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Abstract

Let LSlc(κ) denote the class of log-concave probability measures µ on Rn
which satisfy the logarithmic Sobolev inequality with a given constant κ > 0.
We discuss LSlc(κ) from a geometric point of view and we focus on related
open questions.

1 Introduction

The general setting of this article is the class of log-concave probability measures
on Rn; these are the Borel probability measures µ on Rn with the property that

(1.1) µ((1− λ)A+ λB) > (µ(A))1−λ(µ(B))λ.

for any pair of Borel subsets A,B of Rn and any λ ∈ (0, 1). The study of geomet-
ric properties of log-concave probability measures is a central topic in asymptotic
geometric analysis and several questions asking for universal bounds for important
geometric parameters of these measures remain open. Let us briefly introduce two
of them, the hyperplane conjecture and the Kannan-Lovász-Simonovits conjecture.

A log-concave probability measure µ on Rn is called isotropic if the barycentre
of µ is at the origin and its covariance matrix Cov(µ) with entries

(1.2) Cov(µ)ij :=

∫
Rn
xixjfµ(x) dx

is the identity matrix. Then the isotropic constant of µ is defined by f(0)1/n where
f is the density of µ with respect to Lebesgue measure. The hyperplane conjecture
asks if there exists an absolute constant C > 0 such that Lµ 6 C for all n > 1 and
all isotropic log-concave probability measures µ. Bourgain in [9] proved that one
always has Lµ 6 C 4

√
n log n, and Klartag [14] improved this bound to Lµ 6 C 4

√
n;

a second proof of this estimate appears in [15]. On the other hand, one of the
equivalent versions of the Kannan-Lovász-Simonovits conjecture asks if there exists
an absolute constant C > 0 such that the Poincaré inequality

(1.3)

∫
ϕ2dµ 6 C

∫
‖∇ϕ‖22dµ
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holds true (with constant C) for all isotropic log-concave probability measures and
all smooth enough functions ϕ satisfying

∫
ϕdµ = 0.

Both questions are known to have an affirmative answer if we restrict our atten-
tion to special classes of log-concave probability measures. One way to introduce
such a class is to impose some assumption of uniform boundedness on one geomet-
ric parameter for this subclass and to study other main geometric parameters of
the measures in this subclass, trying to obtain uniform estimates for them which
should depend on the bound for the chosen parameter only.

The purpose of this article is to provide a survey on the basic geometric proper-
ties of the class LS(κ) of probability measures µ on Rn which satisfy the logarithmic
Sobolev inequality with a given constant κ > 0. We obtain bounds in terms of κ,
but independent of the dimension, for several of these parameters and we emphasize
some questions which remain open even if we impose this additional assumption.

A Borel probability measure µ on Rn is said to satisfy the logarithmic Sobolev
inequality with constant κ > 0 if for any (locally) Lipschitz function f : Rn → R
one has,

(1.4) Entµ(f2) 6 2κ

∫
‖∇f‖22 dµ,

where Entµ(g) = Eµ(g log g) − Eµg log(Eµg) is the entropy of g with respect to
µ. It is well-known (see e.g. [19, Chapter 5]) that the log-Sobolev inequality
implies normal concentration. For every measurable function f on Rn consider the
logarithmic Laplace transform

(1.5) Lf (u) = log

(∫
eufdµ

)
, u ∈ R.

Then, the Herbst argument shows that if f is 1-Lipschitz and Eµ(f) = 0, one has
Lf (u) 6 κu2/2 for all u ∈ R, and hence, from Markov’s inequality,

(1.6) µ(x : |f(x)| > t) 6 2e−t
2/2κ, t > 0.

It is also known that the log-Sobolev inequality implies Poincaré inequality, namely:
if µ belongs to the class LS(κ), then for any (locally) Lipschitz function f : Rn → R
we have

(1.7) Varµ(f) 6 κ

∫
‖∇f‖22 dµ,

where Varµ(g) = Eµ(g2) − (Eµ(g))2 denotes the variance of g with respect to µ.
We denote the class of probability measures satisfying Poincaré inequality with a
given constant κ > 0 by P(κ).

We are mainly interested in the subclasses LSlc(κ) and Plc(κ) of isotropic
log-concave probability measures that belong to LS(κ) and P(κ) respectively. In
particular, we study the dependence on κ of various parameters that play a crucial
role in recent works about isotropic log-concave measures – see the next Section for
definitions and background information. It turns out that, from this point of view,
LSlc(κ) is a rather restricted class with very nice properties:
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Theorem 1.1. Let µ be an isotropic log-concave probability measure on Rn which
satisfies the logarithmic Sobolev inequality with constant κ > 0. Then,

(i) All directions are sub-Gaussian: µ is a ψ2-measure with constant c1
√
κ.

(ii) The isotropic constant of µ is bounded: Lµ 6 c2
√
κ.

(iii) Let Iq(µ) =
(∫
‖x‖q2dµ

)1/q
, −n < q < ∞, q 6= 0. Then, Iq(µ) 6 I2(µ) +√

κ
√
q for all 2 6 q < ∞. In particular, Iq(µ) 6 c3

√
n for all q 6 c4n/κ.

Also, I−q(µ) > c5
√
n for all q 6 c6n/κ.

(iv) Most directions are “regular” and super-Gaussian: There exists a subset A
of Sn−1 with measure σ(A) > 1− e−c7n/κ such that for any θ ∈ A we have

(1.8)

(∫
|〈x, θ〉|q dµ(x)

)1/q

6 c8
√
κ
√
q/p

(∫
|〈x, θ〉|p dµ(x)

)1/p

for any 1 6 p 6 c9n/κ and any q > p, and also,

(1.9) µ(x : |〈x, θ〉| > t) > e−c10t
2/κ,

for all 1 6 t 6 c11
√
n/κ.

