
A Bootstrap Algorithm for Fast Supervised Learning

Michael A Kouritzin1, Stephen Styles2 and Beatrice-Helen Vritsiou1

1
Department of Mathematical and Statistical Sciences, University of Alberta

2
Statistics Canada, ESMD/DMSE

Abstract

Training a neural network (NN) typically relies on some type of curve-following method,
such as gradient descent (GD) (and stochastic gradient descent (SGD)), ADADELTA, ADAM
or limited memory algorithms. Convergence for these algorithms usually relies on having access
to a large quantity of observations in order to achieve a high level of accuracy and, with certain
classes of functions, these algorithms could take multiple epochs of data points to catch on.
Herein, a different technique with the potential of achieving dramatically better speeds of con-
vergence, especially for shallow networks, is explored: it does not curve-follow but rather relies
on ‘decoupling’ hidden layers and on updating their weighted connections through bootstrap-
ping, resampling and linear regression. By utilizing resampled observations, the convergence of
this process is empirically shown to be remarkably fast and to require a lower amount of data
points: in particular, our experiments show that one needs a fraction of the observations that
are required with traditional neural network training methods to approximate various classes of
functions.

1 Introduction

In the last decades, neural networks have proven to be excellent tools in pattern-recognition-type
problems, like classification of images, handwriting analysis, stock market prediction, and so on
(see e.g. [15], [5]). Constructing an appropriate neural network for a given application requires
first choosing a suitable architecture (including the number of layers and number of nodes for each
layer), which can be done based on tried practices as well as theory, and then training it using
labelled observations/historical data. Most commonly, during the training phase, the (weight and
bias) parameters of the network are updated using some type of gradient descent (GD). It is usually
desirable to update parameters frequently, after only a portion of the training data, which leads
to batch gradient descent (BGD) or stochastic gradient descent (SGD) (in cases where the batches
consist of very few data points, or sometimes even a single data point). Moreover, it has been
observed that adaptive variations of the SGD method help with convergence through boosting the
speed of the gradient search and through ensuring that the search does not get stuck in ‘saddle
points’ of the parameter space or does not overshoot a point of minimum by too much. Adaptive
methods such as AdaGrad [4, 13], RMSProp [16], ADADELTA [17], ADAM [7], NADAM [3] have
collectively shown how SGD can become more responsive to the data it is used on, and are now
considered the preferred methods in most (but not necessarily all) applications, being able to handle
well many different settings (such as sparse gradients, or a very large number of parameters).

The Adaptive Moment Estimation algorithm (ADAM), proposed by Kingma and Ba [7], is one of
the most commonly used refinements of SGD, combining several ideas of other variations coming be-
fore it. Empirically it has been shown to lead to better convergence speeds, and also to perform well
regardless of differences in data features between different problems or the choice of neural network
(NN) architecture. Still, even when using ADAM, many iterations may be required to achieve weight
parameter estimates of a desired level of accuracy. Perhaps, this is due to the fact that ADAM, as
well as the other algorithms listed above, are curve-following algorithms, and tracing curves to an
extremum (especially without use of higher order derivatives) can be a relatively slow process. On
the other hand, where it is known that the function of interest (which in our setting is most com-
monly the mean squared error (MSE) between the outputs predicted by the NN with current weights

1

ar
X

iv
:2

30
5.

03
09

9v
1

 [
cs

.L
G

]
 4

 M
ay

 2
02

3

and the correct outputs) is at least twice differentiable, then we could potentially use refinements of
Newton’s method (2nd-order methods) to speed up the convergence. In practice, due to these meth-
ods having very clearly increased memory requirements and computational complexity compared to
gradient methods, and due to the fact that NNs require a large number of parameters to begin with,
quasi-Newton methods, such as the Limited Memory Broyden–Fletcher–Goldfarb–Shanno algorithm
(LBFGS) [12], will almost invariably be chosen over them. It should be noted that no optimizer
from the abovementioned clearly outperforms all other algorithms in the whole range of even the
most standard applications of NNs, so usually an appropriate method is also chosen based on the
problem at hand.

In this note, we propose a substantially different technique for training NNs that does not
trace curves nor does it even require knowledge of derivatives: this is because it avoids the normal
back-propagation step in training NNs. This new method, which we call the Bootstrap Learning
algorithm (BLA), appears to work exceptionally well, at least for Single-Hidden-Layer Neural Net-
work (SHLNN), on which it has been tested. We believe that it can prove of great use when one
has to rely on fewer training data, or when there is need for the training to reach a good level of
accuracy within very few iterations.

The current strong interest in wide NNs (i.e. few hidden layers, sometimes just one, but po-
tentially many nodes in each of these layers) is supported by several theoretical results, building on
and refining the seminal universal approximation results by Cybenko [1] and Hornik [6]: in their
most basic form these results establish that any well-behaved function with inputs from a compact
subset of Rd and values in Rm can be approximated to any degree of accuracy by a sufficiently wide
SHLNN. For this reason and for assimilation purposes, we initially focus on the SHLNN case, but
later show how to extend the algorithm to cases where there are more hidden layers.

