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entration property on probabilityspa
esA.A. Giannopoulos and V.D. Milman�
1 Introdu
tion1.1 The starting point of this paper is the notion of 
on
entration for metri
probability spa
es. Let (X; d; �) be a metri
 spa
e with metri
 d and diameterdiam(X) � 1, whi
h is also equipped with a Borel probability measure �. We thende�ne the 
on
entration fun
tion (or \isoperimetri
 
onstant") of X by�(X ; ") = 1� inf��(A") : A Borel subset of X;�(A) � 1=2	;where A" = fx 2 X : d(x;A) � "g is the "-extension of A. A family (Xn; dn; �n) ofmetri
 probability spa
es is 
alled a L�evy family if for every " > 0�(Xn; ")! 0as n!1. A natural example of a L�evy family is given by the family (Sn�1; �n; �n),where Sn�1 is the Eu
lidean sphere in Rn , �n is the geodesi
 distan
e, and �n isthe rotationally invariant probability measure on Sn�1. L�evy observed that theisoperimetri
 inequality on Sn+1 implies that�(Sn+1; ") �p�=8 exp(�"2n=2);a fa
t whi
h is 
ru
ial for the proof of Dvoretzky's theorem and many other resultsof the asymptoti
 theory of �nite dimensional normed spa
es. Other importantexamples are given by the family of the orthogonal groups (O(n); �n; �n) equippedwith the Hilbert-S
hmidt metri
 and the Haar probability measure, and all homo-geneous spa
es of O(n) (for example, any family of Stiefel manifolds Wn;kn or anyfamily of Grassman manifolds Gn;kn). Dis
rete examples are given by the fam-ily of spa
es En2 = f�1; 1gn or the groups �n of permutations of f1; : : : ; ng withthe normalized Hamming distan
e and the normalized 
ounting measure. In most�The se
ond named author would like to a
knowledge the hospitality of IHES, wherepart of his 
ontribution to this work was done. Resear
h of the se
ond named author ispartially supported by a BSF grant. 1




ases, new and very interesting te
hniques were invented in order to estimate the
on
entration fun
tion �(X ; "). We refer the reader to [MS℄, [Mi℄ and [T1℄ for adetailed dis
ussion and referen
es.Let (X; d; �) be a metri
 probability spa
e with small 
on
entration fun
tion.Then, every 1-Lips
hitz fun
tion on X 
on
entrates around its L�evy mean (see[MS℄). There exists one value Lf su
h that� (x 2 X : jf(x)� Lf j � ") � 2�(X ; "):This type of 
on
entration implies equivalen
e of Lp-norms for Lips
hitz fun
tionsonX , that is, inverse H�older inequalities of the form kfkLp(X;�) � 
(p; �)kfkL1(X;�),where the order of the 
onstant 
(p; �) as p ! 1 re
e
ts the degree of 
on
entra-tion.Su
h inverse H�older inequalities appear often in the 
ontext of probabilityspa
es. For example, linear fun
tionals on a 
onvex body K with volume 1 satisfythe inequality kfkLp(K;dx) � 
pkfkL1(K;dx)where 
 > 0 is an absolute 
onstant [GM℄. More generally, Bourgain [B1℄ has shownthat if f : K ! R is a polynomial of degree m, then kfkp � 
(p;m)kfk2 for everyp > 2, where 
(p;m) depends only on p and on the degree m of f . Talagrand [T2℄showed that an analogous statement holds true for the 
lass of 
onvex fun
tionson En2 . In view of these results, we would like to dis
uss the level of 
on
entrationwith respe
t to a given 
lass of fun
tions.1.2 A typi
al example of 
on
entration expressed by equivalen
e of Lp-norms isthe 
lassi
al Khint
hine inequality: There is an absolute 
onstant 
 > 0 su
h thatfor every n 2 N, p > 2, and a1; : : : ; an 2 R we have0�Ave �� nXj=1�aj��p1A1=p � 
pp0� mXj=1 a2j1A1=2 � 
p2pp Ave �� nXj=1�aj��:For the best 
onstants, see [Sz℄ and [H℄. By expanding exp(x2) into power series,we may equivalently state Khint
hine's inequality in the formkh"; yikL 2(En2 ;�) � 
kh"; yikL1(En2 ;�); y 2 Rn ;where En2 = f�1; 1gn with the normalized 
ounting measure �, andkfkL �(
;�) = inf�� > 0 : Z
 exp�(jf j=�)��d� � 2�for every probability spa
e (
; �) and � > 0.The following fa
t was observed in [S
℄ (see also [BLM℄ for an extension from the
lass of linear fun
tionals to arbitrary norms, in the spirit of Kahane's inequality):2



Fa
t. There exist 
onstants C > 1 and 
 > 0 su
h that: for every n 2 N andm � Cn, a random subset A of En2 with 
ardinality jAj = m satis�eskh"; yikL2(A;�(A)) � 
kh"; yikL1(A;�(A));for every y 2 Rn , where �(A) is the normalized 
ounting measure on A.It is not 
lear if C may be repla
ed by any � > 1, and 
 by a 
onstant 
(�)respe
tively. However, the fa
t shows that very small sets of n-tuples of signsmay repla
e En2 in the Khint
hine inequality. We are thus lead to the followingde�nition:De�nition. Let p > 1 and M � 1. A �nite set S � Rn will be 
alled a (p;M)-distribution (for linear fun
tionals) ifkhx; yikLp(S;�(S)) �Mkhx; yikL1(S;�(S)); y 2 Rn :Analogously, S will be 
alled a ( �;M)-distribution ifkhx; yikL �(S;�(S)) �Mkhx; yikL1(S;�(S)); y 2 Rn :This is equivalent to the fa
t that S is a (p;Mp)-distribution for every p � 1, withMp � 
Mp1=� for an absolute 
onstant 
 > 0. We will often talk about a p or �-distribution without spe
ifying the 
onstant M , but the estimate for M will be
lear in every 
ase.In view of these de�nitions, the question whi
h arises is to determine the min-imal 
ardinality m(p; n) (m(�; n) respe
tively) for whi
h a random subset A � En2with 
ardinality m � m(p; n) (or, m � m(�; n)) forms a (p;M)-distribution (or,( �;M) distribution) with a \good" 
onstant M � 1, while at the same time Arepresents the spa
e in the sense that khx; yikL1(A;�(A)) ' khx; yikL1(En2 ;�) for everyy 2 Rn . Known results (see [BGN℄, [BDGJN℄ and [S
℄) show that one 
an takeM ' pp and m(p; n) ' np=2 if p � 2, and m(p; n) ' n if 1 � p � 2. This estimateis optimal.1.3 The purpose of this paper is to study the level of 
on
entration with respe
tto the 
lass of linear fun
tionals by measuring the size of minimal well-distributedsubstru
tures of 
ertain probability spa
es. These substru
tures should exhibita high level of 
on
entration and, at the same time, they should represent theoriginal spa
e in an essential way. Our setting will be an arbitrary log-
on
aveBorel probability measure � on Rn . Re
all that � is 
alled log-
on
ave if, for all
ompa
t sets A, B and all � 2 (0; 1) we have �(�A + (1� �)B) � �(A)��(B)1��.We say that � is isotropi
 if ZRnhx; yi2�(dx) = L2�for every y 2 Sn�1. We will say that � satis�es a  �-estimate with 
onstant C� � 1if khx; yikL �(�) � C�L�3



