
Random spaes generated by verties ofthe ubeA. Giannopoulos and M. Hartzoulaki
AbstratLet En2 = f�1; 1gn be the disrete ube in Rn . For every N � n weonsider the lass of onvex bodies KN = of�x1; : : : ;�xNg whih are gen-erated by N random points x1; : : : ; xN hosen independently and uniformlyfrom En2 . We show that if n � n0 and N � n(log n)2 then, for a randomKN ,the inradius, the volume radius, the mean width and the size of the maximalinsribed ube an be determined up to an absolute onstant as funtionsof n and N . This geometri desription of KN leads to sharp estimates forseveral asymptoti parameters of the orresponding n-dimensional normedspae XN . 1. IntrodutionThe use of random spaes in the study of �nite dimensional normed spaesprovided a way of proving the existene of spaes or operators with extremal prop-erties. Several important problems of the theory were solved by introduing asuitable probability spae onsisting of n-dimensional spaes and showing that ran-dom seletion of its elements gives objets with the desired properties. Amongmany existene results proved in this way, let us mention the existene of a pair ofn-dimensional spaes with Banah-Mazur distane of order as large as n [17℄, theexistene of a spae whose unonditional basis onstant [15℄ or basis onstant [33℄,[18℄ has order as large aspn, the existene of a spae whose Banah-Mazur distaneto `n1 is greater than pn logn [34℄. In partiular, random n-dimensional subspaesof `N1 with N = �n, � > 1 (i.e. spaes whose unit balls are random setions ofthe ube QN of dimension proportional to N) provided examples of spaes whihexhibited pathology with respet to various asymptoti parameters of the theory:this line of thought has its origin in [23℄ and [16℄ (see also [32℄, [35℄, [13℄ and theartiles mentioned above).In this artile, we onsider onvex hulls of random subsets of the set of vertiesof the ube and the lass of random spaes they generate. In order to de�ne ourprobability spae preisely, we onsider the disrete ube En2 = f�1; 1gn in Rn1



equipped with the uniform probability measure, and �x N � n. Next, we onsiderN independent random points x1; : : : ; xN uniformly distributed over En2 , and forevery hoie x1; : : : ; xN , we write MN for the onvex hullMN :=M(x1; : : : ; xN ) = ofx1; : : : ; xNgand KN for the absolute onvex hullKN := K(x1; : : : ; xN ) = of�x1; : : : ;�xNg:The symmetri onvex body KN (if non-degenerate) indues a norm on Rn . Wewrite XN for the normed spae whose unit ball is KN . In this way, for every N � nwe obtain a lass of random n-dimensional spaes, whih we denote by BN . Thedual spae of XN is denoted by X�N and the lass of dual spaes by B�N .Setion 2 is devoted to the study of the geometry of a randomKN . We say that aproperty (P ) holds for a random KN if the probability of the N -tuples (x1; : : : ; xN )for whih KN has (P ) is greater than 1 � exp(�n) (it tends to 1 \exponentially"as the dimension n grows to in�nity). There are three basi soures of informationon a random KN , depending on the number N of verties. First, we prove thatif N � �0n where �0 > 1 is a �xed onstant, then (with high probability) KNontains a entered ball of radius independent of n and N .Fat 1 If N � �0n, then KN � 1Bn2 with high probability, where Bn2 is theEulidean unit ball and �0 > 1, 1 > 0 are absolute onstants.Sine KN � Qn := [�1; 1℄n, this estimate is learly optimal, the interestingpoint being that it starts being true for a random KN when N is as low as of theorder of n. The proof of this fat is a onsequene of the observation that a random\small" set of verties of the ube is already enough to substitute En2 in the lassialKhinthine inequality: for all a1; : : : ; an 2 R(1:1) 1jAjX"2A��"1a1 + : : :+ "nan�� ' (a21 + : : :+ a2n)1=2;if m � �0n and A is a random subset of En2 of ardinality jAj = m.Our seond main result is that if N � n(logn)2, then KN ontains (with highprobability) a entered ube whose edges have length plog(N=n)=pn.Fat 2 There exists n0 2 N with the following property: If n � n0 and N �n(log n)2, thenKN � �plog (N=n)Bn2 \Qn� � �2plog(N=n)=pn�Qnwith probability greater than 1� e�n, where 2 > 0 is an absolute onstant.In the range N � exp((logn)2), the �rst inlusion was reently proved byB�ar�any and P�or in [4℄ (see the remarks after Theorem 2.2). Fat 2 should beompared to the following result whih was proved in [20℄: There exists a onstant2



