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Abstract

We prove that if f : Rn → [0,∞) is an integrable log-concave function with f(0) = 1 and F1, . . . , Fr

are linear subspaces of Rn such that sIn =
∑r

i=1 ciPi where In is the identity operator and Pi is the
orthogonal projection onto Fi then

nn

∫
Rn
f(y)ndy >

r∏
i=1

(∫
Fi

f(xi)dxi

)ci/s

.

As an application we obtain the dual version of the Bollobás–Thomason inequality: if K is a convex
body in Rn with 0 ∈ int(K) and (σ1, . . . , σr) is an s-uniform cover of [n] then

|K|s >
1

(n!)s

r∏
i=1

|σi|!
r∏

i=1

|K ∩ Fi|.

This is a sharp generalization of Meyer’s dual Loomis–Whitney inequality.

1 Introduction

In this article we discuss inequalities relating the volume of convex (or compact) sets to the volumes of
suitable finite families of their lower dimensional projections or sections. Classical examples are the Loomis–
Whitney inequality (1.2) and its dual, Meyer’s inequality (1.3). These are fundamental inequalities (included
in many texts; see, for example, [10], [14] and [19]) and various versions and generalizations of them have
found applications to many different fields. We refer to [11] and [12] for a list of such applications to Sobolev
inequalities and embedding, stereology, geochemistry, data processing, compressed sensing, combinatorics
and the theory of sum sets, harmonic analysis, group theory and graph theory.

An extension of the Loomis–Whitney inequality is the uniform cover inequality (1.1) of Bollobás and
Thomason. The main purpose of this work is to provide a uniform cover inequality for sections; this is the
corresponding extension of Meyer’s inequality.

We fix an orthonormal basis {e1, . . . , en} of Rn and recall that the not necessarily distinct non-empty
sets σ1, . . . , σr ⊆ [n] := {1, . . . , n} form an s-uniform cover of [n] for some s > 1 if every j ∈ [n] belongs to
exactly s of the sets σi. The main result of [8] estimates the volume of a compact set in terms of the volumes
of its coordinate projections that correspond to a uniform cover of [n].

Theorem 1.1 (Bollobás–Thomason). Let r > 1 and (σ1, . . . , σr) be an s-uniform cover of [n]. For every
compact subset K of Rn, which is the closure of its interior, we have

(1.1) |K|s 6
r∏
i=1

|PFσi (K)|,

where Fτ = span{ej : j ∈ τ} and PF denotes the orthogonal projection of Rn onto F .
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Throughout this article, for any non-empty compact set in Rn we write |A| for the volume of A in the
affine subspace aff(A). A special case of Theorem 1.1 is the Loomis–Whitney inequality [17]; one has

(1.2) |K|n−1 6
n∏
i=1

|Pi(K)|

where Pi := Pe⊥i , and equality holds if and only if K is a coordinate box, i.e. a rectangular parallelepiped

whose sides are parallel to the coordinate axes. This follows from the observation that the sets σi = [n] \ {i}
form an (n− 1)-uniform cover of [n].

Meyer proved in [18] an inequality which is dual to the Loomis–Whitney inequality. If K is a convex
body in Rn then

(1.3) |K|n−1 >
n!

nn

n∏
i=1

|K ∩ e⊥i |,

where K ∩ F denotes the section of K with a linear subspace F . Equality holds in (1.3) if and only
if K = conv({±λ1e1, . . . ,±λnen}) for some λi > 0. We prove the following dual Bollobás–Thomason
inequality.

Theorem 1.2. Let K be a convex body in Rn with 0 ∈ int(K) and (σ1, . . . , σr) be an s-uniform cover of [n].
Then,

(1.4) |K|s > 1

(n!)s

r∏
i=1

|σi|!
r∏
i=1

|K ∩ Fσi |.

It is not hard to check that (1.4) is sharp; it becomes equality for any s-uniform cover of [n] if K =
conv({±λ1e1, . . . ,±λnen}) for some λi > 0, exactly as in Meyer’s inequality.

An essentially equivalent way to state Theorem 1.1 (see [8]) is the fact that for every compact subset K
of Rn, which is the closure of its interior, we can find a coordinate box such that |B| = |K| and

(1.5) |PFσ (B)| 6 |PFσ (K)|

for every σ ⊆ [n]. Theorem 1.2 has a similar equivalent formulation.

