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es generated by verti
es ofthe 
ubeA. Giannopoulos and M. Hartzoulaki
Abstra
tLet En2 = f�1; 1gn be the dis
rete 
ube in Rn . For every N � n we
onsider the 
lass of 
onvex bodies KN = 
of�x1; : : : ;�xNg whi
h are gen-erated by N random points x1; : : : ; xN 
hosen independently and uniformlyfrom En2 . We show that if n � n0 and N � n(log n)2 then, for a randomKN ,the inradius, the volume radius, the mean width and the size of the maximalins
ribed 
ube 
an be determined up to an absolute 
onstant as fun
tionsof n and N . This geometri
 des
ription of KN leads to sharp estimates forseveral asymptoti
 parameters of the 
orresponding n-dimensional normedspa
e XN . 1. Introdu
tionThe use of random spa
es in the study of �nite dimensional normed spa
esprovided a way of proving the existen
e of spa
es or operators with extremal prop-erties. Several important problems of the theory were solved by introdu
ing asuitable probability spa
e 
onsisting of n-dimensional spa
es and showing that ran-dom sele
tion of its elements gives obje
ts with the desired properties. Amongmany existen
e results proved in this way, let us mention the existen
e of a pair ofn-dimensional spa
es with Bana
h-Mazur distan
e of order as large as n [17℄, theexisten
e of a spa
e whose un
onditional basis 
onstant [15℄ or basis 
onstant [33℄,[18℄ has order as large aspn, the existen
e of a spa
e whose Bana
h-Mazur distan
eto `n1 is greater than 
pn logn [34℄. In parti
ular, random n-dimensional subspa
esof `N1 with N = �n, � > 1 (i.e. spa
es whose unit balls are random se
tions ofthe 
ube QN of dimension proportional to N) provided examples of spa
es whi
hexhibited pathology with respe
t to various asymptoti
 parameters of the theory:this line of thought has its origin in [23℄ and [16℄ (see also [32℄, [35℄, [13℄ and thearti
les mentioned above).In this arti
le, we 
onsider 
onvex hulls of random subsets of the set of verti
esof the 
ube and the 
lass of random spa
es they generate. In order to de�ne ourprobability spa
e pre
isely, we 
onsider the dis
rete 
ube En2 = f�1; 1gn in Rn1



equipped with the uniform probability measure, and �x N � n. Next, we 
onsiderN independent random points x1; : : : ; xN uniformly distributed over En2 , and forevery 
hoi
e x1; : : : ; xN , we write MN for the 
onvex hullMN :=M(x1; : : : ; xN ) = 
ofx1; : : : ; xNgand KN for the absolute 
onvex hullKN := K(x1; : : : ; xN ) = 
of�x1; : : : ;�xNg:The symmetri
 
onvex body KN (if non-degenerate) indu
es a norm on Rn . Wewrite XN for the normed spa
e whose unit ball is KN . In this way, for every N � nwe obtain a 
lass of random n-dimensional spa
es, whi
h we denote by BN . Thedual spa
e of XN is denoted by X�N and the 
lass of dual spa
es by B�N .Se
tion 2 is devoted to the study of the geometry of a randomKN . We say that aproperty (P ) holds for a random KN if the probability of the N -tuples (x1; : : : ; xN )for whi
h KN has (P ) is greater than 1 � exp(�n) (it tends to 1 \exponentially"as the dimension n grows to in�nity). There are three basi
 sour
es of informationon a random KN , depending on the number N of verti
es. First, we prove thatif N � �0n where �0 > 1 is a �xed 
onstant, then (with high probability) KN
ontains a 
entered ball of radius independent of n and N .Fa
t 1 If N � �0n, then KN � 
1Bn2 with high probability, where Bn2 is theEu
lidean unit ball and �0 > 1, 
1 > 0 are absolute 
onstants.Sin
e KN � Qn := [�1; 1℄n, this estimate is 
learly optimal, the interestingpoint being that it starts being true for a random KN when N is as low as of theorder of n. The proof of this fa
t is a 
onsequen
e of the observation that a random\small" set of verti
es of the 
ube is already enough to substitute En2 in the 
lassi
alKhint
hine inequality: for all a1; : : : ; an 2 R(1:1) 1jAjX"2A��"1a1 + : : :+ "nan�� ' (a21 + : : :+ a2n)1=2;if m � �0n and A is a random subset of En2 of 
ardinality jAj = m.Our se
ond main result is that if N � n(logn)2, then KN 
ontains (with highprobability) a 
entered 
ube whose edges have length plog(N=n)=pn.Fa
t 2 There exists n0 2 N with the following property: If n � n0 and N �n(log n)2, thenKN � 
�plog (N=n)Bn2 \Qn� � �
2plog(N=n)=pn�Qnwith probability greater than 1� e�n, where 
2 > 0 is an absolute 
onstant.In the range N � exp((logn)2), the �rst in
lusion was re
ently proved byB�ar�any and P�or in [4℄ (see the remarks after Theorem 2.2). Fa
t 2 should be
ompared to the following result whi
h was proved in [20℄: There exists a 
onstant2



