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1 Introduction

1.1 The starting point of this paper is the notion of concentration for metric
probability spaces. Let (X,d,u) be a metric space with metric d and diameter
diam(X) > 1, which is also equipped with a Borel probability measure . We then
define the concentration function (or “isoperimetric constant”) of X by

a(X;e) =1 —inf{u(A.) : A Borel subset of X,u(A) >1/2},

where A, = {z € X : d(z,A) < €} is the e-extension of A. A family (X, d,, ptn) of
metric probability spaces is called a Lévy family if for every € > 0

a(Xy;e) =0

asn — 0o. A natural example of a Lévy family is given by the family (S™~!, p,,, 0,),
where S™~! is the Euclidean sphere in R”, p, is the geodesic distance, and o, is
the rotationally invariant probability measure on S"~!. Lévy observed that the
isoperimetric inequality on S™! implies that

(S e) < /m/8exp(—e?n/2),

a fact which is crucial for the proof of Dvoretzky’s theorem and many other results
of the asymptotic theory of finite dimensional normed spaces. Other important
examples are given by the family of the orthogonal groups (O(n), pp, itn) equipped
with the Hilbert-Schmidt metric and the Haar probability measure, and all homo-
geneous spaces of O(n) (for example, any family of Stiefel manifolds W,, j, or any
family of Grassman manifolds G, ,). Discrete examples are given by the fam-
ily of spaces E} = {—1,1}" or the groups II,, of permutations of {1,...,n} with
the normalized Hamming distance and the normalized counting measure. In most
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cases, new and very interesting techniques were invented in order to estimate the
concentration function a(X;e). We refer the reader to [MS], [Mi] and [T1] for a
detailed discussion and references.

Let (X,d, ) be a metric probability space with small concentration function.
Then, every 1-Lipschitz function on X concentrates around its Lévy mean (see
[MS]). There exists one value L such that

p(we X :[f(z) - Lf| > €) < 20(Xe).

This type of concentration implies equivalence of L,-norms for Lipschitz functions
on X, that is, inverse Holder inequalities of the form || f||z, x;u) < ¢(@s I fllL1(x50) 5
where the order of the constant ¢(p, u) as p — oo reflects the degree of concentra-
tion.

Such inverse Holder inequalities appear often in the context of probability
spaces. For example, linear functionals on a convex body K with volume 1 satisfy
the inequality

||f||Lp(K;dz) < Cp”f”Ll(K;dz)

where ¢ > 0 is an absolute constant [GM]. More generally, Bourgain [B1] has shown
that if f: K — R is a polynomial of degree m, then ||f||, < c(p, m)||f]|2 for every
p > 2, where ¢(p,m) depends only on p and on the degree m of f. Talagrand [T2]
showed that an analogous statement holds true for the class of convex functions
on EF. In view of these results, we would like to discuss the level of concentration
with respect to a given class of functions.

1.2 A typical example of concentration expressed by equivalence of Lj,-norms is
the classical Khintchine inequality: There is an absolute constant ¢ > 0 such that
forevery n € N, p > 2, and aq,-..,a, € R we have

1/p 1/2

Ave |Zj;aj|p <ecyp Za? < cV2/p Ave |Z:|:aj|.
j=1

j=1 j=1

For the best constants, see [Sz] and [H]. By expanding exp(z?) into power series,
we may equivalently state Khintchine’s inequality in the form

e Ly, Bz < clle WLy Bgaw, v €RY,

where EF = {—1,1}" with the normalized counting measure y, and

oo =8 {3> 05 [ exp((1/2)%)du < 2}

for every probability space (2, u) and a > 0.

The following fact was observed in [Sc] (see also [BLM] for an extension from the
class of linear functionals to arbitrary norms, in the spirit of Kahane’s inequality):



Fact. There exist constants C > 1 and ¢ > 0 such that: for every n € N and
m > Cn, a random subset A of EY with cardinality |A| = m satisfies

1€, M| Loasucayy < cellles Dy,
for every y € R™, where u(A) is the normalized counting measure on A.

It is not clear if C' may be replaced by any A > 1, and ¢ by a constant c(\)
respectively. However, the fact shows that very small sets of n-tuples of signs
may replace EF in the Khintchine inequality. We are thus lead to the following
definition:

Definition. Let p > 1 and M > 1. A finite set S C R" will be called a (p, M)-
distribution (for linear functionals) if

€z, ) |, (s5n0s)) < MKz, 9L, (s5u0s)), ¥ € R
Analogously, S will be called a (¢, M)-distribution if

||<$7y>||L¢a (S;u(S)) < M||<$7y>||L1(S;u(S))7 ye R".

This is equivalent to the fact that S is a (p, M,)-distribution for every p > 1, with
M, < eMp'/® for an absolute constant ¢ > 0. We will often talk about a p or
4-distribution without specifying the constant M, but the estimate for M will be
clear in every case.

In view of these definitions, the question which arises is to determine the min-
imal cardinality m(p,n) (m(a,n) respectively) for which a random subset A C EZ
with cardinality m > m(p,n) (or, m > m(a,n)) forms a (p, M)-distribution (or,
(Yo, M) distribution) with a “good” constant M > 1, while at the same time A
represents the space in the sense that [[(z, )|, (a;u(4)) = {2z, W)z, (7 ) for every
y € R*. Known results (see [BGN], [BDGJN] and [Sc]) show that one can take
M ~ /p and m(p,n) =~ nP/? if p > 2, and m(p,n) ~ n if 1 < p < 2. This estimate
is optimal.