Theorem 1.3. Let K be a convex body in Rn with 0 ∈ int(K). There exists an affine cross-polytope
C = conv({±λ1e1, . . . ,±λnen}), where λi > 0, such that |C| = |K| and |C ∩ Fσ| > |K ∩ Fσ| for every
σ ⊆ [n].

Note that the assumption that 0 ∈ int(K) can be removed in Theorem 1.2 and Theorem 1.3. Starting
with an arbitrary convex body K in Rn one may first apply n successive Steiner symmetrizations to K in the
directions ei. Then, the volume of the original body remains unchanged and the volumes of all its coordinate
sections increase. So, one may assume from the beginning that K is unconditional, i.e. symmetric with
respect to all coordinate subspaces, and in particular that K is origin symmetric. In fact, Meyer used this
observation in [18] to reduce the proof of (1.3) to the unconditional case.

Theorem 1.2, and its equivalent version Theorem 1.3, is a consequence of a functional inequality which
is proved in Section 3. We denote by F(Rn) the class of log-concave integrable functions f : Rn → [0,∞).

Theorem 1.4. Let f ∈ F(Rn) with f(0) = 1 and (σ1, . . . , σr) be an s-uniform cover of [n]. Then,

nn
∫
Rn
f(y)ndy >

r∏
i=1

(∫
Fi

f(xi)dxi

)1/s

.
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Moreover, we obtain more general inequalities which imply several of the known extensions of the Loomis–
Whitney and Meyer inequalities; see Section 2 and Section 3 for the statements and details. Our main tool
is Barthe’s multidimensional generalization of Ball’s geometric Brascamp–Lieb inequality (see [4]) and its
reverse form; see [5, Theorem 6]. The connection with the problems that we discuss in Section 2 was
communicated by F. Barthe to A. Giannopoulos after a talk in MSRI and the author is grateful to them for
the information which has been the starting point for this work.

Let us also mention that the Bollobás–Thomason inequality plays a key role in the recent work [9] of
S. Brazitikos, A. Giannopoulos and the author that provides local versions of the Loomis–Whitney inequality
for coordinate projections of convex bodies; see also [1] for further results in this direction. It is conceivable
that one might exploit the dual inequality of Theorem 1.2 to obtain analogous local inequalities for sections.
Isomorphic inequalities of this type appear in [9] where they are proved by different methods.

In Section 2 we describe the way one can derive both the Loomis–Whitney and the Bollobás–Thomason
inequality, as well as other extensions of them, as consequences of the multidimensional geometric Brascamp–
Lieb inequality. The main new results of this work are presented in Section 3; the main tool is Barthe’s
inequality. We refer to the books [19] and [2] for standard notation and facts from convex geometric analysis.

2 Brascamp–Lieb inequality and uniform cover inequalities

In what follows we say that the subspaces F1, . . . , Fr form an s-uniform cover of Rn with weights c1, . . . , cr > 0
for some s > 0 if

(2.1) sIn =

r∑
i=1

ciPi,

where In is the identity operator and Pi is the orthogonal projection of Rn onto Fi. We prove the next
general result.

Theorem 2.1. Let F1, . . . , Fr be subspaces that form an s-uniform cover of Rn with weights c1, . . . , cr > 0.
For every compact subset K of Rn we have

(2.2) |K|s 6
r∏
i=1

|PFi(K)|ci .

Theorem 2.1 is most probably known to specialists; we were informed by the referee of this paper that,
for example, it can be found in [7] (see Equation (29) and the lines following it). The proof is a direct
application of Barthe’s multidimensional geometric Brascamp–Lieb inequality (2.3) in the theorem given
below; the reverse inequality (2.4) will be our main tool in the next section.