for every y 2 Sn�1. From Borell's lemma (see [MS℄, Appendix III) we getkhx; yikL 1(�) � C1khx; yikL1(�)for every y 2 Sn�1 and every log-
on
ave probability measure � on Rn , whereC1 � 1 is an absolute 
onstant. That is, all log-
on
ave probability measuressatisfy a  1-estimate with some uniformly bounded 
onstant.With these de�nitions, the general formulation of our problem is the following:Question. Let � be an isotropi
 log-
on
ave Borel probability measure on Rn ,whi
h satis�es a  �-estimate with 
onstant C� � 1 for some � 2 [1; 2℄. Find theminimal value of m 2 N for whi
h a random S � Rn of 
ardinality jSj = m is ap-distribution or  �-distribution with a small 
onstant M � 1, and represents � inthe sense that khx; yikL1(�) ' khx; yikL1(S;�(S)) for all y 2 Rn .Note that the isotropi
 
ondition about � is not so restri
tive: every log-
on
aveprobability measure � whose support spans Rn has an image measure T�1(�)(A) :=�(T�1(A)), T 2 SL(n), whi
h is isotropi
 and log-
on
ave. Then, every p or �-distribution of points with respe
t to T�1(�) 
orresponds to an equally gooddistribution of points with respe
t to �.In Se
tion 2 we study the question in full generality. Our main general resultis the following:Theorem A. Let 0 < p < 1 and Æ 2 (0; 1). There exists n0(Æ) su
h that, forevery n � n0, every m � m0 and every isotropi
 log-
on
ave probability measure �on Rn , m random points x1; : : : ; xm 2 (Rn ;B; �) form with probability greater than1� Æ a (p;M)-distribution representing �, where M = O(p) as p!1, andm0 = m0(p; Æ) = 8>>><>>>: 
(p; Æ)n , if 0 < p � 1
(p; Æ)n(log n)p , if 1 < p � 2
(p; Æ)hp;n(n logn)p=2 , if p > 2.The 
onstant hp;n is bounded by minf(p� 2)�1; logng, and this implies 
ontinuityof m0(p; Æ) at p = 2.One 
an also show that any exponential number of points is enough for a good 1-distribution:Theorem B. Let � be an isotropi
 log-
on
ave probability measure on Rn , and
 2 (0; 1). If n � n0(
) and m � exp(
n), then m points x1; : : : ; xm, 
hosenindependently with respe
t to �, form with probability > 1�Æ a ( 1;M)-distributionrepresenting �, where M � 
(Æ)=p
.A typi
al example of log-
on
ave probability measure arises if we 
onsider a
onvex body K of volume 1 in Rn . The Brunn-Minkowski inequality implies thatthe restri
tion �K of the Lebesgue measure onto K is log-
on
ave, thereforekhx; yikL 1(K;dx) � 
0khx; yikL1(K;dx)4



for every y 2 Rn , where 
0 > 0 is an absolute 
onstant. The  1-estimate is bestpossible in full generality, but there exist bodies K whi
h allow even a  2-estimate(the 
ube and the ball are su
h examples).In this situation, some of the 
ases were previously studied: the values 0 < p � 1
an be treated with the methods developped in [BLM℄, while the 
ase p = 2 wasstudied by Bourgain [B2℄ (see also [R℄). Our general approa
h in Se
tion 2 uses a
ombination of these arguments: in parti
ular, Bourgain's lemma 2:4 plays the keyrole.1.4 In Se
tion 3 we follow the same geometri
 approa
h for En2 . The geometryinvolved is simpler here: the main advantages are the  2-estimate for linear fun
-tionals (whi
h 
omes from Khint
hine's inequality), and the fa
t that all verti
esof the 
ube are at distan
e pn from the origin. This allows us to re
over all knownresults on p-distributions, as well as optimal estimates for the minimal 
ardinalityof  �-distributions. The following statement is true:Theorem C. Let 0 < p <1 and Æ 2 (0; 1). There exists n0(Æ) su
h that, for everyn � n0 a subset A � En2 with m � m0 elements forms with probability greater than1� Æ a p-distribution representing En2 , wherem0 = m0(p; Æ) = 8<: 
(p; Æ)n , if 0 < p � 2
(p; Æ)np=2 , if p > 2.(see also [S
℄, [BGN℄, [BDGJN℄).Moreover, if 
 > 0, � 2 [1; 2℄, and n � n0(
; Æ), then a subset A of En2 withjAj = m � exp(
n�=2) satis�es with probability greater than 1� Ækh"; yikL �(A) � C(Æ)
1=�for every y 2 Sn�1.Observe the phase transition at p = 2: For p 2 (0; 2℄ we get p-distributions with
ardinality ' n (in the general 
ase, up to a logarithmi
 term) while for p > 2,minimal p-distributions have 
ardinality ' np=2. The same phenomenon appearsin several other questions of this nature. For example, in Se
tion 4 we show that ifN � 
np� , p� = maxf1; p=2g, and feigi�N is an orthonormal basis of RN , then fora random En 2 GN;n the set fpNPEn(ei) : i = 1; : : : ; Ng forms a p-distributionon En with M � 
pp, p � 1. All these examples are 
onne
ted with Dvoretzky'stheorem for `Np spa
es, where a similar behavior is observed. The pre
ise relationwill be dis
ussed throughout the paper.Finally, in Se
tion 5 we study a di�erent question on random points: we �x
 2 (0; 1) and show that m = exp(
n) points whi
h are 
hosen uniformly andindependently from a 
onvex body K with 
entroid at the origin in Rn satisfy withprobability greater than 1� ÆA = 
ofx1; : : : ; xmg � 
(Æ)
K:5



