such that for any reals ¢;,i € Si\T,

€51\ 7




1/2

t; v/ |51
Z (_1)2 SKG l/§|| Z tixi|n-
€51\ 7 ¢ €SI\
Since Eiesl\r M =1land § < %, we apply Markov’s inequality to obtain ¢ C
Si\r, o] > @, with \; < \/#S_ for every ¢ € 0. Suppose now that (6;);e, € Dy is

[S1]
given, i.e > ., 07 < 1. The set {u;,j € 7} U{z;,i € S1\7} is linearly independent
in Vg,, hence a basis, so we can write

Z(Sjuj + ijUj = Z t;T;

j€o jer i€Si\r

for suitable (p;)jer, (ti)ies,\r- Then,

1> 0w+ > piusln = O Gui + Y pjug, > tiw)

e jer i€o jer i€Si\r
= <Z 5]'Uj,2tia:i> = Z(siti < (Z t?)1/2
JjET i€o ico ico
1/2 1/2
i ); 2 ti . 2 2Kg 1
< (_)Z> < (Sy2 2 < L .
(Er) e Z8) R,

and therefore,
2Kg 1
1> djui+ Y pjujla < Vi
jEo jer
This means that 05’1\(UU.,—) X ((Sj)jeg € cll—\/gpsl\r(ESJ with ¢ = C/2Kg. Since
(0;)jes was arbitrary in D, the lemma follows. O
We are now ready to prove Theorem 2 in the case of independent u;’s:

Lemma 4. For every € € (0,1) one can find 0 C S, |o| > (1 —¢€)s, such that
P,(E) 2 /2D,
where ¢ > 0 is an absolute constant.

Proof: Given ¢ € (0,1) we set § = ¢/7. Let also k be the non-negative integer for
which o < e < 5. To obtain ¢ we shall follow an inductive procedure based on
Lemma 3:

Step 1: We set Sp = S and 6; = 0. Since 0; € (0,%), we can find a pair
(0’1,7’1) of diSjOiIlt subsets of So with |T1| S 91|So|, |0’1| Z %|So|, and PSg\n (Eso) 2



050\ (s1Ur1) X cV0,D,,, where c is the constant from Lemma 3. Finally, we define
Sl = So\(O'l UTl). Note that |51| S %|So| =

Inductive step: Suppose that S; has been defined, and |S;| > §s. If in addition
| < k+ 2, we define 6,1 = 2//?0. Note that then 6;,; < @2’“/25 < @\/E <1
and therefore we can apply Lemma 3 to Eg,,0,+1 to obtain a pair (041, 741) of
disjoint subsets of Sy, with 741 < 0141181, lowsa| > 5[], and Psp\r,,, (Es,) 2
05\ (0151Ur141) X ¢/ bi41 D5, To complete the inductive step, we define S;41 =
Si\(014+1 U T41). Note also that |S;41| < %|Sl| and hence, as far as we continue
performing these steps, |S;| < o7.

We end this inductive construction when we arrive at a set S; of cardinality
|Si| < §s. This will certainly happen after at most (k + 2)-steps, since Qk% <3
and our construction implies that |S;| < r for every admissible [.

Suppose that [, is the first index for which |S;,| < §s. We define 0 =0, U...U
or, .

5

Claim 1. |o] > (1 —¢)s.
[Proof: Note that U, <<, (o0 Um) = S\Si,, hence

€ € -1 S
1S\o| = [S.1+ > Im| < 55+ > BulSi-1| < 55 +6 Y 2= S
1<I<I, 1<I<I, 1<I<I,
8 E ad
- = <55
<Ger 2o o

Claim 2. If 1 < [ < [,, then
P,(E) 2 0y, X 2T VED,,.

[Proof: Suppose that A; = (d;)jeq, € 02%\/§Dm. Then, our construction implies
that Og,_\(o,ur) X A1 € Ps,_\r,(Es,_,). Hence, we can find ({;)ier, such that

| Z (SjU,j + ZC,‘U”” <1.

j€a icm
Since ¢ N1y = 0), it is clear that 0,\,, X &; € P,(E).]
To conclude the proof of the lemma, suppose that A = (J;) e, is an arbitrary
point in D, i.e Z]Ea’ 7 < 1. Consider the restriction A; = 05\, X (J;)jeo, of A
o 2y1/2
ﬂ?igj‘c tﬁil = (Xjen 55) /2, 1<1<1,. By Claim 2, each A; belongs to
Ly A

c2 4

doae| > %'\@ P,(E)

