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Abstract

If X is an n-dimensional normed space and d denotes the Banach—Mazur
distance, then d(X, £5,) < en®/8.

1 Introduction

If X, Y are n-dimensional spaces, we define the Banach-Mazur distance d(X,Y)
by
d(X,Y) =inf{||T|||IT7"|: T:X — Y an isomorphism}.

A well-known theorem of F. John [J] asserts that for every n-dimensional normed
space X we have d(X, (%) < /n. This estimate is sharp as it can be seen by
considering X = £ or {}.
Define
R> = max{d(X,¢) : X an n—dimensional space}.

John’s theorem and the multiplicative triangle inequality for d imply the estimates
vn < RY < n. The question of determining the asymptotic behavior of R as n
tends to infinity was raised by A. Pelczynski [P].

S.J. Szarek [Sz.1] considered random spaces and proved that R > cy/nlogn.
That is, RY is not of the order of \/n (£ is not an “asymptotic center” of the
n-th Banach-Mazur compactum).

On the other hand, J. Bourgain and S.J. Szarek [BS] obtained the estimate
R = o(n), and S.J. Szarek — M. Talagrand [ST] improved this result to R% <
en™/8. A modification of their argument led this author [G] to the upper bound
R™ < en®8%9, In this note we report on some further progress in this direction:

Theorem 1. There exists an absolute constant ¢ > 0 such that

R < en®/S,



Our proof follows again the method of Szarek-Talagrand. It depends on ob-
taining a result of the following type:

Proposition: Let X = (R",||.]|) and ¢ € (0,1). Suppose that the ellipsoid of
minimal volume containing the unit ball Bx of X is the Euclidean unit ball D.
Then, we can find vectors z1,...,%m in X with ||z]]| = |z;] =1 and m > (1 —€)n,
such that for any reals t1,...,tn,,
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where c,d are absolute positive constants.

In the next paragraph we prove that this Proposition holds true with d = 1
(the corresponding values of d in [ST], [G] were 1.5, 1.272 respectively). Using this
information one can derive Theorem 1 (the argument is omitted, see [ST] or [Sz.2]
for the details).

We use the standard notation from [MS]. By |.| we denote the Euclidean norm
and also the cardinality of a finite set. The letter ¢ will denote an absolute positive
constant, not necessarily the same in all its occurrences.

2 Proof of the Proposition

The proof is based on the following facts:

(I) John’s theorem and Dvoretzky—Rogers lemma: If the ellipsoid of minimal volume
containing Bx is the Euclidean unit ball D, then

(i) D C VB,

(ii) there exist contact points y1,...,yn, N = On?), ||lyill = |yi| = 1, and
positive real numbers A1,..., Ay such that x =),y Ai(z, ys)y; for every z € R™.
It follows that, given € € (0,1), one can choose z1,...,%s, s > (1 — €)n, among

these contact points y;, so that
Lemma 1. dist(z;, span{z;, j #i}) > e, i=1,...,s.

Lemma 1 was introduced in [ST] in connection with the problem of the distance
to the cube.

(IT) Sauer—Shelah lemma [S], [Sh]: We shall make use of a special case:

Lemma 2. If M is a subset of {—L,L}™, L > 0, and |M| > 2™, then we can
findo C{1,...,m}, |o| > %, such that the restriction map

Py i (6j)j<m = (0j)je0

sends M onto {—L,L}".



An “isomorphic” version of Lemma 2 was the crucial lemma in [ST]. Our con-
tribution consists of the following lemma, which we think is of independent interest.

Lemma 3. Let uy,...,us € R", |u;| < 1. Define the symmetric convez set
E={(5))j<s : | > Sju;l* < 2s}.
i=1
Then, for every € € (0,1) there exists o C {1,...,s} with |o| > (1 —¢€)s, such that
P,(E) D eye [-1,1]7,

where ¢ is an absolute positive constant.

Notation: S={1,...,s}, @ =[-1,1)%, Q, =[-1,1]" if rCS.

k—1 k—1
ap =27 B=) 2"
r=0 r=0
Proof: Consider points of the form (6](-1))j§s, 6](.1) = £1. By the parallelogram law,
1
Avesar_,| S oW =3 Juy < s,
j=1 j=1

Using Markov’s inequality we find M C {—1,1}%, |M*'| > 2°~! such that, for
every (6§1)) € M,

s
1> 65wy < 2s.
j=1
From Lemma 2 we can find oy C S, |o1| > £, such that P, (M') = {-1,1}7.
Since M C ENQ, it follows that
Qs € P (ENQ).

We shall prove by induction the following:

1
(1) For k=1,2,..., wecanfind o, CS,|op| > (1 — 2—k)s, such that

Qak g Po'k (akE mBkQ)

For k = 1 this follows from the previous inclusion.