The proposed algorithm would more closely align to BGD or GD than to SGD in the sense that it
uses batches of significant size. However, instead of gradient calculation/approximation, the method
proposed here uses a decoupled parameter-updating scheme which relies on a linear approximation
method inspired by mathematical results from [9] and [11]. To motivate this method, suppose first
that {xt : t = 1, 2, . . .} and {yt : t = 1, 2, . . .} are Rd- and R-valued stochastic processes respectively
that satisfy

yt = xTt w + εt, t = 1, 2, . . . , (1)

where w is an unknown d-dimensional ‘weight’ vector and εt is a stochastic noise sequence. We
could think of the vector xt as being the inputs of a ‘degenerate’ neural network with a single set
of connections (that is, no hidden layers), yt as being the value of one of the output nodes, and w
as being the vector of weights/connections corresponding to this node which we want to accurately
determine. In light of these, it would make sense to attempt to minimize the mean squared error

w 7→ lim
N→∞

1

N

N∑
t=1

E|yt − xTt w|2

(assuming for now that the output sequence (yt)t is more or less the correct one). Under some

general enough conditions (e.g. assuming that the expectations A := lim
N→∞

1
N

N∑
t=1

E(xtx
T
t) and

b := lim
N→∞

1
N

N∑
t=1

E(ytxt) exist, and that A is positive definite), a unique optimal w exists and is

given by w0 := A−1b. However, whenever it is difficult to compute/approximate the limiting A and
b, we can still find a usable estimate for w by running the following linear approximation algorithm
which starts with some initial guess A0, b0 and some initial weight r ≥ 0: set

Ǎ0 = A0, Ǎn+1 = Ǎn +
1

n+ 1 + r
(xn+1x

T
n+1︸ ︷︷ ︸

An+1

− Ǎn), n = 0, ..., N − 1 (2)

b̌0 = b0, b̌n+1 = b̌n +
1

n+ 1 + r
(yn+1xn+1︸ ︷︷ ︸

bn+1

− b̌n), n = 0, ..., N − 1, (3)

2

and then for some small positive constant, or a slowly decreasing sequence of gains µt, keep setting

wt+1 = wt + µt(b̌N − ǍNwt)

until wt has essentially converged. In short, we compute the weighted averages

ǍN =
r

r +N
A0 +

1

r +N

N∑
n=1

An, b̌N =
r

r +N
b0 +

1

r +N

N∑
n=1

bn (4)

for some large N and then we essentially solve for wN := Ǎ−1N b̌N in a numerically stable way.

Remark. To fix/clarify notation that we will be using in the sequel: we will also consider y to be
a vector, the vector of all node-values of some layer of the NN; in such cases, we would have (1)
replaced by yTt = xTt w + εTt where w ∈ Rd×m is matrix-valued now (and εt is a random ‘noise’
vector). Then bn+1 in (3) would instead be defined by xn+1y

T
n+1 and b̌N would be Rd×m-valued.

Unless otherwise stated, we will choose r = N for our experiments, which means

ǍN =
1

2
A0 +

1

2N

N∑
n=1

An, b̌N =
1

2
b0 +

1

2N

N∑
n=1

bn. (5)

In other words, the initial estimate/‘guess’, which will be carried over from the previous batch of
data used in the algorithm, will be weighted equally as the estimate produced only from data of
the current batch. This is intended to produce weighted averages that forget earlier estimates at a
geometric rate of 1

2 .

Hitherto, we have completely disregarded the crucial facts that to approximate general classes
of functions we need to work with NNs with at least one hidden layer and we need the dependence
of ‘inner’ nodes on the inputs not to be a linear one as suggested by (1). Instead an activation
function is also applied (sometimes a different such function per layer) and turns this dependence
into a non-linear one. To be able to combine this fact with the linear approximation scheme above,
here we propose to ‘decouple’ the NN and apply simultaneous linear approximation processes for
every pair of consecutive layers. In the SHLNN case the first such process would serve to estimate
the synaptic weights between the inputs-layer and the hidden layer, and the second one would be
for the weights between the hidden layer and the final-outputs-layer. Naturally, this creates a new
issue: we have to ensure that the outcomes of the two processes are compatible at all times. This
leads to probably the most crucial and novel feature of the proposed method, which is to utilize our
training data in two different ways: both for updating, but also for keeping track of the dependence
between the two sets of weights produced by the algorithm at each given time (the details of how
this is done are briefly presented in the following subsection and are given in full in Section 2).

Notation. We work with fully-connected NNs which have one hidden layer (in our experiments
we choose to have about m = 100 nodes in this layer, but this can be adjusted as necessary in future
applications). For simplicity we will only consider scalar outputs since we can treat multidimensional
outputs as separate functions and apply our method on each such function. We focus on regression
problems and use the network architecture in the figure below.

We will count layers from the inputs to the output and use superscripts and subscripts to
distinguish layer and respectively nodes within a layer (or time depending on context). β will be
used for bias (to distinguish from the vectors (matrices) b used in the linear approximation algorithm
introduced above), although in most instances we will include it in the vector w of weights as its w0

component (and then we will also set x0 = −1 so that the scalar product notation wTx will include
subtracting the bias; it should be clear from the context each time if the bias term(s) is included
in the vector (matrix) w or not). Using vector notation, the picture below, as well as the implied
weights and activation functions σ1, σ2 (which act component-wise), one finds that

ŷ = σ2(w2σ1(w1x− β1)− β2), (6)

3

which by the universal approximation theorem is general enough to approximate any continuous
scalar function on a compact subset of Rd. Absorbing the bias in w now, we can write

ŷ = σ2(w2h), h = σ1(w1x), (7)

It will also be crucial in the sequel to keep track of the pre-activation values for each layer:

z2 = w2h, z1 = w1x. (8)

...
...

