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Abstract
Let B3 = {—1,1}" be the discrete cube in R". For every N > n we
consider the class of convex bodies Ky = co{+1,...,+zn} which are gen-
erated by N random points z1, ...,z y chosen independently and uniformly

from EZ. We show that if n > no and N > n(log n)? then, for a random Ky,
the inradius, the volume radius, the mean width and the size of the maximal
inscribed cube can be determined up to an absolute constant as functions
of n and N . This geometric description of Kn leads to sharp estimates for
several asymptotic parameters of the corresponding n-dimensional normed
space Xn.

1. INTRODUCTION

The use of random spaces in the study of finite dimensional normed spaces
provided a way of proving the existence of spaces or operators with extremal prop-
erties. Several important problems of the theory were solved by introducing a
suitable probability space consisting of n-dimensional spaces and showing that ran-
dom selection of its elements gives objects with the desired properties. Among
many existence results proved in this way, let us mention the existence of a pair of
n-dimensional spaces with Banach-Mazur distance of order as large as n [17], the
existence of a space whose unconditional basis constant [15] or basis constant [33],
[18] has order as large as y/n, the existence of a space whose Banach-Mazur distance
to £7 is greater than cy/nlogn [34]. In particular, random n-dimensional subspaces
of (Y with N = An, A > 1 (i.e. spaces whose unit balls are random sections of
the cube @u of dimension proportional to N) provided examples of spaces which
exhibited pathology with respect to various asymptotic parameters of the theory:
this line of thought has its origin in [23] and [16] (see also [32], [35], [13] and the
articles mentioned above).

In this article, we consider convex hulls of random subsets of the set of vertices
of the cube and the class of random spaces they generate. In order to define our
probability space precisely, we consider the discrete cube EF = {—1,1}" in R"



equipped with the uniform probability measure, and fix N > n. Next, we consider
N independent random points @i, ...,x N uniformly distributed over E, and for
every choice x1,...,zn, we write My for the convex hull

Mpy := M(zy,...,zny) = co{z1,...,zN}
and Ky for the absolute convex hull
Ky :=K(x1,...,zn) = co{xzy,...,Lan}.

The symmetric convex body Ky (if non-degenerate) induces a norm on R”. We
write X for the normed space whose unit ball is K. In this way, for every N > n
we obtain a class of random n-dimensional spaces, which we denote by Bx. The
dual space of X is denoted by X5, and the class of dual spaces by By .

Section 2 is devoted to the study of the geometry of a random K. We say that a
property (P) holds for a random K if the probability of the N-tuples (z1,...,znN)
for which Ky has (P) is greater than 1 — exp(—n) (it tends to 1 “exponentially”
as the dimension n grows to infinity). There are three basic sources of information
on a random K, depending on the number N of vertices. First, we prove that
if N > Aon where \g > 1 is a fixed constant, then (with high probability) Ky
contains a centered ball of radius independent of n and V.

Fact 1 If N > Mon, then Kny D c1BY with high probability, where B} s the
Euclidean unit ball and Ag > 1, ¢; > 0 are absolute constants.

Since Ky C @, := [—1,1]", this estimate is clearly optimal, the interesting
point being that it starts being true for a random Ky when N is as low as of the
order of n. The proof of this fact is a consequence of the observation that a random
“small” set of vertices of the cube is already enough to substitute £ in the classical
Khintchine inequality: for all ay,...,a, € R

1

(1.1) T

Z|81(11 + ...+8nan| ~ (af + ... +ai)1/2,
c€EA

if m > An and A is a random subset of E} of cardinality |A| = m.
Our second main result is that if N > n(logn)?, then Ky contains (with high

probability) a centered cube whose edges have length /log(N/n)/+/n.

Fact 2 There exists ng € N with the following property: If n > ng and N >
n(logn)?, then

Ky De (\/log (N/n)Bj N Qn) D (e2v/log(N/n) /v/n)Qn

n

with probability greater than 1 — e™™, where c2 > 0 is an absolute constant.