� > 0 with the following property: for every Æ 2 (0; 1) and every onvex body Kwith entroid at the origin in Rn , N � (Æ)n� points x1; : : : ; xN hosen uniformlyand independently from K satisfy with probability greater than 1� ÆK �MN = ofx1; : : : ; xNg �  logNn K;where  > 0 is an absolute onstant. Fat 2 may be viewed as a disrete versionof the ase K = Qn in the above result. The argument in [20℄ makes essential useof the Brunn-Minkowski inequality: the main point there is that the L 1-norm oflinear funtionals on onvex bodies is bounded by their L1-norm. Note that thedependene on N in Fat 2 is better (this reets the fat that linear funtionals fon the ube satisfy the stronger inequality kfkL 2 � kfkL1 .)Finally, we observe that ombining Fat 2 with well-known volume estimatesfrom [19℄, [10℄ one an determine the volume radius ofKN andKÆN up to an absoluteonstant.Fat 3 If N � n(logn)2 then for a random KN we have(a) jKN j1=n 'plog(N=n)=pn and jKÆN j1=n ' 1=pn log(N=n).(b) w(KN )w(KÆN ) � 3plognplogN=plog(N=n),where w(�) denotes mean width and 3 > 0 is an absolute onstant.Combining all three fats we have a preise desription of the unit ball of XN .A random KN belongs to a rather restrited lass of onvex bodies for whih manyasymptoti parameters an be estimated through known methods. This is donein Setion 3, where we start by studying unonditionality properties of XN as afuntion of N . Our �rst result onerns the Banah-Mazur distane from a randomXN to the lass U of spaes with 1-unonditional basis.Fat 4 For every Æ 2 (0; 1) we an �nd (Æ) = O(log(Æ�1)) suh that: If N � (Æ)n,then XN 2 BN satis�es d(XN ;U) � 4pnplog(2N=n)with probability greater than 1 � Æ, where 4 > 0 is an absolute onstant and ddenotes Banah-Mazur distane.Fat 2 shows that when N � n(logn)2, then d(XN ;U) is \attained" for `n1 andhas exatly the order given by Fat 4. Also, for suitable N ' n, Fat 4 shows theexistene of a spae whose distane from U is of the maximal possible order pn(this is a well-known fat; see [15℄).Fats 1 and 3(b) show that the Eulidean ball is \equivalent" to the distane and`-ellipsoid of KN . Thus, although the unonditional basis onstant of XN is large,we may apply the method of random orthogonal fatorizations to obtain upperestimates for the Banah-Mazur distane from XN to speial lasses of spaes. Inpartiular, we prove the following.Fat 5 For every N � n and for a random XN , d(XN ; X�N ) � Cpn logn whereC > 0 is an absolute onstant. 3



Finally, we obtain estimates for the isotropi onstant of the unit balls of spaesin the lasses BN and B�N . For a random KÆN , N � n(logn)2, the isotropi onstantis bounded by an absolute onstant.Fat 6 There exist absolute onstants ; C > 0 with the following property:(a) If n � N � n(logn)2, then LKÆN � plog(2N=n) � Cplog logn.(b) If N � n(log n)2, then LKÆN � C for a random KÆN .Some estimates for the isotropi onstant of a random KN may be given as well.Fat 7 Let N � n(log n)2. For a random KN we haveLKN � CminflogN;pngplog(N=n) ;where C > 0 is an absolute onstant.Notation. We will be working in Rn , whih is equipped with the Eulidean strutureh�; �i. All n-dimensional normed spaes in this paper are of the form X = (Rn ; k �k).The unit ball of X is a entrally symmetri onvex body in Rn whih is denotedby BX . Conversely, every entrally symmetri onvex body K indues the normkxkK = minf� � 0 : x 2 �Kg to Rn , and K is the unit ball of XK = (Rn ; k � kK).The dual norm is de�ned by kyk� = maxfjhx; yij : x 2 BXg, and the unit ball ofX� = (Rn ; k � k�) is the polar body BX� = BÆX of BX .We write Bn2 and Sn�1 for the Eulidean unit ball and sphere respetively, andkxkp =  nXi=1 jxijp!1=pfor the `np -norm of x = (x1; : : : ; xn) 2 Rn , 1 � p < 1 (in the ase p = 1,kxk1 = maxi�n jxij). The rotationally invariant probability measure on Sn�1 isdenoted by �. We use the notation jAj for the volume of a onvex body and for theardinality of a �nite set.The support funtion of a onvex body K is de�ned by hK(y) = maxx2Khx; yi.The mean width of K is the quantity(1:2) w(K) = ZSn�1 [hK(�) + hK(��)℄�(d�) = 2 ZSn�1 hK(�)�(d�):Let X and Y be two n-dimensional normed spaes. Their Banah-Mazur dis-tane d(X;Y ) is de�ned by(1:3) d(X;Y ) = minfkTk � kT�1k j T : X ! Y an isomorphismg:John's theorem [21℄ shows that d(X; `n2 ) � pn for every X . It follows that d(X;Y )is always bounded by n. On the other hand, as we already mentioned, Gluskin [17℄proved that there exists an absolute onstant  > 0 suh that for every n one an�nd n-dimensional spaes Xn; Yn with d(Xn; Yn) � n.4