� > 0 with the following property: for every Æ 2 (0; 1) and every 
onvex body Kwith 
entroid at the origin in Rn , N � 
(Æ)n� points x1; : : : ; xN 
hosen uniformlyand independently from K satisfy with probability greater than 1� ÆK �MN = 
ofx1; : : : ; xNg � 
 logNn K;where 
 > 0 is an absolute 
onstant. Fa
t 2 may be viewed as a dis
rete versionof the 
ase K = Qn in the above result. The argument in [20℄ makes essential useof the Brunn-Minkowski inequality: the main point there is that the L 1-norm oflinear fun
tionals on 
onvex bodies is bounded by their L1-norm. Note that thedependen
e on N in Fa
t 2 is better (this re
e
ts the fa
t that linear fun
tionals fon the 
ube satisfy the stronger inequality kfkL 2 � 
kfkL1 .)Finally, we observe that 
ombining Fa
t 2 with well-known volume estimatesfrom [19℄, [10℄ one 
an determine the volume radius ofKN andKÆN up to an absolute
onstant.Fa
t 3 If N � n(logn)2 then for a random KN we have(a) jKN j1=n 'plog(N=n)=pn and jKÆN j1=n ' 1=pn log(N=n).(b) w(KN )w(KÆN ) � 
3plognplogN=plog(N=n),where w(�) denotes mean width and 
3 > 0 is an absolute 
onstant.Combining all three fa
ts we have a pre
ise des
ription of the unit ball of XN .A random KN belongs to a rather restri
ted 
lass of 
onvex bodies for whi
h manyasymptoti
 parameters 
an be estimated through known methods. This is donein Se
tion 3, where we start by studying un
onditionality properties of XN as afun
tion of N . Our �rst result 
on
erns the Bana
h-Mazur distan
e from a randomXN to the 
lass U of spa
es with 1-un
onditional basis.Fa
t 4 For every Æ 2 (0; 1) we 
an �nd 
(Æ) = O(log(Æ�1)) su
h that: If N � 
(Æ)n,then XN 2 BN satis�es d(XN ;U) � 
4pnplog(2N=n)with probability greater than 1 � Æ, where 
4 > 0 is an absolute 
onstant and ddenotes Bana
h-Mazur distan
e.Fa
t 2 shows that when N � n(logn)2, then d(XN ;U) is \attained" for `n1 andhas exa
tly the order given by Fa
t 4. Also, for suitable N ' n, Fa
t 4 shows theexisten
e of a spa
e whose distan
e from U is of the maximal possible order pn(this is a well-known fa
t; see [15℄).Fa
ts 1 and 3(b) show that the Eu
lidean ball is \equivalent" to the distan
e and`-ellipsoid of KN . Thus, although the un
onditional basis 
onstant of XN is large,we may apply the method of random orthogonal fa
torizations to obtain upperestimates for the Bana
h-Mazur distan
e from XN to spe
ial 
lasses of spa
es. Inparti
ular, we prove the following.Fa
t 5 For every N � n and for a random XN , d(XN ; X�N ) � Cpn logn whereC > 0 is an absolute 
onstant. 3



Finally, we obtain estimates for the isotropi
 
onstant of the unit balls of spa
esin the 
lasses BN and B�N . For a random KÆN , N � n(logn)2, the isotropi
 
onstantis bounded by an absolute 
onstant.Fa
t 6 There exist absolute 
onstants 
; C > 0 with the following property:(a) If n � N � n(logn)2, then LKÆN � 
plog(2N=n) � Cplog logn.(b) If N � n(log n)2, then LKÆN � C for a random KÆN .Some estimates for the isotropi
 
onstant of a random KN may be given as well.Fa
t 7 Let N � n(log n)2. For a random KN we haveLKN � CminflogN;pngplog(N=n) ;where C > 0 is an absolute 
onstant.Notation. We will be working in Rn , whi
h is equipped with the Eu
lidean stru
tureh�; �i. All n-dimensional normed spa
es in this paper are of the form X = (Rn ; k �k).The unit ball of X is a 
entrally symmetri
 