That is, any exponential number of random points from a 
onvex body K 
reatesa body whi
h \represents" K in the distan
e sense. This question is naturally
onne
ted with the dis
ussion in Se
tion 2 (in parti
ular, with Theorem B): every
onvex body K 
reates a log-
on
ave measure �K , and a random set of exp(
n)points 
hosen from K 
reates a body equivalent to K and, at the same time, formsa  1-distribution for �K .1.5We assume that Rn is equipped with a Eu
lidean stru
ture h�; �i and denotethe 
orresponding Eu
lidean norm by j � j. Dn will be the Eu
lidean unit ball andSn�1 will be the unit sphere. We also write j � j for the volume (Lebesgue measure)in Rn , and for the 
ardinality of a �nite set. The letters 
; 
0; 
1; 
2 et
. will denoteabsolute positive 
onstants whi
h may 
hange from line to line.2 Log-
on
ave probability measures satisfying a �-estimateIn this se
tion we study the 
ase of a log-
on
ave Borel probability measure � onRn , whi
h satis�es the isotropi
 
onditionZRnhx; yi2�(dx) = L2� ; y 2 Sn�1and a  �-estimate with 
onstant C� � 1 for some � 2 [1; 2℄, i.e.ZRn exp�(jhx; yij=C�L�)�� � 2for every y 2 Sn�1. Note that, by Borell's lemma, � always satis�es a  1-estimatewith an absolute 
onstant C1. We �rst 
olle
t some Lemmas about measures withthese properties. The proofs are adaptations of analogous results for isotropi

onvex bodies.2.1 Lemma. There exist absolute 
onstants 
1; 
2 > 0 su
h that
1L� � �Z jhx; yijp�(dx)�1=p � 
2C�maxf1; p1=�gL�;for every p > 0 and y 2 Sn�1.Proof: The right hand side inequality is a dire
t 
onsequen
e of the inequalityex > xk=k!, x > 0, k = 1; 2; : : :. For the left hand side inequality, we use the fa
tthat, by a result of Latala [L℄, there exists an absolute 
onstant 
1 > 0 su
h that
1L� = 
1khx; yikL2(�) � khx; yikLp(�)for every y 2 Rn and 0 < p < 2. 2 6



The fun
tion x 7! jxj satis�es a better estimate:2.2. Lemma. There exists an absolute 
onstant A > 0 su
h thatZnL�Dn exp(jxj2=A2nL2�)�(dx) � 2:Proof: We follow Alesker's argument from [A℄. Sin
e � is log-
on
ave, it satis�es a 1-estimate with an absolute 
onstant 
 > 0. By Lemma 2.1, this implies thatZRn jhx; yijp�(dx) � 
p1ppLp�for every y 2 Sn�1 and p � 1. Integrating this inequality with respe
t to y, weobtain �ZRn jxjp�(dx)�1=p � 
2pnL�rp�1 + pn�:This means that, for p � n, we have�ZRn jxjp�(dx)�1=p � 
3pppnL�:On the other hand, if p > n we obviously have ZnL�Dn jxjp�(dx)!1=p � nL� � pppnL�:It follows that there is a 
onstant A > 0 su
h thatZnL�Dn �ejxj2=A2nL2� � 1��(dx) = 1Xp=1 ZnL�Dn � jxjApnL��2p� 1Xp=1 ppp! �maxf1; 
3gA �2p � 1: 2We will also make use of the following simple lemma:2.3. Lemma. Let 0 < p � � and y 2 Sn�1. Then,kjhx; yijp=Lp�kL 1(�) � 2Cp�:Proof: For every s � 1 we haveZRn jhx; yij�s(C�L�)�s�(dx) � 2�(s+ 1):7



Now, if 0 < p � �,ZRn exp� jhx; yijp2Cp�Lp� ��(dx) = 1 + 1Xk=1 1k! ZRn jhx; yijpk2kCpk� Lpk� �(dx)� 1 + 1Xk=1 �(pk� + 1)k!2k� 1 + 1Xk=1 12k = 2sin
e �(pk� + 1) � k!. 2In what follows, 
�(Æ) denotes a positive 
onstant bounded by 
�log(2=Æ)�1=� forÆ 2 (0; 1), where 
 > 0 is an absolute 
onstant, not ne
essarily the same in ea
ho

urren
e.2.4. Lemma. [B2℄ Let Æ 2 (0; 1), and x1; : : : ; xm be random points in (Rn ;B; �).If m � 
Æ exp(pn), then, with probability greater than 1� Æ we havejxj j � 
2(Æ)pnL�plogmfor all j 2 f1; : : : ;mg, andjXi2E xij � 
2(Æ)L�plogmpjEjpn+ 
�(Æ)C�L�(logm)1=�jEjfor all E � f1; : : : ;mg.Proof: Sin
e � is isotropi
, we haveZRn jxj2�(dx) = nL2�:From Markov's inequality we get �(4pnL�Dn) � 15=16, and Borell's lemma showsthat �(4tpnL�Dn) > 1 � 
 exp(�t) for every t > 1. It follows that, if m �
Æ exp(pn), then m random points x1; : : : ; xm satisfy with probability > 1� Æ4xi 2 nL�Dn; i = 1; : : : ;m:Observe now thatProb �x =2 AtpnL�Dn j x 2 nL�Dn� � 2e�t2=�(nL�Dn) � 
e�t2sin
e �(nL�Dn) � 
0�(4pnL�Dn) for an absolute 
onstant 
0 > 0 (if pn � 4 thisis 
lear, otherwise it follows by the log-
on
avity of �). Sin
e the xj 's are 
hosenindependently, we 
on
lude that if t � 
2(Æ)plogm, thenProb �8j � m;xj 2 AtpnL�Dn j 8j � m;xj 2 nL�Dn� > 1� Æ4 :8



Hen
e, with probability > 1� Æ2 we havejxj j � 
2(Æ)pnL�plogm; j = 1; : : : ;m:Let E � f1; : : : ;mg. We writejXi2E xij2 = Xi2E jxij2 + Xi 6=j2Ehxi; xji� 
22(Æ)L2�n(logm)jEj+ Xi 6=j2Ehxi; xji:If Æj takes the values 0 or 1 with probability 1=2, thenE~Æ h mXi=1 Æixi; mXj=1(1� Æj)xji = 14 Xi 6=j2Ehxi; xji:Therefore, we 
an �nd E1; E2 � E with jE1j � jE2j, E1 \ E2 = ;, E1 [ E2 = E,su
h that Xi 6=j2Ehxi; xji � 4hXi2E1 xi; Xj2E2 xji� 4 Xi2E1 jhxi; Xj2E2 xjij:Rewrite this last sum in the formXi2E1 jhxi; Xj2E2 xjij = j Xj2E2 xj jXi2E1 jhxi; yE2ij;where yE2 = Pj2E2 xjjPj2E2 xj j ; jyE2 j = 1:Observe that the set fxigi2E1 is independent from yE2 , sin
e E1 \E2 = ;. If we �xjE1j = k, the number of possible E1's is bounded by m
k, therefore, the  1-estimateon linear fun
tionals implies thatProb ~x 2 (Rn )m : 9E1 � E; jE1j = k;Xi2E1 jhxi; yE2ij > tkC�L�! < m
ke�
kt� :This probability will be smaller than Æ=2m if t ' (logm)1=�. Doing this for k =1; : : : ;m, we see that (x1; : : : ; xm) 2 (Rn )m satis�es with probability greater than1� Æ2 the following: For every E � f1; : : : ;mg,Xi 6=j2Ehxi; xji � 
�(Æ)C�L�(logm)1=� maxE1�EfjE1j �� Xj2EnE1 xj��g:9