−1

x1

xd

h1

h2

hm

ŷ

Input Hidden Layer Output

Figure 1: Neural network architecture

1.1 Bootstrap Particles

Pretend for the moment that we have access to (accurately found) hidden values h. (Of course, this
is not assumed in our work.) Then, the internal variables hn (corresponding to a given input xn of
a function f that we want to approximate, with f(xn) = yn being the actual output for xn) can be
viewed as the input of layer 2 and their pre-activation values z1n (which will equal σ−11 (hn) when the
activation function σ1 happens to be invertible) become the outputs for layer 1. Note that xn (the
actual input to the NN) and z1n satisfy a linear relation, which we want to optimize using the linear
approximation algorithm introduced above. Similarly, hn and z2n satisfy another linear relation (the
latter values equalling σ−12 (yn) if σ−12 exists; in our experiments we primarily set σ2 equal to the
identity, which is also a standard choice in linear regression). We have thus decoupled the SHLNN
into two ‘degenerate’ NNs where our earlier linear approximation scheme applies:

Layer 1 to 2:
A1
n = xnxn

T

b1n = xn(z1n)T

Layer 2 to 3:
A2
n = hnhn

T

b2n = hn(σ−12 (yn))T
.

However, this presupposes that we have access to at least a fairly decent approximation of hn and
z1n, which in reality we cannot guarantee.

We deal with this issue by creating bootstrap particles. Given the current value of the weights
(and biases), the bootstrap particles are created by running each input (coming from a batch of the

4

data of size N) through the network and by keeping track of the internal values and the final output:
let {(xn, z1n, hn, z2n, ŷn)}Nn=1 be the 5-tuples/particles we get in this way (note that in general ŷn 6= yn,
the actual output of the function f for input xn). To keep notation clear, we relabel the particles{(
xn, z

1
n, hn, z

2
n, ŷn

)}N
n=1

as
{(
x̂k, ẑ

1
k, ĥk, ẑ

2
k, ŷk

)}N
k=1

: these will help us pick suitable internal values

ĥsn and ẑ1sn , which we can combine with the real data
{(
xn, yn

)}N
n=1

to then apply the linear
approximation scheme. In particular, for each (xn, yn), we consider the δ closest particles (i.e. the δ
smallest distances among `n→k = ‖(xn, yn)−(x̂k, ŷk)‖, k ∈ {1, ..., N}) and use a (scoring) function s
that is large when (xn, yn) is close to (x̂k, ŷk). With probability proportional to this scoring function,

some bootstrap particle
(
x̂kj , ẑ

1
kj
, ĥkj , ẑ

2
kj
, ŷkj

)
, 1 ≤ j ≤ δ, is accepted for the real data pair (xn, yn),

and this allows us to form the ‘mixed’ particles{(
xn, ẑ

1
kjn

, ĥkjn , z
2
n = σ−12 (yn), yn

)}N
n=1

.

Remarks. 1. For notational simplicity, from now on we will write ĥn instead of ĥkjn (and similarly

ẑ1n instead of ẑ1kjn); in particular the notation ĥ and ẑ will indicate that these node-values are coming

from the bootstrap particle drawn for the real data pair (xn, yn), and are not, in general, equal to
the internal values we would get if we fed xn into the NN (with current weights).

2. As already mentioned, in our experiments we set σ2 to be the identity function, so we can safely
set z2n = σ−12 (yn). If on the other hand in some application we had to work with a non-invertible
activation function for the last layer, we could instead pick z2n as follows: for each (xn, yn) we could
draw a second bootstrap particle (particle kun), in the same way as above but independently of the
first particle kjn , and we could set z2n = ẑ2n = ẑ2kun

.

We can now safely apply the linear approximation scheme described earlier for each pair of consec-
utive layers of our SHLNN:

Layer 1 to 2:
A1
n = xnx

T
n

b1n = xn(ẑ1n)T
 w1 =

[
A1
N

]−1
b1N

Layer 2 to 3:
A2
n = ĥnĥ

T
n

b2n = ĥn(z2n)T
 w2 =

[
A2
N

]−1
b2N .

Remark on the methodology. We primarily use the squared l2 distance: `n→k = |xn − x̂k|2 +

|yn − ŷk|2, and the scoring function s(l) = e−l
2

. In our experiments we started by setting δ =
δm = 40, and gradually decreased this all the way down to 8, as the number m of batches of data
we had processed increased (once δ reached 8, we kept it static).

In principle, we expect that allowing δ to decrease as the training progresses (even all the way
down to 1) can improve performance, and it should also help with establishing theoretical results.
However, we did not explore in this work which decreasing function(s) m → δm would be best to
choose.

The rest of the paper is organized as follows: in Section 2 we give precise details of the method
(and some theoretical considerations), while in Sections 3 and 4 we describe our experiments and
present the comparison with other methods (the methods we are comparing to are gradient descent
(GD), ADAM and the Limited Memory Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS)).

Acknowledgement. This work builds on some ideas put forth while the second-named author was
a Master’s student, and later Research Associate, at the University of Alberta.

2 Method

As already mentioned, in this paper we largely focus on networks that only contain one hidden
layer. For this architecture we need to choose two activation functions σ1 and σ2, where σ1 is the

5

activation function between the input layer and the hidden layer, and σ2 is the activation function
between the hidden layer and the output layer. Typically, for regression one chooses σ2 to be the
identity function, which is consistent with the universal approximation theorem. For the purposes
of this paper we mostly use the hyperbolic tangent for our first activation function σ1. However,
ReLU and Leaky ReLU are also used where more appropriate.

We consider a single set of training data with N total input-output observations, which we can
(and intend to) reuse multiple times, with each time through the data being called an epoch. Each
epoch e will be split into one or more (disjoint) batches, labelled Ml(e), ...,Mh(e) from lowest to
highest using contiguous numbers, so that Ml(1) = 1, and Ml(e + 1) = Mh(e) + 1 for e ≥ 1. The
size of batch m will be denoted by Nm ≤ N , or more simply N if there is no ambiguity, and it can
vary from epoch to epoch (and even for different batches within the same epoch).

Below are the steps the method follows for each batch of data.

Weight Initialization: To initialize the algorithm, we first generate random weights for the net-
work. This can be done in many ways but we will just use a standard approach by generating
independent weights from a normal distribution centered at zero with small variance (in our
case we use a variance of 0.5). The key consideration is not to set the weights to zero.