Theorem 2.2 (Barthe). Let r, n ∈ N. For i = 1, . . . r, let Fi be a di-dimensional subspace of Rn and Pi be
the orthogonal projection onto Fi. If

In =

r∑
i=1

ciPi

for some c1, . . . , cr > 0 then for all non-negative integrable functions fi : Fi → R we have

(2.3)

∫
Rn

r∏
i=1

f cii (Pix) dx 6
r∏
i=1

(∫
Fi

fi

)ci
and

(2.4)

∫ ∗
Rn

sup

{
r∏
i=1

f cii (xi) : x =

r∑
i=1

cixi, xi ∈ Fi

}
dx >

r∏
i=1

(∫
Fi

fi

)ci
.
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In the statement above,
∫ ∗

stands for the outer integral and in the right hand side the integral on Fi is
with respect to the Lebesgue measure on Fi which is compatible to the given Euclidean structure.

Proof of Theorem 2.1. Given a compact subset K of Rn we define fi : Fi → [0,∞) by fi = 1Pi(K). Note
that if x ∈ K then fi(Pix) = 1 for all i = 1, . . . , r. Therefore,

1K(x) 6
r∏
i=1

f
ci
s
i (Pix)

for all x ∈ Rn. From Theorem 2.2 we get

|K| =
∫
Rn

1K(x) dx 6
∫
Rn

r∏
i=1

f
ci
s
i (Pix) dx 6

r∏
i=1

(∫
Fi

fi

) ci
s

=

r∏
i=1

|Pi(K)|
ci
s ,

which shows that |K|s 6
∏r
i=1 |Pi(K)|ci as claimed.

Application 2.3 (Bollobás–Thomason). It is not hard to see that the Bollobás–Thomason inequality may
be proved in the same way. In fact, as a special case of Theorem 2.1 we recover a more general inequality
of Bollobás and Thomason from [8]. Let C be a finite collection of subsets of [n], which is not necessarily a
uniform cover. Suppose that to each σ ∈ C we associate a positive real weight w(σ) in such a way that, for
each i ∈ [n],

∑
{w(σ) : i ∈ σ ∈ C} = 1. Then, it is clear that

In =
∑
σ∈C

w(σ)PFσ ,

and Theorem 2.1 shows that
|K| 6

∏
σ∈C
|PFσ (K)|w(σ).

Assuming that C = (σ1, . . . , σr) is an s-uniform cover of [n] and choosing w(σi) = 1/s for all i = 1, . . . , r we
obtain Theorem 1.1.

Let us also mention that the paper [13] of Finner contains an extension of Hölder’s inequality which
is a particular case of the geometric Brascamp–Lieb inequality for specific decompositions of the identity
involving coordinate subspaces and implies the Bollobás–Thomason inequality.

Application 2.4 (Ball’s inequality). Let u1, . . . , um be unit vectors in Rn and c1, . . . , cm be positive real
numbers such that John’s condition

In =

m∑
i=1

ciui ⊗ ui

is satisfied. Using the one-dimensional geometric Brascamp–Lieb inequality, Ball proved in [3] that for every
centered convex body K in Rn,

(2.5) |K|n−1 6
m∏
i=1

|Pu⊥i (K)|ci .

The equality cases are the same with the ones in the Loomis–Whitney inequality. Let us briefly explain how
Theorem 2.1 implies (2.5). We observe that if Pi = Pu⊥i then ui ⊗ ui = In − Pi, and hence John’s condition

may be written as In =
∑m
i=1 ci(In − Pi), which implies that

(2.6) (n− 1)In =

m∑
i=1

ciPi,

if we take into account the fact that n = tr(In) =
∑r
i=1 ci · tr(ui ⊗ ui) =

∑m
i=1 ci. Then, given a (more

generally) compact subset K of Rn we may apply Theorem 2.1 with s = n− 1 to get

(2.7) |K|n−1 6
m∏
i=1

|Pu⊥i (K)|ci .
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3 Dual Bollobás–Thomason inequality

We start with a proof of a more general version of Theorem 1.4. Recall that F(Rn) denotes the class of
log-concave integrable functions f : Rn → [0,∞).

Theorem 3.1. Let f ∈ F(Rn) with f(0) = 1 and F1, . . . , Fr be subspaces of Rn that form an s-uniform
cover of Rn with weights c1, . . . , cr > 0. Then,

nn
∫
Rn
f(y)ndy >

r∏
i=1

(∫
Fi

f(xi)dxi

)ci/s
.

