
p-CROSS-SECTION BODIESR. J. GARDNER AND A. A. GIANNOPOULOSAbstract. If K is a convex body in En , its cross-section body CK has a radial functionin any direction u 2 Sn�1 equal to the maximal volume of hyperplane sections of Korthogonal to u. A generalization called the p-cross-section body CpK ofK, where p > �1,is introduced. The radial function of CpK in any direction u 2 Sn�1 is the pth mean ofthe volumes of hyperplane sections of K orthogonal to u through points in K. It is shownthat C1K is convex but CpK is generally not convex when p > 1. An inclusion of theform an;qCqK � an;pCpK, where �1 < p < q and the constant an;p is the best possible,is established. This is applied to disprove a conjecture of Makai and Martini.1. IntroductionIf K is a convex body in En , its cross-section body CK has a radial function in any directionu 2 Sn�1 equal to the maximal volume of hyperplane sections of K orthogonal to u. This body,introduced by Martini [20], is just the intersection body IK of K when K is centered (i.e.,symmetric about the origin), and coincides with the projection body �K of K in the planar case.(See Section 2 for de�nitions.) Projection bodies originated in the work of Minkowski, and haveapplications in the local theory of Banach spaces, stochastic geometry, mathematical economics,and other areas. Intersection bodies were de�ned more recently by E. Lutwak, and are a crucialconcept in the solution of the Busemann-Petty problem. See [7] for an overview and references.Thus the cross-section body has an intrinsic interest as a sort of hybrid of the projection andintersection body. Cross-section bodies also enjoy a fascinating connection with Fermi surfaces ofmetals (see [7], p. 308), but they are still somewhat mysterious, despite a recent urry of activity;see, for example, [4], [6], [15], [16], and [22].The purpose of this paper is to continue the investigation of the cross-section body and tointroduce a generalization called the p-cross-section body CpK of K, where p > �1. The radialfunction of CpK in any direction u 2 Sn�1 is the pth mean of the volumes of hyperplane sectionsof K orthogonal to u through points in K. These are natural objects in a�ne geometry. In asense this paper is a continuation of [8], which introduced the pth radial mean body RpK of K,where p > �1. Indeed, the radial function of a suitable dilatate of RpK in any direction u 2 Sn�11991 Mathematics Subject Classi�cation. Primary: 52A20; secondary: 52A40.Key words and phrases. Convex body, cross section, cross-section body, intersection body, projectionbody, geometric tomography.First author supported in part by U.S. National Science Foundation Grant DMS-9802388.1



2 R. J. GARDNER AND A. A. GIANNOPOULOSis the pth mean of the lengths of linear sections of K parallel to u through points in K. Theintroduction to [8] gives a wider perspective on the pth radial mean bodies.These families of bodies de�ned in terms of pth means have a strong unifying e�ect, linkingobjects whose de�nitions make them seem quite unrelated. It was shown in [8] that the bodiesRpK approach the di�erence body of K as p!1 and approach a dilatate of the polar projectionbody of K as p ! �1. Here we see that the bodies CpK approach the cross-section body of Kas p!1 and approach a dilatate of the polar di�erence body of K as p! �1.The main results are as follows. In Section 5 we investigate the convexity of p-cross-sectionbodies. The motivation for this originates in Busemann's theorem, an outcome of Busemann'stheory of area in Finsler spaces, which implies that when K is centered, IK = CK is convex.This is an extremely important result in both geometric tomography and Minkowski geometry(see, for example [7] and [25]). In Theorem 5.2 we show that if K is a convex body in En , thenC1K = I(Rn�1K);and conclude that C1K is convex. (This formula arises from a connection with the polar pthcentroid bodies that appear in a centro-a�ne inequality obtained by Lutwak and Zhang [14]which generalizes the well-known Blaschke-Santal�o inequality for convex bodies symmetric aboutthe origin.) We then use an idea of Brehm [4] together with a result of Cohn [5] on log-concavefunctions to �nd for each n � 4 a computable number pn such that CpK is not convex when Kis an n-dimensional simplex and p > pn. From this we show in Corollary 5.8 that p-cross-sectionbodies are generally not convex when p > 1. Cohn's result is useful again in Section 6, where weobtain the best-possible inclusion an;qCqK � an;pCpK;where �1 < p < q and an;p = �np+ n� pn �1=pfor nonzero p. (This is the counterpart of a similar inclusion between RqK and RpK in [8] thatimplies two powerful a�ne isoperimetric inequalities, the Rogers-Shephard inequality and theZhang projection inequality.) In Corollary 6.4 we deduce that if K has its centroid at the origin,then e�1+1=nIK � CpK;for p > 0, a pleasing complement to the inclusion CK � e1�1=nIK proved in [15]. In Corollary 6.6we show that there is an ellipsoid E such thatE � CK � p12Eand use this fact to disprove Conjecture 7.12 of [15]. Finally, we note that the simple inclusion�K � nCKrepresents a substantial improvement on Theorem 7.1 of [15].We thank Erwin Lutwak and Gaoyong Zhang for permission to include an unpublished resultof theirs (Proposition 3.1).



