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Abstract
Let An(a,b) = {(z:) € R* : 307 |7i)® < a®, |za| < b}. It is proved
that for suitable a and b, n > 7, one can have V,(A4,) = V,(B,) and
Vao1(HN An) < Vo1 (H N By) for every (n — 1)-dimensional subspace H
of R", where B, is the unit ball of R". This strengthens previous negative
results on a problem of H. Busemann and C.M. Petty.

1 Introduction

In [1] Busemann and Petty asked the question: “Let A, B be two convex symmetric
bodies in R™ with their common centre of symmetry at the origin. If, for each
(n — 1)-dimensional subspace H of R*, V,_1(H N A) < V,—1(H N B), is it then
true that V,,(4) < V,(B) 77 (Vj is the k-dimensional volume function). If n = 2,
it is clear that this is true. However, in [2], Larman and Rogers showed that the
above assertion is false for n > 12. In their counterexample, B is the ball of R,
while the existence of A is established by probabilistic arguments. Ball [3] showed
that if Q,, = [-3,2]" is the unit cube of R, then V,_1(H N Q) < V2 for every
(n—1)-dimensional subspace H of R", and in [4] he observed that his result implies
a negative answer to the problem of Busemann and Petty for n > 10 (with A = Q,,,
B the ball of volume 1).

In this note we give an elementary counterexample for n > 7, by considering
the sections of cylinders of the form

n—1
Ana,b) = {(:) € R* : Y |osf* < @, |wa| <},

i=1

for suitable a, b > 0.



2 Sections of A,(a,b)

We shall use the notation v, = 7*/?/T'(1 + 1k) for the volume of the unit ball of
RF, {ei}i<k for the usual basis of R* and

! oy k=1 3 Uk
Ik:/ (1—t2)Tdt:/ cost 6 df = .
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We first prove the following.

Proposition 2.1 Let

n—1
An(a,b) = {(z;) e R" :Z|:c,-|2§a2, |zn] < b}, n >3,

i=1

m:(%)2 and f(x):m%\/ow(l_ﬁ)%dt, 0<z<1, f(O):l

Then,
sup Vi1 (H N Ay) = 2v,_2a" bsup f(z),
H

where H runs over all (n — 1)-dimensional subspaces of R".

Proof: Let H be an (n—1)-dimensional subspace of R* and u = (uy, ..., u,) be the
unit vector normal to H. We can clearly assume that u,, > 0. Set ¢y = arccot(a/b)
and ¢, = arccosu,,. As we shall see, V,,_1 (H N A,,) depends only on |u,|.

We examine two cases separately.

(1) 0 < @u < @0, that is cot? ¢, > a?/b? or |u,| > a/(a®>+b*)'/?. Let P, : R* — R”
be the orthogonal projection onto the subspace {z : (z,e,) = 0}. It is easy to see
that

n—1
P,(HNA,)=Bp_1(a) = {(z;) e R* : Z lz:|? < a®, x, = 0}.
i=1
So,
(1) Vi 2 (HOA) = — Vi 1 [Pa(H A AR = =0y 1a !
n—1 n) — |<U,€n>| n—14n n)] — |Un| n—1

< vp1a™ (@ + b*)Y? = 20,_0a" 20 f(1).
(ii) o < ¢pu < Z, that is a® > cot® @, b%. Let
1

\/T—M(ul,...,un_l,O),
n

and P, : R® — R™ be the orthogonal projection onto the subspace {z : (z,v) = 0}.

v = t] < b,



We set [P,(HNA)): =P (HNA)N{z :z, =t}. fze HNA,,z, =
6> ien |il? = d* < d?, then Py(z) = x — (z,v)v = x + (t cot p,)v and || Py (z) —
te,||* = d? — t? cot? ,,. It is also clear that P,(z) — te, € [v,e,]*.

Conversely, if (y,u) = 0,y, = t,|ly — te,||* = d®> — t> cot? ¢y, then z = y —
(tcotpy)v € HN Ay, =1, ;0,4 |2i]* = d? and P,(z) = y. So, [Py(H N Ap)]:

2 1/2 " centered on te, and

is an (n — 2)-dimensional ball of radius (a? — t? cot? @)
lying on te,, + [v, en]t.
It follows that
b 5 5 n—=2
Vi1 (Py(HNA)) = vn,z/ (a® — cot? p,t?) T dt,
~b

and
1 ’ 2 2 2\ 252
(2) Vn_l(HﬂAn) = W’l}n_g b(a — cot QOut ) 2 dt
1 ’ 2 2 2\ 252
= — vn_g/ (a® — cot” put°) = dit
sin ©,, _

b
b
=1/1+ cot? Yuvn_2 / (a® — cot? <put2)n72dt.
—b

Now, setting x = (b/a) cot ¢, (2) becomes

1

(3) Vo1 (HN Ayp) = V14 ma? vn,ga”db/ (1- :U2t2)"772dt

-1

e ne
=14+ mz? v, 2a"%b —/ (1- tQ)Tzdt =2v,, »a""?b f(z).
)