onvex body in Rn whi
h is denotedby BX . Conversely, every 
entrally symmetri
 
onvex body K indu
es the normkxkK = minf� � 0 : x 2 �Kg to Rn , and K is the unit ball of XK = (Rn ; k � kK).The dual norm is de�ned by kyk� = maxfjhx; yij : x 2 BXg, and the unit ball ofX� = (Rn ; k � k�) is the polar body BX� = BÆX of BX .We write Bn2 and Sn�1 for the Eu
lidean unit ball and sphere respe
tively, andkxkp =  nXi=1 jxijp!1=pfor the `np -norm of x = (x1; : : : ; xn) 2 Rn , 1 � p < 1 (in the 
ase p = 1,kxk1 = maxi�n jxij). The rotationally invariant probability measure on Sn�1 isdenoted by �. We use the notation jAj for the volume of a 
onvex body and for the
ardinality of a �nite set.The support fun
tion of a 
onvex body K is de�ned by hK(y) = maxx2Khx; yi.The mean width of K is the quantity(1:2) w(K) = ZSn�1 [hK(�) + hK(��)℄�(d�) = 2 ZSn�1 hK(�)�(d�):Let X and Y be two n-dimensional normed spa
es. Their Bana
h-Mazur dis-tan
e d(X;Y ) is de�ned by(1:3) d(X;Y ) = minfkTk � kT�1k j T : X ! Y an isomorphismg:John's theorem [21℄ shows that d(X; `n2 ) � pn for every X . It follows that d(X;Y )is always bounded by n. On the other hand, as we already mentioned, Gluskin [17℄proved that there exists an absolute 
onstant 
 > 0 su
h that for every n one 
an�nd n-dimensional spa
es Xn; Yn with d(Xn; Yn) � 
n.4



The letters 
; 
1; 
2; 
0 et
. are reserved for absolute positive 
onstants, whi
hmay 
hange from line to line. Wherever we write a ' b, this means that there existabsolute 
onstants 
1; 
2 > 0 su
h that 
1a � b � 
2a. We refer the reader to thebooks [26℄, [28℄ and [37℄ for basi
 fa
ts that we are using throughout the text.A
knowledgments: We are indebted to the referees of the paper for referen
esand ideas whi
h helped us to simplify the proof of Theorem 2.2 and to 
larify therange of the parameters for whi
h it holds true.2. Geometry of the unit ballAs was mentioned in the introdu
tion, we will say that a random KN has a 
ertainproperty (P ) ifProb�(x1; : : : ; xN ) 2 En2 � : : :�En2 : (P ) holds for KN� � 1� e�n;where KN = 
o(�x1; : : : ;�xN ). In this Se
tion we give a des
ription of the unitball KN of a random element of BN :Theorem A There exists n0 2 N su
h that if n � n0 and N � n(logn)2 then arandom KN has the following properties:(a) KN � 
1Bn2(b) KN � �
2plog(N=n)=pn�Qn(
) jKN j1=n 'plog(N=n)=pn and jKÆN j1=n ' 1=pn log(N=n)(d) w(KN )w(KÆN ) � 
3plognplogN=plog(N=n),where 
1; 
2 and 
3 are absolute positive 
onstants.The proofs of these fa
ts are presented in the next four subse
tions.2.1 Inradius of KNWe will �rst show that if N � 
 log(Æ�1)n then, with probability greater than 1�Æ,KN 
ontains a Eu
lidean ball of radius independent from n and N . Our main toolwill be the fa
t that, with high probability, few verti
es of the 
ube represent En2in the 
lassi
al Khint
hine inequality. This statement was �rst proved in [30℄ (seealso [20℄ for the formulation we are using in this paper).Lemma 2.1 Let Æ 2 (0; 1). If N � 
 log(Æ�1)n, then N points x1; : : : ; xN 
hosenuniformly and independently from En2 satisfy with probability greater than 1� Æ theinequality(2:1) 
1kyk2 � 1N NXi=1 jhy; xiij � 
2kyk2for all y 2 Rn , where 
; 
1; 
2 > 0 are absolute 
onstants. 2In parti
ular, Lemma 2.1 holds true with Æ = e�n provided that N � 
n2. Letus assume that Lemma 2.1 applies for the verti
es �x1; : : : ;�xN of KN . Note that5



if W1;W2 are 
onvex bodies, then W1 �W2 if and only if hW1 � hW2 . By Lemma2.1 we have hKN (y) = maxj�N jhxj ; yij � 1N NXj=1 jhxj ; yij� 
1kyk2 = 
1hBn2 (y)for every y 2 Rn , whi
h shows that KN � 
1Bn2 . Thus, we have proved thefollowing.Proposition 2.1 Let Æ 2 (0; 1). If N � 
 log(Æ�1)n, then KN � 
1Bn2 withprobability greater than 1� Æ. 22.2 AÆne 
ubes inside KNOur next aim is to show that if n is big enough and N � n(logn)2, then KN
ontains (with high probability) a 
entered 
ube P su
h that jKN j1=n ' jP j1=n.This is a 
onsequen
e of the following theorem.Theorem 2.1 There exist n0 2 N and an absolute 
onstant 
 > 0 with the followingproperty: If n � n0 and N > n(logn)2, then N random points x1; : : : ; xN 
hosenindependently and uniformly from En2 satisfy with probability greater than 1� e�n(2:2) MN := 
ofx1; : : : ; xNg � 
�plog (N=n)Bn2 \Qn�where Qn = [�1; 1℄n is the unit 
ube in Rn .The proof makes heavy use of a theorem of Montgomery-Smith. Consider theinterpolation norm(2:3) K1;2(x; t) = inf fkyk1 + tkx� yk2 : y 2 Rngwhere x 2 Rn and t > 0. We will need the main result from [31℄.Fa
t There exists an absolute 
onstant r > 0 su
h that for every y 2 Rn and everyt > 0,(2:4) P (fx 2 En2 : hx; yi > r�1K1;2(y; t)g) � r�1 exp(�rt2): 2The geometri
 interpretation of K1;2 is the following: Fix � > 0 and 
onsider thesymmetri
 