p-CROSS-SECTION BODIES 32. Definitions and PreliminariesAs usual, Sn�1 denotes the unit sphere, B the unit ball, and o the origin in Euclidean n-spaceEn . By a direction, we mean a unit vector, that is, an element of Sn�1. If u is a direction, wedenote by u? the (n � 1)-dimensional subspace orthogonal to u and by lu the line through theorigin parallel to u. Throughout the paper the symbol � denotes strict inclusion.We write Vk for k-dimensional Lebesgue measure in En , where 1 � k � n, and where weidentify Vk with k-dimensional Hausdor� measure. We also generally write V instead of Vn. Welet �n = V (B) and !n = Vn�1(Sn�1). The notation dz will always mean dVk(z) for the appropriatek with 1 � k � n.We say that a set is centered if it is centrally symmetric, with center at the origin.A convex body is a compact convex set with nonempty interior. If K is a convex body, wewrite hK for its support function. (The excellent treatise of Schneider [24] explains such terms indetail.) The projection body of K is the centered convex body �K de�ned byh�K(u) = Vn�1(Kju?);for each u 2 Sn�1, where Kju? is the orthogonal projection of K on u?. (The support functionof the projection body is also called the brightness function of K.) We denote the polar body ofK by K�, and call ��K, the polar body of �K, the polar projection body of K. The di�erencebody DK of K is de�ned by DK = K + (�K):The support function of DK is the width function wK of K. The polar di�erence body D�K isthe polar body of the di�erence body of K.A set L is star-shaped with respect to the point x if every line through x which meets L doesso in a (possibly degenerate) closed line segment. If L is a compact set that is star-shaped withrespect to x, its radial function �L(x; �) with respect to x is de�ned, for all u 2 Sn�1 such that theline through x parallel to u intersects L, by�L(x; u) = maxfc : x+ cu 2 Lg:The radial function of L with respect to x can be extended to Ennfxg by�L(x; z) = 1r �L(x; u);where z = x + ru, r > 0, u 2 Sn�1. We call this the extended radial function of L with respectto x. When x is the origin, we also denote �L(o; u) by �L(u) and refer to it simply as the radialfunction of L. By a star body we mean a compact set L whose radial function is de�ned andcontinuous. Note that this implies that o 2 L.Let K be a convex body in En . It is not di�cult to verify that�DK(u) = maxx2K �K(x; u) = maxy2u? V1(K \ (lu + y));for u 2 Sn�1.The intersection body of a star body L is the centered body IL de�ned by�IL(u) = Vn�1(L \ u?) = 1n� 1R(�n�1L )(u);