Bootstrap Particle Proposals: At the start of every batch, each input in the batch is fed forward
into the network, and we keep track of the inputs, hidden node-values, and estimated output.
We denote these values by {(x̂i, ẑ1i , ĥi, ẑ2i , ŷi)}Ni=1. Of course, they depend on what the current
weights (and biases) of the network are.

Scoring: One data point at a time (from within the current batch), we compare the pair of its input

value and true output value (x, y) to the corresponding components of all (x̂i, ẑ
1
i , ĥi, ẑ

2
i , ŷi),

1 ≤ i ≤ N , using a norm function. (For this paper, we use the (squared) `2 norm for single-
input networks and the `∞ norm for multiple inputs.) We input this norm distance into a
scoring function s that assigns a higher score to units with smaller norm.

Probability Distribution Creation: For each real data point, we select the Bootstrap Particle
Proposals with the δ highest scores {(x̂i, ẑ1i , ĥi, ẑ2i , ŷi)}δi=1 and create a probability distribution
using the scores as relative weights. Note that each real datum is assigned its own probability
distribution.

Bootstrap Particle Acceptance: We now sample from each probability distribution correspond-
ing to an actual input-output pair (xn, yn), 1 ≤ n ≤ N , and record the internal values of the
sampled bootstrap particle, which are combined together with the values xn and yn, to form
the new proxy data point for (xn, yn) in the regression computations below. More precisely,
we replace (xn, yn) by the ‘mixed’ particle

(xn, ẑ
1
n, ĥn, σ

−1
2 (yn), yn),

where ẑ1n and ĥn are the corresponding internal values of the sampled bootstrap particle.
(Recall also that σ2 = identity function here, so σ−12 (yn) = yn.) Because of the norming and
scoring previously done, we have created a proxy data point with internal variables consistent
with the actual input-output datum (xn, yn) with high likelihood.

Regression Weight Update: Now that we have the proxy values {(xn, ẑ1n, ĥn, z2n, yn)}Nn=1, we can
update the weights and biases using the batch method from section 1. That is, we update both
Ǎn and b̌n using the proxy data points for the current batch, and then solve for the weights
(see the equations below).

6

Algorithm Batchmode Bootstrap Learning

For epoch e = 1 to E /* w1
1 and w2

1 were already randomly set */

For batch m = Ml(e) to Mu(e)

Let N = Nm be size of batch m.

For n = 1 to Nm
ẑ1n = w1(m)x̂n − β1, ĥn = σ1(ẑ1n) /* Feed x forward to determine Bootstrap proposals */

ẑ2n = w2(m)ĥn − β2, ŷn = σ2(ẑ2n)

For n = 1 to Nm /* Find Bootstrap target particles */

For i = 1 to Nm do /* Find distances from each datum */

`n→i = ||(xn, yn)− (xi, ŷi)||
Sample and create (xn, ẑ

1
n, ĥn, z

2
n, yn) with {s(`n→i)}Nm

i=1 as weights for {(x̂i, ẑ1i , ĥi, ẑ2i , ŷi)}
Nm
i=1

If e = 1 then r = 0, else r = Nm and set

Ǎ1
N (m) = r

r+Nm
Ǎ1
N (m− 1) + 1

r+Nm

Nm∑
n=1

xnx
T
n ,

b̌1N (m) = r
r+Nm

b̌1N (m− 1) + 1
r+Nm

Nm∑
n=1

xn(ẑ1n)T ,

Ǎ2
N (m) = r

r+Nm
Ǎ2
N (m− 1) + 1

r+Nm

Nm∑
n=1

ĥnĥ
T
n ,

b̌2N (m) = r
r+Nm

b̌2N (m− 1) + 1
r+Nm

Nm∑
n=1

ĥn(z2n)T

Set µ1
t = 2/[max{λ(Ǎ1

N (m))}+ min{λ(Ǎ1
N (m))}]

Set µ2
t = 2/[max{λ(Ǎ2

N (m))}+ min{λ(Ǎ2
N (m))}]

/* Get weights and biases for new epoch/batch within epoch */

Set t = 0 and wi(m) =

{
0 m = 1

wi(m− 1) m > 1
for i = 1, 2

While still converging do

w1(m) = w1(m) + µ1
t (b̌

1
N (m)− Ǎ1

N (m)w1(m))

w2(m) = w2(m) + µ2
t (b̌

2
N (m)− Ǎ2

N (m)w2(m))

Shuffle the data for the next epoch.

Remarks. 1. Most quantities implicitly depend upon the batch number m, for example ĥn = ĥn(m)
and δ = δm, or the iteration number t, for example w1(m) = w1

t (m). However, most of these
dependencies are suppressed so as not to overcomplicate the notation in the algorithm.

2. It should be noted (see also the following lemma) that, for wi(m), i = 1, 2 to be guaranteed to
converge (with the limit being equal to [ǍiN (m)]−1b̌iN (m)), we need to ensure the eigenvalues of
I − µ2

t Ǎ
i
N (m) are inside the unit ball. This amounts to the two conditions:

µit <
2

max{λ(ǍiN (m))}
and µit min{λ(ǍiN (m))} > 0

but the second condition is always true if µit > 0 and ǍiN (m) is nonsingular (with the latter holding
with high probability as long as each batch of data has sufficiently large size). Still, to center the
extreme eigenvalues in the unit disk (and having experimentally observed higher speed of convergence
with the choice below), in practice we take

µit = 1.95/[max{λ(ǍiN (m))}+ min{λ(ǍiN (m))}].