The letters ; 1; 2; 0 et. are reserved for absolute positive onstants, whihmay hange from line to line. Wherever we write a ' b, this means that there existabsolute onstants 1; 2 > 0 suh that 1a � b � 2a. We refer the reader to thebooks [26℄, [28℄ and [37℄ for basi fats that we are using throughout the text.Aknowledgments: We are indebted to the referees of the paper for referenesand ideas whih helped us to simplify the proof of Theorem 2.2 and to larify therange of the parameters for whih it holds true.2. Geometry of the unit ballAs was mentioned in the introdution, we will say that a random KN has a ertainproperty (P ) ifProb�(x1; : : : ; xN ) 2 En2 � : : :�En2 : (P ) holds for KN� � 1� e�n;where KN = o(�x1; : : : ;�xN ). In this Setion we give a desription of the unitball KN of a random element of BN :Theorem A There exists n0 2 N suh that if n � n0 and N � n(logn)2 then arandom KN has the following properties:(a) KN � 1Bn2(b) KN � �2plog(N=n)=pn�Qn() jKN j1=n 'plog(N=n)=pn and jKÆN j1=n ' 1=pn log(N=n)(d) w(KN )w(KÆN ) � 3plognplogN=plog(N=n),where 1; 2 and 3 are absolute positive onstants.The proofs of these fats are presented in the next four subsetions.2.1 Inradius of KNWe will �rst show that if N �  log(Æ�1)n then, with probability greater than 1�Æ,KN ontains a Eulidean ball of radius independent from n and N . Our main toolwill be the fat that, with high probability, few verties of the ube represent En2in the lassial Khinthine inequality. This statement was �rst proved in [30℄ (seealso [20℄ for the formulation we are using in this paper).Lemma 2.1 Let Æ 2 (0; 1). If N �  log(Æ�1)n, then N points x1; : : : ; xN hosenuniformly and independently from En2 satisfy with probability greater than 1� Æ theinequality(2:1) 1kyk2 � 1N NXi=1 jhy; xiij � 2kyk2for all y 2 Rn , where ; 1; 2 > 0 are absolute onstants. 2In partiular, Lemma 2.1 holds true with Æ = e�n provided that N � n2. Letus assume that Lemma 2.1 applies for the verties �x1; : : : ;�xN of KN . Note that5



if W1;W2 are onvex bodies, then W1 �W2 if and only if hW1 � hW2 . By Lemma2.1 we have hKN (y) = maxj�N jhxj ; yij � 1N NXj=1 jhxj ; yij� 1kyk2 = 1hBn2 (y)for every y 2 Rn , whih shows that KN � 1Bn2 . Thus, we have proved thefollowing.Proposition 2.1 Let Æ 2 (0; 1). If N �  log(Æ�1)n, then KN � 1Bn2 withprobability greater than 1� Æ. 22.2 AÆne ubes inside KNOur next aim is to show that if n is big enough and N � n(logn)2, then KNontains (with high probability) a entered ube P suh that jKN j1=n ' jP j1=n.This is a onsequene of the following theorem.Theorem 2.1 There exist n0 2 N and an absolute onstant  > 0 with the followingproperty: If n � n0 and N > n(logn)2, then N random points x1; : : : ; xN hosenindependently and uniformly from En2 satisfy with probability greater than 1� e�n(2:2) MN := ofx1; : : : ; xNg � �plog (N=n)Bn2 \Qn�where Qn = [�1; 1℄n is the unit ube in Rn .The proof makes heavy use of a theorem of Montgomery-Smith. Consider theinterpolation norm(2:3) K1;2(x; t) = inf fkyk1 + tkx� yk2 : y 2 Rngwhere x 2 Rn and t > 0. We will need the main result from [31℄.Fat There exists an absolute onstant r > 0 suh that for every y 2 Rn and everyt > 0,(2:4) P (fx 2 En2 : hx; yi > r�1K1;2(y; t)g) � r�1 exp(�rt2): 2The geometri interpretation of K1;2 is the following: Fix � > 0 and onsider thesymmetri onvex body(2:5) C(�) = r�1(�Bn2 \Qn):Then, the support funtion of C(�) is given by(2:6) hC(�)(x) = r�1 inf fkyk1 + �kx� yk2 : y 2 Rng = r�1K1;2(x; �):With this notation, we have: 6