4 R. J. GARDNER AND A. A. GIANNOPOULOSfor each u 2 Sn�1. Here R denotes the spherical Radon transform, de�ned byRf(u) = ZSn�1\u? f(v)dv;for f 2 C(Sn�1). If K is a centered convex body, then IK is convex, by Busemann's theorem(see, for example, [23], Theorem 3.9 or [7], Theorem 8.1.10). The cross-section body of a convexbody K, introduced by Martini [20] (see also [7], Chapter 8), is the centered body CK de�ned by�CK(u) = maxt2R Vn�1(K \ (u? + tu));for each u 2 Sn�1.Part (i) of the following result was proved by Martini [19] (the right-hand inclusion was notedearlier by Petty; see [7], p. 308), while part (ii) was established by Makai and Martini [15],Theorem 3.1.Proposition 2.1. Let K be a convex body in En . Then(i) IK � CK � �K:If K has its centroid at the origin, then(ii) CK � �n+ 1n �n�1 IK:The inclusions in the previous proposition are the best possible, in the following sense. Clearly,CK = IK if K is centered. (It is stated in [17] that CK = IK if and only if K is centered; thisdepends on results in [18].) Martini [19] gives a necessary and su�cient condition for �CK(u) =��K(u) to hold for a given u 2 Sn�1 when n � 3; this condition is satis�ed, in particular, if K isa cylinder with axis in direction u. He concludes that when n � 3, CK = �K if and only if K isan ellipsoid. In [15] (see also [7], Theorem 8.3.5), the authors note that CK = �K when n = 2and prove that the constant in Proposition 2.1(ii) cannot be reduced if and only if K is a cone.A function f with convex support in En is called log concave if log f is concave, that is, iff((1� �)x+ �y) � f(x)1��f(y)�;whenever 0 < � < 1 and x; y are in the support of f .The term absolute constant in statements concerning a convex body K in En means a constantindependent of n and K.Suppose that K is a body in En and L is a family of star bodies in En associated with K. Wesay that the bodies in L are equivalent if there are nonzero absolute constants c0 and c1 such thatc0L � L0 � c1L whenever L;L0 2 L.3. Bodies defined by pth meansSuppose p 6= 0, � is a �nite Borel measure in a set X, and f is a nonnegative �-integrablefunction on X. The pth mean Mpf of f isMpf = � 1�(X) ZX f(x)pd�(x)�1=p :



p-CROSS-SECTION BODIES 5It is easy to show that limp!1Mpf = ess supx2X f(x)and limp!0Mpf = exp� 1�(X) ZX log f(x)d�(x)� :The best reference for integral means is still [10], Chapter 6.Several families of bodies have already been de�ned using pth means. We mention two of thesehere.Let K be a convex body in En . The pth radial mean body RpK of K is de�ned by�RpK(u) = � 1V (K) ZK �K(x; u)pdx�1=p ;for u 2 Sn�1 and nonzero p > �1. We have R1K = DK and((p+ 1)V (K))1=pRpK ! ��K;as p ! �1+; see [8]. This spectrum of bodies therefore connects the di�erence body and thepolar projection body.Suppose that C is a compact set in En with Vn(C) > 0. The polar pth centroid body ��pC of Cis de�ned by ���pC(u) = � 1Vn(C) ZC ju � xjpdx��1=p ;for u 2 Sn�1 and nonzero p > �1. See, for example, [14] (where C is assumed to be a star bodyand where the de�nition contains an extra constant factor) and [7], p. 342. We were informed ofthe next proposition by Erwin Lutwak and Gaoyong Zhang (private communication).Proposition 3.1. Let L be a star body in En . Then� 2(p+ 1)V (L)�1=p ��pL! IL;as p! �1+.Proof. For p > �1, the p-cosine transform Tpf of a function f 2 C(Sn�1) is de�ned byTpf(u) = ZSn�1 f(v)ju � vjpdv;for u 2 Sn�1. It is known that limp!�1+ (p+ 1)2 Tpf = Rf;



6 R. J. GARDNER AND A. A. GIANNOPOULOSfor each f 2 C(Sn�1); see [9] or [11]. Using this fact, a change to spherical polar coordinates,Fubini's theorem, and the continuity of R, we obtain� 2(p+ 1)V (L)��1 ���pL(u)�p = (p+ 1)2 ZL ju � xjpdx= (p+ 1)2(n+ p) ZSn�1 �L(v)n+pju � vjpdv= (p+ 1)2(n+ p)Tp(�n+pL )(u)! 1n� 1R(�n�1L )(u) = �IL(u)as p! �1+.When K is a centered convex body, ��1K = K�, so the spectrum of polar pth centroid bodiesthen connects the polar body and the intersection body.4. The p-cross-section body CpKLet K be a convex body in En . We de�ne the p-cross-section body CpK of K for nonzerop > �1 by �CpK(u) = � 1V (K) ZK Vn�1(K \ (u? + x))pdx�1=p= � 1V (K) ZR Vn�1(K \ (u? + tu))p+1dt�1=p :We can de�ne C0K by�C0K(u) = exp� 1V (K) ZK log Vn�1(K \ (u? + x))dx� ;for each u 2 Sn�1. We can also de�ne C1K by�C1K(u) = maxx2K Vn�1(K \ (u? + x));for each u 2 Sn�1. The bodies CpK then vary continuously with p.In view of the above de�nition, C1K = CK:Moreover, as p! �1+, �CpK(u)! V (K)wK(u) = V (K)hDK(u) = V (K)�D�K(u);so CpK ! V (K)D�Kas p! �1+. The p-cross-section bodies therefore form a spectrum connecting the polar di�erencebody and the cross-section body. That these new bodies are natural objects in a�ne geometry issuggested by the following fact.