1.3 The purpose of this paper is to study the level of concentration with respect
to the class of linear functionals by measuring the size of minimal well-distributed
substructures of certain probability spaces. These substructures should exhibit
a high level of concentration and, at the same time, they should represent the
original space in an essential way. Our setting will be an arbitrary log-concave
Borel probability measure p on R™. Recall that p is called log-concave if, for all
compact sets A, B and all A € (0,1) we have u(AA + (1 — A\)B) > u(A)*u(B)F 2.
We say that p is isotropic if

| teoutdn) = 22

for every y € S" 1. We will say that u satisfies a 1), -estimate with constant Cy,, > 1
if

||<$:y>||L¢a(u) < CaLu



for every y € S"~ 1. From Borell’s lemma (see [MS], Appendix III) we get

1@ M2y, () < Crlle, 9L

for every y € S™ ! and every log-concave probability measure g on R", where
Cp > 1 is an absolute constant. That is, all log-concave probability measures
satisfy a 1-estimate with some uniformly bounded constant.

With these definitions, the general formulation of our problem is the following;:

Question. Let p be an isotropic log-concave Borel probability measure on R™,
which satisfies a g -estimate with constant Co, > 1 for some «a € [1,2]. Find the
minimal value of m € N for which a random S C R™ of cardinality |S| = m is a
p-distribution or 1V, -distribution with a small constant M > 1, and represents i in

the sense that ||<$7y>||L1(N) = ||<$7y>||L1(S;u(S)) fOT all y e R".

Note that the isotropic condition about p is not so restrictive: every log-concave
probability measure u whose support spans R* has an image measure 71 (u)(A) :=
w(T~1(A)), T € SL(n), which is isotropic and log-concave. Then, every p or
tho-distribution of points with respect to T~ (u) corresponds to an equally good
distribution of points with respect to p.

In Section 2 we study the question in full generality. Our main general result
is the following:

Theorem A. Let 0 < p < 00 and § € (0,1). There exists ng(d) such that, for
every n > ng, every m > mg and every isotropic log-concave probability measure p
on R™, m random points x1,...,xTm € (R™, B, u) form with probability greater than
1 -9 a (p, M)-distribution representing u, where M = O(p) as p — 00, and

c(p, O)n ,if0<p<1
mo = mo(p,d) = ¢ ¢(p,d)n(logn)” ,if1<p<2

c(p; 0)hp,n(nlog n)p/2 ,ifp>2.

The constant hy, ,, is bounded by min{(p — 2)~',logn}, and this implies continuity
of mo(p,0) at p = 2.

One can also show that any exponential number of points is enough for a good
11 -distribution:

Theorem B. Let p be an isotropic log-concave probability measure on R™, and
v € (0,1). If n > no(y) and m > exp(yn), then m points x1,...,T,,, chosen
independently with respect to p, form with probability > 1—46 a (1, M)-distribution
representing ju, where M < c(8)/\/7.

A typical example of log-concave probability measure arises if we consider a
convex body K of volume 1 in R™. The Brunn-Minkowski inequality implies that
the restriction pg of the Lebesgue measure onto K is log-concave, therefore

||<$7y>||L¢1(K;dz) < CI||<$7y>||L1(K;d1:)
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for every y € R", where ¢’ > 0 is an absolute constant. The ;-estimate is best
possible in full generality, but there exist bodies K which allow even a »-estimate
(the cube and the ball are such examples).

In this situation, some of the cases were previously studied: the values0 < p <1
can be treated with the methods developped in [BLM], while the case p = 2 was
studied by Bourgain [B2] (see also [R]). Our general approach in Section 2 uses a
combination of these arguments: in particular, Bourgain’s lemma 2.4 plays the key
role.

1.4 In Section 3 we follow the same geometric approach for EY. The geometry
involved is simpler here: the main advantages are the 15-estimate for linear func-
tionals (which comes from Khintchine’s inequality), and the fact that all vertices
of the cube are at distance v/n from the origin. This allows us to recover all known
results on p-distributions, as well as optimal estimates for the minimal cardinality
of 1,-distributions. The following statement is true:

Theorem C. Let 0 < p < 0o and § € (0,1). There exists no(d) such that, for every
n > ng a subset A C E with m > mg elements forms with probability greater than
1— 6 a p-distribution representing E5, where

c(p,d)n ,if0<p<2
mo = mo(p,d) =
c(p,O)n?? ,if p> 2.

(see also [Sc], [BGN], [BDGJIN]).
Moreover, if v > 0, a € [1,2], and n > ng(y,d), then a subset A of EY with
|A| = m > exp(yn®/?) satisfies with probability greater than 1 — &
C(9)
,yl/a

e Iy, (a) <

for every y € S7L.

Observe the phase transition at p = 2: For p € (0, 2] we get p-distributions with
cardinality ~ n (in the general case, up to a logarithmic term) while for p > 2,
minimal p-distributions have cardinality ~ n?/2. The same phenomenon appears
in several other questions of this nature. For example, in Section 4 we show that if
N > en?”, p* = max{1,p/2}, and {e;}i<n is an orthonormal basis of R, then for
a random E, € Gn., the set {V/NPg, (e;) :i =1,...,N} forms a p-distribution
on E, with M < c¢,/p, p > 1. All these examples are connected with Dvoretzky’s
theorem for Kév spaces, where a similar behavior is observed. The precise relation
will be discussed throughout the paper.

Finally, in Section 5 we study a different question on random points: we fix
v € (0,1) and show that m = exp(yn) points which are chosen uniformly and
independently from a convex body K with centroid at the origin in R™ satisfy with
probability greater than 1 —§

A=co{x1,...,zm} D c(0)VK.



That is, any exponential number of random points from a convex body K creates
a body which “represents” K in the distance sense. This question is naturally
connected with the discussion in Section 2 (in particular, with Theorem B): every
convex body K creates a log-concave measure pug, and a random set of exp(yn)
points chosen from K creates a body equivalent to K and, at the same time, forms
a 11-distribution for p .

1.5 We assume that R is equipped with a Euclidean structure (-, ) and denote
the corresponding Euclidean norm by |- |. D, will be the Euclidean unit ball and
S7=! will be the unit sphere. We also write | - | for the volume (Lebesgue measure)
in R, and for the cardinality of a finite set. The letters ¢, ¢, ¢1, ¢y ete. will denote
absolute positive constants which may change from line to line.