The proofs of the previous statements are given in Section 3. Our basic tools are
the classical Herbst argument and the theory of Lq-centroid bodies as it is developed
in [28], [29], [30], [10] and [12]. All these assertions show that measures belonging
to LSlc(κ) (with κ ' 1) share many of the properties of the standard n-dimensional
Gaussian measure γn (recall that γn satisfies the log-Sobolev inequality with κ = 1).
We close Section 3 with a strengthened version of a recent result of Lata la (see [17])
about the tails of order statistics of log-concave isotropic probability measures µ in
Rn: Lata la showed that

(1.10) µ(x : x∗m > t) 6 exp(−
√
mt/c)

for all 1 6 m 6 n and t > log(en/m), where (x∗1, . . . , x
∗
n) is the decreasing rear-

rangement of (|x1|, . . . , |xn|). We show that if µ ∈ LS(κ) is centered then, for every
1 6 m 6 n and for any t > C

√
κ log(en/m), we have

(1.11) µ(x : x∗m > t) 6 e−cmt
2/κ.

In fact, using a recent result from [1], one can obtain a similar estimate in the
setting of log-concave isotropic probability measures with bounded ψ2-constant,
but for a slightly different range of t’s.

According to Theorem 1.1 (i), if µ ∈ LSlc(κ) then µ is a ψ2-measure. It is
natural to ask what is the exact relation of ψ2-measures with this class: more
precisely, what is the best upper bound m(b, n) - with respect to b and the dimension
n - that one can have for the log-Sobolev constant of an isotropic measure on Rn
with ψ2 constant less than or equal to b. In Section 4 we show that a transportation
of measure argument from [18] allows one to show that the log-Sobolev constants
of the `nq balls for 2 6 q 6 ∞ are uniformly bounded. It is well known that these
bodies are ψ2 (actually, the list of known ψ2 measures is also rather poor).
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Theorem 1.2. There exists an absolute constant C > 0 such that for every n and
every 2 6 q 6 ∞ one has µq,n ∈ LSlc(C), where µq,n is the Lebesgue measure on

the normalized `nq ball B
n

q .

In Section 5 we discuss the infimum convolution conjecture of Lata la and Wo-
jtaszczyk for the class LSlc(κ). We first recall property (τ) which was introduced
by Maurey in [22]. If µ is a probability measure on Rn and ϕ : Rn → [0,∞] is a
measurable function, then the pair (µ, ϕ) is said to have property (τ) if

(1.12)

∫
ef2ϕ dµ

∫
e−f dµ 6 1

for any bounded measurable function f : Rn → R, where

(1.13) (f2g)(x) := inf{f(x− y) + g(y) : y ∈ Rn}

is the infimum convolution of two functions f, g : Rn → R. Since (1.12) is clearly
satisfied with ϕ ≡ 0, the question is to find the largest cost function ϕ for which it
is still true. In [18] it is proved that if µ is symmetric and (µ, ϕ) has property (τ)
for some convex cost function ϕ, then

(1.14) ϕ(y) 6 2Λ∗µ(y/2) 6 Λ∗µ(y),

where

(1.15) Λ∗µ(y) = LΛµ(y) = sup
x∈Rn

{
〈x, y〉 − log

∫
e〈x,z〉dµ(z)

}
is the Legendre transform of the logarithmic Laplace transform Λµ of µ. Thus, Λ∗µ
is the best cost function that might satisfy property (τ) with a given measure µ.
Lata la and Wojtaszczyk conjecture that there exists an absolute constant b > 0
such that (µ,Λ∗µ( ·b )) has property (τ) for every symmetric log-concave probability
measure µ on Rn. This is a very strong conjecture. If true in full generality,
this optimal infimum convolution inequality would imply a positive answer to the
Kannan-Lovasz-Simonovits conjecture and the hyperplane conjecture.

We study the conjecture of Lata la and Wojtaszczyk for the class of log-concave
probability measures with log-Sobolev constant κ. It is not hard to check that

Λ∗µ(y) > ‖y‖22
2κ . Therefore, a weaker answer would be to show that, for any bounded

measurable function f we have (1.12) for a function ϕ which is proportional to
‖y‖22. At this point we are able to give a proof of this fact using the equivalence of
the logarithmic Sobolev inequality and the Gaussian isoperimetric inequality in the
context of log-concave measures, first established by Bakry and Ledoux (see [3]).

Theorem 1.3. Let µ be a log-concave probability measure which satisfies the log-
Sobolev inequality with constant κ > 0. Then, (µ, ϕ) has property (τ), where ϕ(y) =
c
κ‖y‖

2
2 and c > 0 is an absolute constant.
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Theorem 1.3 is close in spirit to a result due to Maurey proved in [22] stating

that if (µ, ϕ) has property (τ) with ϕ(y) =
‖y‖22
2κ , then µ satisfies Poincaré inequality

with constant κ (see Section 5 for the exact statement).

Acknowledgements. We would like to thank A. Giannopoulos for many interest-
ing discussions. We also thank E. Milman and R. Lata la for useful references on
the subject of this work.

2 Notation and background material

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote
by ‖ · ‖2 the corresponding Euclidean norm, and write Bn2 for the Euclidean unit
ball, and Sn−1 for the unit sphere. Volume is denoted by | · |. We write ωn for the
volume of Bn2 and σ for the rotationally invariant probability measure on Sn−1.
The Grassmann manifold Gn,k of k-dimensional subspaces of Rn is equipped with
the Haar probability measure νn,k. Let k 6 n and F ∈ Gn,k. We will denote by
PF the orthogonal projection from Rn onto F . We also write A for the homothetic
image of volume 1 of a compact set A ⊆ Rn of positive volume, i.e. A := A

|A|1/n .

The letters c, c′, c1, c2 etc. denote absolute positive constants which may change
from line to line. Whenever we write a ' b, we mean that there exist absolute
constants c1, c2 > 0 such that c1a 6 b 6 c2a.

A convex body in Rn is a compact convex subset C of Rn with non-empty
interior. We say that C is symmetric if x ∈ C implies that −x ∈ C. We say that C
is centered if it has barycentre at the origin, i.e.

∫
C
〈x, θ〉 dx = 0 for every θ ∈ Sn−1.