Note also that all the linear processes we ran in our experiments appear to converge relatively
quickly even in cases where we observed the matrices ǍiN (m) to be ill-conditioned. This may be
worth exploring further from a theoretical standpoint too.

7

Currently, we compute λ(ǍiN) efficiently using default R packages given that our matrices are
only of size 100× 100 at most (with this size attained by the matrices constructed from the hidden
nodes), but more sophisticated methods should be explored for larger datasets (i.e. more hidden
nodes). Alternatively, one could just set µ1

t (t)↘ 0 slowly at the cost of slightly slower convergence
(see the following lemma as well). For example, we could take µit(t) = 1

ln(1+t) .

We now provide some theoretical justification for the “while still converging” part in the final
step of each epoch.

Lemma 1. Suppose that all the eigenvalues of [I − µ1
t Ǎ

1
N (m)] and [I − µ2

t Ǎ
2
N (m)] are (eventually)

strictly inside the unit ball and that µ1
t , µ

2
t > 0 satisfy

∞∑
t=1

µit =∞ for i = 1, 2. Then, the lines

While still converging do

w1
t+1(m) = w1

t (m) + µ1
t (b̌

1
N (m)− Ǎ1

N (m)w1
t (m))

w2
t+1(m) = w2

t (m) + µ2
t (b̌

2
N (m)− Ǎ2

N (m)w2
t (m))

really solve w1(m) =
[
Ǎ1
N (m)

]−1
b̌1N (m) and w2(m) =

[
Ǎ2
N (m)

]−1
b̌2N (m) as t→∞.

Proof. Consider only the first equation as the proof for the second one is identical. One has

w1
t+1(m) = w1

t (m) + µ1
t (b̌

1
N (m)− Ǎ1

N (m)w1
t (m)). (9)

Hence, if we subtract
[
Ǎ1
N (m)

]−1
b̌1N (m) from both sides and simplify, we get

w1
t+1(m)−

[
Ǎ1
N (m)

]−1
b̌1N (m) = w1

t (m)−
[
Ǎ1
N (m)

]−1
b̌1N (m) (10)

+ µ1
t Ǎ

1
N (m)(

[
Ǎ1
N (m)

]−1
b̌1N (m)− w1

t (m))

= (I − µ1
t Ǎ

1
N (m))

(
w1
t (m)−

[
Ǎ1
N (m)

]−1
b̌1N (m)

)
.

Now, using recursion as well as standard methods (see [8], [9], [11]), we can check that

‖w1
t+1(m)−

[
Ǎ1
N (m)

]−1
b̌1N (m)‖ =

∥∥∥ t∏
k=1

(I − µ1
kǍ

1
N (m))

(
w1

1(m)−
[
Ǎ1
N (m)

]−1
b̌1N (m)

)∥∥∥
≤

t∏
k=1

‖I − µ1
kǍ

1
N (m)‖ ·

∥∥∥w1
1(m)−

[
Ǎ1
N (m)

]−1
b̌1N (m)

∥∥∥
≤ C

t∏
k=1

exp
(
−µ1

kλm ∨ (µ1
kλM − 2)

)
−→ 0 as t→∞.

Here C > 0 is some absolute constant and λm, λM are the minimum, maximum eigenvalues of
Ǎ1
N (m) respectively.

Remarks. 1. The above proof also establishes that the convergence is geometrically quick if µ1
t , µ

2
t

are kept constant (in t).

2. Because of the lemma, in practice we can replace the line “while still converging” of the pseudocode
by some condition on the distance between consecutive updates of wi(m) becoming smaller than
some preselected tolerance. For transparency, in our experiments we just ran each linear process
corresponding to batch m for a fixed number of iterations (100, 000 iterations).

Training a NN with two hidden layers

There is only one crucial change we should make with the addition of another hidden layer. There
are now two types of hidden variables of the form hi: h1 which is closer to the input layer and h2

which is closer to the output layer. There are also three (unknown) pre-activation variable types
z1, z2, z3, which we can also write as σ−11 (h1), σ−12 (h2), σ−13 (ŷ) respectively, when the activation

8

functions σ1, σ2, σ3 are invertible. For the algorithm we should set z3n = σ−13 (yn), assuming we pick
an invertible σ3, where yn is the actual output for input xn. For the other internal variables, we
now sample independently two bootstrap particles(

x̂kjn , ẑ
1
kjn

, ĥ1kjn , ẑ
2
kjn

, ĥ2kjn , ẑ
3
kjn

, ŷkjn

)
and

(
x̂kun

, ẑ1kun
, ĥ1kun

, ẑ2kun
, ĥ2kun

, ẑ3kun
, ŷkun

)
,

and create the ‘mixed’ particle(
xn, ẑ

1
kjn

, ĥ1kjn , ẑ
2
kun

, ĥ2kun
, z3n, yn

)
,

which we use in the learning of the first, second and third sets of synaptic weights in place of the
internal values we would get if we simply fed xn into the NN (with current weights). In other words,
we have:

Layer 1 to 2:
A1
n = xn(xn)T

b1n = xn(ẑ1kjn)T

Layer 2 to 3:
A2
n = ĥ1kjn (ĥ1kjn)T

b2n = ĥ1kjn (ẑ2kun
)T

.

Layer 3 to 4:
A3
n = ĥ2kun

(ĥ2kun
)T

b3n = ĥ2kun
(z3n)T

Otherwise, the algorithm remains essentially the same.

3 Regression Comparisons

Given that the updates on the weights are made several samples at a time, our method could be
viewed as a counterpart to (batch) gradient descent. However, BLA has the advantage of not curve-
following, which appears to help the method avoid getting stuck in ‘saddle points’ and to produce
far superior results than GD in regression applications (as we will see from our experiments), so we
also included comparisons to online, real-time updating methods like ADAM. Indeed, BLA appears
to require few training data points to achieve a high level of accuracy, making it very suitable for
online, real-time updating. We compared our results to three other popular algorithms with respect
to speed of convergence: these were gradient descent (GD), ADAM and the Limited Memory Broy-
den–Fletcher–Goldfarb–Shanno algorithm (LBFGS).