Proof. Our assumption In =
∑r
i=1

ci
s PFi implies that

ns = tr(sIn) =

r∑
i=1

ci · tr(PFi) =

r∑
i=1

cidi,

where di = dim(Fi). Let z ∈ Rn and xi ∈ Fi, i ∈ [r] such that z =
∑r
i=1

ci
s xi. Then,

z

n
=

r∑
i=1

cidi
sn
· xi
di
,

and since f ∈ F(Rn) and
∑r
i=1

cidi
sn = 1 we have

f(z/n) >
r∏
i=1

f(xi/di)
cidi
ns .

Since f(0) = 1, for every i ∈ [r] we see that f(xi/di) > f(xi)
1/dif(0)1−1/di = f(xi)

1/di . It follows that

f(z/n) >
r∏
i=1

f(xi)
1
di
· cidins =

r∏
i=1

f(xi)
ci
ns ,

and hence

f(z/n)n >
r∏
i=1

f(xi)
ci/s.

This shows that

f(z/n)n > sup

{
r∏
i=1

f(xi)
ci/s : z =

r∑
i=1

ci
s
xi, xi ∈ Fi

}
.

Then, by the multidimensional reverse Brascamp–Lieb inequality (2.4) we have that∫
Rn
f(z/n)ndz >

∫ ∗
Rn

sup

{
r∏
i=1

f(xi)
ci/s : z =

r∑
i=1

ci
s
xi, xi ∈ Fi

}
dz

>
r∏
i=1

(∫
Fi

f(xi)dxi

)ci/s
.

Making the change of variables y = z/n we conclude the proof.

Our main geometric application of Theorem 3.1 is the next general uniform cover inequality for sections
of a convex body.
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Theorem 3.2. Let K be a convex body in Rn with 0 ∈ int(K) and F1, . . . , Fr be subspaces of Rn, with
dim(Fi) = di, that form an s-uniform cover of Rn with weights c1, . . . , cr > 0. Then,

|K|s > 1

(n!)s

r∏
i=1

(di!)
ci

r∏
i=1

|K ∩ Fi|ci .

Proof. We apply Theorem 3.1 for the function f(y) = e−‖y‖K , where ‖y‖K := min{t > 0 : y ∈ tK} is the
Minkowski functional of K. We shall use the fact that, for any convex body C in Rm with 0 ∈ int(C),∫

Rm
e−‖x‖Cdx =

∫
Rm

∫ ∞
‖x‖C

e−tdt dx =

∫ ∞
0

e−t|{x : ‖x‖C 6 t}| dt =

∫ ∞
0

e−t|tC| dt

= |C|
∫ ∞
0

tme−tdt = m!|C|.

Note that f ∈ F(Rn) and f(0) = 1. We have

nn
∫
Rn
f(y)ndy = nn

∫
Rn
e−n‖y‖Kdy = nn

∫
Rn
e
−‖y‖ 1

n
Kdy

= nn n!

∣∣∣∣ 1nK
∣∣∣∣ = n! |K|,

and for every i ∈ [r] we have∫
Fi

f(xi)dxi =

∫
Fi

e−‖xi‖Kdxi =

∫
Fi

e−‖xi‖K∩Fidxi = di! |K ∩ Fi|.

Combining the above we get

n!|K| >
r∏
i=1

(
di! |K ∩ Fi|

)ci/s
and the theorem follows.

Application 3.3 (dual Bollobás–Thomason). Theorem 3.2 has several straightforward applications. First,
let (σ1, . . . , σr) be an s-uniform cover of [n]. Setting Fi = Fσi = span({ej : j ∈ σi}), i ∈ [r], we have
sIn =

∑r
i=1 PFi . Thus, we obtain the dual Bollobás–Thomason inequality of Theorem 1.2: If K is a convex

body in Rn with 0 ∈ int(K) and (σ1, . . . , σr) is an s-uniform cover of [n] then

|K|s > 1

(n!)s

r∏
i=1

|σi|!
r∏
i=1

|K ∩ Fi|.