The support function hC : Rn → R of C is defined by hC(x) = max{〈x, y〉 : y ∈ C}.
We define the mean width of C by w(C) =

∫
Sn−1 hC(θ)σ(dθ), and more generally,

for each −∞ < q <∞, q 6= 0, we define the q-mean width of C by

(2.1) wq(C) =

(∫
Sn−1

hqC(θ)σ(dθ)

)1/q

.

The radius of C is the quantity R(C) = max{‖x‖2 : x ∈ C} and, if the origin is an
interior point of C, the polar body C◦ of C is

(2.2) C◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ C}.

Let C be a symmetric convex body in Rn. Define k∗(C) as the largest positive
integer k 6 n for which

(2.3)
1

2
w(C)(Bn2 ∩ F ) ⊆ PF (C) ⊆ 2w(C)(Bn2 ∩ F )

with probability greater than n
n+k with respect to the Haar measure νn,k on Gn,k.

It is known (see [24] and [27]) that the parameter k∗(C) is completely determined
by w(C) and R(C): there exist c1, c2 > 0 such that

(2.4) c1n
w(C)2

R(C)2
6 k∗(C) 6 c2n

w(C)2

R(C)2
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for every symmetric convex body C in Rn. The same parameter is crucial for the
behavior of the q-mean width of C: it is proved in [20] that for any symmetric convex
body C in Rn one has (i) wq(C) ' w(C) if 1 6 q 6 k∗(C), (ii) wq(C) '

√
q/nw(C)

if k∗(C) 6 q 6 n and (iii) wq(C) ' R(C) if q > n.

Recall that a Borel probability measure µ on Rn is called log-concave if µ((1−
λ)A + λB) > (µ(A))1−λ(µ(B))λ for any pair of Borel subsets A,B of Rn and any
λ ∈ (0, 1). It is known that if µ is log-concave and if µ(H) < 1 for every hyperplane
H, then µ is absolutely continuous with respect to Lebesgue measure and its density
fµ is a log-concave function, i.e. log f is concave (see [8]).

A well-known consequence of Borell’s lemma (see [26, Appendix III]) states that
if f : Rn → R is a seminorm and µ is a log-concave probability measure on Rn,
then, for any 1 6 p < q,

(2.5) ‖f‖Lq(µ) 6
cq

p
‖f‖Lp(µ),

where c > 0 is an absolute constant. In particular, (2.5) holds true for any linear
functional f(x) = 〈x, θ〉 and any norm f(x) = ‖x‖.

Let α ∈ [1, 2]. The ψα-norm of f is defined by

(2.6) ‖f‖ψα = inf

{
t > 0 :

∫
exp(|f |/t)α dµ 6 2

}
.

One can check that ‖f‖ψα ' supq>α
‖f‖Lq(µ)
q1/α

. We say that a log-concave probability

measure µ on Rn satisfies a ψα-estimate with constant bα in the direction of θ if

(2.7) ‖〈·, θ〉‖ψα 6 bα‖〈·, θ〉‖2.

The measure µ is called ψα with constant b = bα if it satisfies a ψα estimate with
constant b in every direction θ ∈ Sn−1. The following are equivalent:

1. µ satisfies a ψα-estimate with constant b in the direction of θ.

2. For all t > 0 we have µ(x : |〈x, θ〉| > t‖〈·, θ〉‖2) 6 2e−t
a/bα .

From (2.5) we see that every log-concave probability measure has ψ1 constant b 6 C,
where C > 0 is an absolute constant.

Let µ be a probability measure on Rn. For every q > 1 and θ ∈ Sn−1 we define

(2.8) hZq(µ)(θ) :=

(∫
Rn
|〈x, θ〉|qdµ(x)

)1/q

.

Note that if µ is log-concave then hZq(µ)(θ) <∞. We define the Lq-centroid body
Zq(µ) of µ to be the centrally symmetric convex set with support function hZq(µ).
Lq-centroid bodies were introduced in [21]. Here we follow the normalization (and
notation) that appeared in [28]. The original definition concerned the class of
measures 1K where K is a convex body of volume 1. In this case, we also write
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Zq(K) instead of Zq(1K). Additional information on Lq-centroid bodies can be
found in [29] and [30].

An absolutely continuous (with respect to Lebesgue measure) probability mea-
sure µ on Rn with density fµ is called isotropic if it is centered and Z2(µ) = Bn2 .
Equivalently, if

∫
〈x, θ〉2 dµ(x) = 1 for all θ ∈ Sn−1. In the log-concave case we

define the isotropic constant of µ by Lµ := fµ(0)
1
n . We refer to [25], [11] and [30]

for additional information on isotropic convex bodies and measures.
For every −n < q 6∞, q 6= 0, we define

(2.9) Iq(µ) :=

(∫
Rn
‖x‖q2dµ(x)

)1/q

.

Observe that if µ is isotropic then I2(µ) =
√
n. Next, we consider the parameter

(2.10) q∗(µ) = max{k 6 n : k∗(Zk(µ)) > k}.

The main result of [29] asserts that the moments of the Euclidean norm on log-
concave isotropic measures satisfy a strong reverse Hölder inequality up to the value
q∗: for every q 6 q∗(µ),

(2.11) Iq(µ) 6 CI−q(µ),

where C > 0 is an absolute constant. In other words, Iq(µ) '
√
n if 1 6 |q| 6 q∗(µ).

Moreover, one has a non-trivial estimate for the parameter q∗: if µ is a ψα-measure
with constant bα, then

(2.12) q∗(µ) > cnα/2/bαα,

where c > 0 is an absolute constant. In particular, q∗(µ) > c
√
n for every isotropic

log-concave probability measure µ in Rn.

3 Isotropic log-concave measures with bounded log-
arithmic Sobolev constant

Geometric properties

In this Section we assume that µ is an isotropic log-concave measure on Rn with log-
arithmic Sobolev constant κ and provide short proofs of the statements in Theorem
1.1. In some cases the results hold true under weaker assumptions on µ.