In the range N > exp((logn)?), the first inclusion was recently proved by
Bardny and Poér in [4] (see the remarks after Theorem 2.2). Fact 2 should be
compared to the following result which was proved in [20]: There exists a constant



k > 0 with the following property: for every 6 € (0,1) and every convex body K

with centroid at the origin in R", N > ¢(§)n” points x1,...,zx chosen uniformly
and independently from K satisfy with probability greater than 1 — ¢
clog N

KQMN:CO{:El,...,.’L'N}Q K,
where ¢ > 0 is an absolute constant. Fact 2 may be viewed as a discrete version
of the case K = @, in the above result. The argument in [20] makes essential use
of the Brunn-Minkowski inequality: the main point there is that the L, -norm of
linear functionals on convex bodies is bounded by their L;-norm. Note that the
dependence on N in Fact 2 is better (this reflects the fact that linear functionals f
on the cube satisfy the stronger inequality || ]|, < c/|fllz,-)

Finally, we observe that combining Fact 2 with well-known volume estimates
from [19], [10] one can determine the volume radius of K and K}, up to an absolute

constant.

Fact 3 If N > n(logn)? then for a random Ky we have

(0) 1K 7 = /log(NJ)/ /it amd |5 /7 ~ 1/ Tog N,
(b) w(Kn)w(E3) < esvIognyIog N/ /IoalNm),

where w(-) denotes mean width and cz > 0 is an absolute constant.

Combining all three facts we have a precise description of the unit ball of Xy .
A random Ky belongs to a rather restricted class of convex bodies for which many
asymptotic parameters can be estimated through known methods. This is done
in Section 3, where we start by studying unconditionality properties of Xn as a
function of N. Our first result concerns the Banach-Mazur distance from a random
X to the class U of spaces with 1-unconditional basis.

Fact 4 For every § € (0,1) we can find c(8) = O(log(6~1)) such that: If N > ¢(8)n,

then Xy € By satisfies
d(Xn,U) > _avn

~ 1og(2N/n)

with probability greater than 1 — §, where ¢4 > 0 is an absolute constant and d
denotes Banach-Mazur distance.

Fact 2 shows that when N > n(logn)?, then d(Xy,U) is “attained” for £ and
has exactly the order given by Fact 4. Also, for suitable N ~ n, Fact 4 shows the
existence of a space whose distance from U/ is of the maximal possible order /n
(this is a well-known fact; see [15]).

Facts 1 and 3(b) show that the Euclidean ball is “equivalent” to the distance and
l-ellipsoid of K. Thus, although the unconditional basis constant of X is large,
we may apply the method of random orthogonal factorizations to obtain upper
estimates for the Banach-Mazur distance from Xy to special classes of spaces. In
particular, we prove the following.

Fact 5 For every N > n and for a random Xy, d(Xn,X¥) < Cy/nlogn where
C > 0 is an absolute constant.



Finally, we obtain estimates for the isotropic constant of the unit balls of spaces
in the classes By and Bj. For arandom K3, N > n(logn)?, the isotropic constant
is bounded by an absolute constant.

Fact 6 There exist absolute constants c¢,C > 0 with the following property:
(a) If n < N < n(logn)?, then Lis < ¢\/log(2N/n) < C/loglogn.
(b) If N > n(logn)?, then Lxs < C for a random K3;.

Some estimates for the isotropic constant of a random K may be given as well.

Fact 7 Let N > n(logn)?. For a random Ky we have

min{log N, /n}

Lk, <C
=T log(N/n)

where C' > 0 is an absolute constant.

Notation. We will be working in R™, which is equipped with the Euclidean structure
(-, ). All n-dimensional normed spaces in this paper are of the form X = (R",||-|).
The unit ball of X is a centrally symmetric convex body in R™ which is denoted
by Bx. Conversely, every centrally symmetric convex body K induces the norm
|z||xk = min{A > 0:2 € AK} to R”, and K is the unit ball of Xg = (R", || - || x)-
The dual norm is defined by ||y||« = max{|(z,y)| : © € Bx}, and the unit ball of
X* = (R™,]||- ||+) is the polar body Bx- = B% of Bx.

We write By and S™! for the Euclidean unit ball and sphere respectively, and

n 1/p
lllp = <Z|xi|p>
i=1

for the (}-norm of z = (w1,...,2,) € R*, 1 < p < oo (in the case p = oo,
||z||lso = max;<y, |z;]). The rotationally invariant probability measure on S™~! is
denoted by o. We use the notation |A| for the volume of a convex body and for the
cardinality of a finite set.