2 Log-concave probability measures satisfying a
Y,~estimate

In this section we study the case of a log-concave Borel probability measure p on
R™, which satisfies the isotropic condition

/ (o) u(de) =12, ye s

and a 1, -estimate with constant C, > 1 for some a € [1,2], i.e.

[ es((tnlicaL,)) <2

for every y € S™ 1. Note that, by Borell’s lemma, p always satisfies a v -estimate
with an absolute constant C;. We first collect some Lemmas about measures with
these properties. The proofs are adaptations of analogous results for isotropic
convex bodies.

2.1 Lemma. There exist absolute constants cy,c2 > 0 such that

1/p
(L, < ( / |<w,y>|pu<dx>) < 200 max{1,p"/*}L,,

for every p >0 and y € S™1.

Proof: The right hand side inequality is a direct consequence of the inequality
e > a*/k!, x > 0, k = 1,2,.... For the left hand side inequality, we use the fact
that, by a result of Latala [L], there exists an absolute constant ¢; > 0 such that

cily = ell{@ ) lLa < 1)L,

forevery y e R* and 0 < p< 2. O



The function = +— |z| satisfies a better estimate:

2.2. Lemma. There exists an absolute constant A > 0 such that

| expllel (AnL (o) <2
nL, Dy

Proof: We follow Alesker’s argument from [A]. Since p is log-concave, it satisfies a
1y -estimate with an absolute constant ¢ > 0. By Lemma 2.1, this implies that

/ (&, y) [P u(dzr) < EpPLE

for every y € S ! and p > 1. Integrating this inequality with respect to y, we

obtain
1/p D
([ ePutan) " < cavirfo(1+2).

This means that, for p < n, we have

(/. ePutan) " < oL,

On the other hand, if p > n we obviously have

1/p
(/ le”u(dw)> <nL, <\/pVnLy.
nL,Dy

It follows that there is a constant A > 0 such that

o - £ ()
nL, Dy, nL, Dy, A\/ELIJ

p=1

= pp (max{l,cs}\
< — | — <1l. O
< ,§p!< . <

We will also make use of the following simple lemma:

2.3. Lemma. Let 0 < p< a andy € S"!. Then,

1z, P/ L, () < 2C8-

Proof: For every s > 1 we have

/Rn %u(dm) <2T'(s+1).



Now, if 0 < p < a,

/ exp (';g’gygg ) p(dz)

Iz, )P
1+ Z X / chpkka w(dx)
[ee] pk + 1)

1+Z o
1+22—k:2
k=1

IN

IN

since I'(2 + 1) < kl. O

In what follows, c,(d) denotes a positive constant bounded by c(log(2/6))1/a for
0 € (0,1), where ¢ > 0 is an absolute constant, not necessarily the same in each
occurrence.

2.4. Lemma. [B2] Let 6 € (0,1), and x1,...,z, be random points in (R™,B, ).
If m < cdexp(y/n), then, with probability greater than 1 — § we have

|z;| < c2(6)v/nL,+\/logm
forallje{l,...,m}, and
| le| < e2(0) Ly/log mv/|E|V/n + ¢4(8)Co L, (logm)'/ | B|
icE
forall ECA{1,...,m}.

Proof: Since p is isotropic, we have

/Rn o2 u(de) = nL?.

From Markov’s inequality we get u(4y/nL,Dy) > 15/16, and Borell’s lemma shows
that w(4ty/nL,D,) > 1 — cexp(—t) for every ¢t > 1. It follows that, if m <
cd exp(y/n), then m random points z1, ..., T, satisfy with probability > 1 — %

z; €nLyDy, 1=1,...,m.

Observe now that
2

Prob (z ¢ At\/nL,D,, | € nL,Dy,) < 2e*t2/u(nL#Dn) <cet

since p(nL,Dy) > ¢ pw(4y/nL,D,) for an absolute constant ¢’ > 0 (if v/n > 4 this
is clear, otherwise it follows by the log-concavity of u). Since the z;’s are chosen
independently, we conclude that if ¢ > c2(0)+/logm, then

)
Prob (Vj <m,zj € Atv/nL,D,, |Vj <m,z; € nLan) >1- 1



Hence, with probability > 1 — g we have

|£L'j| < Cz(&)\/ﬁLN\/lOgm, ] = 1,. .., M.
Let E C {1,...,m}. We write
|Z$z‘|2 = Z|$i|2 + Z (i, x5)
i€E i€E i#jEE

s(O)Lin(logm)|E| + > (wi, ;).
i£jEE

IN

If §; takes the values 0 or 1 with probability 1/2, then

m m
1
Eg(Z (5,-:@-,2(1 — (Sj)ilfj) = Z Z (.’L‘i,.’L'j>.
i=1 j=1 i#j€E
Therefore, we can find Ey,Ey C E with |Ey| > |Es|, EyNEy, =0, Ey UE, = E,
such that
> (winag) < A @, Y )
1#jEE i€Ey JEE2
< 4 [z, Y )l
i€Fq JjEE>

Rewrite this last sum in the form

oM Dol =1 w1 Y Kewye)l,

i€ by jEEz jEEz i€ Fq
where >
icEy Tj
YE, = ﬁ y ye| = 1.
JjEE2 ]

Observe that the set {z;};cp, is independent from yg,, since E; N Ey = 0. If we fix
|E1| = k, the number of possible E;’s is bounded by m¢*, therefore, the 1 -estimate
on linear functionals implies that

Prob <f€ (]R”)m :dF, C F, |E1| =k, Z |<wi;yE2>| > tkCaLu> < mckefckt"_
i€ Eq

This probability will be smaller than §/2m if t ~ (logm)'/®. Doing this for k =
1,...,m, we see that (z1,...,2,) € (R™)™ satisfies with probability greater than
1-— g the following: For every E C {1,...,m},

> (@i25) < ca(0)CaLu(logm)/® max {[Ex] | 3 ]}
i#jER ' JEE\E,



To finish the proof, fix s € N and write
As = il
o= x| > il
JEF
We have

| in|2 < cg(é)Lin(logm)|E| + ca((S)CaL#(logm)l/“|E|A‘E‘,
i€E

therefore
A%y < A0 Lin(logm)|E| + ca(9)Ca Ly (logm)/* | E|A s,
which implies

Ajp| < e2(8)Luv/ny/logm/|E| + ca(8)Co Ly (logm)/*|E|. O

Remark: Borell’s lemma shows that, if we do not want to impose any restriction on
m, then m random points z1,...,z, € (R*, B, u) satisfy with probability greater
than 1 — ¢ the inequality

|z;| <e(6)v/nLylogm, j=1,...,m.