Let us first recall the classical Herbst argument (for a proof see [19]):

Lemma 3.1 (Herbst). Let µ be a Borel probability measure on Rn such that µ ∈
LS(κ). Then, for any 1-Lipschitz function f : Rn → R with Eµ(f) = 0, we have

(3.1) Lf (t) 6
κ

2
t2,

for any t ∈ R. 2

7



Proposition 3.2. Let µ be an isotropic measure in LS(κ). Then, for any θ ∈ Sn−1

we have:

(3.2) ‖〈·, θ〉‖ψ2 6 c
√
κ,

where c > 0 is an absolute constant.

Proof. From Herbst’s Lemma and Markov’s inequality we conclude that µ(x :

|f(x)| > t) 6 2e−t
2/2κ for every 1-Lipschitz function f with Eµ(f) = 0. Since µ is

assumed isotropic, µ is centered and this result applies to the function x 7→ 〈x, θ〉,
where θ ∈ Sn−1. Thus, we get

(3.3) µ(x : |〈x, θ〉| > t) 6 2e−t
2/2κ

for every t > 0, and this implies that

(3.4) ‖〈·, θ〉‖ψ2
6 c
√
κ.

In other words, µ is a ψ2-measure with constant O(
√
κ). Note that the log-concavity

of µ is not necessary for this claim. 2

Next we prove that the isotropic constant of µ is bounded in terms of κ.

Proposition 3.3. Let µ ∈ LSls(κ). Then, one has

(3.5) Lµ 6 c
√
κ,

where c > 0 is an absolute constant.

Proof. It is known that ψ2-isotropic log-concave measures have bounded isotropic
constant. Actually, it was recently proved in [15] that the dependence on the ψ2-
constant is linear. This follows from the following main result of [15]: if q 6 q∗(µ)
then

(3.6) |Zq(µ)|1/n > c

√
q

n
.

Since µ is a ψ2-measure with constant
√
κ we have q∗(µ) > cn/κ. Thus, using also

the fact that |Zn(µ)|1/n[fµ(0)]1/n ' 1 (see [29]) we get

(3.7) Lµ = [fµ(0)]1/n ' 1

|Zn(µ)|1/n
6

1

|Zq(µ)|1/n
6 C

√
n

q
,

for all g 6 cn/κ and the result follows. 2

Remark. Let µ be a measure which satisfies Poincaré inequality with constant κ.
Note that

(3.8) 〈Cov(µ)(u), u〉 = Varµ(f) 6 κ

∫
‖∇f‖22 dµ = κ‖u‖22,

where f(x) = 〈x, u〉. Thus, for any probability measure µ ∈ P(κ) we have

(3.9) Lµ := ‖µ‖
1
n∞[det Cov(µ)]

1
2n 6 ‖µ‖1/n∞

√
k,

where ‖µ‖∞ = supx fµ(x) and fµ is the density of µ.
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Proposition 3.4. Let µ ∈ LS(κ). Then, µ satisfies the following moment estimate:
For any q > 2 one has

(3.10) Iq(µ) 6 I2(µ) +
√
κ
√
q.

In particular, if µ is isotropic then we have:

(3.11) Iq(µ) 6 (1 + δ)I2(µ),

for 2 6 q 6 δ2n/κ and δ > (2κ/n)1/2.

Proof. We prove a more general result following [2]: if µ satisfies the logarithmic
Sobolev inequality with constant κ > 0 then, for any Lipschitz function f on Rn
and for any 2 6 p 6 q, we have

(3.12) ‖f‖2q − ‖f‖2p 6 κ‖f‖2Lip(q − p).

For the proof we may assume that ‖f‖Lip = 1. Let g(p) = ‖f‖p. Differentiating g
we see

(3.13) g′(p) = ‖f‖p
[

1

p

∫
|f |p log |f | dµ∫
|f |p dµ

− 1

p2
log

∫
|f |p dµ

]
.

On the other hand using the logarithmic Sobolev inequality for |f |p/2, p > 2, after
some calculations we arrive at:

(3.14)
1

p

∫
fp log f dµ∫
fp dµ

− 1

p2
log

∫
|f |p dµ 6

κ

2

∫
|f |p−2 dµ∫
|f |p dµ

.

That is

(3.15)
g′(p)

g(p)
6
κ

2

g(p− 2)p−2

gp(p)
.

Then, using Hölder’s inequality, we get

(3.16) 2g′(p)g(p) 6 κ

for all p > 2. Thus, for any 2 6 p 6 q we get g(q)2 − g(p)2 6 κ(q − p). Choosing
f(x) = ‖x‖2 and using the elementary inequality

√
a+ b 6

√
a+
√
b, we see that

(3.17) Iq(µ) 6 I2(µ) +
√
κ
√
q

for all 2 6 q < ∞. Note that the log-concavity assumption is not needed for the
proof of this claim. 2

Proposition 3.5. Let µ be an isotropic measure in LSlc(κ). Then,

(3.18) I−q(µ) > c1I2(µ)

for all q 6 c2n/κ, where c1, c2 > 0 are absolute constants.
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Proof. For the negative values of q we use the fact that q∗(µ) > c6n/κ. This
is a consequence of (2.12) because µ is a ψ2-measure with constant O(

√
κ) from

Proposition 3.2. Then, from (2.11) we conclude that I−q(µ) > C−1Iq(µ) > c5
√
n

for all 2 6 q 6 c6n/κ. 2

Proposition 3.6. Let µ be an isotropic measure in LSlc(κ). Then, most directions
are “regular” and super-Gaussian: There exists a subset A of Sn−1 with measure
σ(A) > 1− e−c7n/κ such that for any θ ∈ A we have

(3.19)

(∫
|〈x, θ〉|q dµ(x)

)1/q

6 c8
√
κ
√
q/p

(∫
|〈x, θ〉|p dµ(x)

)1/p

for any 1 6 p 6 c9n/κ and any q > p, and also,

(3.20) µ(x : |〈x, θ〉| > t) > e−c10t
2/κ,

for all 1 6 t 6 c11
√
n/κ.

Proof. Under the weaker assumption that µ is an isotropic log-concave ψ2-measure
with constant b in Rn, we show that there exists a subset A of Sn−1 of measure
σ(A) > 1− e−c1n/b2 such that for any θ ∈ A and for any 1 6 p 6 c2n/b

2 we have:

(3.21)

(∫
|〈x, θ〉|p dµ(x)

)1/p

' √p.