The support function of a convex body K is defined by hk (y) = max,eck(x,y).
The mean width of K is the quantity

(1.2)  w(K) = /Sn,l[h"@ + hac (=)o (d6) = 2/{5%1 hic (0)o(d6).

Let X and Y be two n-dimensional normed spaces. Their Banach-Mazur dis-
tance d(X,Y) is defined by

(1.3) d(X,Y) =min{||T||- |77 | T : X — Y an isomorphism}.

John’s theorem [21] shows that d(X, £%) < \/n for every X. It follows that d(X,Y")
is always bounded by n. On the other hand, as we already mentioned, Gluskin [17]
proved that there exists an absolute constant ¢ > 0 such that for every n one can
find n-dimensional spaces X,,Y,, with d(X,,Y,) > cn.



The letters ¢, ¢y, ca, ¢’ etc. are reserved for absolute positive constants, which
may change from line to line. Wherever we write a =~ b, this means that there exist
absolute constants ¢, co > 0 such that cia < b < caa. We refer the reader to the
books [26], [28] and [37] for basic facts that we are using throughout the text.

ACKNOWLEDGMENTS: We are indebted to the referees of the paper for references
and ideas which helped us to simplify the proof of Theorem 2.2 and to clarify the
range of the parameters for which it holds true.

2. GEOMETRY OF THE UNIT BALL
As was mentioned in the introduction, we will say that a random Ky has a certain
property (P) if
Prob((z1,...,zn) € EY x ... x E} : (P) holds for Ky) >1—e™",

where Ky = co(£zy,...,£zy). In this Section we give a description of the unit
ball Ky of a random element of By:

Theorem A There exists ng € N such that if n > ng and N > n(logn)? then a
random Ky has the following properties:

(a) Ky D ey BY

(b) Ky 2 (ca\/log(N/n)/\/n)Qn

(©) K" = JogINTm) /i and | K3 [ = 1/ /aTog(NTm)

(@) w(En)w(KY) < e;v/TognyIog N/ /log(N/m),

where c1,co and c3 are absolute positive constants.

The proofs of these facts are presented in the next four subsections.

2.1 Inradius of Kn

We will first show that if N > clog(d~!)n then, with probability greater than 1—4,
Kn contains a Euclidean ball of radius independent from n and N. Our main tool
will be the fact that, with high probability, few vertices of the cube represent EJ
in the classical Khintchine inequality. This statement was first proved in [30] (see
also [20] for the formulation we are using in this paper).

Lemma 2.1 Let § € (0,1). If N > clog(6 *)n, then N points x1,...,zN chosen
uniformly and independently from EY satisfy with probability greater than 1 — 0 the
inequality

N
(2.1) cllyllz < Z zi)| < eallyll
=1
for all y € R™, where ¢, c1,c2 > 0 are absolute constants. O

In particular, Lemma 2.1 holds true with § = e™" provided that N > cn?. Let
us assume that Lemma 2.1 applies for the vertices £x1,...,zn of K. Note that



if W1, Wy are convex bodies, then W; C W if and only if hyw, < hw,. By Lemma
2.1 we have

N
1
hKN (y) = r]n<ax| Tj,Yy N Z :U],
> cllyllz = chpy (y )

for every y € R"™, which shows that Ky O c¢1B3. Thus, we have proved the
following.

Proposition 2.1 Let § € (0,1). If N > clog(6=1)n, then Ky D c¢1BY with
probability greater than 1 — 0. |

2.2 Affine cubes inside Ky

Our next aim is to show that if n is big enough and N > n(logn)?, then Ky
contains (with high probability) a centered cube P such that |Ky|'/™ ~ |P|'/".
This is a consequence of the following theorem.

Theorem 2.1 There exist ng € N and an absolute constant ¢ > 0 with the following
property: If n > ng and N > n(logn)?, then N random points x1,...,rn chosen
independently and uniformly from EY satisfy with probability greater than 1 —e™"

(2.2) My = colzy,...,an} D e (\/log (N/n)B2: N Qn)

where @, = [—1,1]" is the unit cube in R™.

The proof makes heavy use of a theorem of Montgomery-Smith. Consider the
interpolation norm

(2.3) Kyo(z,t) = inf {|lylls + tllz —ylla -y € R"}

where € R" and ¢t > 0. We will need the main result from [31].