Lemma 2.2 Let � > 0. For every � 2 Sn�1,(2:7) P (fx 2 En2 : hx; �i � hC(�)(�)g) � r�1 exp(�r�2): 2Let x1; : : : ; xN be hosen independently and uniformly from En2 , and onsider theironvex hull MN :=M(x1; : : : ; xN ). SinehMN (�) = maxj�N hxj ; �i;we have P �hMN (�) � hC(�)(�)� = �P (fx 2 En2 : hx; �i < hC(�)(�)g)�N� �1� r�1 exp(�r�2)�N� exp��Nr exp(�r�2)�for every � 2 Sn�1.Let Æ 2 (0; 1). We hoose a �-netN of Sn�1, with ardinality jN j � (1+(2=�))n(see [26℄, pp. 7). Then, the estimate above proves the following fat:Lemma 2.3 Let N � n and �; Æ 2 (0; 1), � > 0. If�1 + 2��n � Æ exp�Nr exp(�r�2)� ;then, with probability greater than 1� Æ, N random points x1; : : : ; xN hosen inde-pendently and uniformly from En2 satisfyhMN (�) � hC(�)(�);for every � 2 N . 2Proof of Theorem 2.1: Let N � n(logn)2. We hoose � = 12prplog(N=n) andapply Lemma 2.3 with Æ = e�n: If(2:8) 1 + log�1 + 2�� � Nrn exp��14 log(N=n)� = 1r �Nn �3=4 ;then with probability greater than 1�e�n the onvex hullMN of x1; : : : ; xN satis�eshMN (�) � hC(�)(�)for every � in a �-net of Sn�1.Let u 2 Sn�1. There exists � 2 N suh that ku� �k2 < �. Then,hMN (u) � hMN (�)� hMN (� � u) � hC(�)(�) � hMN (� � u)� hC(�)(u)� [hC(�)(� � u) + k� � uk1℄:7



For n large enough (depending on r) we have � � 1. It follows that1rBn2 � C(�) � �r Bn2and hene hC(�)(� � u) + k� � uk1 � ��r +pn� � � 2rpn�hC(�)(u):It follows that(2:9) hMN (u) � hC(�)(u)2if we hoose � = 1=(4rpn). With this hoie of � and �, it remains to hek that(2:8) is satis�ed for large enough n. The ondition is equivalent to(2:10) (r) logn � �Nn �3=4and, sine N > n(logn)2, this is satis�ed if (logn)1=2 > (r) whih holds true forn � n0 = exp(2(r)). The theorem follows with  = 1=(4r3=2). 2Sine Qn � Bn2 , Theorem 2.1 implies Proposition 2.1 in the ase N � n(log n)2.Also, sine pnBn2 � Qn we get the seond part of Theorem A:Theorem 2.2 There exist n0 2 N and an absolute onstant  > 0 with the followingproperty: If n � n0 and N > n(logn)2, then N random points x1; : : : ; xN hosenindependently and uniformly from En2 satisfy with probability greater than 1� e�nKN � plog (N=n)pn Qn: 2Remarks An earlier version of this paper inluded a self-ontained and elementaryproof of Theorem 2.2 for N polynomial in n (N � n�, where � > 0 is a �xedonstant). It turned out that analogous statements had already appeared in theliterature.One of the referees informed us that this result an be derived (if one goesinside the proofs) from the methods of Dyer, F�uredi and MDiarmid in [11℄. In avery reent paper, B�ar�any and P�or [4℄ showed the existene of 0-1 polytopes withsuperexponential number of faets. One main step in their argument is a statementequivalent to Theorem 2.1 (Lemma 4.3 in [4℄) whih is proved by a re�nement ofthe method of [11℄ for the range N � exp((logn)2).We are grateful to a seond referee for pointing out that Montgomery-Smith'stheorem is also suÆient for proving Theorem 2.2. In fat, making full use of [31℄one gets a proof of Theorem 2.1 for N � n(log n)2.8