In the particular case Fi = e⊥i , i ∈ [n] we have (n − 1)In =
∑n
i=1 Pe⊥i , and applying Theorem 1.2 with

s = n− 1 and |σi| = dim(Fi) = n− 1 we recover Meyer’s inequality

|K|n−1 >
n!

nn

n∏
i=1

|K ∩ e⊥i |

for any convex body K in Rn with 0 ∈ int(K), because

1

(n!)n−1

n∏
i=1

|σi|! =
1

(n!)n−1

n∏
i=1

(n− 1)! =
[(n− 1)!]n

(n!)n−1
=

(n− 1)!

nn−1
=

n!

nn
.
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Theorem 1.3 can be obtained from Theorem 1.2 by an argument which is basically the same as the one
used by Bollobás and Thomason for the proof of (1.5). In what follows, we say that a uniform cover of [n]
is irreducible if it cannot be written as a disjoint union of two other uniform covers of [n]. In [8] it is shown
that the number of irreducible uniform covers of [n] is finite.

Proof of Theorem 1.3. Let K be a convex body in Rn with 0 ∈ int(K). Theorem 1.2 states that for every
integer s > 1 and any non-trivial irreducible s-uniform cover (σ1, . . . , σr) of [n] we have that (n!|K|)s >∏r
j=1

(
|σj |! |K ∩ Fσj |

)
. Moreover, applying Theorem 1.2 for the 1-uniform cover ({i}, i ∈ τ) of τ ⊆ [n] we

see that |τ |!|K ∩ Fτ | >
∏
i∈τ |K ∩ F{i}|. Since there are finitely many irreducible uniform covers of [n], we

have a finite number of inequalities as above, satisfied by the elements of the set {|σ|!|K ∩ Fσ| : σ ⊆ [n]}.
Let {tσ : σ ⊆ [n]} be a set of positive reals with tσ > |σ|!|K ∩ Fσ| and t[n] = n!|K|, which are maximal

with respect to satisfying all the above inequalities if we replace |σ|!|K ∩Fσ| by tσ for all σ ⊆ [n]. Then, we
know that

∏r
j=1 tσj 6 (n!|K|)s for every (not necessarily irreducible) s-uniform cover (σ1, . . . , σr) of [n].

Since t{i}, i ∈ [n], are maximal, we see that for every i ∈ [n] we can find an inequality involving t{i} which
is equality. If this inequality is of the first kind then there exists an si-uniform cover σ(i) = (σ1, . . . , σr) of
[n] with σj = {i} for some j, such that (n!|K|)si =

∏r
j=1 tσj . The same is true if the inequality is of the

second kind, i.e. if we have an equality of the type
∏
l∈τ t{l} = tτ for some τ ⊆ [n] with i ∈ τ . Because, by

the maximality of tτ we can find an si-uniform cover (σ1, . . . , σr) of [n] such that τ = σj0 for some j0, and
then σ(i) := (σj , j 6= j0) ∪ ({i} : i ∈ τ) is again an si-uniform cover of [n].

Now, we define σ =
⋃n
i=1 σ(i) and s =

∑n
i=1 si. Then, σ is an s-uniform cover of [n], we have {i} ∈ σ

for all i = 1, . . . , n and

(3.1)
∏
σ∈σ

tσ = (n!|K|)s.

Since σ′ := σ \ ({i} : i ∈ [n]) is an (s− 1)-unform cover of [n] we must have

(3.2)
∏
σ∈σ′

tσ 6 (n!|K|)s−1.

Combining (3.1) and (3.2) we see that
∏n
i=1 t{i} > n!|K|. On the other hand, ({i} : i ∈ [n]) is a 1-uniform

cover of [n], and hence the reverse inequality is also true. Therefore,

(3.3)

n∏
i=1

t{i} = n!|K|.

Now, let τ ⊆ [n] and consider the 1-uniform cover {τ} ∪ ({i} : i /∈ τ) of [n]. Using (3.3) and the assumption
that tτ >

∏
i∈τ t{i} we have

n!|K| > tτ ·
∏
i/∈τ

t{i} >
∏
i∈τ

t{i} ·
∏
i/∈τ

t{i} =

n∏
i=1

t{i} = n!|K|,

which implies that

(3.4) tτ =
∏
i∈τ

t{i}

for every τ ⊆ [n]. The last set of equalities shows that if we set λi = t{i}/2 and consider the cross-polytope

C = conv({±λ1e1, . . . ,±λnen}) then we have |C| = 1
n!