Fact There exists an absolute constant r > 0 such that for every y € R and every
t>0,

(2.4) P({z € E} : (z,y) > r_lKLg(y,t)}) >r~texp(—rt?). O

The geometric interpretation of K » is the following: Fix a > 0 and consider the
symmetric convex body

(2.5) Cla) =r (aBy NQy,).
Then, the support function of C(«) is given by
(2.6) hoe (@) = r~Hinf {[lyll +allz =yl 1y € R*} = r 7' K1 2(7, ).

With this notation, we have:



Lemma 2.2 Let a > 0. For every 6 € S"1,

(2.7) P({z € E} : (x,0) > ho(a)(0)}) > r ' exp(—ra®). O
Let x1,...,zn be chosen independently and uniformly from EZ}', and consider their
convex hull My := M(xy,...,xn). Since

hary (0) = Ijng%(xjﬂ%

we have

P (hay (8) < how () = (PUz € B : (2,0) < how(O)))"
(1—rt exp(—ra2))N

o (- et

IN

IN

for every § € S"1.
Let § € (0,1). We choose a p-net N of S™~1, with cardinality |[NV| < (1+(2/p))"
(see [26], pp. 7). Then, the estimate above proves the following fact:

Lemma 2.3 Let N > n and p,6 € (0,1), a > 0. If

2\" N
<1 + —) < dexp <— exp(—ra2)> ,
p T

then, with probability greater than 1 — 6, N random points x1,...,xN chosen inde-
pendently and uniformly from EY satisfy

hary (0) > hea) (8),

for every 8 € N. m

Proof of Theorem 2.1: Let N > n(logn)?. We choose a = 2\1/;\/10g(N/n) and

apply Lemma 2.3 with § = e~ "™: If

29 reios(142) < Yo (~Logovm) =2 (X)"

r\n
then with probability greater than 1—e~" the convex hull My of z1, ...,z satisfies
bty (0) > hea)(6)

for every 6 in a p-net of S?1.
Let u € S"~!. There exists # € N such that ||u — 6||a < p. Then,

hMN (U) hMN (6) - hMN (6 - U) > hC(a) (6) - hMN (6 - U)

ho(ay (1) = [he(a) (0 —u) + (|0 — ull1]-

(AVARLY,



For n large enough (depending on r) we have a > 1. It follows that
1 o'
-BY C C(a) C —B}
2= (a) C F o2
and hence
«
hoe (O =)+ 110 = ull < (5 + V) p < 2rVApho e ().

It follows that

hC(a) (U)

if we choose p = 1/(4r+/n). With this choice of o and p, it remains to check that
(2.8) is satisfied for large enough n. The condition is equivalent to

(2.10) o(r)logn < (%)3/4

and, since N > n(logn)?, this is satisfied if (logn)'/? > ¢(r) which holds true for
n > ng = exp(c?(r)). The theorem follows with ¢ = 1/(4r3/2). O

Since @,, O BY, Theorem 2.1 implies Proposition 2.1 in the case N > n(logn)?.
Also, since \/nBY D Q,, we get the second part of Theorem A:

Theorem 2.2 There exist ng € N and an absolute constant ¢ > 0 with the following
property: If n > ng and N > n(logn)?, then N random points x1,...,rn chosen
independently and uniformly from E3} satisfy with probability greater than 1 —e™"

Tog (N/n)

Ky D
NZC NG

Qn. O

Remarks An earlier version of this paper included a self-contained and elementary
proof of Theorem 2.2 for N polynomial in n (N > n®, where £ > 0 is a fixed
constant). It turned out that analogous statements had already appeared in the
literature.

One of the referees informed us that this result can be derived (if one goes
inside the proofs) from the methods of Dyer, Fiiredi and McDiarmid in [11]. In a
very recent paper, Bardny and Pdér [4] showed the existence of 0-1 polytopes with
superexponential number of facets. One main step in their argument is a statement
equivalent to Theorem 2.1 (Lemma 4.3 in [4]) which is proved by a refinement of
the method of [11] for the range N > exp((logn)?).

We are grateful to a second referee for pointing out that Montgomery-Smith’s
theorem is also sufficient for proving Theorem 2.2. In fact, making full use of [31]
one gets a proof of Theorem 2.1 for N > n(logn)?.