We trained these four algorithms (BLA included) on the same data and afterwards calculated
the MSE on the same independently generated validation set. The training set for all experiments
consists of N = 6000 data points while the validation set was of size 1000. Each algorithm was
tested 1000 times and the results were averaged to avoid the influence of any outlier. All 6, 000, 000
points were generated by taking each x to be uniformly distributed over the domain of the relevant
function f each time, and independent of previously generated x’s, and then by setting y = f(x).
For all methods we used the scikit learn MLPRegress0r and MLPClassifier packages in python [14].
For GD we used the “SGD” option with batchsize equal to 6000. For ADAM and LBFGS we used
the default settings.

Our focus herein was on SHLNN with m = 100 nodes in the single hidden layer. We always take
σ2(x) = x and σ1(x) = tanh(x), except for the experiment below on a stochastic network, which
would be expected to have lots of corner-resembling regions in its graph, and in the case of which it
made sense to work with σ1(x) = ReLU(x).

Our purpose was not to optimize BLA on each problem so as to potentially give it some advan-
tage. Rather, we made several rather arbitrary decisions on our BLA implementation. We always

9

took r = 0 for the first batch, and otherwise r = Nm, so as to weight the previous estimate equally
with what would be produced from the new iteration. We always divided the first epoch into 10
batches of equal size, the second epoch into 5 batches, the third into 3, the fourth into 2, and all
remaining epochs consisted of 1 batch. (Experiments and intuition suggest it could have been better
to make the batches within an epoch of different sizes, but we have deferred exploring this to future
work.) We also always used the (squared) `2 norm for our distance formula (except in the multi-input
experiment, where we used the `∞ norm), and took the scoring function to be s(x) = exp(−x2) for
simplicity. As already mentioned, for the number δ = δm of particles that would be considered in
the sampling for each actual data point, we started with δ1 = 40, and for each subsequent batch we
decreased it by 1, until δm became equal to 8 (afterwards we kept it unchanged).

Remark. For functions where the input x or the output y (or some component of the input x) are
orders of magnitude larger than the other value(s), it is advised that we first scale to the same range
of values so that the distance between corresponding inputs or outputs is not so much greater than
the other distance(s) in terms of magnitude. None of our functions required this.

3.1 Single Input, Single Output Regression

For these experiments, we consider SHLNN regression for a continuous function f : K → R that
takes a single input from a compact subset K and outputs a single real number. In particular, we
compare the four algorithms first on the following three functions:

f1(x) = x3 − 2x2 + 5x− 1, where x ∈ [−3, 3] (11)

f2(x) = sin(x2)− 0.03x5, where x ∈ [−3, 3] (12)

f3(x) = −(x− 2)3(x+ 1)2(x− 4)/8, where x ∈ [−1, 4]. (13)

The following graph shows the MSE of one trial over the training period:

Figure 2: The Approximation and MSE of x3 − 2x2 + 5x− 1 up to 50 epochs of the training set.

The average MSE comparison up to 50 epochs for the four algorithms and the functions f1, f2
and f3 can be found in the following three tables respectively:

10

x3 − 2x2 + 5x− 1, where x ∈ [−3, 3]
Epoch BLA GD ADAM LBFGS

1 0.1819 406.372 374.767 314.949
5 0.0099 359.012 202.644 73.127
10 0.0065 303.739 75.947 53.362
15 0.0050 251.660 58.347 45.512
25 0.0035 166.631 40.492 30.194
50 0.0019 87.064 15.262 11.001

sin(x2)− 0.03x5, where x ∈ [−3, 3]
Epoch BLA GD ADAM LBFGS

1 0.1104 5.333 2.686 3.049
5 0.0886 4.884 2.022 2.036
10 0.0869 4.410 1.946 2.015
15 0.0857 4.016 1.800 1.987
25 0.0838 3.420 1.198 1.642
50 0.0805 2.616 0.785 1.053

−(x− 2)3(x+ 1)2(x− 4)/8,
where x ∈ [−1, 4]

Epoch BLA GD ADAM LBFGS
1 0.060 5.997 3.822 4.271
5 0.038 5.740 1.670 1.938
10 0.035 5.468 1.493 1.696
15 0.033 5.240 1.241 1.607
25 0.028 4.875 0.832 1.157
50 0.022 4.247 0.467 0.654

In the last two cases it is believed that BLA may be approaching the optimal lower bound (for our
100-hidden-states NN), causing its improvement to slow down.

3.2 Random Weight Neural Network

The previous examples dealt with smooth functions, which might make them quicker to approximate.
To deal with a considerably more complicated function, we generated a data set using a function
that was defined via a neural network itself. In particular, we constructed a separate single-input,
single-output neural network (which we’ll denote by NN0 here) with the same architecture as for
our previous examples (that is, having one hidden layer with m = 100 nodes). The weights and
biases of the first layer were assigned through a normal random variable with mean 5 and variance
3. Similarly, the second layer was assigned weights and biases normally with mean 0 and variance
0.5. All assignments were independent of others.

For the first activation function of NN0, we chose the hyperbolic tangent activation function,
while the second activation function was the identity. After we set up NN0, we uniformly generated
inputs from [−5, 5] and passed them through the network. The resulting pairs of input and output
values formed the training and validation sets that we used to run our experiment.