The argument has more or less appeared in [12] (see also [30]). Since µ has ψ2

constant b, from (2.12) we have q∗(µ) > cn/b2. Let k 6 cn/b2. Then, if we fix
p 6 k, applying Dvoretzky’s theorem for Zp(µ) we have

(3.22)
1

2
w(Zp(µ))(Bn2 ∩ F ) ⊆ PF (Zp(µ)) ⊆ 2w(Zp(µ))(Bn2 ∩ F )

for all F in a subset Bk,p of Gn,k of measure

(3.23) νn,k(Bk,p) > 1− e−c3k∗(Zp(µ)) > 1− e−c4n/b
2

.

Applying this argument for p = 2i, i = 1, . . . , blog2 kc, and taking into account
the fact that, by (2.5), Zq(µ) ⊆ cZp(µ) if p < q 6 2p, we conclude that there

exists Bk ⊂ Gn,k with νn,k(Bk) > 1− e−c5n/b2 such that (3.21) holds true for every
F ∈ Bk and every 1 6 p 6 k. On the other hand, since Ip(µ) ' I2(µ) =

√
n for all

2 6 p 6 q∗(µ), we see that

(3.24) w(Zp(µ)) ' √p

for all p 6 cn/b2. Therefore, (3.21) can be written in the form

(3.25) hZp(µ)(θ) '
√
p

10



for all F ∈ Bk, θ ∈ SF and 1 6 p 6 k. To conclude the proof, let k = bcn/b2c.
Then, if we set A = {θ ∈ Sn−1 : hZp(θ) ' √p, for all 1 6 p 6 k}, Fubini’s theorem
gives:

σ(A) =

∫
Gn,k

σF (A ∩ F ) dνn,k(F ) >
∫
Bk

σF (A ∩ F ) dνn,k(F )(3.26)

> 1− e−cn/b
2

.

Now, let θ ∈ A and let p 6 cn/b2 and q > p. From (3.21) we have ‖〈·, θ〉‖p '
√
p.

Since µ is a ψ2 measure we have ‖〈·, θ〉‖q 6 cb
√
q for all θ ∈ Sn−1 and all q > 1.

This shows that

(3.27) ‖〈·, θ〉‖q 6 cb
√
q/p ‖〈·, θ〉‖p.

In the case µ ∈ LSlc(κ) we know that b = O(
√
κ), and this proves the first part of

Claim (iv).
For the second part we use an argument which has essentially appeared in [12].

Using the fact that for all θ ∈ A and for all 1 6 q 6 cn/b2 we have hZq(µ)(θ) '
√
q,

we write

(3.28) µ

(
x : |〈x, θ〉| > 1

2
‖〈·, θ〉‖q

)
> (1− 2−q)2

‖〈·, θ〉‖2qq
‖〈·, θ〉‖2q2q

> e−cq,

where we have used Paley-Zygmund inequality and (2.5). Therefore, for all θ ∈ A
and all q 6 cn/b2, we get

(3.29) µ(x : |〈x, θ〉| > c1
√
q) > e−c2q.

Writing c1
√
q = t we have that for all 1 6 t 6 c3

√
n/b one has µ(x : |〈x, θ〉| > t) >

e−ct
2

for all θ ∈ A, and σ(A) > 1− e−cn/b2 . 2

Remark. For a general measure µ ∈ LSlc(κ) one cannot expect that every direction
θ will be super-Gaussian (with a constant depending on κ). To see this, consider
the uniform measure µ∞,n on the unit cube Cn =

[
− 1

2 ,
1
2

]n
. This is a product

log-concave probability measure, and hence, it satisfies the logarithmic Sobolev
inequality with an absolute constant κ (see [19, Corollary 5.7]). On the other hand,
it is clearly not super-Gaussian in the directions of ei, because hCn(ei) ' 1. The
same is true for all θ ∈ Sn−1 for which hCn(θ)/

√
n = on(1).

Tail estimates for order statistics

The starting point for the next property is a result of Lata la from [17]: if µ is a
log-concave isotropic probability measure on Rn then

(3.30) µ(x : x∗m > t) 6 exp(−
√
mt/c)

for all 1 6 m 6 n and t > log(en/m), where (x∗1, . . . , x
∗
n) is the decreasing re-

arrangement of (|x1|, . . . , |xn|). We will show that if µ ∈ LS(κ) and is centered,
then a much better estimate holds true. The idea of the proof comes from [17,
Proposition 2].

11



Proposition 3.7. Let µ be a centered probability measure on Rn which belongs to
the class LS(κ). For every 1 6 m 6 n and for any t > C

√
κ log(en/m), we have

(3.31) µ(x : x∗m > t) 6 e−cmt
2/κ.

Proof. Since µ satisfies the log-Sobolev inequality with constant κ, the following
isoperimetric inequality holds (for a proof see [19]): if µ(A) > 1/2, then for any
t > 0 one has

(3.32) 1− µ(A+ tBn2 ) 6 e−t
2/8κ.

Applying Herbst’s argument to the function x 7→ xi (that is (3.3) for θ = ei) we
have

(3.33) µ(x : |xi| > t) 6 2e−t
2/2κ

for t > 0. Given 1 6 m 6 n, for any t > 0 we define the set

(3.34) A(t) := {x : card(i : |xi| > t) < m/2}.

Claim. For every t >
√

6κ log(en/m) we have µ(A(t)) > 1/2.

Indeed, using Markov’s inequality and (3.33) we obtain:

1− µ(A(t)) = µ(x : card(i : |xi| > t) > m/2)(3.35)

= µ

(
x :

n∑
i=1

1{|xi|>t}(x) >
m

2

)

6
2

m

n∑
i=1

µ(x : |xi| > t)

6
4n

m
e−

t2

2κ 6
4n

m

(en
m

)−3

<
1

2
.