To �nish the proof, �x s 2 N and writeAs = maxjF j�s jXj2F xj j:We have jXi2E xij2 � 
22(Æ)L2�n(logm)jEj+ 
�(Æ)C�L�(logm)1=�jEjAjEj;therefore A2jEj � 
22(Æ)L2�n(logm)jEj+ 
�(Æ)C�L�(logm)1=�jEjAjEj;whi
h impliesAjEj � 
2(Æ)L�pnplogmpjEj+ 
�(Æ)C�L�(logm)1=�jEj: 2Remark: Borell's lemma shows that, if we do not want to impose any restri
tion onm, then m random points x1; : : : ; xm 2 (Rn ;B; �) satisfy with probability greaterthan 1� Æ the inequalityjxj j � 
1(Æ)pnL� logm; j = 1; : : : ;m:Then, the proof of Lemma 2.4 givesjXi2E xij � 
2(Æ)L� logmpjEjpn+ 
�(Æ)C�L�(logm)1=�jEjfor all E � f1; : : : ;mg. This observation will be useful for the proof of Theorem2.14.Our tool from probability theory will be several versions of Bernstein's inequality:2.5 Lemma. [BLM℄ Let ffjgj�m be independent random variables with mean 0on some probability spa
e (
; �).(i) If kfjk1 � 2 and kfjk1 � B, then, for every " 2 (0; 1),Prob0�j mXj=1 fj j > "m1A � 2 exp(�"2m=8B):(ii) If kfjkL 1(�) � A, j = 1; : : : ;m, then, for every 0 < " < 4A,Prob0��� mXj=1 fj ��� "m1A � 2 exp(�"2m=16A2):10



(iii) If kfjkL 2(�) � A, j = 1; : : : ;m, then, for every " > 0,Prob0��� mXj=1 fj ��� "m1A � 2 exp(�"2m=8A2): 2We �rst study the 
ardinality of p-distributed sets for small values of p > 0:2.6. Proposition. Let � be an isotropi
 log-
on
ave probability measure on Rn ,whi
h satis�es a  �-estimate with 
onstant C� for some � 2 [1; 2℄. Let Æ 2 (0; 1)and 0 < p � �. Assume that m � 
1(Æ)p�2C2p� n. Then, m random pointsx1; : : : ; xm 2 (Rn ;B; �) satisfy with probability greater than 1� Æ�1L� � 0� 1m mXj=1 jhxj ; yijp1A1=p � �2L�;for all y 2 Sn�1, where �1;�2 > 0 are absolute 
onstants.Proof: Let � 2 (0; 1) to be determined later, and 
onsider a �-net N for Sn�1 with
ardinality jN j � (3=�)n.Fix y 2 N and de�ne f(x) = jhx; yijpLp� :We set fj(x1; : : : ; xm) = f(xj) � R f on (Rn )m. Sin
e R f � 1, Lemma 2:3 showsthat Efj = 0 ; kfjkL 1 � 4Cp�:Hen
e, Lemma 2:5(ii) implies thatProb0��� 1m mXj=1 jhxj ; yijp � Lp� Z f ��� "Lp�1A � 2 exp(�"2m=
C2p� );if 0 < " < 1. This probability is smaller than Æ=jN j, provided thatm � 
1(Æ; �)"�2C2p� n:Then, 
hoosing " = 
p1p=4, for all y 2 N we have
p1(1� p=4)Lp� � 1m mXj=1 jhxj ; yijp � (1 + 
p1p=4)Lp�;whi
h implies 
3L� � 0� 1m mXj=1 jhxj ; yijp1A1=p � 
4L�:11



To 
omplete the proof, we 
hoose � = 
Æ and employ a standard su

essive approx-imation argument. 22.7. Corollary. Let � be an isotropi
 log-
on
ave probability measure on Rn ,Æ 2 (0; 1) and p � 1. If m � 
1(Æ)n, then m random points x1; : : : ; xm 2 (Rn ;B; �)satisfy with probability greater than 1� Æ�1L� � 0� 1m mXj=1 jhxj ; yijp1A1=p ;for all y 2 Sn�1.Proof: Obvious from Proposition 2:6, sin
e every log-
on
ave probability measure �satis�es a  1-estimate with a uniformly bounded 
onstant C1 � 1, and the quantity0� 1m mXj=1 jhxj ; yijp1A1=pis an in
reasing fun
tion of p. 2Proposition 2:6 settles our Question for 0 < p � 1: the minimal 
ardinality ofa random p-distribution for � (0 < p � 1) is proportional to n. Also, by Corollary2:7 we only need to 
onsider upper bounds when we ask about p-distributions withp � 1: the lower bound holds with probability > 1� Æ if m � 
1(Æ)n.In order to examine the 
ase � < p, we follow Bourgain's argument:2.8. Lemma. Let � be an isotropi
 log-
on
ave probability measure on Rn whi
hsatis�es a  �-estimate with 
onstant C� for some � 2 [1; 2℄, and p � 1. FixÆ 2 (0; 1) and B > 0. If m � 
1(Æ)n( B
1L� )p, then m random points x1; : : : ; xmsatisfy with probability greater than 1� Æ0� 1m Xfj:jhxj ;yij�Bg jhxj ; yijp1A1=p � 2
2p1=�C�L�for all y 2 Sn�1.Proof: Let � 2 (0; 1), to be determined. There exists a �-net N for Sn�1 with
ardinality jN j � (3=�)n. Fix y 2 N and let Ip(y) = (R jhz; yijp�(dz))1=p. Wede�ne f(x) = 1Ipp (y) jhx; yijp�fz:jhz;yij�Bg(x)on Rn , and set fj(x1; : : : ; xm) = f(xj) � R f on (Rn )m. Sin
e Ip(y) � 
1L�, wehave kfjk1 � 2 ; Efj = 0 ; kfjk1 � � B
1L��p :12