2.8 Volume estimates
We now pass to volume estimates. Consider the polar body
Ky={yeR" : (y,z;)| <1, i=1,...,N}
This is an intersection of symmetric strips, and very precise lower bounds for its
volume are available (see [19], [10] and [3], [7], [8] for related results):

Lemma 2.4 There exists an absolute constant ¢ > 0 such that, for every N > n

c

/nlog(2N/n)

KR >

Combining this estimate with the Blaschke-Santal6 inequality |Kn| - |KR/| <
|BY?, we get

eyt < o OB

(2.11) T

On the other hand, Theorem 2.2 shows that if N > n(logn)? then Ky contains a
cube of about the same volume.

Proposition 2.2 If N > n(logn)2, then a random Ky contains a centered cube P

such that y
[Kn\ "
Lk <
(&) =<e

where C > 0 is an absolute constant. O

This fact shows that Theorem 2.2 is optimal in a very strong sense: a random
K has the maximal possible volume. It also determines the volume radius of K
and K3

Proposition 2.3 If N > n(logn)?, then for a random Ky we have

|KN|1/n ~ lOg(N/n), |K](if|1/n ~ 1
Vvn nlog(N/n)
up to absolute constants. O

2.4 Mean width

Let X be an n-dimensional normed space. Figiel and Tomczak-Jaegermann [14]
defined the ¢-norm of T' € L(¢%, X)) by

(2.12) o) =va([ ||Ty||2a<dy>)1/2.



Equivalently, if {e;} is any orthonormal basis in R", and if g1,..., ¢, are inde-
pendent Gaussian random variables with distribution N(0,1) on some probability
space 2, we have

n ‘ 1/2
(2.13) UT) = (/Q”Zgi(w)T(ei)”Zdw> )

From well-known results of Lewis [24], Figiel and Tomczak-Jaegermann [14] and
Pisier [27] it follows that for every X = (R",|| - ||) we can define an Euclidean
structure (-,-) (called the ¢-structure) on R, for which

(2.14) 0T 03 — X)UI: 63 — X*) < enlog[d(X, €2) + 1],

where ¢ > 0 is an absolute constant and I denotes the identity operator. It is not
hard to check that

(2.15) (6= 2)= [ 13 0y()esllzdo = Vi B3),

for every n-dimensional space Z, and hence, (2.14) is equivalent to the following fact:
For every symmetric convex body K in R there exists a linear image K = T'(K),
T € GL(n), of K (K is often called the “/-position” of K) for which

(2.16) w(K)w(K°) < clogld(Xk, €3) + 1].
In view of Urysohn’s inequality which states that for every convex body K in R*

LY
| B3|

(2.17) w(K) > 2 ( >1/n > cv/n|K|H™

where ¢ > 0 is an absolute constant, (2.16) and John’s theorem show that, up to a
log n-term, a body which is in /-position has the “minimal possible mean width”:
K satisfies the inequality

(2.18) w(K) < ¢nlogn|K|Y/™.

In this subsection we will get similar upper bounds for the mean width of a random
Ky and K3,

Assume that N > n(logn)?. Starting with Ky, we write z; = y/nu; where
uj € S"7 !, j < N, and hence

(219)  w(Ky)= /5 max|(e;,0)|o(d6) = Vi /Sn_l%|<uj,e>|a<d0>.

n—1 JSN

Now, by the spherical isoperimetric inequality we have

(2.20) (8 : [uj,0)| > ct/v/n) < exp(—t*)

10



for large ¢ (see [26]), which implies

log N
(2.21) [ it O)lo(a) < e 2=

therefore w(Ky) < cav/log N. Note that by Urysohn’s inequality and the volume
estimate in Proposition 2.3,

(2.22) csv/10g(N/n) < w(Ky) < eay/log N

for a random K. For the mean width of KJ, we use Theorem 2.2. Since Ky D

(c\/log(N/n)//n)Q,, we have
C4\/ﬁ

2.23 hie (0) = ||0]|xy < 0|0
(223) 3,0) = ¥l <~
therefore

(2.24) w(K3) < SV ma 0] (df) ~ —Y10B"

V/1og(N/n) Jgn-1 i<n log(N/n)’

This is again close to the lower bound, apart from the /logn-term. In particular,

_VIgN
\/log(N/n

that is Ky satisfies an inequality analogous to (2.16). This fact will be later used
in Banach-Mazur distance estimates.