onvex body(2:5) C(�) = r�1(�Bn2 \Qn):Then, the support fun
tion of C(�) is given by(2:6) hC(�)(x) = r�1 inf fkyk1 + �kx� yk2 : y 2 Rng = r�1K1;2(x; �):With this notation, we have: 6



Lemma 2.2 Let � > 0. For every � 2 Sn�1,(2:7) P (fx 2 En2 : hx; �i � hC(�)(�)g) � r�1 exp(�r�2): 2Let x1; : : : ; xN be 
hosen independently and uniformly from En2 , and 
onsider their
onvex hull MN :=M(x1; : : : ; xN ). Sin
ehMN (�) = maxj�N hxj ; �i;we have P �hMN (�) � hC(�)(�)� = �P (fx 2 En2 : hx; �i < hC(�)(�)g)�N� �1� r�1 exp(�r�2)�N� exp��Nr exp(�r�2)�for every � 2 Sn�1.Let Æ 2 (0; 1). We 
hoose a �-netN of Sn�1, with 
ardinality jN j � (1+(2=�))n(see [26℄, pp. 7). Then, the estimate above proves the following fa
t:Lemma 2.3 Let N � n and �; Æ 2 (0; 1), � > 0. If�1 + 2��n � Æ exp�Nr exp(�r�2)� ;then, with probability greater than 1� Æ, N random points x1; : : : ; xN 
hosen inde-pendently and uniformly from En2 satisfyhMN (�) � hC(�)(�);for every � 2 N . 2Proof of Theorem 2.1: Let N � n(logn)2. We 
hoose � = 12prplog(N=n) andapply Lemma 2.3 with Æ = e�n: If(2:8) 1 + log�1 + 2�� � Nrn exp��14 log(N=n)� = 1r �Nn �3=4 ;then with probability greater than 1�e�n the 
onvex hullMN of x1; : : : ; xN satis�eshMN (�) � hC(�)(�)for every � in a �-net of Sn�1.Let u 2 Sn�1. There exists � 2 N su
h that ku� �k2 < �. Then,hMN (u) � hMN (�)� hMN (� � u) � hC(�)(�) � hMN (� � u)� hC(�)(u)� [hC(�)(� � u) + k� � uk1℄:7



For n large enough (depending on r) we have � � 1. It follows that1rBn2 � C(�) � �r Bn2and hen
e hC(�)(� � u) + k� � uk1 � ��r +pn� � � 2rpn�hC(�)(u):It follows that(2:9) hMN (u) � hC(�)(u)2if we 
hoose � = 1=(4rpn). With this 
hoi
e of � and �, it remains to 
he
k that(2:8) is satis�ed for large enough n. The 
ondition is equivalent to(2:10) 
(r) logn � �Nn �3=4and, sin
e N > n(logn)2, this is satis�ed if (logn)1=2 > 
(r) whi
h holds true forn � n0 = exp(
2(r)). The theorem follows with 
 = 1=(4r3=2). 2Sin
e Qn � Bn2 , Theorem 2.1 implies Proposition 2.1 in the 
ase N � n(log n)2.Also, sin
e pnBn2 � Qn we get the se
ond part of Theorem A:Theorem 2.2 There exist n0 2 N and an absolute 
onstant 
 > 0 with the followingproperty: If n � n0 and N > n(logn)2, then N random points x1; : : : ; xN 
hosenindependently and uniformly from En2 satisfy with probability greater than 1� e�nKN � 
plog (N=n)pn Qn: 2Remarks An earlier version of this paper in
luded a self-
ontained and elementaryproof of Theorem 2.2 for N polynomial in n (N � n�, where � > 0 is a �xed
onstant). It turned out that analogous statements had already appeared in theliterature.One of the referees informed us that this result 
an be derived (if one goesinside the proofs) from the methods of Dyer, F�uredi and M
Diarmid in [11℄. In avery re
ent paper, B�ar�any and P�or [4℄ showed the existen
e of 0-1 polytopes withsuperexponential number of fa
ets. One main step in their argument is a statementequivalent to Theorem 2.1 (Lemma 4.3 in [4℄) whi
h is proved by a re�nement ofthe method of [11℄ for the range N � exp((logn)2).We are grateful to a se
ond referee for pointing out that Montgomery-Smith'stheorem is also suÆ
ient for proving Theorem 2.2. In fa
t, making full use of [31℄one gets a proof of Theorem 2.1 for N � n(log n)2.8