Applying Lemma 2:5(i) we get: for every " 2 (0; 1),Prob0� 1m mXj=1 f(xj)� Z f > "1A � exp ��"2m=8(B=
1L�)p� < Æ=jN j;provided that m � 
1(Æ; �)"�2n� B
1L��p. This means that with probability greaterthan 1� Æ, 0� 1m Xfj:jhxj ;yij�Bg jhxj ; yijp1A1=p � (1 + ")1=pIp(y)for all y 2 N . Choosing " = � = 1=4, using su

essive approximation for anarbitrary y 2 Sn�1, and taking into a

ount Lemma 2:1 we 
on
lude the proof. 22.9. Lemma. Let � be an isotropi
 log-
on
ave probability measure on Rn whi
hsatis�es a  �-estimate with 
onstant C�, let Æ 2 (0; 1), and x1; : : : ; xm satisfyingLemma 2:4. If B � 4
�(Æ)C�L�(logm)1=�, thenXfj:jhxj ;yij>Bg jhxj ; yijp �8>>>><>>>>: 
22(Æ)hpBp�2L2�n logm , if 0 < p < 2
p2(Æ)hpLp�(n logm)p=2 , if p > 2
L2�n logm logn , if p = 2.The 
onstant hp satis�es 1 � hp � maxf2;minfjp� 2j�1; logngg.Proof: For every � � �0 = 4
�(Æ)C�L�(logm)1=� and y 2 Sn�1, we de�neE�(y) = fj � m : jhxj ; yij > �g:We 
an estimate the size of E�(y) as follows:�jE� j � Xj2E� jhxj ; yij � max"j=�1;j2E� jX "jxj j� 2 maxF�E� jXj2F xj j� 2
2(Æ)L�plogmpnqjE� j+ 2
�(Æ)C�L�(logm)1=�jE� j� 2
2(Æ)L�plogmpnqjE� j+ �2 jE� j;from where we dedu
e that �2jE� j � 
22(Æ)L2�n logm:13



Note that this estimate is independent from the 
hoi
e of y 2 Sn�1. It follows that,if B � �0 thenXfj:jhxj ;yij>Bg jhxj ; yijp = k0�1Xk=0 Xfj:2kB<jhxj;yij�2k+1Bg jhxj ; yijp� k0�1Xk=0 jE2kB j(2k+1B)p� 
22(Æ)L2�n(logm) k0�1Xk=0 (2k+1B)p(2kB)2� 2p
22(Æ)L2�n(logm)Bp�2 k0�1Xk=0 2(p�2)k;where k0 is the least integer for whi
h 
2(Æ)pnL�plogm � 2k0B. Sin
e B �4
�(Æ)C�L�plogm, we have k0 � 
 logn. We now 
on
lude the proof by distin-guishing 
ases about p:If 0 < p < 2, the result follows withhp = k0�1Xk=0 2(p�2)k:If p > 2, then setting �2 = 
22(Æ)L2�n logm we haveXfj:jhxj ;yij>Bg jhxj ; yijp � 2p�2Bp�2 2k0(p�2)2p�2 � 1� 2p�22p�2 � 1(2�)2Bp�2 �2�B �p�2=: hp(2�)p: 2Our �rst result 
overs the 
ase � < p < 2, where � satis�es a  �-estimate:2.10. Proposition. Let � be an isotropi
 log-
on
ave probability measure whi
hsatis�es a  �-estimate with 
onstant C�, and � < p < 2. Assume that m �
31(Æ)hpCp�n(logn)p=�. Then, m random points x1; : : : ; xm satisfy with probability> 1� Æ 0� 1m mXj=1 jhxj ; yijp1A1=p � 3L�for all y 2 Sn�1. 14



Proof: Choose B = 4
�(Æ)C�L�(logm)1=�. From Lemma 2:8 we know that if m �
1(Æ)hpCp�n(logm)p=�, then m random points x1; : : : ; xm satisfy with probabilitygreater than 1� Æ 0� 1m Xfj:jhxj ;yij�Bg jhxj ; yijp1A1=p � 2L�for all y 2 Sn�1. On the other hand, from Lemma 2:9 we have1m Xfj:jhxj ;yij>Bg jhxj ; yijp � 1m
22(Æ)hp
p�2� (Æ)Cp�2� Lp�2K (logn) p�2� L2�n logm� (logn)��2� Lp� � Lp�;for suitably 
hosen 
3(Æ). Adding, we see that0� 1m mXj=1 jhxj ; yijp1A1=p � 3L�for all y 2 Sn�1. 2We now 
ome to the 
ase p = 2:2.11. Proposition. Let � be an isotropi
 log-
on
ave probability measure on Rn .If m � 
21(Æ)n(log n)2, then m random points x1; : : : ; xm satisfy with probability> 1� Æ 
1L� � 0� 1m mXj=1hxj ; yi21A1=2 � 
2L�for all y 2 Sn�1. 2Proof: We 
hoose B = 4
2(Æ)L� logm, and 
ombine the estimates from Lemmas2:8 and 2:9. 2Remark: In this 
ase (p = 2) we 
an a
tually repla
e 
1 and 
2 by 1 � ", 1 + "respe
tively, if we 
hoose m � 
(Æ)"�2n(log n)2 and repeat the argument in asuitable way (this is the question originally studied by Bourgain [B2℄ and Rudelson[R℄ for 
onvex bodies: note that Bourgain's method 
ombined with Lemma 2:2 isenough for Rudelson's estimate m = 
("; Æ)n(logn)2).The 
ase p > 2 
an be treated in a similar way. The estimate in Lemma 2:9for
es us to 
hoose m � 
p2(Æ)hp(n logn)p=2, and if B = 4
2(Æ)L� logm, then thehypotheses of Lemma 2:8 are satis�ed, provided that n � n0. Therefore, we havethe following result about the minimal 
ardinality of a p-distribution of points for�: 15



2.12. Proposition. Let � be an isotropi
 log-
on
ave probability measure on Rnwhi
h satis�es a  �-estimate with 
onstant C� for some � 2 [1; 2℄, and p > 2.If 
Æ exp(pn) � m � 
p2(Æ)hp(n logn)p=2, then m random points x1; : : : ; xm 2(Rn ;B; �) satisfy with probability > 1� Æ
1L� � 0� 1m mXj=1 jhxj ; yijp1A1=p � 
2C�p1=�L�: 2Remark: One may interpret all these results as giving random embeddings of `n2into `Np , where N ' (n logn)p=2 when p > 2. The pre
ision of Dvoretzky's theoremis somehow lost: the subspa
es are p1=�-isomorphi
 to `n2 and the dependen
e onn is worse be
ause of the logarithmi
 term. But, the notion of \randomness" isdi�erent from the usual one. We obtain subspa
es whi
h are random with respe
tto the given log-
on
ave measure.From the above, we have the following general estimates for an isotropi
 log-
on
aveprobability measure �:2.13. Theorem. Let 0 < p <1 and Æ 2 (0; 1). There exists n0(Æ) su
h that, forevery n � n0, every m � m0 and every isotropi
 log-
on
ave probability measure� on Rn whi
h satis�es a  �-estimate with 
onstant C� for some � 2 [1; 2℄, mrandom points x1; : : : ; xm 2 (Rn ;B; �) form with probability greater than 1 � Æ a(p;M)-distribution representing �, wherem0 = m0(p; Æ) = 8>>>><>>>>: 
(Æ)p�2n , if 0 < p � 1
(Æ)hpn(logn)p , if 1 < p � 2
p2(Æ)hp(n logn)p=2 , if p > 2. 2Here, M is bounded by an absolute 
onstant in the �rst two 
ases, while in the thirdone we may have ' p1=� under the restri
tion m � 
Æ exp(pn), or ' p with noupper restri
tion on m.Finally, we study the 
ardinality of a random  1-distribution with respe
t to �:2.14. Theorem. Let � be an isotropi
 log-
on
ave probability measure on Rn , and
 2 (0; 1). If n � n0(
) and m � exp(
n), then m random points x1; : : : ; xm satisfywith probability > 1� Æ 1m mXj=1 ep
jhxj;yij
1(Æ)L� � 2for every y 2 Sn�1.Proof: Let M = 
01(Æ)L�=p
 (where the 
onstant 
01(Æ) is to be 
hosen) and B �4
1(Æ)C1L� logm. Keeping the notation of Lemma 2:9 and taking into a