Then, the proof of Lemma 2.4 gives
1> @il < e2(8) Ly logmy/[EVn + ¢a(8)Ca Ly (logm)'/®|E|
icE

for all E C {1,...,m}. This observation will be useful for the proof of Theorem
2.14.

Our tool from probability theory will be several versions of Bernstein’s inequality:

2.5 Lemma. [BLM] Let {f;}j<m be independent random wvariables with mean 0
on some probability space (Q, u).

(i) If [| fillL < 2 and ||filloo < B, then, for every ¢ € (0,1),

Prob |Zf]| >em | < 2exp(—e’m/8B).
j=1

(ii) If [ fillpercuy < A, 5 =1,...,m, then, for every 0 < e < 4A,

Prob | | ij |> em | < 2exp(—e’m/164%).

=1
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(ii)) If | fillpwez(uy < A, J=1,...,m, then, for every e >0,

Prob | ij |2 em | < 2exp(—em/84%). O

j=1

We first study the cardinality of p-distributed sets for small values of p > 0:

2.6. Proposition. Let p be an isotropic log-concave probability measure on R",
which satisfies a Y, -estimate with constant C,, for some a € [1,2]. Let 0 € (0,1)
and 0 < p < a. Assume that m > ¢1(8)p~2C?n. Then, m random points
1, Tm € (R™, B, u) satisfy with probability greater than 1 —§

1/p

1 m
DLy < | —> lw0)l" | <TaLy,
j=1

for all y € S Y, where I'1,T'y > 0 are absolute constants.

Proof: Let 6 € (0,1) to be determined later, and consider a #-net A" for S*~! with
cardinality |N| < (3/60)".
Fix y € N and define

fa) = Lol

We set fj(z1,...,2m) = f(z;) — [ f on (R")™. Since [ f <1, Lemma 2.3 shows
that

Ef; =0 , |lfill,, <A4CEk.

Hence, Lemma 2.5(ii) implies that

1 & ‘
Prob || - lGay )P~ L [ £ |2 <L} | < 2exp(-cm/eCi)
j=1

if 0 < & < 1. This probability is smaller than ¢/|N|, provided that
m > c1(6,0)e™2C?Pn.
Then, choosing € = ¢]p/4, for all y € N we have
1 m
c(l—p/HLj < — > 9P < (1+cfp/4)LE,
j=1

which implies
1/p

1
csLy < EZK%’;Z]HP < cealy.



To complete the proof, we choose 8 = ¢§ and employ a standard successive approx-
imation argument. O

2.7. Corollary. Let p be an isotropic log-concave probability measure on R™,
0€(0,1) and p> 1. If m > ¢1(6)n, then m random points x1,. .., T, € (R™, B, u)
satisfy with probability greater than 1 — §

1/p

1 m
RTINS
j=1

for ally € S 1.

Proof: Obvious from Proposition 2.6, since every log-concave probability measure p
satisfies a i;-estimate with a uniformly bounded constant C; > 1, and the quantity

1/p

1 m
=3 I )P
=1

is an increasing function of p. O

Proposition 2.6 settles our Question for 0 < p < 1: the minimal cardinality of
a random p-distribution for u (0 < p < 1) is proportional to n. Also, by Corollary
2.7 we only need to consider upper bounds when we ask about p-distributions with
p > 1: the lower bound holds with probability > 1 — ¢ if m > ¢;(0)n.

In order to examine the case a < p, we follow Bourgain’s argument:

2.8. Lemma. Let u be an isotropic log-concave probability measure on R™ which
satisfies a o -estimate with constant Co for some o € [1,2], and p > 1. Fiz
0 € (0,1) and B > 0. If m > 01(5)71(0112# )P, then m random points x1,...,Tm

satisfy with probability greater than 1 —§

1/p
1
a Z |<wjay>|p S 262p1/aCaLu
{7:1(z; ) |<B}
for ally € S 1.

Proof: Let 6 € (0,1), to be determined. There exists a #-net A’ for S"~! with
cardinality |N| < (3/6)". Fix y € N and let I,(y) = ([ |(z,y)|Pu(dz))*/P. We
define

1
— p
on R™, and set fj(z1,...,xm) = f(z;) — [ f on (R™)™. Since I,(y) > ¢1L,, we
have

B

p
<2, Ef = o< (2= .
<2 B =0 L gl < (FF)
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Applying Lemma 2.5(i) we get: for every € € (0, 1),

Prob %Zf(x]) - /f >¢e | <exp(—e’m/8(B/ciL,)?) < §/|N],
j=1

P
provided that m > ¢1(4,0)e2n ( B ) . This means that with probability greater

C1Lu
than 1 — 6,
1/p
1

— > HewlP | <1+9)'PLy)

" Gl w1 <BY

for all y € N. Choosing ¢ = 6 = 1/4, using successive approximation for an
arbitrary y € S"!, and taking into account Lemma 2.1 we conclude the proof. O

2.9. Lemma. Let pu be an isotropic log-concave probability measure on R™ which
satisfies a Pq-estimate with constant Cy, let § € (0,1), and 1, ...,z satisfying
Lemma 2.4. If B > 4¢,(6)Co L, (logm)'/®, then

c5(0)h, B2 Lonlogm , if 0 < p <2
Yo Nyl < B0y LE(nlogm)P? if p>2
{5:=z;5,9)1>B}

cL?nlogmlogn ,ifp=2.