2.3 Volume estimatesWe now pass to volume estimates. Consider the polar bodyKÆN = fy 2 Rn : jhy; xiij � 1; i = 1; : : : ; Ng:This is an intersetion of symmetri strips, and very preise lower bounds for itsvolume are available (see [19℄, [10℄ and [3℄, [7℄, [8℄ for related results):Lemma 2.4 There exists an absolute onstant  > 0 suh that, for every N � njKÆN j1=n � pn log(2N=n) : 2Combining this estimate with the Blashke-Santal�o inequality jKN j � jKÆN j �jBn2 j2, we get(2:11) jKN j1=n � 0plog(2N=n)pn :On the other hand, Theorem 2.2 shows that if N � n(logn)2 then KN ontains aube of about the same volume.Proposition 2.2 If N � n(logn)2, then a random KN ontains a entered ube Psuh that � jKN jjP j �1=n � C;where C > 0 is an absolute onstant. 2This fat shows that Theorem 2.2 is optimal in a very strong sense: a randomKN has the maximal possible volume. It also determines the volume radius of KNand KÆN :Proposition 2.3 If N � n(logn)2, then for a random KN we havejKN j1=n ' plog(N=n)pn ; jKÆN j1=n ' 1pn log(N=n)up to absolute onstants. 22.4 Mean widthLet X be an n-dimensional normed spae. Figiel and Tomzak-Jaegermann [14℄de�ned the `-norm of T 2 L(`n2 ; X) by(2:12) `(T ) = pn�ZSn�1 kTyk2�(dy)�1=2 :9



Equivalently, if fejg is any orthonormal basis in Rn , and if g1; : : : ; gn are inde-pendent Gaussian random variables with distribution N(0; 1) on some probabilityspae 
, we have(2:13) `(T ) =  Z
 nXi=1 gi(!)T (ei)2d!!1=2 ;From well-known results of Lewis [24℄, Figiel and Tomzak-Jaegermann [14℄ andPisier [27℄ it follows that for every X = (Rn ; k � k) we an de�ne an Eulideanstruture h�; �i (alled the `-struture) on Rn , for whih(2:14) `(I : `n2 ! X)`(I : `n2 ! X�) � n log[d(X; `n2 ) + 1℄;where  > 0 is an absolute onstant and I denotes the identity operator. It is nothard to hek that(2:15) `(I : `n2 ! Z) = Z
 k nXj=1 gj(!)ejkZd! ' pnw(BÆZ);for every n-dimensional spae Z, and hene, (2.14) is equivalent to the following fat:For every symmetri onvex body K in Rn there exists a linear image ~K = T (K),T 2 GL(n), of K ( ~K is often alled the \`-position" of K) for whih(2:16) w( ~K)w( ~KÆ) �  log[d(XK ; `n2 ) + 1℄:In view of Urysohn's inequality whih states that for every onvex body K in Rn(2:17) w(K) � 2� jKjjBn2 j�1=n � pnjKj1=nwhere  > 0 is an absolute onstant, (2.16) and John's theorem show that, up to alogn-term, a body whih is in `-position has the \minimal possible mean width":~K satis�es the inequality(2:18) w( ~K) � 0pn lognj ~Kj1=n:In this subsetion we will get similar upper bounds for the mean width of a randomKN and KÆN .Assume that N � n(logn)2. Starting with KN , we write xj = pnuj whereuj 2 Sn�1, j � N , and hene(2:19) w(KN ) = ZSn�1 maxj�N jhxj ; �ij�(d�) = pnZSn�1 maxj�N jhuj ; �ij�(d�):Now, by the spherial isoperimetri inequality we have(2:20) �(� : jhuj ; �ij � t=pn) � exp(�t2)10