2.3 Volume estimatesWe now pass to volume estimates. Consider the polar bodyKÆN = fy 2 Rn : jhy; xiij � 1; i = 1; : : : ; Ng:This is an interse
tion of symmetri
 strips, and very pre
ise lower bounds for itsvolume are available (see [19℄, [10℄ and [3℄, [7℄, [8℄ for related results):Lemma 2.4 There exists an absolute 
onstant 
 > 0 su
h that, for every N � njKÆN j1=n � 
pn log(2N=n) : 2Combining this estimate with the Blas
hke-Santal�o inequality jKN j � jKÆN j �jBn2 j2, we get(2:11) jKN j1=n � 
0plog(2N=n)pn :On the other hand, Theorem 2.2 shows that if N � n(logn)2 then KN 
ontains a
ube of about the same volume.Proposition 2.2 If N � n(logn)2, then a random KN 
ontains a 
entered 
ube Psu
h that � jKN jjP j �1=n � C;where C > 0 is an absolute 
onstant. 2This fa
t shows that Theorem 2.2 is optimal in a very strong sense: a randomKN has the maximal possible volume. It also determines the volume radius of KNand KÆN :Proposition 2.3 If N � n(logn)2, then for a random KN we havejKN j1=n ' plog(N=n)pn ; jKÆN j1=n ' 1pn log(N=n)up to absolute 
onstants. 22.4 Mean widthLet X be an n-dimensional normed spa
e. Figiel and Tom
zak-Jaegermann [14℄de�ned the `-norm of T 2 L(`n2 ; X) by(2:12) `(T ) = pn�ZSn�1 kTyk2�(dy)�1=2 :9



Equivalently, if fejg is any orthonormal basis in Rn , and if g1; : : : ; gn are inde-pendent Gaussian random variables with distribution N(0; 1) on some probabilityspa
e 
, we have(2:13) `(T ) =  Z


 nXi=1 gi(!)T (ei)

2d!!1=2 ;From well-known results of Lewis [24℄, Figiel and Tom
zak-Jaegermann [14℄ andPisier [27℄ it follows that for every X = (Rn ; k � k) we 
an de�ne an Eu
lideanstru
ture h�; �i (
alled the `-stru
ture) on Rn , for whi
h(2:14) `(I : `n2 ! X)`(I : `n2 ! X�) � 
n log[d(X; `n2 ) + 1℄;where 
 > 0 is an absolute 
onstant and I denotes the identity operator. It is nothard to 
he
k that(2:15) `(I : `n2 ! Z) = Z
 k nXj=1 gj(!)ejkZd! ' pnw(BÆZ);for every n-dimensional spa
e Z, and hen
e, (2.14) is equivalent to the following fa
t:For every symmetri
 
onvex body K in Rn there exists a linear image ~K = T (K),T 2 GL(n), of K ( ~K is often 
alled the \`-position" of K) for whi
h(2:16) w( ~K)w( ~KÆ) � 
 log[d(XK ; `n2 ) + 1℄:In view of Urysohn's inequality whi
h states that for every 
onvex body K in Rn(2:17) w(K) � 2� jKjjBn2 j�1=n � 
pnjKj1=nwhere 
 > 0 is an absolute 
onstant, (2.16) and John's theorem show that, up to alogn-term, a body whi
h is in `-position has the \minimal possible mean width":~K satis�es the inequality(2:18) w( ~K) � 
0pn lognj ~Kj1=n:In this subse
tion we will get similar upper bounds for the mean width of a randomKN and KÆN .Assume that N � n(logn)2. Starting with KN , we write xj = pnuj whereuj 2 Sn�1, j � N , and hen
e(2:19) w(KN ) = ZSn�1 maxj�N jhxj ; �ij�(d�) = pnZSn�1 maxj�N jhuj ; �ij�(d�):Now, by the spheri
al isoperimetri
 inequality we have(2:20) �(� : jhuj ; �ij � 
t=pn) � exp(�t2)10