Now, let t0 :=
√

6κ log(en/m). For any s > 0, if we write z = x + y ∈ A(t0) +
s
√
mBn2 then less than m/2 of the |xi|’s are greater than t0 and less than m/2 of

the |yi|’s are greater than s
√

2. Using the isoperimetric inequality once again, we
get:

(3.36) µ(x : x∗m > t0 +
√

2s) 6 1− µ(A(t0) + s
√
mBn2 ) 6 e−ms

2/8κ.

Choosing s > 2t0 we get the result with C = 2
√

6 and c = 1/64. 2

Note that for previous argument neither isotropicity nor log-concavity is needed.
Nevertheless, one can actually obtain the strong estimate of Proposition 3.7 in the
setting of log-concave isotropic probability measures with bounded ψ2-constant,
using a more general result from [1, Theorem 3.3]: For every log-concave isotropic

12



probability measure µ in Rn, for every 1 6 m 6 n and every t > c log(en/m), one
has

(3.37) µ(x : x∗m > t) 6 exp
(
σ−1
µ (
√
mt/c)

)
,

where

(3.38) σµ(p) = max
θ∈Sn−1

‖〈·, θ〉‖p = R(Zp(µ)), p > 1.

Assuming that µ is a ψ2-measure with constant b > 0, we have σµ(p) 6 c1b
√
p, and

hence σ−1
µ (
√
mt/c) > c2mt

2/b2. Then, we get the following.

Proposition 3.8. Let µ be a log-concave isotropic probability measure on Rn with
ψ2-constant b > 0. For every 1 6 m 6 n and for any t > C log(en/m), we have

(3.39) µ(x : x∗m > t) 6 e−cmt
2/b2 .

2

Similarly, we can state [1, Theorem 3.4] in the setting of ψ2-measures with
constant b (in particular, for all µ ∈ LSlc(κ)):

Proposition 3.9. Let µ be a log-concave isotropic probability measure on Rn with
ψ2-constant b > 0. For every 1 6 m 6 n and for any t > 1, we have
(3.40)

µ

(
x : max
|σ|=m

‖Pσ(x)‖2 > ct
√
m log(en/m)

)
6 exp

(
−cmt2 log2(en/m)/b2 log b

)
,

where Pσ denotes the orthogonal projection onto Rσ and the maximum is over all
σ ⊆ {1, . . . , n} with |σ| = m. 2

4 Log-Sobolev constant of ψ2-measures

The question whether log-concave probability measures with bounded ψ2-constant
exhibit a good behavior with respect to the Poincaré or log-Sobolev constant seems
to be open. In fact, the Kannan-Lovasz-Simonovits conjecture, which asks if the
Poincaré constants of all log-concave probability measures are uniformly bounded,
has been verified only in some special cases: these include the Euclidean ball, the
unit cube and log-concave product measures (see [23] for a complete picture of what
is known). The “KLS-conjecture” was also confirmed for the normalized `np balls
by S. Sodin [31] in the case 1 6 p 6 2 and by Lata la and Wojtaszczyk [18] in the
case p > 2.

It is well-known (see [4]) that the ψ2-constants of the `nq -balls, 2 6 q 6∞, are
uniformly bounded. Below we show that the argument of [18] allows one to show
that their log-Sobolev constants are also uniformly bounded.
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Proof of Theorem 1.2. Recall that if µ, ν are Borel probability measures on Rn
and T : Rn → Rn is a Borel measurable function, we say that T transports µ to ν
if, for every Borel subset A of Rn,

(4.1) µ(T−1(A)) = ν(A).

Equivalently, if for every Borel measurable function f : Rn → R,

(4.2)

∫
f(Tx) dµ(x) =

∫
f(x) dν(x).

Let 1 6 q <∞. We consider the probability distribution νq on R with density
(2δq)

−1 exp(−|x|q), where δq = Γ(1 + 1/q), and write νnq for the product measure
ν⊗nq on Rn, with density (2δq)

−n exp(−‖x‖qq). We define a function wq : R→ R by
the equation

(4.3)
1√
2π

∫ ∞
x

e−t
2/2 dt =

1

2δq

∫ ∞
wq(x)

e−|t|
q

dt.

We also define Wq,n : Rn → Rn by Wq,n(x1, . . . , xn) = (wq(x1), . . . , wq(xn)). It is
proved in [18] that Wq,n transports γn to νnq : for every Borel subset A of Rn we
have γn(W−1

q,n(A)) = νnq (A). Moroever, Wq,n is Lipschitz: for any r > 1 and for all
x, y ∈ Rn we have

(4.4) ‖Wq,n(x)−Wq,n(y)‖r 6
2δq√

2π
‖x− y‖r.

Next, we consider the radial transformation Tq,n, which transports νnq to µq,n - the

uniform probability measure on B
n

q , the normalized ball of `nq . For every 1 6 q <∞
and n ∈ N we define fq,n : [0,∞)→ [0,∞) by the equation

(4.5)
1

(2δq)n

∫ s

0

rn−1e−r
q

dr =

∫ fq,n(s)

0

rn−1 dr

and Tq,n : Rn → Rn by Tq,n(x) = fq,n(‖x‖q) x
‖x‖q . One can check that Tq,n trans-

ports the probability measure νnq to the measure µq,n.
In the case 2 6 q < ∞, the composition Sq,n = Tq,n ◦ Wq,n transports the

Gaussian measure γn to µp,n and is a Lipschitz map with respect to the standard
Euclidean norm, with a Lipschitz norm which is bounded by an absolute constant:
for every Borel subset A of Rn we have γn(S−1

q,n(A)) = µnq (A), and for all x, y ∈ Rn
we have:

(4.6) ‖Sq,n(x)− Sq,n(y)‖2 6 C‖x− y‖2,

where C > 0 is an absolute constant.
Now, we use the following simple Lemma.
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Lemma 4.1. Let µ, ν be two Borel probability measures on Rn. Assume that µ
satisfies the log-Sobolev inequality with constant κ and that there exists a Lipschitz
map T : (Rn, µ) → (Rn, ν), with respect to the Euclidean metric, that transports µ
to ν. Then, ν satisfies the log-Sobolev inequality with constant κ‖T‖2Lip.