for large t (see [26℄), whih implies(2:21) ZSn�1 maxj�N jhuj ; �ij�(d�) � 1plogNpn ;therefore w(KN ) � 2plogN . Note that by Urysohn's inequality and the volumeestimate in Proposition 2.3,(2:22) 3plog(N=n) � w(KN ) � 2plogNfor a random KN . For the mean width of KÆN we use Theorem 2.2. Sine KN ��plog(N=n)=pn�Qn, we have(2:23) hKÆN (�) = k�kKN � 4pnplog(N=n)k�k1therefore(2:24) w(KÆN ) � 4pnplog(N=n) ZSn�1 maxi�n j�ij�(d�) ' plognplog(N=n) :This is again lose to the lower bound, apart from the plogn-term. In partiular,(2:25) w(KN )w(KÆN ) � 5 plogNplog(N=n)plogn;that is KN satis�es an inequality analogous to (2.16). This fat will be later usedin Banah-Mazur distane estimates.Proposition 2.4 If n � n0 and N � n(log n)2 then for a random KN we haveplog(N=n) � w(KN ) � 0plogNand plog(N=n) � w(KÆN ) � 0plognplog(N=n) ;where ; 0 > 0 are absolute onstants. 23. Asymptoti properties of XNTheorem A provides enough information on the geometry of the unit ball ofXN .In fat, KN and KÆN belong to a rather restrited lass of random onvex bodies,and this allows us to determine several asymptoti parameters of the orrespondingspaes.3.1 Unonditionality properties of XNWe shall �rst show that unonditionality properties of XN are of the worst possibleorder as N dereases to n. This fat is expeted in view of well-known results11



from [13℄ and [1℄ about random proportional setions of `m1 whih exhibit the samepathology. The soure of our estimates is Lemma 2.1 whih is the analogue ofKashin's theorem [23℄ in our ontext. However, our information on a random KN ,will allow us to give an estimate for the full range of values of N .Reall that an n-dimensional normed spae Y has 1-unonditional basis if thereexists a basis fe1; : : : ; eng of Y with the property nXi=1 tieiY =  nXi=1 jtijeiYfor every hoie of reals t1; : : : ; tn.Theorem 3.1 If N �  log(Æ�1)n, then XN 2 BN satis�es with probability greaterthan 1� Æ d(XN ; Y ) � pnplog (2N=n)for every n-dimensional normed spae Y with a 1-unonditional basis.Proof: Consider the identity operator I : X�N ! `n2 . Reall (see [29℄) that the1-summing norm �1(T : Y � ! `n2 ) of an operator T : Y � ! `n2 is the minimum ofall positive onstants A with the following property: for every m 2 N and everyhoie of vetors z1; : : : ; zm 2 Y �(3:1) mXj=1 kTzjk2 � A supy2BY mXj=1 jhy; zjij:We will �rst prove the following laim:Claim 1 If x1; : : : ; xN satisfy the onlusion of Lemma 2.1, then �1(I) ' 1.Proof: Let z1; : : : ; zm 2 X�N . Using Lemma 2.1, we write(3:2) mXj=1 kzjk2 � 11 � 1N NXi=1 mXj=1 jhxi; zjij � 11 � supy2KN mXj=1 jhy; zjij;therefore, �1(I) � �11 . On the other hand, by the de�nition of �1(I) we must alsohave(3:3) 1N NXj=1 kxjk2 � �1(I) supy2KN 1N NXj=1 jhy; xjij:From the upper estimate in Lemma 2.1 we get(3:4) supy2KN 1N NXj=1 jhy; xjij � 2 supy2KN kyk2:12



Sine KN � Qn � pnBn2 and kxjk2 = pn for every j = 1; : : : ; N , we onlude thatpn � 2�1(I)pn, whih proves our laim. 2Claim 2 Let Q be a parallelepiped ontained in KÆN . Then,(3:5) jQj1=n � 2�1(I)n :Proof: This fat was proved by Ball [1℄. We inlude the argument for self - om-pleteness. Consider a linear map S : Rn ! Rn whih takes Bn1 onto Q. ApplyingHadamard's inequality, the arithmeti-geometri means inequality and the de�ni-tion of �1(S : `n1 ! `n2 ), we havejQj1=n = 2j detSj1=n � 2 nYi=1 kSeik2!1=n � 2n nXi=1 kSeik2� 2n�1(S : `n1 ! `n2 ) � supy2Bn1 nXi=1 jhy; eiij= 2�1(S : `n1 ! `n2 )=n:Sine �1(S : `n1 ! `n2 ) � kS : `n1 ! X�Nk � �1(I : X�N ! `n2 );the result follows beause S(Bn1) = Q � KÆN . 2We an now omplete the proof of Theorem 3.1. Let Y be an n-dimensionalspae with 1-unonditional basis. If d = d(X�N ; Y ), we may assume that dBY �KÆN � BY . From a result of Losanovskii (see [28, Chapter 3℄), we an �nd aparallelepiped Q � BY with jBY j=jQj � nn=n!. Then, using our two laims we get(3:7) jKÆN j1=n � djBY j1=n � djQj1=n � 0d=n:Now, Lemma 2.4 implies that d(X�N ; Y ) = d � 00pn=plog(2N=n), and the Theo-rem follows by duality. 2Remark Suitable hoie of � > 1 shows the existene of a spae XN with N = �nfor whih d(XN ; Y ) � pn for every spae Y with 1-unonditional basis.Let N � n(logn)2. Theorem 2.2 shows that d(XN ; `n1) � pn=plog(2N=n)for a random XN . Combining this fat with Theorem 3.1, we see that `n1 is thespae with 1-unonditional basis whih is \losest" to XN .Theorem 3.2 If N � n(logn)2, then for a random XN we haved(XN ;U) ' d(XN ; `n1) ' pnplog(N=n) ;where U is the lass of n-dimensional spaes with 1-unonditional basis. 213