The constant hy, satisfies 1 < h, < max{2, min{|p — 2|=!,logn}}.
Proof: For every 8 > fy = 4cq(0)Cy L, (logm)/® and y € S, we define

Es(y) = {5 <m: |(zj,9)| > B}

We can estimate the size of Eg(y) as follows:

BIEs| < > [zjw)| < max | ejajl

j€Bs T egj==%1,j€Eg
< .
< gl ol
JEF
< 2¢3(0)Lu\/logmy/ny/|Es| + 2¢4(8)Co L, (logm)t *| Es|
< 20,00 LyTogmyiny /|l + 011y,

from where we deduce that

821Bs| < 3(0) LEnlogm.
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Note that this estimate is independent from the choice of y € S*~ . It follows that,
if B > By then

ko—1
Z |<wj7y>|p = Z Z |<$jay>|p
{5zl (@5,9)|>B} k=0 {j:2% B<|(z;,y)|<2*+! B}
ko—1
< Y [Eppl@t By
k=0
ko1 ok+1 gyp
205172 (2" B)
S cz(é)Lun(logm) Z W
k=0
ko—1
< 2”03((S)Lin(logm)B”*2 Z 2(P=2)k
k=0

where ko is the least integer for which c3(6)y/nL,v/Iogm < 2¥B. Since B >
4cq(6)CoLyy/logm, we have kg < clogn. We now conclude the proof by distin-
guishing cases about p:

If 0 < p < 2, the result follows with

ko—1
by = 2072
k=0
If p > 2, then setting A% = ¢5(d)L2nlogm we have
ko(p—
S eyl < 2ABRIl i
, b = =2 _ 1
{7:I(z;,v)|>B}
2p—2 2oz (20777
< ()BT <§>
= hy(2A)F. DO

Our first result covers the case a < p < 2, where u satisfies a 1),-estimate:

2.10. Proposition. Let p be an isotropic log-concave probability measure which
satisfies a 1, -estimate with constant Cy, and o < p < 2. Assume that m >
c3(8)h,CPn(log n)P/®. Then, m random points x1, ...,z satisfy with probability
>1-0

for ally € S 1.
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Proof: Choose B = 4c,(6)Cy L, (logm)'/*. From Lemma 2.8 we know that if m >
¢1(6)hpCPn(logm)P/®, then m random points a1, ..., T, satisfy with probability
greater than 1 —§

1
— > el <2Ly

" Uil ml<B)
for all y € S?~1. On the other hand, from Lemma 2.9 we have

1 1 . p—2 .
— Y @yl £ GOk 260 AL (logn) " Linlogm

m =
{7:K(z5,9)1>B}

< (logn)*= LY, < L2,
for suitably chosen c5(d). Adding, we see that

1/p

1 m
— > lepm)l | <3L,
j=1

for all y € S*~1. O
We now come to the case p = 2:

2.11. Proposition. Let p be an isotropic log-concave probability measure on R™.
If m > & (8)n(logn)?, then m random points x1,..., Ty, satisfy with probability
>1-94§

1/2
m

1
aly < | =3 (e0)° | <ol
j=1

for ally e S 1. O

Proof: We choose B = 4c¢3(6)L, logm, and combine the estimates from Lemmas
2.8 and 2.9. O

Remark: In this case (p = 2) we can actually replace ¢; and c2 by 1 —¢, 1 +¢
respectively, if we choose m > ¢(8)e 2n(logn)? and repeat the argument in a
suitable way (this is the question originally studied by Bourgain [B2] and Rudelson
[R] for convex bodies: note that Bourgain’s method combined with Lemma 2.2 is
enough for Rudelson’s estimate m = c¢(e,d)n(logn)?).

The case p > 2 can be treated in a similar way. The estimate in Lemma 2.9
forces us to choose m > c5(8)h,(nlogn)?/?, and if B = 4cy(5)L, logm, then the
hypotheses of Lemma 2.8 are satisfied, provided that n > ng. Therefore, we have
the following result about the minimal cardinality of a p-distribution of points for

7%
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2.12. Proposition. Let yu be an isotropic log-concave probability measure on R™
which satisfies a 1, -estimate with constant C, for some a € [1,2], and p > 2.
If cdexp(v/n) > m > 5(8)hy(nlogn)P/?, then m random points x1,..., Ty, €
(R™, B, u) satisfy with probability > 1 — 0

1/p

1 m
aly, < EZK%’;ZIMP < ,Cop'/®L,. O
i=1

Remark: One may interpret all these results as giving random embeddings of £7
into Kf,v, where N ~ (nlogn)?/? when p > 2. The precision of Dvoretzky’s theorem
is somehow lost: the subspaces are p'/®-isomorphic to £% and the dependence on
n is worse because of the logarithmic term. But, the notion of “randomness” is
different from the usual one. We obtain subspaces which are random with respect

to the given log-concave measure.

From the above, we have the following general estimates for an isotropic log-concave
probability measure p:

2.13. Theorem. Let 0 < p < o0 and § € (0,1). There exists ng(d) such that, for
every n > ng, every m > mqg and every isotropic log-concave probability measure
w on R™ which satisfies a 1, -estimate with constant C, for some a € [1,2], m
random points x1,...,&m € (R*, B, u) form with probability greater than 1 —§ a
(p, M)-distribution representing u, where

c(8)p~in ,if0<p<1
mo = mo(p,d) =< c(d)hyn(logn)? ,ifl<p<2
A(6)hy(nlogn)?/? | ifp>2. O

Here, M is bounded by an absolute constant in the first two cases, while in the third
one we may have =~ p'/® under the restriction m < ¢§ exp(y/n), or =~ p with no
upper restriction on m.