for large t (see [26℄), whi
h implies(2:21) ZSn�1 maxj�N jhuj ; �ij�(d�) � 
1plogNpn ;therefore w(KN ) � 
2plogN . Note that by Urysohn's inequality and the volumeestimate in Proposition 2.3,(2:22) 
3plog(N=n) � w(KN ) � 
2plogNfor a random KN . For the mean width of KÆN we use Theorem 2.2. Sin
e KN ��
plog(N=n)=pn�Qn, we have(2:23) hKÆN (�) = k�kKN � 
4pnplog(N=n)k�k1therefore(2:24) w(KÆN ) � 
4pnplog(N=n) ZSn�1 maxi�n j�ij�(d�) ' plognplog(N=n) :This is again 
lose to the lower bound, apart from the plogn-term. In parti
ular,(2:25) w(KN )w(KÆN ) � 
5 plogNplog(N=n)plogn;that is KN satis�es an inequality analogous to (2.16). This fa
t will be later usedin Bana
h-Mazur distan
e estimates.Proposition 2.4 If n � n0 and N � n(log n)2 then for a random KN we have
plog(N=n) � w(KN ) � 
0plogNand 
plog(N=n) � w(KÆN ) � 
0plognplog(N=n) ;where 
; 
0 > 0 are absolute 
onstants. 23. Asymptoti
 properties of XNTheorem A provides enough information on the geometry of the unit ball ofXN .In fa
t, KN and KÆN belong to a rather restri
ted 
lass of random 
onvex bodies,and this allows us to determine several asymptoti
 parameters of the 
orrespondingspa
es.3.1 Un
onditionality properties of XNWe shall �rst show that un
onditionality properties of XN are of the worst possibleorder as N de
reases to n. This fa
t is expe
ted in view of well-known results11



from [13℄ and [1℄ about random proportional se
tions of `m1 whi
h exhibit the samepathology. The sour
e of our estimates is Lemma 2.1 whi
h is the analogue ofKashin's theorem [23℄ in our 
ontext. However, our information on a random KN ,will allow us to give an estimate for the full range of values of N .Re
all that an n-dimensional normed spa
e Y has 1-un
onditional basis if thereexists a basis fe1; : : : ; eng of Y with the property

 nXi=1 tiei

Y = 

 nXi=1 jtijei

Yfor every 
hoi
e of reals t1; : : : ; tn.Theorem 3.1 If N � 
 log(Æ�1)n, then XN 2 BN satis�es with probability greaterthan 1� Æ d(XN ; Y ) � 
pnplog (2N=n)for every n-dimensional normed spa
e Y with a 1-un
onditional basis.Proof: Consider the identity operator I : X�N ! `n2 . Re
all (see [29℄) that the1-summing norm �1(T : Y � ! `n2 ) of an operator T : Y � ! `n2 is the minimum ofall positive 
onstants A with the following property: for every m 2 N and every
hoi
e of ve
tors z1; : : : ; zm 2 Y �(3:1) mXj=1 kTzjk2 � A supy2BY mXj=1 jhy; zjij:We will �rst prove the following 
laim:Claim 1 If x1; : : : ; xN satisfy the 
on
lusion of Lemma 2.1, then �1(I) ' 1.Proof: Let z1; : : : ; zm 2 X�N . Using Lemma 2.1, we write(3:2) mXj=1 kzjk2 � 1
1 � 1N NXi=1 mXj=1 jhxi; zjij � 1
1 � supy2KN mXj=1 jhy; zjij;therefore, �1(I) � 
�11 . On the other hand, by the de�nition of �1(I) we must alsohave(3:3) 1N NXj=1 kxjk2 � �1(I) supy2KN 1N NXj=1 jhy; xjij:From the upper estimate in Lemma 2.1 we get(3:4) supy2KN 1N NXj=1 jhy; xjij � 
2 supy2KN kyk2:12



Sin
e KN � Qn � pnBn2 and kxjk2 = pn for every j = 1; : : : ; N , we 
on
lude thatpn � 
2�1(I)pn, whi
h proves our 
laim. 2Claim 2 Let Q be a parallelepiped 
ontained in KÆN . Then,(3:5) jQj1=n � 2�1(I)n :Proof: This fa
t was proved by Ball [1℄. We in
lude the argument for self - 
om-pleteness. Consider a linear map S : Rn ! Rn whi
h takes Bn1 onto Q. ApplyingHadamard's inequality, the arithmeti
-geometri
 means inequality and the de�ni-tion of �1(S : `n1 ! `n2 ), we havejQj1=n = 2j detSj1=n � 2 nYi=1 kSeik2!1=n � 2n nXi=1 kSeik2� 2n�1(S : `n1 ! `n2 ) � supy2Bn1 nXi=1 jhy; eiij= 2�1(S : `n1 ! `n2 )=n:Sin
e �1(S : `n1 ! `n2 ) � kS : `n1 ! X�Nk � �1(I : X�N ! `n2 );the result follows be
ause S(Bn1) = Q � KÆN . 2We 
an now 
omplete the proof of Theorem 3.1. Let Y be an n-dimensionalspa
e with 1-un
onditional basis. If d = d(X�N ; Y ), we may assume that dBY �KÆN � BY . From a result of Losanovskii (see [28, Chapter 3℄), we 
an �nd aparallelepiped Q � BY with jBY j=jQj � nn=n!. Then, using our two 
laims we get(3:7) jKÆN j1=n � djBY j1=n � 
djQj1=n � 
0d=n:Now, Lemma 2.4 implies that d(X�N ; Y ) = d � 
00pn=plog(2N=n), and the Theo-rem follows by duality. 2Remark Suitable 
hoi
e of � > 1 shows the existen
e of a spa
e XN with N = �nfor whi
h d(XN ; Y ) � 
pn for every spa
e Y with 1-un
onditional basis.Let N � n(logn)2. Theorem 2.2 shows that d(XN ; `n1) � 
pn=plog(2N=n)for a random XN . Combining this fa
t with Theorem 3.1, we see that `n1 is thespa
e with 1-un
onditional basis whi
h is \
losest" to XN .Theorem 3.2 If N � n(logn)2, then for a random XN we haved(XN ;U) ' d(XN ; `n1) ' pnplog(N=n) ;where U is the 
lass of n-dimensional spa
es with 1-un
onditional basis. 213