ount the16



Remark after Lemma 2.4, we estimate as follows:Xfj:jhxj ;yij>Bg exp(jhxj ; yij=M) = k0�1Xk=0 Xfj:2kB<jhxj;yij�2k+1Bg exp(jhxj ; yij=M)� 
22(Æ)L2Kn log2m k0�1Xk=0 exp(2k+1B=M)(2kB)2� 
22(Æ)L2�n log2mB2 exp�2
2(Æ)pnL� logmM �� 
n exp(p
n logm=2):It follows that, if n � n0(
) and m � exp(
n), then1m Xfj:jhxj ;yij>Bg exp(jhxj ; yij=M) � 12 :On the other hand, by Lemma 2:1, R exp�jhx; yij=M� � 5=4 for every y 2 Sn�1.For every B > 0, we de�nef(x) = exp(jhx; yij=M)R exp�jhx; yij=CL���fx:jhx;yij�Bg(x)and following the proof of Lemma 2:8 we get1m Xfj:jhxj ;yij�Bg exp�jhxj ; yij=M� � 3=2for all y 2 Sn�1, provided thatm � 
1(Æ)n exp�B=M�:We 
hoose B = 4
1(Æ)C1L� logm, and 
he
k that this restri
tion is satis�ed.Adding the estimates above, we 
on
lude the proof. 2Remark: Consider the 
ase � = �K , where K is an isotropi
 
onvex body in Rn .This means that jKj = 1, and ZKhx; yi2dx = L2Kfor every y 2 Sn�1. Then, �K is an isotropi
 log-
on
ave probability measureon Rn , and this implies that all the results of this Se
tion are valid for pointsx1; : : : ; xm 
hosen independently and uniformly from K. Moreover, all the resultsmay be stated without the restri
tion m � 
Æ exp(pn), sin
e a result of Alesker [A℄shows that khx; yikL 2(K;dx) � ApnLK for an absolute 
onstant A > 0 (whi
h is astronger statement than Lemma 2.2). 17



Observe that, in this 
ase, there exists an absolute 
onstant a > 0 su
h that�(apnLKDn) � a. Thus, for a random 
hoi
e of points S = fx1; : : : ; xmg in Kthere exists i � m for whi
h jxij � apnLK . Therefore,maxy2Sn�1 khx; yikLp(S;�(S)) � jxijm1=p � apnLKm1=pfor every p � 2. It follows that a random p-distribution S for �K must have
ardinality of order at least np=2. Hen
e, the estimates in Theorem 2.13 are optimalup to the logarithmi
 terms. We do not know if the estimate for m in Theorem2.14 is also optimal.3 Well distributed sets of verti
es of the 
ubeConsider En2 = f�1; 1gn with the produ
t measure �(A) = jAj=2n, A � En2 , andwrite � for an element of En2 . The analogue of Lemma 2:1 in this 
ase is Khint
hine'sinequality:3.1. Lemma. There exist absolute 
onstants 
1; 
2 > 0 su
h that
1jyj �  ZEn2 jh�; yijp�(d�)!1=p � maxf1; 
2ppg jyjfor every p > 0 and y 2 Rn . 2Given Æ 2 (0; 1), we ask for the minimum value of m 2 N whi
h satis�es thefollowing: with probability greater than 1� Æ, a subset A of En2 with m elementsis a p-distribution (analogously, a  �-distribution) representing En2 . The methodused in the previous se
tion allows us better estimates in this 
ase, be
ause the
ube satis�es a  2-estimate and has small diameter: Using the fa
ts that j�j = pnfor every � 2 En2 and kh�; yikL 2 � 
 for every y 2 Sn�1, we obtain the followinganalogue of Lemma 2:4:3.2. Lemma. Let Æ 2 (0; 1) and �1; : : : ; �m be random points in En2 . With proba-bility greater than 1� Æ we havejXi2E �ij � pnpjEj+ 
2(Æ)plogmjEjfor all E � f1; : : : ;mg. 2We will �rst 
onsider the 
ase 0 < p � 2:3.3. Proposition. Let p 2 (0; 2℄ and Æ 2 (0; 1). If m � 
1(Æ)p�2n, then a subsetA of En2 with jAj = m satis�es with probability > 1� Æ
 �  1jAjX�2A jh�; yijp!1=p � 
018



for every y 2 Sn�1, where 
; 
0 > 0 are absolute 
onstants.Proof: For every y 2 Sn�1 we have kh�; yikL 2(En2 ;�) � 
 and kh�; yik2 = 1. ByLemma 2:3, kh�; yikL 1(En2 ;�) � 
p. Then, we follow the proof of Proposition 2:6. 2For the 
ase p > 2 we need the analogue of Lemma 2:9:3.4. Lemma. Let �1; : : : ; �m be as in Lemma 3:2. If B � 4
2(Æ)plogm, thenXfj:jh�j ;yij>Bg jh�j ; yijp � hp(4n)p=2;for every p > 2 and y 2 Sn�1.Proof: As in Lemma 2:9, we de�ne E�(y) = fj � m : jh�j ; yij > �g. Then, forevery � � 4
2(Æ)plogm and y 2 Sn�1 we have �2jE�(y)j � n.Let B � 4
2(Æ)plogm, and k0 be the smallest integer for whi
h 2k0B � pn.Then, Xfj:jh�j ;yij>Bg jh�j ; yijp = k0�1Xk=0 Xfj:2kB<jh�j;yij�2k+1Bg jh�j ; yijp� k0�1Xk=0 jE2kB j(2k+1B)p � n k0�1Xk=0 (2k+1B)p(2kB)2= 2pnBp�2 k0�1Xk=0 2(p�2)k � 2pnBp�2 2k0(p�2)2p�2 � 1� 2p2p�2 � 1nBp�2�2pnB �p�2 = hp(4n)p=2: 2On the other hand, an adaptation of the proof of Lemma 2:8 gives: If m �
(Æ)n�B
1�p, then a subset A of En2 with jAj = m satis�es with probability > 1� Æ(�) 0� 1jAj Xf�2A:jh�;yij�Bg jh�; yijp1A1=p � 
4ppfor all y 2 Sn�1. If we 
hoose B = 4
2(Æ)plogm and assume that n � n0(Æ), thenany m � hp(4n)p=2 satis�es our 
ondition for (�). Therefore, (�) and Lemma 3:4imply  1jAjX�2A jh�; yijp!1=p � (
4 + 1)ppfor every y 2 Sn�1. The lower bound is 
lear from Proposition 3:3 and the mono-toni
ity of our average in p. We summarize as follows:19