p-CROSS-SECTION BODIES 7Theorem 4.1. If � is a nonsingular linear transformation and p > �1, thenCp(�K) = jdet�j��t(CpK);where ��t is the linear transformation whose matrix is the inverse transpose of that of �.Proof. Note that �CpK(u) = � 1V (K) ZK Vn�1((K � x) \ u?)pdx�1=p= � 1V (K) ZK �I(K�x)(u)pdx�1=p :The theorem is now an easy consequence of the known formulasI(�L) = jdet�j��t(IL)(see [12] or [7], Theorem 8.1.6) and ��L(x) = �L(��1x);for x 2 Ennfog (see [7], p. 20), which hold for any star body L.5. Convexity issuesBusemann's theorem shows that when K is centrally symmetric with center x, CK = I(K�x)is convex. Martini [21] asked whether CK is always convex. This was con�rmed by Meyer [22] inthe case n = 3, but Brehm [4] showed that when n � 4, CK is not convex when K is a simplex.Makai and Martini [16] had showed earlier that CK is a parallelepiped when K is a simplex inE3 .We know that C�1K is convex, since D�K is convex. We also know that CpK is an ellipsoid ifK is an ellipsoid, by Theorem 4.1. The results of [8] show that CpK is convex when n = 2 andp > 0, and Meyer's result above shows that CpK is convex when n = 3 and p =1.We shall now prove that C1K is convex. It is convenient to introduce the following dilatateZpK of ��pK. Let �ZpK(u) = �(p+ 1)2 ZK ju � xjpdx��1=p ;for u 2 Sn�1 and nonzero p > �1. By Proposition 3.1, we have ZpK ! IK as p ! �1+, so wecan consistently de�ne Z�1K = IK:Lemma 5.1. Let K be a convex body in En with o 2 intK and let p � �1 be nonzero. Then�Zp(Rn+pK)(u) = � 1V (K) ZK �Zp(K�x)(u)�pdx��1=p ;for u 2 Sn�1.



8 R. J. GARDNER AND A. A. GIANNOPOULOSProof. Suppose that p > �1 is nonzero. Using spherical polar coordinates, we obtain�Zp(Rn+pK)(u)�p = (p+ 1)2 ZRn+pK ju � xjpdx= (p+ 1)2(n+ p) ZSn�1 �Rn+pK(v)n+pju � vjpdv= (p+ 1)2(n+ p)V (K) ZSn�1 ZK �K(x; v)n+pju � vjpdxdv= (p+ 1)2(n+ p)V (K) ZK ZSn�1 �K�x(v)n+pju � vjpdvdx= 1V (K) ZK �Zp(K�x)(u)�pdx;for all u 2 Sn�1. The case p = �1 follows by continuity.Theorem 5.2. Let K be a convex body in En . ThenC1K = I(Rn�1K):Proof. Using Lemma 5.1 with p = �1, we obtain�C1K(u) = 1V (K) ZK Vn�1(K \ (u? + x))dx= 1V (K) ZK �I(K�x)(u)dx= 1V (K) ZK �Z�1(K�x)(u)dx= �Z�1(Rn�1K)(u) = �I(Rn�1K)(u);for all u 2 Sn�1.Corollary 5.3. Let K be a convex body in En . Then C1K is convex.Proof. In [8] it was shown that Rn�1K is a centered convex body, so C1K is convex by Theorem 5.2and Busemann's theorem.The previous theorem can be proved by working directly with the de�nition of C1K, but thefamily fZp(Rn+pK) : p � �1g seems to be of independent interest as a spectrum linking D�Kand C1K.It would be interesting to know whether the bodies Zp(Rn+pK) are convex for all p � �1. Thisis true for p � 1, since Rn+pK is a centered convex body by [8], Theorem 4.3, and ��pK is convexwhen K is a centered convex body and p � 1, by Minkowski's integral inequality. However, itseems to be unknown whether ��pK is convex when K is a centered convex body and �1 < p < 1.In order to state our next theorem, we require some technical lemmas. The following result ofCohn [5] (see also the paper of Borell [3] for a generalization) will be useful now and also in thenext section.