(2.25) w(En)w(K3) <

Proposition 2.4 If n > ng and N > n(logn)? then for a random Ky we have

log(N/n) < w(Kn) < c'/log N

and
——C <u(ky) < LB
Tog(N/n) Tog(N/n)
where ¢, ¢’ > 0 are absolute constants. O

3. ASYMPTOTIC PROPERTIES OF Xy

Theorem A provides enough information on the geometry of the unit ball of X .
In fact, Ky and K3 belong to a rather restricted class of random convex bodies,
and this allows us to determine several asymptotic parameters of the corresponding
spaces.

3.1 Unconditionality properties of Xn

We shall first show that unconditionality properties of X are of the worst possible
order as N decreases to n. This fact is expected in view of well-known results

11



from [13] and [1] about random proportional sections of £7% which exhibit the same
pathology. The source of our estimates is Lemma 2.1 which is the analogue of
Kashin’s theorem [23] in our context. However, our information on a random Ky,
will allow us to give an estimate for the full range of values of N.

Recall that an n-dimensional normed space Y has 1-unconditional basis if there
exists a basis {ej,...,e,} of Y with the property

n n
D tieilly = 13 ilelly
i=1 i=1

for every choice of reals t1,...,t,.
Theorem 3.1 If N > clog(6')n, then X € By satisfies with probability greater
than 1 —0
AXn, V) > Y
log (2N /n)

for every n-dimensional normed space Y with a 1-unconditional basis.

Proof: Consider the identity operator I : X3 — ¢5. Recall (see [29]) that the
1-summing norm 71 (T : Y* — £%) of an operator T' : Y* — £% is the minimum of
all positive constants A with the following property: for every m € N and every
choice of vectors z1,...,z, € Y"

(3.1) > Tzl < A sup > [y, 25)]
j=1 yEBy j=1

We will first prove the following claim:

Claim 1 If z,...,zN satisfy the conclusion of Lemma 2.1, then w1 () ~ 1.
Proof: Let z1,...,z, € X5 . Using Lemma 2.1, we write

m 1 1 N m 1 m
(32) Dozl < = D) ez < —- sup Y [(y,25)]

j=1 e N i=1 j=1 €1 yeKy j=1

therefore, 71 (I) < ¢;’'. On the other hand, by the definition of 7, (I) we must also
have

1 & 1 &
(33) w2l < mD sup 532 )
From the upper estimate in Lemma 2.1 we get
N
(3.4) sup ZI Wz}l < ez sup iyl

yeEKN

12



Since Ky C @, C v/nBY and ||zj||2 = /n for every j = 1,..., N, we conclude that
v/ < cami(I)+/n, which proves our claim. |

Claim 2 Let () be a parallelepiped contained in K3,. Then,

(35) Qpi/n < 21l

n
Proof: This fact was proved by Ball [1]. We include the argument for self - com-
pleteness. Consider a linear map S : R® — R™ which takes B2 onto (). Applying
Hadamard’s inequality, the arithmetic-geometric means inequality and the defini-
tion of 71 (S : €% — %), we have

n 1/n n
2
|Q|1/n = 2| det S|1/n S 2 (H ||S€,||2> S E ; ||S€,'||2

i=1
2 n
Sr(S 0, = 63) - sup ()|

yEBf =1
= 2m(S: Ly — €3)/n.

IN

Since
m (Sl = 05) <||S:ly = XNl -m({: Xy = £5),

the result follows because S(BY) = Q C K§,. O

We can now complete the proof of Theorem 3.1. Let Y be an n-dimensional
space with l-unconditional basis. If d = d(X},Y), we may assume that dBy 2O
K} D By. From a result of Losanovskii (see [28, Chapter 3]), we can find a
parallelepiped @ C By with |By|/|Q] < n™/n!. Then, using our two claims we get

(3.7) |K$ Y™ < d|By Y™ < ed|QM™ < ¢'d/n.
Now, Lemma 2.4 implies that d(X%,Y) =d > ¢"/n//log(2N/n), and the Theo-
rem follows by duality. O

Remark Suitable choice of A > 1 shows the existence of a space Xy with N = An
for which d(Xy,Y) > ¢y/n for every space Y with 1-unconditional basis.