3.5. Theorem. Let 0 < p < 1 and Æ 2 (0; 1). There exists n0(Æ) su
h that, forevery n � n0 a subset A � En2 with m � m0 elements forms a p-distribution withprobability greater than 1� Æ, wherem0 = m0(p; Æ) =8<: 
(Æ)p�2n , if 0 < p � 2hp(4n)p=2 , if p > 2. 2The next two lemmas will allow us to estimate the size of a  �-distribution in En2 :3.6. Lemma. Let �1; : : : ; �m be as in Lemma 3:2. Let � 2 [1; 2℄ and M > 0. IfB � 4
2(Æ)plogm > 2M , thenXfj:jh�j ;yij>Bg exp� jh�j ; yij�M� � � exp�2�n�=2M� � ;for all y 2 Sn�1.Proof: Keeping the notation of Lemma 3:4, we estimate as follows:Xfj:jh�j ;yij>Bg exp� jh�j ; yij�M� � = k0�1Xk=0 Xfj:2kB<jh�j;yij�2k+1Bg exp� jh�j ; yij�M� �� k0�1Xk=0 jE2kB j exp� (2k+1B)�M� �� nB2 k0�1Xk=0 2�2k exp� (2k+1B)�M� �� n22k0B2 exp� (2k0B)�M� � ;sin
e B > 2M guarantees that the sum is dominated by the last term. On observingthat 2k0B � 2pn, we 
on
lude the proof. 23.7. Lemma. Let � 2 [1; 2℄, Æ 2 (0; 1) and B > 0. If m � 
(Æ)n exp�(B=
)��,then m random points �1; : : : ; �m 2 En2 satisfy with probability greater than 1� Æ1m Xfj:jh�j ;yij�Bg exp�(jh�j ; yij=
)�� � 3=2for all y 2 Sn�1.Proof: There exists 
 > 0 su
h that REn2 exp�(jh�; yij=
)�� � 5=4 for every y 2 Sn�1and � 2 [1; 2℄. We de�nef(x) = e( jh�;yij
 )�REn2 exp�(jh�; yij=
)���f�:jh�;yij�Bg(�)20



and follow the proof of Lemma 2:8. 23.8. Theorem. Let 
 > 0, Æ 2 (0; 1) and � 2 [1; 2℄. If n � n0(
; Æ), then a subsetA of En2 with jAj = m � exp(
n�=2) satis�es with probability greater than 1� Ækh�; yikL �(A) � C(Æ)
1=�for every y 2 Sn�1.Proof: We 
hoose B = 4
2(Æ)
 12n�4 , and M = 8
(Æ)=
 1� , where 
2(Æ); 
(Æ) are the
onstants in Lemmas 3:6 and 3:7 respe
tively. By Lemma 3:6,Xfj:jh�j ;yij>Bg exp�
jh�j ; yij�(8
(Æ))� � � exp� 
n�=2(4
(Æ))�� � m=2;if n � n0(Æ; 
). We may also assume that exp(
2n�=2) � 
(Æ)n, therefore the
ondition for Lemma 3:7 be
omes
2n�=2 � 12� 
 �2 n�24 ;whi
h is obviously satis�ed sin
e � � 2. Hen
e, Lemma 3:7 givesXfj:jh�j ;yij�Bg exp�
jh�j ; yij=(8
(Æ))�� � 3m=2:Adding the estimates, we 
on
lude the proof with C(Æ) = 8
(Æ). 2Remark: The estimates in Theorems 3.5 and 3.8 are optimal (see the Remark afterTheorem 2.14).4 Random proje
tions onto n-dimensional subspa
esIn this Se
tion we dis
uss a di�erent type of question, whi
h re
e
ts the samegeometry. We are going to present two formulations of the problem:(a) Let N > n, and 
onsider an orthonormal basis of RN . For every U = (uij)in the orthogonal group O(N), de�nevi = pNPnU�(ei) = (pNuij)j�n ; i = 1; : : : ; N;where Pn denotes the orthogonal proje
tion of RN onto Rn . Let V = fv1; : : : ; vNg.Using the orthogonality of U , we easily 
he
k thatkhv; yikL2(V ;�(V )) =  1N NXi=1hvi; yi2! 12 = 0� NXi=1( nXj=1 uijyj)21A 12 = jyj21



for every y 2 Rn . The question is: given p � 1, �nd the minimal value N(p) ofN > n for whi
h a random (with respe
t to U 2 O(N)) set V = V (U) as above isa (p;M)-distribution for some good 
onstant M � 1.The answer is given by the following fa
t:4.1. Theorem. For every � > 1 there exists 
(�) > 0 su
h that: if N � �n, thena random U 2 O(N) satis�eskhv; yikL1(V;�(V )) � 
(�)for every y 2 Sn�1. If p > 2 and N � 
np=2, then a random U 2 O(N) satis�eskhv; yikLp(V;�(V )) � 
ppfor every y 2 Sn�1, where 
 > 0 is an absolute 
onstant.Proof: Let U 2 O(N). Then, U indu
es a random embedding of Rn into RN , givenby y 7! (hvi; yi)i�N = pNUy:For every y 2 Rn and every p � 1 we have 1N NXi=1 jhvi; yijp!1=p = N 12� 1p kU(y)kp:Now, Dvoretzky's theorem for `Np , p > 2 shows that if N � 
np=2, then for a randomU 2 O(N) we will have N 12� 1p kU(y)kp � 2N 12� 1pMpjyjfor every y 2 Rn , whereMp = ZSn�1 kxkp�(dx) � 
ppN 1p� 12 :This shows that khv; yikLp(V;�(V )) � 
pp for every y 2 Sn�1. The proof of the otherinequality is analogous: we now use the fa
t (�rst proved by Kashin [Ka℄) that, forevery � 2 (0; 1), a random �N -dimensional subspa
e of `N1 is C(�)-Eu
lidean (seealso [STJ℄, or [Pi, Chapter 6℄). 2For every p � 1, we de�ne p� = maxf1; p=2g. Then, 
ombining the two estimatesin Theorem 4.1 we obtain:4.2. Corollary. Let p � 1 and N � 
np� . Then, a random U 2 O(N) satis�eskhv; yikLp(V;�(V )) � 
pp khv; yikL1(V;�(V ))for every y 2 Rn , where V = fpNPnU�(ei) : i = 1; : : : ; Ng. 222