Inductive step: Consider points of the form 6](.k+1),j <'s, with 61(.1”1) =0if j € oy
and 8\ = £2#/2 if j ¢ 0. We then have

s
k1) :
AV8(6§k+1))j<S|Z5](. )'u,j|2 = Z 2k|uj|2 <s.
=1 j¢or



Observing that the cardinality of the set of (6§-k+1) )j<s is 2°717% and using Markov’s
inequality, we can find M*+t! C [0, x {—2F/2,2F/2}S\7*»] N E with |M**!| >
25-17k1=1 " Then Lemma 2 enables us to find ofy C S\ok, lofq| > 5(s — |oel),
such that

PtTkU‘T;ﬂ (Mk+1) = 0q), X {_2k/27 216/2}0;“-

Since M*t1 C EnN25/2Q), it follows that
Oak X QkQGZ_H - PmcUa,:_H (Qk/zE n QkQ)

Suppose that a € Qg,, b € Q(,;;H. From our inductive hypothesis we can find
W, € BkQU;H such that

(aa wa) € Pa'kUa',:+1 (akE n ﬁkQ)
Define v,p = b — w,. It is clear that v, € (B + 1)QUZ+1 = 2ng;+1, hence

(OU'k ’ ’Ua7b) S PUkUUZ+1 (2k/zE n 2kQ)
Then,
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(G/, wa) + (OUk 9 ’Ua7b)
P‘T’CU‘TI:+1 (OlkE n BkQ) + Pa'kUa',:+1 (Qk/ZE n QkQ)
Prouop,, (k1 E NP1 Q).

N m

It follows that
Qo'kUa'Z+1 g Po'k Ua';;_*_1 (akJrlE N ﬁk+1 Q)

Set 041 = o) Uog, - It is easy to see that [og41] > (1 — 5er)s, and the inductive
step is completed.

From (1) we get

1
(2) For k=1,2,..., wecan find o, C S, |op| > (1 — 2—k)s, such that
2k/2

-1,1]* C P,, (————E).

1117 € P (5 )
So,

1 g,
Pr(E) 2/ op =117, c= V2 -1.

Then we easily pass to the continuous version of the lemma (with a slightly worse
constant c¢). |

Example (S.J. Szarek [Sz.3]). Let n = s+ 1 and u; = %(ei +en),i=1,...,s.
Here {e;}i<n is the canonical orthonormal basis of R"”. Then,

|§:5juj|2 = % {283512 + (i 5;')2} ,
Jj=1 j=1 j=1

4



and this implies that a necessary condition for (J;);<s to be in E is
s s
Z&?Séls and |Z(5j|§2\/§.
j=1 j=1

Given ¢ € (0,1), consider any o C {1,...,s}, |o| = m > (1 —¢)s. Then, a point
(t,t,...,t) is in P,(E) only if we can find (d;);¢, such that

mt? + 25]2 <4s and |mt+26j| < 24/s,
igo i¢o

and using the Cauchy-Schwarz inequality one can see that this is possible only if

1 < eV,
This example shows that Lemma 3 cannot be improved. A version of this lemma
(with a weaker dependence on €) appeared in [G].

Now we can pass to the

Proof of the Proposition. According to Lemma 1, we can choose x1,...,zs €
Bx, with s > (1 — 5)n, such that

dist (x;, span{z;,j #i}) > \/g, i,j=1,...,s.

Then, we can find v; L span{z;, j # i} so that (z;,v;) =1 and |v;| < \/g That
is, there exist vy,...,vs € R™ for which
2 ..
|’U,‘|§ g and (xi,vj):&-j, l,]:1,...,8.
Set u; = \/gvi and apply Lemma 3 to obtain o C {1,...,s}, |o| > (1 — §)s, with
P,(E) 2 evE [1,1°.

Obviously, |o| > (1 — e)n. Now, for any sequence (¢;);e, of reals, one has

Il =) tim, Y sign(t;)v; ).

i€o i€o j€o

Since (cy/esign(t;))jes € Py(E), we can find (0;)<s in E so that §; = ¢/ sign(t;)
for j € 0. Observe that whenever i € o and j ¢ ¢ then (z;,v;) =0, and therefore

(3 i, Y snlt)u; ) = = ( > i Yo

i€o jEo i€o

1 2 -
< — > tiwi| (/21D bjuy
_c\/g|iea l$l|\/;|j1 JU’J|



2/s vn
S |Zti$i| S e |Zti$i|-
€0 [1STes
Choose z;, i =1,...,|0| = m, to be those «; for which j € o, and the Proposition
is proved. O

3 Remark

As was mentioned in [Sz.2], another consequence of the Proposition is the following
“proportional Dvoretzky—Rogers factorization” result (the proof of which is a word-
by-word repetition of the argument given in [ST]):

Theorem 2 If ¢ € (0,1) and X is an n-dimensional normed space, there exist

vectors T1,...,&, € X, m > (1 —€)n, such that for any reals t,. .., t,,
m c m
, o c 12y1/2
é%xm'm < ||z;tﬂ?]||X < 32 (2:1 Iti1°)"/=,
j= j=

where ¢ > 0 is an absolute constant. Equivalently, the formal identity is o : 5" —
(™ can be written asis oo = aof, B: 08 — X, a: X — 07, with ||a|| ||8]] < c¢/e3/2.
The same holds true for iy 2 : * — €3 |
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