Finally, we study the cardinality of a random ;-distribution with respect to u:

2.14. Theorem. Let u be an isotropic log-concave probability measure on R™, and
€ (0,1). If n > ng(y) and m > exp(yn), then m random points 1, ..., Ty, satisfy
with probability > 1 —§
m A=)

1 S et <2
m 4 =
j=1
for every y € S™ L,

Proof: Let M = ¢|(0)L,/\/7 (where the constant c|(J) is to be chosen) and B >
4¢1(6)C1 L, log m. Keeping the notation of Lemma 2.9 and taking into account the
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Remark after Lemma 2.4, we estimate as follows:

ko—1
> exp((@nyl/M) = ) > exp([(z;,y)|/M)
{7:I(z;5,y}|>B} k=0 {j:2* B<|(z;,y)|<2*+! B}

ko—1 k+1
exp(2¥B/M
k=0

: 2
< c5(0)L2nlog mexp 2¢(0)y/nL, logm
B? M

< cnexp(y/ynlogm/2).

It follows that, if n > ng(y) and m > exp(yn), then

IN

N | =

LS el nl/M) <

m
{7:K(z;,9)|>B}

On the other hand, by Lemma 2.1, [exp(|(z,y)|/M) < 5/4 for every y € S" 1.
For every B > 0, we define

2 = exp(|(z, y)|/M)
I Jexp(|(z,y)|/CL,

and following the proof of Lemma 2.8 we get

)X{w:uwnsm(fﬁ)

- > (e, yl/M) <3/2

m
{3:l[{z;w)|<B}
for all y € S™~1, provided that
m > c¢1(8)nexp(B/M).
We choose B = 4c¢;(6)C1L,logm, and check that this restriction is satisfied.
Adding the estimates above, we conclude the proof. O

Remark: Consider the case y = ug, where K is an isotropic convex body in R”™.
This means that |K| =1, and

/K (. y)2de = L%

for every y € S™"!. Then, ug is an isotropic log-concave probability measure
on R™, and this implies that all the results of this Section are valid for points
Z1,..., T, chosen independently and uniformly from K. Moreover, all the results
may be stated without the restriction m < ¢d exp(y/n), since a result of Alesker [A]
shows that [[(z,y)l|L,, (x;dz) < Av/nLi for an absolute constant A > 0 (which is a
stronger statement than Lemma 2.2).
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Observe that, in this case, there exists an absolute constant a > 0 such that
u(av/nLigDy) < a. Thus, for a random choice of points S = {z1,...,2,} in K
there exists ¢ < m for which |z;| > a\/nLk. Therefore,

|£E,'| > a\/ﬁLK

yglsfffl Iz, WL, (siu(s)) = mi/p = ml/p

for every p > 2. It follows that a random p-distribution S for pux must have
cardinality of order at least n?/2. Hence, the estimates in Theorem 2.13 are optimal
up to the logarithmic terms. We do not know if the estimate for m in Theorem
2.14 is also optimal.

3 Well distributed sets of vertices of the cube

Consider B} = {—1,1}" with the product measure u(A4) = |A|/2", A C E¥, and
write € for an element of £}. The analogue of Lemma 2.1 in this case is Khintchine’s
inequality:

3.1. Lemma. There exist absolute constants cy,co > 0 such that

alyl < (/
E'"-

1/p
|<6;y>|”u(d6)> < max{1, c2/p} [y

for everyp>0andy e R*. O

Given ¢ € (0,1), we ask for the minimum value of m € N which satisfies the
following: with probability greater than 1 — 4, a subset A of E} with m elements
is a p-distribution (analogously, a ¢,-distribution) representing E¥. The method
used in the previous section allows us better estimates in this case, because the
cube satisfies a ¢,-estimate and has small diameter: Using the facts that |¢] = \/n
for every € € E3 and ||(¢,y)||z,, < ¢ for every y € S"~', we obtain the following
analogue of Lemma 2.4:

3.2. Lemma. Let § € (0,1) and €y, ...,€, be random points in E. With proba-
bility greater than 1 — § we have

1> eil < VVIE] + 2(6)y/log m|E]|
icE

foral EC{1,...,m}. O

We will first consider the case 0 < p < 2:

3.3. Proposition. Let p € (0,2] and 6 € (0,1). If m > ¢1(8)p 2n, then a subset
A of EY with |A| = m satisfies with probability > 1 — ¢

1 1/p
c< (mZKe,y)I”) <

e€cA

18



for every y € S L, where ¢,¢’ > 0 are absolute constants.

Proof: For every y € S" 1 we have I&; ¥y, (Bp) < ¢ and ||{e,y)|[> = 1. By
Lemma 2.3, ||{, Z/)||L¢1(Eg;u) < ¢P. Then, we follow the proof of Proposition 2.6. O

For the case p > 2 we need the analogue of Lemma 2.9:
3.4. Lemma. Let €1,...,€, be as in Lemma 3.2. If B > 4c¢2(0)+/logm, then
Yo Kenm)lP < hyp(an)?’?,
{7:l{es 9} >B}
for every p > 2 and y € S" 1.

Proof: As in Lemma 2.9, we define Eg(y) = {j < m : |(¢;,y)| > }. Then, for
every 3 > 4co(8)y/logm and y € S"~! we have 32|Es(y)| < n.