Let N > n(logn)?. Theorem 2.2 shows that d(Xy, (%) < cv/n/+/log(2N/n)
for a random Xp. Combining this fact with Theorem 3.1, we see that ¢2, is the
space with 1-unconditional basis which is “closest” to Xxy.

Theorem 3.2 If N > n(logn)?, then for a random Xy we have
Vn
d( Xy, U) 2d(Xn,00) ~ ———,
(Xn,U) ~d(Xn,C7,) Toa (V)

where U is the class of n-dimensional spaces with 1-unconditional basis. O

13



3.2 Banach-Mazur distance estimates

Propositions 2.1 and 2.4 indicate that the geometric distance between Ky and B
and the mean width of K are simultaneously controlled for a random X . This
allows us to use the method of random orthogonal factorizations (which has its
origin in work of Tomczak-Jaegermann [36], and was later developped in [5], [12])
in order to estimate from above Banach-Mazur distances from a random Xy to
various classes of spaces.

The main point of the above method is the following result of Benyamini and
Gordon [5], which makes use of an inequality of Chevet [9].

Lemma 3.1 Let X and Y be two n-dimensional normed spaces. Then,
d(X,Y) < %[HI X o T = Y) [T 02— YOI 0 — X))
X[|[T:Y = €3)16(I - €8 — X) + || : €5 — X||0(I : €5 — Y™)],
where ¢ > 0 is an absolute constant. O

We shall apply this method to estimate the distance d(Xn, X3 ). The best known
general estimate on this question is due to Bourgain and Milman [6] who have
proved that

(3.8) d(X,X*) < cen®%log’ n

for every m-dimensional normed space X. The proof of (3.8) is again based on
random orthogonal factorizations. If X has a l-unconditional basis or enough
symmetries, then it gives a much better bound of the order of \/ﬁlog’8 n.

As we will see, despite the lack of unconditionality exhibited by X, we have
a bound of this order for d(Xn, X5).

Theorem 3.3 There exists an absolute constant C > 0 such that d(Xn,X%) <
Cy/nlogn for any N > n and a random Xy .

Proof: We apply Lemma 3.1 with X = Xy and ¥ = X},. Taking into account
(2.15), we get

39)  d(Xn,XN) S clll: Xy = G| - [ £y = XNl - w(Kn)w(KY).

We first consider the case N > n?. By Proposition 2.4, for a random Ky we have
(3.10) w(Ky) < /108N, w(Ky) < esy/logn/v/log .

Since Ky C @, C /nB%, we have

(3.11) I Xy = &l = max ||zll2 < Vi,

and, by Proposition 2.1 we have ¢cBfY C Ky for a random K, therefore

(3.12) I3 — Xn|| = max [|z|| gy <c 7t
r€BZ
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Combining the above, we get

(3.13) d(Xn,Xy) < Cy/nlogn

for a random Xy, N > n2.
If N < n?, we argue in a different way. Since Ky has n® vertices and K3 has
nP facets, with a = 8 < 2, we can employ a well-known estimate from [16] to get

(3.14) d(Xn, Xy) < cy/nlogn.

Hence, we can find C' > 0 such that, independently of N, d(Xn, X3) < Cy/nlogn
for a random X . O

3.3 Isotropic constants

Recall the definition of the isotropic position of a convex body W in R". There
exists Ty € GL(n) such that the body W = Tp(W) has volume 1 and satisfies the
isotropic condition

(3.15) /W(:U 0)*dx = L}y,

for every 8 € S™~! (see [25] for a detailed account on this topic). This position is
unique up to orthogonal transformations, therefore Ly is an invariant of the linear
class of W, and it is called the isotropic constant of W. One can check that the
isotropic position of W minimizes the quantity

1 .
3.16 7/ z||2dz
(3.16) T Joo, 1718

over all T € GL(n). In particular,

(3.17) nLiy < iy |1+2 /. el

It is conjectured that there exists an absolute constant C' > 0 such that Ly < C for
every n € N and every convex body W in R™. The best known general estimate is
due to Bourgain [2] who proved that Ly < e/nlogn for every symmetric convex
body W. The conjecture is related to the slicing problem, which asks if there
exists an absolute constant ¢ > 0 such that every convex body with volume 1 has
a hyperplane section whose volume exceeds ¢. The connection comes from the fact
that

(3.18) g <Lw-[WnétH| <e

for every € S™ ! and every isotropic convex body W, where c;, c; > 0 are absolute
constants (see [25]).