∏n
i=1 t{i} = |K| and

|C ∩ Fσ| =
1

|σ|!
∏
i∈σ

t{i} =
1

|σ|!
∏
i∈σ

tσ > |K ∩ Fσ|

for every σ ⊆ [n].
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Application 3.4 (dual Ball’s inequality). Li and Huang proved in [15] that for every centered convex body
K in Rn and every even isotropic measure ν on Sn−1 one has

(3.5) |K|n−1 >
n!

nn
exp

(∫
Sn−1

log |K ∩ u⊥| dν(u)

)
and they determined the equality cases. Their argument employs the continuous version of the Ball-Barthe
inequality, due to Lutwak, Yang and Zhang [16], and a number of facts about the class of polar Lp-centroid
bodies. In the particular case where u1, . . . , um are unit vectors in Rn and c1, . . . , cm are positive real
numbers that satisfy John’s condition, one gets

(3.6) |K|n−1 >
n!

nn

m∏
i=1

|K ∩ u⊥i |ci .

The latter inequality is a particular case of Theorem 3.2. Given a convex body K in Rn with 0 ∈ int(K),
we consider the subspaces Fi = u⊥i , and since dim(Fi) = n − 1 and the Fi’s form an (n − 1)-uniform cover
of Rn with weights c1, . . . , cm > 0, using also the fact that

∑m
i=1 ci = n we immediately get

|K|n−1 >
1

(n!)s

m∏
i=1

((n− 1)!)ci
m∏
i=1

|K ∩ u⊥i |ci =
[(n− 1)!]n

(n!)n−1

m∏
i=1

|K ∩ u⊥i |ci(3.7)

=
n!

nn

m∏
i=1

|K ∩ u⊥i |ci .

We can now use an approximation argument of Barthe from [6] to deduce (3.5) from (3.7). We sketch the
idea of the proof and refer to Barthe’s article for more details. Recall that a Borel measure ν on Sn−1 is
called isotropic if In =

∫
Sn−1 u ⊗ u dν(u). The fact that the vectors uj and the weights cj satisfy (3.6) is

equivalent to saying that the discrete measure ν with ν({uj}) = cj is isotropic, i.e. In =
∫
Sn−1 u⊗ u dν(u).

Also, since ∫
Sn−1

log |K ∩ u⊥| dν(u) =

m∑
i=1

ci log |K ∩ u⊥i | = log

(
m∏
i=1

|K ∩ u⊥i |ci
)
,

we may write (3.7) in the equivalent form

(3.8) |K|n−1 >
n!

nn
exp

(∫
Sn−1

log |K ∩ u⊥| dν(u)

)
.

In other words, (3.5) holds true for any discrete isotropic measure on Sn−1.
Now, let ν be an isotropic Borel measure on Sn−1. For any ε > 0 we consider a maximal ε-net Nε in

Sn−1 and a partition (Cu)u∈Nε of Sn−1 into Borel sets Cu ⊆ B(u, ε), where B(u, ε) is the geodesic ball with
center u and radius ε. Then, we consider the measure

νε =
∑
u∈Nε

ν(Cu)δu,

where δu is the Dirac mass at u. Note that, for any continuous function f : Sn−1 → R we have that∫
Sn−1

f(u) dνε −→
∫
Sn−1

f(u) dν

as ε → 0. In other words, νε → ν weakly as ε → 0. If Tε =
∫
Sn−1 u ⊗ u dνε(u) then for the measure

µε =
∑
u∈Nε νε(u)‖T−1/2ε (u)‖22δv(u) where v(u) := T

−1/2
ε (u)/‖T−1/2ε (u)‖2 we have

In =

∫
Sn−1

T−1/2ε (u)⊗ T−1/2ε (u) dνε(u) =

∫
Sn−1

v ⊗ v dµε(v).
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Since ‖Tε − In‖`n2→`n2 6 c1(ε) for some constant c1(ε) that tends to 0 as ε → 0, we can check that for any
continuous function f : Sn−1 → R ∫

Sn−1

f(u) dµε −→
∫
Sn−1

f(u) dν

as ε→ 0. Applying (3.8) for the discrete isotropic measure µε we have

|K|n−1 >
n!

nn
exp

(∫
Sn−1

log |K ∩ u⊥| dµε(u)

)
−→ n!

nn
exp

(∫
Sn−1

log |K ∩ u⊥| dν(u)

)
.

This proves (3.5).
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