3.2 Banah-Mazur distane estimatesPropositions 2.1 and 2.4 indiate that the geometri distane between KN and Bn2and the mean width of KN are simultaneously ontrolled for a random XN . Thisallows us to use the method of random orthogonal fatorizations (whih has itsorigin in work of Tomzak-Jaegermann [36℄, and was later developped in [5℄, [12℄)in order to estimate from above Banah-Mazur distanes from a random XN tovarious lasses of spaes.The main point of the above method is the following result of Benyamini andGordon [5℄, whih makes use of an inequality of Chevet [9℄.Lemma 3.1 Let X and Y be two n-dimensional normed spaes. Then,d(X;Y ) � n�kI : X ! `n2k`(I : `n2 ! Y ) + kI : `n2 ! Y k`(I : `n2 ! X�)���kI : Y ! `n2k`(I : `n2 ! X) + kI : `n2 ! Xk`(I : `n2 ! Y �)�;where  > 0 is an absolute onstant. 2We shall apply this method to estimate the distane d(XN ; X�N). The best knowngeneral estimate on this question is due to Bourgain and Milman [6℄ who haveproved that(3:8) d(X;X�) � n5=6 log� nfor every n-dimensional normed spae X . The proof of (3.8) is again based onrandom orthogonal fatorizations. If X has a 1-unonditional basis or enoughsymmetries, then it gives a muh better bound of the order of pn log� n.As we will see, despite the lak of unonditionality exhibited by XN , we havea bound of this order for d(XN ; X�N ).Theorem 3.3 There exists an absolute onstant C > 0 suh that d(XN ; X�N ) �Cpn logn for any N � n and a random XN .Proof: We apply Lemma 3.1 with X = XN and Y = X�N . Taking into aount(2.15), we get(3:9) d(XN ; X�N ) � kI : XN ! `n2k � kI : `n2 ! XNk � w(KN )w(KÆN ):We �rst onsider the ase N � n2. By Proposition 2.4, for a random KN we have(3:10) w(KN ) � 2plogN; w(KÆN ) � 3plogn=plogN:Sine KN � Qn � pnBn2 , we have(3:11) kI : XN ! `n2k = maxx2KN kxk2 � pn;and, by Proposition 2.1 we have Bn2 � KN for a random KN , therefore(3:12) kI : `n2 ! XNk = maxx2Bn2 kxkKN � �1:14



Combining the above, we get(3:13) d(XN ; X�N ) � Cpn lognfor a random XN , N � n2.If N � n2, we argue in a di�erent way. Sine KN has n� verties and KÆN hasn� faets, with � = � � 2, we an employ a well-known estimate from [16℄ to get(3:14) d(XN ; X�N ) � pn logn:Hene, we an �nd C > 0 suh that, independently of N , d(XN ; X�N ) � Cpn lognfor a random XN . 23.3 Isotropi onstantsReall the de�nition of the isotropi position of a onvex body W in Rn . Thereexists T0 2 GL(n) suh that the body ~W = T0(W ) has volume 1 and satis�es theisotropi ondition(3:15) Z ~W hx; �i2dx = L2Wfor every � 2 Sn�1 (see [25℄ for a detailed aount on this topi). This position isunique up to orthogonal transformations, therefore LW is an invariant of the linearlass of W , and it is alled the isotropi onstant of W . One an hek that theisotropi position of W minimizes the quantity(3:16) 1jT (W )j1+ 2n ZT (W ) kxk22dxover all T 2 GL(n). In partiular,(3:17) nL2W � 1jW j1+ 2n ZW kxk22dx:It is onjetured that there exists an absolute onstant C > 0 suh that LW � C forevery n 2 N and every onvex body W in Rn . The best known general estimate isdue to Bourgain [2℄ who proved that LW �  4pn logn for every symmetri onvexbody W . The onjeture is related to the sliing problem, whih asks if thereexists an absolute onstant  > 0 suh that every onvex body with volume 1 hasa hyperplane setion whose volume exeeds . The onnetion omes from the fatthat(3:18) 1 � LW � jW \ �?j � 2for every � 2 Sn�1 and every isotropi onvex bodyW , where 1; 2 > 0 are absoluteonstants (see [25℄).In this subsetion we give upper bounds for the isotropi onstant of KN andKÆN . We will make use of the following lemma [25℄.15