3.2 Bana
h-Mazur distan
e estimatesPropositions 2.1 and 2.4 indi
ate that the geometri
 distan
e between KN and Bn2and the mean width of KN are simultaneously 
ontrolled for a random XN . Thisallows us to use the method of random orthogonal fa
torizations (whi
h has itsorigin in work of Tom
zak-Jaegermann [36℄, and was later developped in [5℄, [12℄)in order to estimate from above Bana
h-Mazur distan
es from a random XN tovarious 
lasses of spa
es.The main point of the above method is the following result of Benyamini andGordon [5℄, whi
h makes use of an inequality of Chevet [9℄.Lemma 3.1 Let X and Y be two n-dimensional normed spa
es. Then,d(X;Y ) � 
n�kI : X ! `n2k`(I : `n2 ! Y ) + kI : `n2 ! Y k`(I : `n2 ! X�)���kI : Y ! `n2k`(I : `n2 ! X) + kI : `n2 ! Xk`(I : `n2 ! Y �)�;where 
 > 0 is an absolute 
onstant. 2We shall apply this method to estimate the distan
e d(XN ; X�N). The best knowngeneral estimate on this question is due to Bourgain and Milman [6℄ who haveproved that(3:8) d(X;X�) � 
n5=6 log� nfor every n-dimensional normed spa
e X . The proof of (3.8) is again based onrandom orthogonal fa
torizations. If X has a 1-un
onditional basis or enoughsymmetries, then it gives a mu
h better bound of the order of pn log� n.As we will see, despite the la
k of un
onditionality exhibited by XN , we havea bound of this order for d(XN ; X�N ).Theorem 3.3 There exists an absolute 
onstant C > 0 su
h that d(XN ; X�N ) �Cpn logn for any N � n and a random XN .Proof: We apply Lemma 3.1 with X = XN and Y = X�N . Taking into a

ount(2.15), we get(3:9) d(XN ; X�N ) � 
kI : XN ! `n2k � kI : `n2 ! XNk � w(KN )w(KÆN ):We �rst 
onsider the 
ase N � n2. By Proposition 2.4, for a random KN we have(3:10) w(KN ) � 
2plogN; w(KÆN ) � 
3plogn=plogN:Sin
e KN � Qn � pnBn2 , we have(3:11) kI : XN ! `n2k = maxx2KN kxk2 � pn;and, by Proposition 2.1 we have 
Bn2 � KN for a random KN , therefore(3:12) kI : `n2 ! XNk = maxx2Bn2 kxkKN � 
�1:14



Combining the above, we get(3:13) d(XN ; X�N ) � Cpn lognfor a random XN , N � n2.If N � n2, we argue in a di�erent way. Sin
e KN has n� verti
es and KÆN hasn� fa
ets, with � = � � 2, we 
an employ a well-known estimate from [16℄ to get(3:14) d(XN ; X�N ) � 
pn logn:Hen
e, we 
an �nd C > 0 su
h that, independently of N , d(XN ; X�N ) � Cpn lognfor a random XN . 23.3 Isotropi
 
onstantsRe
all the de�nition of the isotropi
 position of a 
onvex body W in Rn . Thereexists T0 2 GL(n) su
h that the body ~W = T0(W ) has volume 1 and satis�es theisotropi
 
ondition(3:15) Z ~W hx; �i2dx = L2Wfor every � 2 Sn�1 (see [25℄ for a detailed a

ount on this topi
). This position isunique up to orthogonal transformations, therefore LW is an invariant of the linear
lass of W , and it is 
alled the isotropi
 
onstant of W . One 
an 
he
k that theisotropi
 position of W minimizes the quantity(3:16) 1jT (W )j1+ 2n ZT (W ) kxk22dxover all T 2 GL(n). In parti
ular,(3:17) nL2W � 1jW j1+ 2n ZW kxk22dx:It is 
onje
tured that there exists an absolute 
onstant C > 0 su
h that LW � C forevery n 2 N and every 
onvex body W in Rn . The best known general estimate isdue to Bourgain [2℄ who proved that LW � 
 4pn logn for every symmetri
 