p-CROSS-SECTION BODIES 9Proposition 5.4. Let f be positive and concave on (a; b). Then the functionF (p) = (p+ 1) Z ba f(t)pdtis log concave for p > 0. Moreover, logF is linear in an interval [p0; p1] if and only if thedecreasing rearrangement of f is of the form c(t� a) for some constant c.It will be convenient to let an;p = �np+ n� pn �1=p ;for nonzero p > �1 and an;0 = e(n�1)=n = limp!0 an;p:Lemma 5.5. Let n > 1 and suppose that f is positive and concave on (a; b). LetG(p) = an;p R ba f(t)(n�1)(p+1)dtR ba f(t)n�1dt !1=p ;for p > �1. Then G(q) � G(p) for �1 < p < q, with equality if and only if the decreasingrearrangement of f is of the form c(t� a) for some constant c.Proof. Suppose that 0 < p < q. Then 0 < p=q < 1 and(n� 1)(p+ 1) = (1� pq )(n� 1) + pq (n� 1)(q + 1):Proposition 5.4 implies thatF ((n� 1)(p + 1)) � F (n� 1)1�p=qF ((n� 1)(q + 1))p=q :This is equivalent to(np+ n� p) Z ba f(t)(n�1)(p+1)dt �  n Z ba f(t)n�1dt!1�p=q  (nq + n� q) Z ba f(t)(n�1)(q+1)dt!p=q ;or G(q) � G(p). If �1 < p < q < 0, we have 0 < q=p < 1, and the inequality G(q) � G(p) againresults from interchanging p and q in the above argument. Therefore this inequality holds for�1 < p < q by continuity. The equality conditions follow from those of Proposition 5.4.Lemma 5.6. For n > 2 and p > 0, letg(n; p) = 2p(n� 1)p+1(np+ n� p)B(np+ n� 2p� 1; p+ 2):Then g(n; p)1=p is strictly decreasing for p > 0 andlimp!1 g(n; p)1=p = 2�n� 2n� 1�n�2 :



10 R. J. GARDNER AND A. A. GIANNOPOULOSProof. We haveg(n; p)1=p = 2(n� 1) ((n� 1)(np+ n� p)B(np+ n� 2p� 1; p+ 2))1=p ;where B(�; �) denotes the Beta function. Let f(t) = (tn�2(1� t))1=(n�1). Thenf 00(t) = �(n� 2)(tn�2(1� t))1=(n�1)(n� 1)2t2(1� t)2 ;so f is positive and strictly concave on (0; 1). Thereforean;p  R 10 (tn�2(1� t))p+1dtR 10 tn�2(1� t)dt !1=p = ((n� 1)(np+ n� p)B(np+ n� 2p� 1; p+ 2))1=pis strictly decreasing for p > 0, by Lemma 5.5.The limit of g(n; p)1=p as p!1 is obtained by a routine application of Stirling's formula.Theorem 5.7. Let K be an n-dimensional simplex in En , n � 4. Then CpK, p > 0 is not convexwhen p > pn, where pn is the unique real number for which g(n; pn) = 1.Proof. The proof closely follows that of Brehm [4] for the case p =1, and we shall refer to thatpaper for some details.By Theorem 4.1, we may assume that K = 4n, where 4n is the regular simplex in En of sidelength 1 with centroid at o. Let u1, u2 be unit vectors in the direction of two vertices of K, andlet u3 = (u1 + u2)=ku1 + u2k. For i = 1; 2, a hyperplane orthogonal to ui that intersects 4n doesso in a regular (n� 1)-dimensional simplex of side length s=hn, 0 � s � hn, wherehn = w4n(u1) = �n+ 12n �1=2 :The quantity hn is the width of 4n in a direction orthogonal to one of its facets. From this (orsee [4]) we obtainVn�1(4n�1) = hn�1n� 1Vn�2(4n�2) = 1n� 1 � n2(n� 1)�1=2 Vn�2(4n�2):Using these expressions, we have for p > 0 and i = 1; 2,�Cp4n(ui)p = Z hn0  Vn�1(4n�1)� shn�n�1!p+1 ds= hn Z 10 �Vn�1(4n�1)tn�1�p+1 dt= hnVn�1(4n�1)p+1np+ n� p = �n+ 12n �1=2 1(n� 1)p+1 � n2(n� 1)�(p+1)=2 Vn�2(4n�2)p+1np+ n� p :A hyperplane orthogonal to u3 that intersects 4n does so in a cylinder of height (1� s=wn) andbase a regular (n� 2)-dimensional simplex of side length s=wn, 0 � s � wn, wherewn = w4n(u3) = 12 �n+ 1n� 1�1=2 :