In this subsection we give upper bounds for the isotropic constant of Ky and
K?R;. We will make use of the following lemma [25].
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Lemma 3.2 Let W be a symmetric convez body in R™. Then,

c 1
3.19 Ly <—+—— dx.
(3.19) WS T | lelhas
Also, Ly < cd(Xw,Y) for every Y € U. O

Theorem 3.4 Let N > n(logn)?. With probability greater than 1 — e™™ we have
Lgg < C, where C > 0 is an absolute constant.

n

Proof: By Theorem 2.2, with probability greater than 1 — e ™ we have Ky D
(c\/log(N/n)/+/n)Qy, where ¢ > 0 is an absolute constant. It follows that

Cl\/’I_l

(3.20) lzfls < Tos (V)

] &g,
for all x € R, where ¢; = 1/c. Using Lemma 3.2 we get

(321) Lk

Mlzllxg dz <
N

< C2 1 / Cy
= tog V) K& [ Jx /log(N/n)| K [1/°
In view of Lemma 2.4, the proof is complete. O

Remark Junge [22] has proved that if X is an n-dimensional subspace of an N-
dimensional space with 1-unconditional basis, then

Lp, < c/log(2N/n)

for some absolute constant ¢ > 0. This estimate applies to any symmetric convex
body with N facets. Using this result for By when n < N < n(logn)?, we may
summarize as follows:

Corollary 3.1 There exist absolute constants c,C > 0 with the following property:
(a) If n < N < n(logn)?, then Lis < cy/log(2N/n) < Cy/loglogn.
(b) If N > n(logn)?, then Lis < C for a random K3,. O

Observe that we have a y/loglogn estimate for a random X3 € Bj, which
holds true in the full range of values of N.

We conclude this article with some simple estimates for the isotropic constant
of KN.

Proposition 3.1 Let N > n(logn)?. For a random Ky we have

min{log N, /n}

L <(C
fov = log(N/n)

where C > 0 is an absolute constant.

Proof: Since d(Xy,0%) ~ v/n/+/log(N/n) for a random Xy, the estimate Ly, <
c1v/n/+/log(N/n) is an immediate consequence of Lemma 3.2.
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If N is not too big, then one can argue in a different way: consider the external
volume ratio evr(W) = inf(|E|/|W|)1/n of W, where the infimum is taken over all
ellipsoids E which contain W. Then, we have the following.

Claim Let zy,...,zy € R*. If W = co{xz1,...,2xN}, then
evr(W)

(3.22) Ly <clogN Jn

where ¢ > 0 is an absolute constant.

Proof: The formulation of the claim is invariant under linear transformations, there-
fore we may assume that W is isotropic. Let E be the ellipsoid of minimal volume
which contains W. There exists a symmetric and positive T € GL(n) such that
T(E) = BY. Then,

(3.23) / (T, 2ydw = [tr(T)) L2y > nL2y|det T|V/™.
w

The equality comes from the isotropic condition (3.15) and the inequality is the
arithmetic-geometric means inequality for the eigenvalues of T'. On the other hand,

/(T:c,x)dm < /||Tx||Wod:c:/ max |(z;, T'z)|dz
w w w IsN

= | mie|(Tz, )

Since the ¢;-norm of linear functionals on W is equivalent to their l-norm (see
[25]), we get

(3.24) /W I]nsagrc [(Tzj,z)|dz < (clog N)Lw - Ijrg\}r( 17212

Since z; € E, we have ||Tzj||, <1,j=1,...,N. It follows that

(3.25) n|det T|* "Ly < clog N

and the result follows from |det T|~/"|By|'/" = |E|'/™ = evr(W). O

We can now show that Ly, < cav/log(N/n): we observe that Kn C /nBY
and using the fact that (cs/log(N/n)/v/n)Q, C Ky we get
BEYn e/
| K|t/ = \/log(N/n)'

Then, our Claim completes the proof. a

(3.26) evr(Ky) < Vn

Remark On the other hand, Junge [22] has proved that the unit balls of projections
of N-dimensional spaces with 1-unconditional basis have isotropic constant bounded
by clog N. Since K is the unit ball of a projection of /¥, we see that Ly, < clogn
if N < n(logn)?.
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