onvexbody W . The 
onje
ture is related to the sli
ing problem, whi
h asks if thereexists an absolute 
onstant 
 > 0 su
h that every 
onvex body with volume 1 hasa hyperplane se
tion whose volume ex
eeds 
. The 
onne
tion 
omes from the fa
tthat(3:18) 
1 � LW � jW \ �?j � 
2for every � 2 Sn�1 and every isotropi
 
onvex bodyW , where 
1; 
2 > 0 are absolute
onstants (see [25℄).In this subse
tion we give upper bounds for the isotropi
 
onstant of KN andKÆN . We will make use of the following lemma [25℄.15



Lemma 3.2 Let W be a symmetri
 
onvex body in Rn . Then,(3:19) LW � 
n � 1jW j1+ 1n ZW kxk1dx:Also, LW � 
d(XW ; Y ) for every Y 2 U . 2Theorem 3.4 Let N � n(logn)2. With probability greater than 1 � e�n we haveLKÆN � C, where C > 0 is an absolute 
onstant.Proof: By Theorem 2.2, with probability greater than 1 � e�n we have KN ��
plog(N=n)=pn�Qn, where 
 > 0 is an absolute 
onstant. It follows that(3:20) kxk1 � 
1pnplog(N=n)kxkKÆNfor all x 2 Rn , where 
1 = 1=
. Using Lemma 3.2 we get(3:21) LKÆN � 
2pn log(N=n) 1jKÆN j1+ 1n ZKÆN kxkKÆNdx � 
2pn log(N=n)jKÆN j1=n :In view of Lemma 2.4, the proof is 
omplete. 2Remark Junge [22℄ has proved that if X is an n-dimensional subspa
e of an N -dimensional spa
e with 1-un
onditional basis, thenLBX � 
plog(2N=n)for some absolute 
onstant 
 > 0. This estimate applies to any symmetri
 
onvexbody with N fa
ets. Using this result for B�N when n � N � n(logn)2, we maysummarize as follows:Corollary 3.1 There exist absolute 
onstants 
; C > 0 with the following property:(a) If n � N � n(log n)2, then LKÆN � 
plog(2N=n) � Cplog logn.(b) If N � n(log n)2, then LKÆN � C for a random KÆN . 2Observe that we have a plog logn estimate for a random X�N 2 B�N , whi
hholds true in the full range of values of N .We 
on
lude this arti
le with some simple estimates for the isotropi
 
onstantof KN .Proposition 3.1 Let N � n(logn)2. For a random KN we haveLKN � CminflogN;pngplog(N=n) ;where C > 0 is an absolute 
onstant.Proof: Sin
e d(XN ; `n1) ' pn=plog(N=n) for a random XN , the estimate LKN �
1pn=plog(N=n) is an immediate 
onsequen
e of Lemma 3.2.16



If N is not too big, then one 
an argue in a di�erent way: 
onsider the externalvolume ratio evr(W ) = inf�jEj=jW j�1=n of W , where the in�mum is taken over allellipsoids E whi
h 
ontain W . Then, we have the following.Claim Let z1; : : : ; zN 2 Rn . If W = 
of�x1; : : : ;�xNg, then(3:22) LW � 
 logN evr(W )pnwhere 
 > 0 is an absolute 
onstant.Proof: The formulation of the 
laim is invariant under linear transformations, there-fore we may assume that W is isotropi
. Let E be the ellipsoid of minimal volumewhi
h 
ontains W . There exists a symmetri
 and positive T 2 GL(n) su
h thatT (E) = Bn2 . Then,(3:23) ZW hTx; xidx = [tr(T )℄L2W � nL2W j detT j1=n:The equality 
omes from the isotropi
 
ondition (3.15) and the inequality is thearithmeti
-geometri
 means inequality for the eigenvalues of T . On the other hand,ZW hTx; xidx � ZW kTxkWÆdx = ZW maxj�N jhzj ; Txijdx= ZW maxj�N jhTzj ; xijdx:Sin
e the  1-norm of linear fun
tionals on W is equivalent to their 1-norm (see[25℄), we get(3:24) ZW maxj�N jhTzj ; xijdx � (
 logN)LW �maxj�N kTzjk2:Sin
e zj 2 E, we have kTzjk2 � 1, j = 1; : : : ; N . It follows that(3:25) nj detT j1=nLW � 
 logNand the result follows from j detT j�1=njBn2 j1=n = jEj1=n = evr(W ). 2We 
an now show that LKN � 
2plog(N=n): we observe that KN � pnBn2and using the fa
t that �
3plog(N=n)=pn�Qn � KN we get(3:26) evr(KN ) � pn jBn2 j1=njKN j1=n � 
pnplog(N=n) :Then, our Claim 
ompletes the proof. 2Remark On the other hand, Junge [22℄ has proved that the unit balls of proje
tionsofN -dimensional spa
es with 1-un
onditional basis have isotropi
 
onstant boundedby 
 logN . Sin
eKN is the unit ball of a proje
tion of `N1 , we see that LKN � 
 lognif N � n(logn)2. 17
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