Let B > 4c2(8)y/logm, and ko be the smallest integer for which 2B > \/n.
Then,

ko—1
> UewwlP = > > (&5 )P
{7:Kes0)|>B} k=0 {j:2k B<|(e;,y)| <2k +1B}
ko—1 ko—1 k1 p
Kt (2" B)
< Z |Exrp|(277 " B)P <n Z B2
k=0 k=0
ko ko(p—2)
. . o5 2M0LP
_ —2 (p—2)k —2
= 2onBr2 Y 2Dk <o By Tl
k=0
2p 2/n\ ">
< BT (%) = hy(4n)P*. O

On the other hand, an adaptation of the proof of Lemma 2.8 gives: If m >
P
c(d)n (El) , then a subset A of E} with |A| = m satisfies with probability > 1 —§

(&
1/p

1
() o X lenr) <avp

{ecA:|(e,y)|<B}

for all y € S" 1. If we choose B = 4cy(d)y/logm and assume that n > ng(d), then
any m > h,(4n)?/? satisfies our condition for (). Therefore, () and Lemma 3.4
imply

1/p
(ﬁ 3 |<e,y>|P> < (es+ 1)yP

e€cA

for every y € S™ 1. The lower bound is clear from Proposition 3.3 and the mono-
tonicity of our average in p. We summarize as follows:
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3.5. Theorem. Let 0 < p < 0o and § € (0,1). There exists no(6) such that, for
every n > ng a subset A C EY with m > mg elements forms a p-distribution with
probability greater than 1 — &, where

c®)p~n ,if0<p<2
mo = mO(p7 6) =
h,(4n)?/?  Jifp>2. O

The next two lemmas will allow us to estimate the size of a 1,-distribution in Ef:

3.6. Lemma. Let€y,..., €, be as in Lemma 3.2. Let a € [1,2] and M > 0. If
B > 4cy(9)+/logm > 2M, then

€,y o 2ana/2
S e (M55) <o ().
{3:Kes ) |>B}

for all y € S™~L.

Proof: Keeping the notation of Lemma 3.4, we estimate as follows:

DRI o N SR DR (e

{4:1(ej,9)|>B} k=0 {j:2kB<|(e;,y)|<2k+1B}

ko—1 k+1 o
2B
Z | Er | exp <%>

k=0
n R~ o, ((2B)
< gy e (55R)
k=0

n (2ko B)
S 22ko B2 €xp Mo ’

IN

since B > 2M guarantees that the sum is dominated by the last term. On observing
that 2k B < 2/n, we conclude the proof. O

3.7. Lemma. Let a € [1,2], 0 € (0,1) and B > 0. If m > c(6)nexp((B/c)*),
then m random points €1, ... ,en € EY satisfy with probability greater than 1 —§

- > exp(((ew)l/e)*) < 3/2

™ e ml<By
for all y € S™~L.
Proof: There exists ¢ > 0 such that [, exp((|(e,y)|/c)*) < 5/4 for every y € S™~!
and « € [1,2]. We define
J(Lenly

) g exp(([{e;9)1/0)*) X{c:l¢w1<By(€)

f(z)
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and follow the proof of Lemma 2.8. O
3.8. Theorem. Let v >0, 0 € (0,1) and a € [1,2]. If n > ng(y,0), then a subset
A of EY with |A| = m > exp(yn®/?) satisfies with probability greater than 1 — &

C(9)
||<€,y>||L¢a(A) S ,Yl/oz

for every y € S™L,

Proof: We choose B = 4¢5(8)y2n%, and M = 8¢(8)/~=, where ¢,(8),¢(8) are the
constants in Lemmas 3.6 and 3.7 respectively. By Lemma 3.6,

£ (HE) o ) <o

{5:1(e;,9}1>B}

if n > ng(d,y). We may also assume that exp(%n"‘m) > ¢(d)n, therefore the
condition for Lemma 3.7 becomes

Yparzs Log e
2" Z9a

which is obviously satisfied since a < 2. Hence, Lemma 3.7 gives
> exp(vlegml/8e(8)®) < 3m/2.
{3:Ke; ) I<B}
Adding the estimates, we conclude the proof with C'(d) = 8¢(4). O

Remark: The estimates in Theorems 3.5 and 3.8 are optimal (see the Remark after
Theorem 2.14).

4 Random projections onto n-dimensional subspaces

In this Section we discuss a different type of question, which reflects the same
geometry. We are going to present two formulations of the problem:

(a) Let N > n, and consider an orthonormal basis of RY. For every U = (u;;)
in the orthogonal group O(N), define

’Uz:\/NPnU*(ei):(\/N’uij)jgn ) izl,...,N,

where P, denotes the orthogonal projection of RY onto R”. Let V = {vy,...,un}.
Using the orthogonality of U, we easily check that

=

1 N % N n ‘
10, Y| Lo (vinvy) = <NZ (vi, y) ) = Z(Zuijyj)z = |yl

i=1 i=1 j=1
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for every y € R™. The question is: given p > 1, find the minimal value N(p) of
N > n for which a random (with respect to U € O(N)) set V = V(U) as above is
a (p, M)-distribution for some good constant M > 1.

The answer is given by the following fact:

4.1. Theorem. For every A > 1 there exists ¢c(A\) > 0 such that: if N > An, then
a random U € O(N) satisfies

(v, W Iy (vuvy) 2 (A
for every y € S". If p> 2 and N > cn?/?, then a random U € O(N) satisfies
(v, Wz, (viuvy) < ey/p

for every y € S™ L, where ¢ > 0 is an absolute constant.

Proof: Let U € O(N). Then, U induces a random embedding of R” into RY | given
by
y = ((vi,9);cn = VNUy.

For every y € R" and every p > 1 we have

1 N 1/p
(NZKU,-,W) = NEF Uy
i=1

Now, Dvoretzky’s theorem for éév, p > 2 shows that if N > ¢nP/2, then for a random
U € O(N) we will have

11 11
N=T7|U(y)llp < 2N=77 Myly|

for every y € R", where

1_ 1
My = [ lallo(da) < e/pN
Sn—

This shows that |[(v, )|, (v,u(v)) < ¢/ for every y € S™~'. The proof of the other
inequality is analogous: we now use the fact (first proved by Kashin [Ka]) that, for
every p € (0,1), a random pN-dimensional subspace of £ is C(p)-Euclidean (see
also [STJ], or [Pi, Chapter 6]). m|

For every p > 1, we define p* = max{1,p/2}. Then, combining the two estimates
in Theorem 4.1 we obtain:

4.2. Corollary. Let p > 1 and N > cn? . Then, a random U € O(N) satisfies

10, DL, (viuvy) < evP oLy (viuvy)

for every y € R*, where V = {/NP,U*(e;) :i=1,...,N}. O
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Observe that we have a phase transition at p = 2, which is a consequence of
the corresponding change of behavior in Dvoretzky’s theorem for E;,V .