Proof. Let f : Rn → R be a Lipschitz map. Then, f ◦ T is Lipschitz. Since, µ
satisfies the log-Sobolev inequality with constant κ, we get:

(4.7) Entµ((f ◦ T )2) 6 2κ

∫
‖∇(f ◦ T )‖22 dµ.

From (4.2) we obtain:

(4.8) Entµ((f ◦ T )2) = Entν(f2),

while for the right-hand side we have:

(4.9)

∫
‖∇(f ◦ T )‖22 dµ 6 ‖T‖2Lip

∫
‖(∇f) ◦ T‖22 dµ = ‖T‖2Lip

∫
‖∇f‖22 dν.

Combining the above, we conclude the proof. 2

We can now complete the proof of Theorem 1.2. The Gaussian measure γn
satisfies the log-Sobolev inequality with constant 1: for any Lipschitz function f in
Rn we have

(4.10) Entγn(f2) 6 2

∫
‖∇f‖22 dγn.

Then, the result follows from (4.6) and Lemma 4.1. 2

Problem 1. Determine the smallest constant m(b, n) such that every isotropic log-
concave probability measure µ on Rn, which is ψ2 with constant less than or equal
to b, satisfies the log-Sobolev (resp. Poincaré) inequality with constant m(b, n).

Remark. At this point we should mention that Bobkov [5] has proved that if µ is
a log-concave, centered probability measure on Rn, then µ satisfies the log-Sobolev
inequality with constant O(d2), where

(4.11) d = inf

{
t > 0 :

∫
exp(‖x‖2/t)2 dµ(x) 6 2

}
,

that is, the ψ2 norm of the Euclidean norm x 7→ ‖x‖2 with respect to the measure
µ. In [5] he also proves that any log-concave, centered probability measure satisfies
Poincaré inequality with constant I2

2 (µ), where

(4.12) I2(µ) =

(∫
‖x‖22 dµ(x)

)1/2

.

Thus, if K is an isotropic convex body in Rn and µ = µK is the uniform measure
on K, then by Alesker’s theorem (see for example [11, Theorem 2.2.4]) we have
that d '

√
nLK = I2(K), thus we obtain that µ satisfies the log-Sobolev inequality

and Poincaré inequality with constant O(nL2
K). Actually a better dependence for

the Poincaré constant is known, due to recent developments on the central limit
theorem for convex bodies (see [6]).
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5 Infimum convolution

In this paragraph we discuss the relation between the logarithmic Sobolev inequality
and the infimum convolution conjecture, as formulated by Lata la and Wojtaszczyk
in [18]. By the classical Herbst’s argument we can easily verify that if µ is centered
and satisfies the log-Sobolev inequality with constant κ, then

(5.1) eΛµ(ξ) =

∫
e〈x,ξ〉 dµ(x) 6 eκ‖ξ‖

2
2/2,

for all ξ ∈ Rn. (Actually, this can be easily verified for all log-concave, isotropic,
ψ2 probability measures with ψ2 constant

√
κ without the assumption on the log-

Sobolev constant). This in turn gives that

(5.2) Λ∗µ(ξ) >
‖ξ‖22
4κ

,

for all ξ ∈ Rn. The main question is the following:

Problem 2. We say that µ has the infimum convolution property with constant α
(which we denote by IC(α)) if the pair (µ,Λ∗µ( ·

c(κ) )) has property (τ). Given κ > 0,

determine if there is a positive constant c(κ) such that every isotropic, log-concave
probability measure µ on Rn which belongs to LSlc(κ) satisfies IC(c(κ)).

Since the infimum convolution property is of “maximal” nature, one could ask,
in view of (5.2), if a probability measure µ which satisfies the log-Sobolev inequality
with constant κ also has property (τ) with a cost function w of the form w(y) =
c
κ‖y‖

2
2 for some absolute constant c > 0. Below we give a proof of this fact under

the assumption that µ is a log-concave measure. We first recall some well known
facts.

Let µ be a Borel probability measure on Rn. For every Borel subset A of Rn
we define its surface area as follows:

(5.3) µ+(A) = lim inf
t→0+

µ(At)− µ(A)

t
,

where At = A+ tBn2 is the t-extension of A with respect to ‖ · ‖2. In other words,

(5.4) At ≡ A+ tBn2 =

{
x ∈ Rn : inf

a∈A
‖x− a‖2 < t

}
.

We say that µ satisfies a Gaussian isoperimetric inequality with constant c > 0 if

(5.5) µ+(A) > cI(µ(A))

for every Borel subset A of Rn, where I is the Gaussian isoperimetric function

(5.6) I(x) = φ ◦ Φ−1(x).
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Here, Φ is the standard normal distribution function

(5.7) Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt

and φ = Φ′ is its density. Assuming that µ satisfies (5.5) with constant c =

c(κ) we will show that (µ, ϕ) has property (τ), where ϕ(x) = c2

4 ‖x‖
2
2. Note that

this condition is in general more restrictive than the condition µ ∈ LSlc(κ): It is
known that if µ satisfies (5.5) with constant c > 0 then µ ∈ LS(1/c2) (see [5]).
Nevertheless, in the context of log-concave probability measures on Rn, (5.5) and
the log-Sobolev inequality are equivalent. This was first established by Bakry and
Ledoux in [3]. Below, we first sketch an argument for the sake of completeness.

Assume that µ is a log-concave probability measure on Rn. Then, the density
of µ with respect to the Lebesgue measure is of the form e−U , where U : Rn →
[−∞,∞) is a convex function. If we consider the differential operator

Lu = ∆u− 〈∇U,∇u〉

for u ∈ C2 and u ∈ L2(µ), then using integration by parts we easily check that the
log-Sobolev inequality can be written in the form

(5.8) Entµ(f2) 6 2κ

∫
f(−Lf) dµ.