p-CROSS-SECTION BODIES 11Therefore �Cp4n(u3)p = Z wn0  Vn�2(4n�2)� swn�n�2 �1� swn�!p+1 ds= wn Z 10 �Vn�2(4n�2)tn�2(1� t)�p+1 dt= wnVn�2(4n�2)p+1 Z 10 tnp+n�2p�2(1� t)p+1 dt= 12 �n+ 1n� 1�1=2 Vn�2(4n�2)p+1B(np+ n� 2p� 1; p+ 2):From [4], we have ku1 + u2k = 2�n� 12n �1=2 ;and by [7], Lemma 5.1.4 we know that Cp4n is not convex ifku1 + u2k�Cp4n(u3)�1 > �Cp4n(u1)�1 + �Cp4n(u2)�1:Substituting the quantities above into the previous inequality, we conclude that Cp4n is notconvex when g(n; p) < 1. Since g(n; 1) = 2n� 22n� 3 > 1and limn!1 g(n; p)1=p = 2�n� 2n� 1�n�2 < 1when n � 4, the result follows from Lemma 5.6.The proof of the previous theorem also applies to n = 3, but its statement is then vacuous, sinceby Lemma 5.6 we have g(3; p) > 1 for all p > 0. Of course, this must be the case by Meyer's result[22] that CK is convex when n = 3. We �nd by numerical computation, using Mathematica, theapproximate values of pn listed in the right-hand column of the following table.n pn4 9.095 4.6956 3.3717 2.7418 2.37439 2.134710 1.966Corollary 5.8. For p > 1, p-cross-section bodies are generally not convex.



12 R. J. GARDNER AND A. A. GIANNOPOULOSProof. A straightforward application of Stirling's formula shows that for p > 0,limn!1 g(n; p)1=p = 2�(p+ 1)1=p(p+ 1) :It follows from Lemma 5.6 that this limit decreases for p > 0. Since the limit equals 1 when p = 1,we have pn ! 1 as n ! 1. Consequently, if p > 1, there is an n such that pn < p. The resultnow follows from Theorem 5.7.It is possible that CpK is always convex when �1 < p � pn or at least when �1 < p � 1. Weconjecture that CpK is convex for all p > �1 when K is centered or when n = 3.6. Inclusion resultsJensen's inequality states that if Mqf exists, thenMpf �Mqf;for p � q, with equality if and only if f is constant, as in [10], Sections 6.10 and 6.11. It followsthat V (K)�D�K(u) � �CpK(u) � �CqK(u) � �C1K(u) = �CK(u);when �1 < p � q. By the equality conditions for Jensen's inequality and those for the Brunn-Minkowski inequality, equality holds if and only if K is the Minkowski sum of an (n � 1)-dimensional convex body contained in a hyperplane orthogonal to u and a line segment; in short,a (not necessarily right) cylinder with base orthogonal to u. From this we can obtainV (K)D�K � CpK � CqK � CK:The inclusions with possible equality follow at once, but the argument of Martini [20], Theorem 3(see also [7], p. 345 for other references), used to derive the outer strict inclusionV (K)D�K � CK;applies equally well to the other inclusions in view of the equality conditions for the radial functionsgiven above. Indeed, Martini's proof shows that equality of the radial functions cannot hold formore than n directions, and holds for precisely n linearly independent directions if and only if Kis a parallelotope.The constant an;p in the next theorem is that de�ned in the previous section.Theorem 6.1. Let K be a convex body in En and let u 2 Sn�1. If �1 < p < q, then�CK(u) � an;q�CqK(u) � an;p�CpK(u) � nV (K)�D�K(u):In each inequality, equality holds if and only if K is the convex hull of an (n � 1)-dimensionalconvex body contained in a hyperplane orthogonal to u and a line segment; in short, a (notnecessarily right) cone or double cone with base orthogonal to u.