1<i<l, 1<1<1, €2



1/2
7 2 1
V(2 ) Lpm,
c \vV2-1 Ve
and the lemma is proved with ¢ = ¢/5. O
Proof of Theorem 2. Assume that wuy,...,us are arbitrary vectors in R"
with |ujl, <1, j =1,...,s. Set v; = u; + €;4n,t = 1,...,s, where {e;}i<nts is

the canonical orthonormal basis in R***. Then, the v;’s are linearly independent
v/2-norm vectors in R"** | and if

B = {(6j)j§s : |Z(5jvj|n+s < 1};

Jj<s

Lemma 4 implies that, given € € (0,1), there exists 0 C S, |o| > (1 —¢)s, for which

P,(E*) 2 ¢"\/eD,

with ¢ = ¢/v/2, ¢ the constant from Lemma 4. Since | Y, 6;0;n 15 = | 2 <, 0ju 5+

ngs 512', we readily see that

Py (E) 2 ¢"VeD,

and Theorem 2 is proved. |

3 Proof of Theorem 1 with d =1

For the proof of the proportional Dvoretzky-Rogers factorization result, we shall
combine Theorem 2 with the method used in [ST]: Let X = (R",].||) be an n-
dimensional normed space and ¢ € (0,1) be given. Without loss of generality, we
may assume that the ellipsoid of minimal volume containing the unit ball Bx of X
is the Euclidean unit ball D. By John’s theorem [J], D C y/nBx. We can also find
contact points y;,i < N, ||yillx = |yiln = 1, N = O(n?), and positive real numbers
it < N, such that the following representation of the identity holds: for every
r €R", v =3,y mi{®,yi)y;- Now, if s is the smallest integer > (1 — 5)n, we can
choose z1,...,zs among the y;’s so that

Lemma 5 [ST]: dist(z;, span{z; : j #i}) > /5, i =1,...,s. O

Hence, there exist v;,j < s, in span{z;,i < s} satisfying

(1) |vjln <2/, j=1,...,s



(ii) (@i, vj) =045, 1,5 =1,...,5.
Set uj = \/e/2v; and define E = {(J;),<s : |ngs d;uj|, < 1}. From Theorem

2 we obtain 0 C S, |o| > (1 - §)s, with P,(E) D ¢\/eD,. Then || > (1 —¢)n, and
for any choice of scalars t = (¢;);c, we have

1 = 3 = (Tt ) = 2 b )

i€o i€o jeo i€o jEo

C

We can extend (T\/lgtj)jeg to a vector (0;);<s in E. Hence,

2 |t c
0 = 2 S e 00 < S T i

i€o j<s i€o
and since |.| < ||.|| and the ;s are of ||.||-norm one, we have
1/2 cl CI cl
Do) <D tiwil < <Y tawillx < =D Jtil-
, € - g 4 € “
€0 €0 €0 €0

Defining 3 : Ellal — X with 8(e;) = 25,1 €0, and o : X — €|2‘7| with a = T'P, where
P, is the orthogonal projection of X onto span{z;,i € o} and T'z; = e;, we have a
factorization iy = aof of the identity i1 : £ — €71 with ||a|| ||8]| < ¢/e. By
duality and by the extension property of £, this is then equivalent to the assertion

of the theorem. |
4 Remarks

(1) The /z-dependence on e in Theorem 2 is best possible: Set n = s + 1 and
uj = \/ii(ej +en),j=1,...,s, where {e;} <y is the usual orthonormal basis of R".

Given € € (0,1) and given any o C S with || > (1 —¢)s, a point (¢,¢,...,t) is in
P, (E) only if [t < c¥£ (S.J. Szarek [S2.3)).

(2) The argument used in the proof of Theorem 1 and an application of the
Cauchy-Schwartz inequality give us the following;:

Corollary 1. If X = (R",||.||) is such that the ellipsoid of minimal volume con-
taining Bx is D and if € € (0,1), then we can find x1,...,x,m € X, ||lzi]|lx =
|ziln, = 1,m > (1 —&)n, such that for any reals t1,...,tm,,

m m
ce
| E tliL“z|nZ —_— E |tz| O
=1 Vi i=1

Corollary 1, combined with the method of S.J. Szarek-M. Talagrand [ST] gives
the upper estimate d(X, ) < en®/® for the Banach-Mazur distance to the cube
(Corollary 1 can be deduced from Lemma 2: this was the main result in [G]).
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