Using a hypercontractivity result of Gross [13] and semigroup arguments we can
arrive at the following parametrized variant of the log-Sobolev inequality:

Theorem 5.1 (Bakry-Ledoux, 1996). Let µ be a probability measure with density
e−U with respect to Lebesgue measure, where U : Rn → [−∞,∞) is a convex
function. If µ satisfies the log-Sobolev inequality with constant κ > 0 then, for any
t > 0 and any smooth function f , we have

(5.9) ‖f‖22 − ‖f‖2p(t) 6
√

2t‖f‖∞
∫
‖∇f‖2 dµ,

where p(t) = 1 + e−t/κ.

Using this Theorem we can derive the Gaussian isoperimetric inequality with
constant c = O(κ−1/2).

Proposition 5.2. Let µ be a probability measure with density e−U with respect to
the Lebesgue measure, where U : Rn → [−∞,∞) is a convex function. If µ satisfies
the log-Sobolev inequality with constant κ > 0 then, for any Borel set A in Rn we
have

(5.10) µ+(A) > c(κ)I(µ(A)).

Furthermore, we can have c(κ) = c/
√
κ, where c > 0 is an absolute constant.
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Proof. Let A be a Borel set in Rn. It is enough to consider the case 0 < µ(A) 6 1/2.
For any t > 0, approximating χA with smooth functions fε : Rn → [0, 1] and passing
to the limit, from Theorem 5.1 we get

(5.11) µ(A)
(

1− µ(A)
2
p(t)
−1
)
6
√

2tµ+(A).

Note that

(5.12)
2

p(t)
− 1 = tanh

(
t

2κ

)
>

t

2κ
tanh(1),

for all 0 6 t 6 2κ. Therefore, we have

(5.13) µ(A)
(

1− e−
c1t
2κ log(1/µ(A))

)
6
√

2tµ+(A).

Computing at time t0 = κ
log(1/µ(A)) ∈ (0, 2κ) we see that

(5.14) µ+(A) >
1− e−c1/2√

2

1√
κ
µ(A)

√
log

1

µ(A)
.

Using the fact that I(x) 6 c2x
√

log(1/x) for all x ∈ (0, 1/2) and some absolute

constant c2 > 0, we get the result with constant c = 1−e−c1/2
2c2

κ−1/2. 2

Proof of Theorem 1.3. Let γ denote the standard 1-dimensional Gaussian mea-
sure. It is known that (γ,w) has property (τ), where w(x) = x2/4 - see [22]. Let f
be a bounded measurable function on Rn. We consider a function g : R→ R which
is increasing, continuous from the right, and such that, for any t ∈ R,

(5.15) µ(f < t) = γ(g < t).

Then, for the proof of (1.12) we just need to verify that

(5.16)

∫
ef2ϕ dµ 6

∫
eg2w dγ.

To this end, it suffices to prove that for any u > 0,

(5.17) µ(f2ϕ < u) > γ(g2w < u).

Since g is increasing we get that g2w is also increasing, thus the set Du = {x :
(g2w)(x) < u} is a half-line. For every x ∈ Du there exist x1, x2 ∈ R such that
x1 + x2 = x and g(x1) + w(x2) < u. By a limiting argument, for the proof of
(5.17) it is enough to prove that for any x ∈ Du and for any x1, x2 ∈ R with
g(x1) + w(x2) < u we have

(5.18) µ(f2ϕ < u) > γ(−∞, x1 + x2] = Φ(x1 + x2).
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For any g(x1) < s1 < u−w(x2) the definition of g implies that: µ(f < s1) = γ(g <
s1) > γ(−∞, x1] = Φ(x1). Moreover, the inclusion

(5.19) {f < s1}+ β
|x2|
2
Bn2 ⊆ {f2ϕ < u}

is valid with ϕ(x) = ‖x‖22/β2 for any β > 0.

In order to get the result, we ought to verify an inequality of the following
form: if µ(A) > Φ(x1) one has µ(A + β

2 |x2|Bn2 ) > Φ(x1 + x2). Equivalently, for
any t > 0 and any Borel subset A in Rn we would like to have µ(A + tBn2 ) >
Φ(Φ−1(µ(A)) + 2

β t).

To finish the proof we just observe that our assumption is equivalent to µ+(A) >
c(κ)I(µ(A)) for any Borel subset A of Rn and this in turn to the fact that for any
Borel subset A of Rn and any t > 0 we have

(5.20) µ(A+ tBn2 ) > Φ(Φ−1(µ(A)) + tc(κ)).

A proof of this last assertion can be found in [19]. Thus, we have proved Theorem

1.3 with ϕ(y) = c(κ)2

4 ‖y‖
2
2 = c

κ‖y‖
2
2, where c > 0 is an absolute constant. 2

Remark. We should mention here that Maurey has proved in [22] that if (µ,w) has
property (τ) and w : Rn → R+ is a convex function such that w(x) > 1

2κ‖x‖
2
2 in

some neighborhood of 0, then µ satisfies Poincaré inequality with constant κ. Thus,
the previous Theorem shows that in the context of log-concave measures, the class
LSlc(κ) is contained in the class of measures µ satisfying (τ) with a convex cost
function which satisfies this hyperquadratic condition near zero, and in turn, this
class is contained in Plc(cκ), where c > 0 is an absolute constant.

A weaker version of Problem 2 is the following:

Problem 3. We say that µ has comparable weak and strong moments with con-
stant α (which we denote by CWSM(α)) if for any norm ‖·‖ in Rn and any q > p > 2
one has:

(5.21)

[∫ ∣∣∣‖x‖ − (∫ ‖x‖p dµ(x)

)1/p ∣∣∣q]1/q

6 α sup
‖z‖∗61

(∫
|〈z, x〉|p dµ(x)

)1/p

.

Determine if every measure µ ∈ LSlc(κ) satisfies CWSM(c) for some constant
c = c(κ).

It was communicated to us by R. Lata la [16] that a positive answer to Problems 2
and 3 is not known even if we restrict our attention to the following case:

Problem 4. Given a probability measure µ of the form dµ(x) = e−W (x) dx with
W : Rn → R a convex function such that HessW > α−1I for some given constant
α > 0, determine if Problems 2 and 3 have a positive answer up to constants c(α).

This class of measures has been studied systematically, and it is well known
that it is a subclass to LSlc(α) (see for example [7]).
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