p-CROSS-SECTION BODIES 13Proof. Suppose that f(t) = Vn�1(K \ (u? + tu))1=(n�1)has support [a; b]. Thenan;p�CpK(u) = an;p 1V (K) Z ba Vn�1(K \ (u? + tu))p+1dt!1=p= an;p R ba f(t)(n�1)(p+1)dtR ba f(t)n�1dt !1=p :Since f is positive on (a; b) and concave by the Brunn-Minkowski inequality, the middle inequalityin the statement of the theorem follows from Lemma 5.5. The left- and right-hand inequalitiesare just the limiting cases of the middle inequality as p! �1+ and q !1.The equality conditions follow immediately from those of Lemma 5.5 and those of the Brunn-Minkowski inequality.Corollary 6.2. Let K be a convex body in En . If �1 < p < q, thenCK � an;qCqK � an;pCpK � nV (K)D�K:In each inclusion, equality holds if and only if n = 2 and K is a triangle.Proof. The inclusions and equality condition for n = 2 follow directly from the previous theorem.Martini [20], Theorem 5 proved the outer inclusionCK � nV (K)D�K;showing that if equality of the radial functions holds for a set of directions containing n + 1directions in general position, n � 3, then it holds for precisely n + 1 directions in generalposition, and this occurs if and only if K is a simplex. In particular, the inclusions are strictwhen n � 3. The proof uses only the equality conditions of Theorem 6.1, so it applies also to theother inclusions in the statement of the corollary.Corollary 6.3. Let K be a convex body in En . Then for p > 0,e�1+1=nCK � CpK:Proof. Since an;p decreases for p > 0, Corollary 6.2 implies that CK � an;0CpK.The previous corollary and Proposition 2.1(ii) yield the following result.Corollary 6.4. Let K be a convex body in En with centroid at the origin. Then for p > 0,e�1IK � e�1+1=nIK � CpK � e1�1=nIK � eIK:The previous two corollaries show that for p > 0, all the bodies CpK are equivalent, and whenK has its centroid at the origin, these bodies are also equivalent to IK.Lemma 6.5. Let K be a convex body in En with o 2 intK. ThenV (K)p12 ��2K � CK:



14 R. J. GARDNER AND A. A. GIANNOPOULOSProof. Fix u 2 Sn�1, and suppose thatg(t) = Vn�1(K \ (u? + tu))has support [�a; b]. Then ���2K(u) =  1V (K) Z b�a t2g(t)dt!�1=2and �CK(u) = max g(t) =M , say.Suppose that R b0 g(t)dt = m+, let G be the function such that G(t) = M for 0 � t � m+=Mand G(t) = 0 otherwise, and let h = G� g. Then h(t) � 0 for 0 � t � m+=M and h(t) � 0 form+=M < t � b. Since R b0 h(t)dt = 0, it follows thatZ s0 h(t)dt � 0for all s 2 [0; b]. By Hardy's lemma (see [10], Theorem 399), we haveZ b0 j(t)h(t)dt � 0;for any nonnegative, decreasing, continuous function j on [0; b]. If we take j(t) = b2�t2, 0 � t � b,we get Z b0 t2G(t)dt � Z b0 t2g(t)dt:This yields m3+3M 2 � Z b0 t2g(t)dt:If R 0�a g(t)dt = m�, the same argument givesm3�3M 2 � Z 0�a t2g(t)dt:Therefore Z b�a t2g(t)dt � m3� +m3+3M 2 � (m� +m+)312M 2 = V (K)312M 2 :By the previous paragraph, this is equivalent toV (K)p12 ���2K(u) � �CK(u);which proves the lemma.Fradelizi [6] independently proved the previous lemma under the assumption that K has itscentroid at the origin. More generally, [6], Theorem 9 provides best-possible constants c0;p andc1;p;n such that c0;p��pK � CK � c1;p;n��pK;for K with centroid at the origin and p � 1. (That the inclusions are strict follows from theconditions for equality of the radial functions, given in [6], which allow the arguments of Martini