Lemma 3.2 Let W be a symmetri onvex body in Rn . Then,(3:19) LW � n � 1jW j1+ 1n ZW kxk1dx:Also, LW � d(XW ; Y ) for every Y 2 U . 2Theorem 3.4 Let N � n(logn)2. With probability greater than 1 � e�n we haveLKÆN � C, where C > 0 is an absolute onstant.Proof: By Theorem 2.2, with probability greater than 1 � e�n we have KN ��plog(N=n)=pn�Qn, where  > 0 is an absolute onstant. It follows that(3:20) kxk1 � 1pnplog(N=n)kxkKÆNfor all x 2 Rn , where 1 = 1=. Using Lemma 3.2 we get(3:21) LKÆN � 2pn log(N=n) 1jKÆN j1+ 1n ZKÆN kxkKÆNdx � 2pn log(N=n)jKÆN j1=n :In view of Lemma 2.4, the proof is omplete. 2Remark Junge [22℄ has proved that if X is an n-dimensional subspae of an N -dimensional spae with 1-unonditional basis, thenLBX � plog(2N=n)for some absolute onstant  > 0. This estimate applies to any symmetri onvexbody with N faets. Using this result for B�N when n � N � n(logn)2, we maysummarize as follows:Corollary 3.1 There exist absolute onstants ; C > 0 with the following property:(a) If n � N � n(log n)2, then LKÆN � plog(2N=n) � Cplog logn.(b) If N � n(log n)2, then LKÆN � C for a random KÆN . 2Observe that we have a plog logn estimate for a random X�N 2 B�N , whihholds true in the full range of values of N .We onlude this artile with some simple estimates for the isotropi onstantof KN .Proposition 3.1 Let N � n(logn)2. For a random KN we haveLKN � CminflogN;pngplog(N=n) ;where C > 0 is an absolute onstant.Proof: Sine d(XN ; `n1) ' pn=plog(N=n) for a random XN , the estimate LKN �1pn=plog(N=n) is an immediate onsequene of Lemma 3.2.16



If N is not too big, then one an argue in a di�erent way: onsider the externalvolume ratio evr(W ) = inf�jEj=jW j�1=n of W , where the in�mum is taken over allellipsoids E whih ontain W . Then, we have the following.Claim Let z1; : : : ; zN 2 Rn . If W = of�x1; : : : ;�xNg, then(3:22) LW �  logN evr(W )pnwhere  > 0 is an absolute onstant.Proof: The formulation of the laim is invariant under linear transformations, there-fore we may assume that W is isotropi. Let E be the ellipsoid of minimal volumewhih ontains W . There exists a symmetri and positive T 2 GL(n) suh thatT (E) = Bn2 . Then,(3:23) ZW hTx; xidx = [tr(T )℄L2W � nL2W j detT j1=n:The equality omes from the isotropi ondition (3.15) and the inequality is thearithmeti-geometri means inequality for the eigenvalues of T . On the other hand,ZW hTx; xidx � ZW kTxkWÆdx = ZW maxj�N jhzj ; Txijdx= ZW maxj�N jhTzj ; xijdx:Sine the  1-norm of linear funtionals on W is equivalent to their 1-norm (see[25℄), we get(3:24) ZW maxj�N jhTzj ; xijdx � ( logN)LW �maxj�N kTzjk2:Sine zj 2 E, we have kTzjk2 � 1, j = 1; : : : ; N . It follows that(3:25) nj detT j1=nLW �  logNand the result follows from j detT j�1=njBn2 j1=n = jEj1=n = evr(W ). 2We an now show that LKN � 2plog(N=n): we observe that KN � pnBn2and using the fat that �3plog(N=n)=pn�Qn � KN we get(3:26) evr(KN ) � pn jBn2 j1=njKN j1=n � pnplog(N=n) :Then, our Claim ompletes the proof. 2Remark On the other hand, Junge [22℄ has proved that the unit balls of projetionsofN -dimensional spaes with 1-unonditional basis have isotropi onstant boundedby  logN . SineKN is the unit ball of a projetion of `N1 , we see that LKN �  lognif N � n(logn)2. 17
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