On observing that ¢y < ¢, < 7/2 is equivalent to 0 < & < 1, the result follows
from (1) and (3). O

3 Case of n>38

Consider two sequences, p, = (In/In,l)Tk1 and s, = y/nl,. As Ball shows in
[4], pn is decreasing. We set t, = s,+1/s,. Then ¢, — 1 and since I,;2 =
((n+1)/(n + 2)) I,, we have

< 1.
n+1

tn+2_[ n(n + 2) }1/2714—2
th  L(n+1)(n+3)

So t, > 1, i.e, s, is increasing. By Stirling’s formula, s, = v/27.

Lemma 3.1 Let f be as in Proposition 2.1. Then f is decreasing on [0,1] if and
only if m < nT_Q (n>4).



Proof: Differentiating we see that f is decreasing if and only if

-2

T
@) 5(1 + ma?)(1 — 22) %5 g/ (1—2)*2d, 0<a<l.
0
We set .
(@) = 2(1 + ma?)(1 — 2?) 7 —/ (1—2)*at,
0
and observe that ¢'(z) < 0 if and only if 3m(1 — z?) < (n — 2)(1 + ma?). Since

g(0) =0, (4) is true if and only if m < 222, O

Lemma 3.2 Suppose that n > 8. We can choose a and b so that
(i) Va(An(a,b)) = vn,
(ii) 2v,-20""2b f(0) < v,—1, and
(iii) m < ”T_2
Proof: Since
(5) Vi (Ap(a, b)) = 2v,_1a™ "D,
(i) is true if a” b = I,,/2. In view of (5), (ii) is satisfied if v, _2I,,/a < v,,_1, i.€, if
(6) a > [n/In—l-

Set a = I,,/I,,_1. From (5),

m e ()b -

So, if (iii) is to be true, we must have

n—2 1 n—2
(8) 2pn<\/T n—1, or 2pn<% msn—l-

Now, the sequence on the left is decreasing, while the one on the right is in-
creasing. So, we only need to check the inequality for n = 8.

But,
L\’ 12257\ 7
g =2(2) =2 ~1.29274...
P <I7> (4096> G

while 39
V2I; :ﬁg ~1.29299... .

It is now clear that choosing a slightly larger than I, /I,,_1 and b from (5), conditions
(1)-(iii) are satisfied. m|

Proposition 2.1 and the above two lemmas imply our counterexample for n > 8:



Theorem 3.1 Let

Ap(a,b) = {(z;) e R : Z lz:|? < a?, |zn] <}, n>T.

i<n—1

We can choose a,b > 0 so that
(i) Va(An(a,b)) = vn,
(i) for each (n — 1)-dimensional subspace H of R™, V,,_1(H N Ap) < Up—1. O

Note that in our example (n > 8), V,—1(H N 4,) is a decreasing function of |u,|,
where u = (uy,...,uy) is the unit vector normal to H.

4 Caseofn=7

If 3 <n <7, conditions (i)-(iii) of Lemma 3.2 are incompatible. However, in case
n = 7, we can also find a and b for which the theorem is true.
Let C = supy Vs(H N Az(a,b)). From Vz(A7(a,b)) = vr, we get

1
9 b=l
9) “ev=5
and hence 2v5a®b = vg - 17 1 , and m = (21_) ) 1.6
AT
(10) “= <?7> i

So, by Proposition 2.1,

L2\ 1
£:—7<—> ——— sup V1+m — xt?) 5/2q¢.

ve Is \I7 mb/1 g<p<h
Now,
= [5/2 5 15
1— t25/2: _nn2n< Y, 42 2,4
(1 — 2t?) Zn(l)xt_l Sott + gt
n=0
and hence

! 5 3
/ (1 —2t®)>2dt <1 — Za + =2
0 6" 8

Let 7 (2) = 1+ ma [1 — 2z + 22%]. One must choose m such that

I 2\ 1
T(Z) 1.
(7)) sz o <

This can be done with m a little larger than % = ”T_2 For example, if we look for m

such that supy<,<; "m(z) = 1, (1/20), then, as we can easily see by differentiating



T, M = mg with my = 3056/1689 (for this value of m, r,, has two local maxima:
rm(1/20) > 1 and rp (1) < 1).
On observing that the number

L(2\"" 1 (1Y _ (512 (35\"7 (1689 '/M" 36836\ "% (9200
Ig \I7 mi/1 " \20) ~ \1757 ) \ 16 3056 33780 9600
~ 0.999998 ... is smaller than 1, we conclude the proof for n = 7. O
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