Now, regarding the network NN1 that we want to train to approximate NN0 (as a function), we
have to remark the following: since a function defined as above, through a neural network such as
NN0, will have a graph that does not look smooth at all, it appears to be generally better (for all
methods tested here) to choose NN1 to have an activation function that also has a corner. Hence,
instead of the first activation function being tanh (as in our previous experiments, and somewhat
oddly also as in the definition of NN0 itself), we used ReLU (the second activation function of NN1

was again the identity).

An example training set can be seen in the figure below.

11

Figure 3: Example run of BLA on stochastically generated neural network over 50 epochs.

The MSE comparison was as follows:

Stochastic Network
Epoch BLA GD ADAM LBFGS

1 0.203 39.749 29.645 16.802
5 0.088 31.891 6.749 4.648
10 0.073 24.894 2.516 3.176
15 0.066 20.051 1.304 2.214
25 0.056 14.402 0.722 1.269
50 0.045 9.518 0.306 0.628

Similarly to the previous experiments, the BLA can quickly find good estimates for this stochas-
tically generated function. Again, it is speculated that the appearance of a slowdown in the rate of
the convergence of BLA would be due to its approaching the theoretical lower bound.

3.3 Multiple Inputs, Single Output

When increasing the dimension of the problem, we should expect more data to be required in order
to get reasonable estimates. We should also expect that we would have to make more adaptive
choices when it comes to (hyper)parameters such as r = Nm and δ1 = 40. However, we wanted to
keep one universal set of parameters throughout this paper to show that BLA is a robust method.

The function we approximate here is:

f(x1, x2, x3) = 2x1
2x2 − 6x1x3 where x1 ∈ [−5, 5], x2 ∈ [−2, 2], x3 ∈ [0, 4]

and the BLA MSE starts at about 200 after one epoch and quickly converges from there:

12

Figure 4: Mean squared error for an example run of BLA on three-dimensional input data set.

The comparison with the other methods is as follows:

Multi-Input
Epoch BLA GD ADAM LBFGS

1 203.044 2185.198 2135.537 1987.212
5 108.205 1860.787 1641.746 873.113
10 72.536 1492.288 1153.364 732.618
15 56.370 1247.324 922.918 648.826
25 36.803 1053.292 671.781 529.465
50 6.123 840.075 463.275 390.943

Clearly, BLA did not ‘finish’ early here. Its outperforming the other methods seemed to accel-
erate, which may be due to the size of the multiple-input problem.

4 Binary Classification

We have claimed that BLA is a supervised learning method but hitherto we have only considered
a class of regression problems. Hence, we now want to demonstrate BLA working on another type
of problems, and in particular on binary classification. Typically, these problems are solved by a
method like logistic regression, which fits a (sigmoid) curve assigning probabilities to each point
that predict which class an observation belongs to. Of course it is known that we could also train
a neural network to fit such a curve, although we should expect the resulting curve to now have a
more complicated graph. Thus we can test BLA on the examples below.

As always, we use data sets that consist of a training set of 6000 observations and a validation
set of size 1000. We first consider a simple data-set of one predictor for two defined classes. The data
for these classes were generated through four independent Bernoulli distributions that are defined on
four different intervals. Specifically, we generate a random value from the entire domain (containing
all four intervals), and based off its value we assign it to one of the four Bernoulli distributions to
classify it as a 0 or 1. This allows us to generate well-separated data which also contain some noise.

For this example, we consider our predictor to be defined on [0, 1]. For the two classes generated,
we want values closer to x = 0 to be assigned the class y = 0 with a high probability, whereas values

13

closer to x = 1 should more often be mapped to y = 1. Thus, we used the following function to
generate our data set:

Bernoulli(0.05), for x < 0.3
Bernoulli(0.25), for 0.3 ≤ x < 0.6
Bernoulli(0.75), for 0.6 ≤ x < 0.8
Bernoulli(0.95), for 0.8 ≤ x

.

For example, if we generate a random sample to be x1 = 0.5, this sample’s corresponding y
value will be the result of a Bernoulli(0.25). After 300 of the 6000 data points in the training set,
the data looks like this:

Figure 5: Example training set of 300 units generated from our probability distribution.

To predict the classes, we first use this data and BLA to train a SHLNN with all our standard
settings as above. This SHLNN function g(x) will produce real numbers concentrating in [0, 1] for
x ∈ [0, 1]. From there we pick a cut-off value c = 0.5, so that any g(x) ≥ 0.5 is predicted to be class
1 and otherwise class 0.

To demonstrate that BLA convergence essentially takes place within one epoch, we ran 1000
trials of 1 epoch and with this cut-off value. On average BLA achieved an accuracy of 84.364%.

Given that in this situation we know the underlying formula that generated this data set we
can calculate an upper limit for the accuracy (which comes from the fact that there is always some
‘noise’, or in other words stochasticity). If we were to assign a value of 1 for x ≥ 0.6 and 0 other-
wise, and simulate the data thousands of times, we can thus calculate that our upper limit to the
prediction accuracy would be 85%. So after only 1 epoch of the data, BLA is below this upper limit
by only 0.636%.

For a second data set we wanted a binary data set where multiple (disjoint) sub-regions of the
domain can be assigned the class 1 with high probability. To create this, we pass values from a
[0, 2π]-uniform distribution into a specific [0, 1]-valued function which then component-wise specifies
a different Bernoulli distribution. Hence, our output is a family of Bernoulli random variables with
probability p(x) = (cos(x) + 1)/2 for x ∈ [0, 2π]. This function leads to having two end sub-regions
of the domain, points from which will be classified as a 1 with high probability, and a middle sub-
region which is classified as a 0 with high probability. Here is an example of a training set with 300
observations:

14

Figure 6: Example training set of 300 units generated using the (1+cos(x))/2 probability distribution.