p-CROSS-SECTION BODIES 15[20], Theorems 3 and 5, to be applied as we did above.) The constant c0;2 = V (K)=p12, soLemma 6.5 is the best possible, and c1;2;n can be evaluated from the formula in [6] to yieldCK � � n3(n+ 2)(n+ 1)2�1=2 V (K)��2K � V (K)��2K;for K with centroid at the origin.The body ��2K is always a centered ellipsoid. (See, for example, [13]; the proof does notrequire the general assumption in that paper that the body contains the origin.) When K doesnot contain the origin in its interior, the inclusion CK � V (K)��2K and the one in Lemma 6.5still hold if we replace ��2K by ��2(K � x), where x is the centroid of K. From these facts weobtain the following corollary.Corollary 6.6. Let K be a convex body in En . There is an ellipsoid E such thatE � CK � p12E:Makai and Martini [15], Conjecture 7.2, second part, conjectured that if K is centrally sym-metric, there is an absolute constant c such that �K � cCK, where c is the appropriate constantfor the cross-polytope. This is false, however. Indeed, Proposition 2.1 and Corollary 6.6 wouldthen imply that E � �K � cp12E:But every centered n-dimensional zonoid is a projection body (see [7], Theorem 4.1.11), so thisin turn would imply that the volume ratio of zonoids are bounded by an absolute constant,contradicting the fact that they can be of order as large as pn. In fact, this conjecture is falseeven for a centered cube. To see this, note that by a result of Ball [1], [2], the maximal centralsection of a centered unit cubeK has volume p2. Since �K = 2K, this implies that if u is parallelto a diagonal of K, we have ��K(u) = pn, while �CK(u) � p2, so ��K(u) � pn=2�CK(u).We also note the following simple result that substantially improves on [15], Theorem 7.1.Theorem 6.7. Let K be a convex body in En . Then�K � nCK:Proof. From the known inclusion DK � nV (K)��K of A. M. Macbeath, in which equality holdsif and only if K is a simplex (see, for example, [8] or [7], p. 345), it follows that�K � nV (K)D�K:Combining this with the inclusion V (K)D�K � CK noted at the beginning of this section, weimmediately obtain the desired inclusion.



16 R. J. GARDNER AND A. A. GIANNOPOULOS7. A variant of CpKSuppose that K is a convex body in En . With notation introduced in Section 2, we de�ne avariant EpK of the p-cross-section body CpK by�EpK(u) = � 1wK(u) ZR Vn�1(K \ (u? + tu))pdt�1=p ;for each u 2 Sn�1 and p � 1. The expression on the right is a pth mean, so by the argumentapplied to CpK at the beginning of Section 6, we haveV (K)D�K = E1K � EpK � EqK � E1K = CK;when 1 < p < q. It can also be shown thatCK � bn;qEqK � bn;pEpK � nV (K)D�K;where bn;p = (np� p+ 1)1=pand 1 < p < q, with equality in each inclusion if and only if n = 2 and K is a triangle. (Insteadof Proposition 5.4, a suitable version of [8], Lemma 5.3 can be applied.)For p > 0, the equation �p+1Ep+1K = (p+ 1)V (K)�D�K�pCpKrelates two of the classes of bodies we have introduced.It is, of course, possible to extend the de�nition of EpK to p > 0. However, EpK is, in general,a nonconvex star body when 0 < p < 1, as can be directly veri�ed when K is a centered square,for example. The above relationships show that E1K is convex and E1K is generally not convex.Calculations for the case when K is an n-dimensional simplex, similar to those performed inSection 5, can be carried out, and leave open the possibility that EpK is convex for all convexbodies K in En when 1 � p � 5. References[1] K. M. Ball, Cube slicing in Rn, Proc. Amer. Math. Soc. 97 (1986), 465{473.[2] K. M. Ball, Volumes of sections of cubes and related problems, Geometric Aspects of FunctionalAnalysis, ed. by J. Lindenstrauss and V. D. Milman, Lecture Notes in Mathematics 1376, Springer,Heidelberg, 1988, 251{260.[3] C. Borell, Complements of Lyapunov's inequality, Math. Ann. 205 (1973), 323{331.[4] U. Brehm, Convex bodies with nonconvex cross-section bodies, Mathematika, to appear.[5] J. H. E. Cohn, Some integral inequalities, Quart. J. Math. Oxford (2) 20 (1969), 347{349.[6] M. Fradelizi, Hyperplane sections of convex bodies in isotropic position, Preprint.[7] R. J. Gardner, Geometric Tomography, Cambridge University Press, New York, 1995.[8] R. J. Gardner and Gaoyong Zhang, A�ne inequalities and radial mean bodies, Amer. J. Math. 120(1998), 493{504.[9] E. Grinberg and Gaoyong Zhang, Convolutions, transforms, and convex bodies, Proc. London Math.Soc., to appear.[10] G. H. Hardy, J. E. Littlewood, and G. P�olya, Inequalities, Cambridge University Press, Cambridge,1959.
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