Observe that we have a phase transition at p = 2, whi
h is a 
onsequen
e ofthe 
orresponding 
hange of behavior in Dvoretzky's theorem for `Np .(b) Another interpretation of the same fa
t: Let N > n and 
onsider an or-thonormal basis feigi�N of RN . For every n-dimensional subspa
e En 2 GN;n,de�ne the ve
tors wi = pNPEn(ei) ; i = 1; : : : ; N;and write W = W (En) for the set fw1; : : : ; wNg. Given p � 1, the question is to�nd N(p) su
h that: if N � N(p), then a random En 2 GN;n satis�eskhw; yikLp(W;�(W )) � 
pp khw; yikL1(W;�(W ))for every y 2 En. The isotropi
 
ondition is now 
oming from the observation thatkhw; yik2L2(W;�(W )) = NXi=1hPEn(ei); yi2 = jyj2for every En 2 GN;n and y 2 En.Observe that there is a natural 
orresponden
e between the sets V (U) in (a)and the sets W (En) in (b): in the �rst 
ase we proje
t a random orthonormal basisof RN onto a �xed n-dimensional subspa
e, while in the se
ond 
ase we proje
t a�xed orthonormal basis onto a random subspa
e. As expe
ted, the estimates forN(p) in 
ase (b) are similar to the ones in Corollary 4.2:4.3. Theorem. Let N � N(p), where N(p) ' np� , p� = maxf1; p=2g. Then, arandom En 2 GN;n satis�eskhv; yikLp(V;�(V )) � 
pp khv; yikL1(V;�(V ))for all y 2 En, where V = fpNPEn(ei) : i = 1; : : : ; Ng. 2(
) One 
an also study the minimal value N(�), � 2 [1; 2℄, of N > n for whi
h arandom set V = V (U) or W =W (En) forms a  �-distribution (in the notation of(a) and (b) respe
tively). The argument will be exa
tly as in the proof of Theorem4.1. We will have to use Dvoretzky's theorem for `N � : a dire
t 
omputation of thequantity k(�;N) = n(M=b)2 where M = RSn�1 kxk`N ��(dx) and b = maxfkxk`N � :x 2 Sn�1g, and the fa
t that k(�;N) determines (up to a 
onstant) the maximaldimension for whi
h a random subspa
e of `N � is 4-Eu
lidean, will give the relationbetween N(�) and n. We have k(�;N) ' (logN)2=�, and needk(�;N) ' n;therefore N ' exp(n�=2):4.4 Theorem. Let N � 
(Æ) exp(n�=2). Then,(i) With probability greater than 1�Æ, an orthogonal transformation U 2 O(N)satis�es khv; yikL �(V;�(V )) � 
 khv; yikL1(V;�(V ))23



for every y 2 Rn , where V = fpNPnU�(ei) : i = 1; : : : ; Ng.(ii) With probability greater than 1� Æ, a subspa
e En 2 GN;n satis�eskhv; yikL �(V;�(V )) � 
 khv; yikL1(V;�(V ))for all y 2 En, where V = fpNPEn(ei) : i = 1; : : : ; Ng. 25 Convex hull of random points inside a 
onvexbody: distan
e estimatesIn this Se
tion we 
onsider the following question: Let K be a 
onvex body with
entroid at the origin in Rn , and let Æ 2 (0; 1). We �x 
 2 (0; 1) and 
hoose N =exp(
n) points x1; : : : ; xN , uniformly and independently from K. The quantity wewant to estimate is � = �(Æ; 
), the smallest positive number for whi
h
o(x1; : : : ; xN ) � �Kwith probability greater than 1 � Æ. We may 
learly assume that K is isotropi
with 
entroid at the origin, in whi
h 
ase we 
an make use of the fa
t that(�) 
1n Dn � 
01n LKDn � K � (n+ 1)LKDn � 
2n3=2Dn:The support fun
tion of K is de�ned by hK(y) = maxx2Khx; yi. We will need thefollowing simple lemma:5.1. Lemma. Let K be an isotropi
 
onvex body in Rn , with 
entroid at the origin.For every � 2 Sn�1 de�ne f�(t) = jK \ (�? + t�)j. Then, for every " 2 (0; 1) wehave Z hK(�)"hK (�) f�(t)dt � 
n2 (1� ")n:Proof: By the Brunn-Minkowski inequality f1=(n�1)� is 
on
ave, and f�(s) = 0 forevery s > hK(�). Therefore,f�(t) � �1� thK(�)�n�1 f�(0);and, integrating on ["hK(�); hK(�)℄, we getZ hK (�)"hK(�) f�(t)dt � f�(0)hK(�)n (1� ")n:But f�(0) � kf�k1=e (see [MM℄), and (n + 1)kf�k1hK(�) � jKj = 1 be
ause Khas its 
entroid at the origin. Hen
e, the lemma follows. 224



5.2. Theorem. Let 
 2 (0; 1) and K be an isotropi
 
onvex body with 
entroidat the origin in Rn . For every Æ 2 (0; 1), m = exp(
n) points x1; : : : ; xm 
hosenuniformly and independently from K, satisfy with probability greater than 1� ÆK � 
o(x1; : : : ; xm) � 
(Æ)
K:Proof: Let � 2 (0; 1) to be determined, and 
onsider an �-net N for Sn�1, withjN j � exp(n log(3=�)). For every � 2 N we haveProb (x 2 K : hx; �i < "hK(�)) < 1� 
(1� ")nn2by Lemma 5.1. Hen
e, m random points x1; : : : ; xm from K will satisfymaxj�mhxj ; �i < "hK(�)with probability smaller than�1� 
(1� ")nn2 �m � exp(�
m(1� ")n=n2):Therefore, if we set A = 
o(x1; : : : ; xm), we will have with probability greater than1� Æ hA(�) � "hK(�)for all � 2 N , provided thatm � 
(Æ) log(3=�)n3 exp(2"n):Then, the triangle inequality and (�) show thathA(�) � �"� 
2n5=2�
1 �hK(�) � "2hK(�)for all � 2 Sn�1, that is, K � A � "2K;provided that � ' "n�5=2, whi
h gives the restri
tion m � 
(Æ) log(3n5=2=")n3e2"n.Putting m = exp(
n) and 
hoosing the best ", we 
on
lude the proof. 2An inspe
tion of the argument above shows that if we want A to be very 
loseto K in the distan
e sense, we still have an estimate of the number of points needed:5.3 Proposition. Let K be an isotropi
 
onvex body with 
entroid at the origin inRn . For every Æ; " 2 (0; 1), m points x1; : : : ; xm 
hosen uniformly and independentlyfrom K, satisfy with probability greater than 1� ÆK � 
o(x1; : : : ; xm) � (1� ")K;provided that m � 
(Æ)(
=")n. 225
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