(b) Another interpretation of the same fact: Let N > n and consider an or-
thonormal basis {e;}i<n of RY. For every n-dimensional subspace E,, € Gn.n,
define the vectors

’LUi:\/NPEn(ei) 5 izl,...,N,

and write W = W(E,,) for the set {ws,...,wy}. Given p > 1, the question is to
find N(p) such that: if N > N(p), then a random E,, € Gy, satisfies

w, )| e (w,uowy) < ev/P Kw, w) Lt ow,uowy)
for every y € E,. The isotropic condition is now coming from the observation that

N
1w, D o wnewy) = O (Pa (€),9)* = [yl

i=1
for every E, € Gn,, and y € E,.

Observe that there is a natural correspondence between the sets V(U) in (a)
and the sets W(E,) in (b): in the first case we project a random orthonormal basis
of RV onto a fixed n-dimensional subspace, while in the second case we project a

fixed orthonormal basis onto a random subspace. As expected, the estimates for
N(p) in case (b) are similar to the ones in Corollary 4.2:

4.3. Theorem. Let N > N(p), where N(p) ~ n?", p* = max{1,p/2}. Then, a
random E, € Gy, satisfies

10, DL, (viuvy) < evP oLy (viuvy)

for ally € E,,, where V = {V/NPg,(e;) :i=1,...,N}. a

(c) One can also study the minimal value N(«), « € [1,2], of N > n for which a
random set V =V (U) or W = W (E,,) forms a 1),-distribution (in the notation of
(a) and (b) respectively). The argument will be exactly as in the proof of Theorem
4.1. We will have to use Dvoretzky’s theorem for ﬁg : a direct computation of the

quantity (o, N) = n(M/b)? where M = [, , ||:v||(§ o(dz) and b = max{||x||[£z :
x € S" '}, and the fact that k(a, V) determines (up to a constant) the maximal
dimension for which a random subspace of éﬁa is 4-Euclidean, will give the relation

between N () and n. We have k(a, N) =~ (log N)*/®, and need
k(a,N) ~n,
therefore N ~ exp(n®/?):

4.4 Theorem. Let N > ¢(6) exp(n®/?). Then,
(i) With probability greater than 1—4, an orthogonal transformation U € O(N)
satisfies
v, Ly, (viuvy) < e v, Ly viuevy)
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for every y € R, where V = {/NP,U*(e;) :i=1,...,N}.
(i) With probability greater than 1 — 9, a subspace E, € Gy, satisfies

v, DIy, (viuevy) < e o, ln, (viuevy)

for ally € E,,, where V = {V/NPg,(e;) :i=1,...,N}. a

5 Convex hull of random points inside a convex
body: distance estimates

In this Section we consider the following question: Let K be a convex body with
centroid at the origin in R”, and let § € (0,1). We fix v € (0,1) and choose N =
exp(yn) points x1, ...,z N, uniformly and independently from K. The quantity we
want to estimate is @ = a(d, ), the smallest positive number for which

co(z1,...,zn) D ak

with probability greater than 1 — §. We may clearly assume that K is isotropic
with centroid at the origin, in which case we can make use of the fact that

!
(%) “Ap,CLLD, CKC (n+1)LgD, Cesn®?D,,.
n n

The support function of K is defined by hx (y) = maxzck(x,y). We will need the
following simple lemma:

5.1. Lemma. Let K be an isotropic convex body in R™, with centroid at the origin.
For every § € S"! define fo(t) = |K N (0+ + t0)|. Then, for every ¢ € (0,1) we
have

/hK(o)md C1-e)
p(H)dt > — (1 — )™
ehx (0) n?

Proof: By the Brunn-Minkowski inequality f;/(n_l) is concave, and fp(s) = 0 for
every s > hg(6). Therefore,

folt) 2 (1 - #@) A0,

and, integrating on [ehx (0), hx (6)], we get

fo (t) dt >

1—¢)".
hix (9) n ( )

/’““” fo(0)hc (6)

But f3(0) > ||l follec/e (see [MM]), and (n + 1)||follochi (0) > |K| = 1 because K
has its centroid at the origin. Hence, the lemma follows. |
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5.2. Theorem. Lety € (0,1) and K be an isotropic convezx body with centroid
at the origin in R™. For every § € (0,1), m = exp(yn) points x1,...,T, chosen
uniformly and independently from K, satisfy with probability greater than 1 —§

K D co(zr,.--,xTm) D c(d)vK.
Proof: Let n € (0,1) to be determined, and consider an n-net N for S"~!, with
V] < exp(nlog(3/n)). For every § € N we have

c(l—¢e)"

Prob(z € K : (x,0) < chk(8)) <1 — =
by Lemma 5.1. Hence, m random points z1, ..., z,, from K will satisfy

max(z;,0) < ehg(0)
j<m

with probability smaller than

(1 - M)m < exp(—cm(1 — &) /n?).

n2

Therefore, if we set A = co(x1, ..., %), we will have with probability greater than
1-96
ha(8) > ehk(0)

for all @ € NV, provided that
m > c(8) log(3/n)n® exp(2en).

Then, the triangle inequality and (x) show that

5/2
ha(6) > <z—: L ") hic(8) > Shic(8)
C1 2
for all § € S™ 1, that is,
K>AD %K,

provided that 5 ~ en~5/2, which gives the restriction m > ¢(8) log(3n°/2/e)n3e?".
Putting m = exp(yn) and choosing the best ¢, we conclude the proof. m|

An inspection of the argument above shows that if we want A to be very close
to K in the distance sense, we still have an estimate of the number of points needed:

5.3 Proposition. Let K be an isotropic convex body with centroid at the origin in
R™. For every d,e € (0,1), m points x1,. .., T, chosen uniformly and independently
from K, satisfy with probability greater than 1 — ¢

K Dco(zy,...,zm) D (1 —e)K,

provided that m > ¢(6)(c/e)™. O
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