Similarly to before, we simulate an upper limit to the accuracy for this data set. To do this
we generated thousands of data sets, and if any unit had a probability greater than 0.5 given our
probability function, we assigned it the value 1, otherwise the value 0. With a cut-off value of c = 0.5
we estimated that we could achieve an accuracy of 81.83% on average. After running our method
for only one epoch for 100 different initializations, we achieve an accuracy of 81.114%. Compare this
to ADAM, where, if we run this data set 100 times, we only achieve an accuracy of 60% after one
epoch (the accuracy does become comparable later, at least with ADAM, reaching 81.6% on average
in our experiment after 100 epochs). A full breakdown of the four methods can be seen below (we
worked with the hyperbolic tangent as our first activation function for each).

2nd Classification Example
Epoch BLA GD ADAM LBFGS

1 81.114% 50.284% 60.045% 56.842%
5 80.98% 50.590% 78.575% 64.053%
10 81.122% 51.585% 80.874% 70.595%
15 81.387% 51.985% 81.212% 70.449&
25 81.584% 55.766% 81.461% 75.591%
50 81.763% 58.106% 81.583% 79.966%

5 Conclusions and Future Work

In this paper, we introduced the Bootstrap Learning algorithm (BLA), which we propose for super-
vised learning and, in particular, for training wide neural networks. We have tested the method in
some regression and binary classification problems.

For a wide neural network, this bootstrap learning method can deliver quick and accurate
estimates upwards of 100 times more precise (in terms of MSE) than other common machine learning
techniques after a similar number of epochs.

The method needs to be investigated further from a point of view of applicability, convergence
and efficiency of use. For instance, we need to adapt its current implementation in order to apply
and test it on other more challenging problems, such as learning LSTMs. We should also investigate
its convergence (and speed of convergence) when the method is applied to deep neural networks,
which should also allow for a multitude of other applications.

There is expectation that an appropriate online version of the current (batchmode) implemen-
tation can be developed, This should also be of great use, as suggested by the already shown quick
convergence of the method which can be achieved with only few training data.

Finally, the mathematical foundations of BLA need to be established.

15

References

[1] G. Cybenko (1989) “Approximation by superpositions of a sigmoidal function”, Mathematics of control, signals
and systems 2(4), pp. 303-314.

[2] B. Delyon (2000), “Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory,”
Unpublished Lecture Notes, http://perso.univ-rennes1.fr/bernard.delyon/as cours.ps.

[3] T. Dozat (2016), “Incorporating Nesterov Momentum into Adam”, Proceedings of 4th International Conference
on Learning Representations, Workshop Track.

[4] J. C. Duchi, E. Hazan and Y. Singer (2011), “Adaptive subgradient methods for online learning and stochastic
optimization”, Journal of Machine Learning Research, 12, pp. 2121-2159.

[5] S. España-Boquera, M. J. Castro-Bleda, J. Gorbe-Moya and F. Zamora-Martinez (2011), “Improving Offline
Handwritten Text Recognition with Hybrid HMM/ANN Models”, IEEE Trans. Pattern Anal. Mach. Intell.,
33(4), pp. 767-779. doi: 10.1109/TPAMI.2010.141.

[6] K. Hornik (1991), “Approximation capabilities of multilayer feedforward networks”, Neural networks 4(2), pp.
251-257.

[7] D. P. Kingma and J. Ba (2015), “Adam: A method for stochastic optimization”, Proceedings of 3rd International
Conference on Learning Representations.

[8] M.A. Kouritzin (1994), “Inductive methods and rates of rth-mean convergence in adaptive filtering”, Stochastics
and Stochastics Reports 51, pp. 241-266.

[9] M.A. Kouritzin (1996), “On the convergence of linear stochastic approximation procedures”, IEEE Trans. Inform.
Theory IT-42(4), pp. 1305-1309.

[10] M.A. Kouritzin (1996), “On the interrelation of almost sure invariance principles for certain stochastic adaptive
algorithms and for partial sums of random variables”, J. Theoretical Probability 9(4), pp. 811-840.

[11] M. A. Kouritzin and S. Sadeghi (2015), “Convergence Rates and Decoupling in Linear Stochastic Approximation
Algorithms”, SIAM J. Control Optim. 53(3), pp. 1484-1508.

[12] Liu, D. C., Nocedal, J. (1989) “On the Limited Memory Method for Large Scale Optimization”,Mathematical
Programming B. 45, pp. 503-528.

[13] H. B. McMahan and M. J. Streeter (2010), “Adaptive bound optimization for online convex optimization”,
Proceedings of the 23rd Annual Conference On Learning Theory, pp. 244-256.

[14] Pedregosa, F., Varoquaux, G., Gramfort, A. , Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.
(2011), “Scikit-learn: Machine Learning in Python”,Journal of Machine Learning Research, 12, pp. 2825-2830.

[15] Selvamuthu, D., Kumar, V. and Mishra (2019), “A. Indian stock market prediction using artificial neural networks
on tick data”. Financ Innov, 5(16). https://doi.org/10.1186/s40854-019-0131-7.

[16] T. Tieleman and G. Hinton (2012), “RMSProp: Divide the gradient by a running average of its recent magnitude”,
COURSERA: Neural Networks for Machine Learning, Lecture 6.5.

[17] M. D. Zeiler (2012), “ADADELTA: An Adaptive Learning Rate Method”, CoRR.

16

http://perso.univ-rennes1.fr/bernard.delyon/as

	1 Introduction
	1.1 Bootstrap Particles

	2 Method
	3 Regression Comparisons
	3.1 Single Input, Single Output Regression
	3.2 Random Weight Neural Network
	3.3 Multiple Inputs, Single Output

	4 Binary Classification
	5 Conclusions and Future Work

