
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 457, 2017 Ç.G. Paouris, P. Pivovarov, P. ValettasGAUSSIAN CONVEX BODIES: A NON-ASYMPTOTICAPPROACHAbstrat. We study linear images of a symmetri onvex bodyC ⊆ R
N under an n×N Gaussian random matrix G, where N > n.Speial ases inlude ommon models of Gaussian random polytopesand zonotopes. We fous on the intrinsi volumes of GC and studythe expetation, variane, small and large deviations from the mean,small ball probabilities, and higher moments. We disuss how the ge-ometry of C, quanti�ed through several di�erent global parameters,a�ets suh onentration properties. When n = 1, G is simply a1×N row vetor and our analysis redues to Gaussian onentrationfor norms. For matries of higher rank and for natural families ofonvex bodies CN ⊆ R

N , with N → ∞, we obtain new asymptotiresults and take �rst steps to ompare with the asymptoti theory.
§1. IntrodutionIn this paper we study random onvex sets that arise as linear imagesof Gaussian matries. Spei�ally, let G = G(n;N) be an n × N randommatrix with independent olumns g1; : : : ; gN distributed aording to thestandard Gaussian measure n on R

n. We view G = [g1; : : : ; gN ℄ as a linearoperator from R
N to R

n. If C ⊆ R
N is a ompat onvex set, then theimage of C under G is a random onvex set in R

n given byGC = { N
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GAUSSIAN CONVEX BODIES 287Indeed, if C = onv {e1; : : : ; eN}, i.e., the onvex hull of the standard unitvetor basis, then one gets a Gaussian polytopePN := G onv {e1; : : : ; eN} = onv {g1; : : : ; gN} : (2)Similarly, when C is the rosspolytope, i.e., C=BN1 =onv {±e1; :::;±eN},then one gets a symmetri Gaussian polytopeKN := GBN1 = onv {±g1; : : : ;±gN} : (3)When C is the ube, i.e., C = BN
∞ = [−1; 1℄N , then GC is just the zonotopegenerated by the symmetri line segments [−gi; gi℄ = {�gi : |�| 6 1}, i.e.,ZN := G[−1; 1℄N = N

∑i=1 [−gi; gi℄: (4)Random sets of the form (1) arise naturally in several �elds, even if theyare studied from di�erent perspetives. In stohasti geometry, Gaussianpolytopes have been studied extensively and the asymptoti behavior ofvarious funtionals is now well-understood. The expetation of the k-thintrinsi volume Vk(PN ), 1 6 k 6 n, satis�es
EVk(PN ) = (nk) !n!n−k (logN)k=2(1 + o(1)); (5)asN → ∞, whih is due to A�entranger [2℄. Reently, major advanes havebeen made in understanding the variane. Calka and Yukih [12℄ provedthat limN→∞

var(Vk(PN ))(logN)n+32 −k = n;k; (6)where n;k is a �nite onstant that depends on n and k; while n;n wasproved to be positive, the authors left open the possibility that n;k = 0 ifk < n. Subsequently, B�ar�any and Thaele [7℄ proved that indeed n;k > 0.This provides a omplete resolution of the asymptoti behavior of thevariane, sharpening previous bounds due to Hug and Reitzner [17℄ andB�ar�any and Vu [9℄. The latter authors have also proved a entral limittheorem for the volume, namely, as N → ∞,Vn(PN )− EVn(PN )
√var(Vn(PN )) d→ N(0; 1):With the reent progress on variane of Vk(PN ), entral limit theoremsfor other intrinsi volumes also follow, as explained in [9, 12℄. While ourfous here is on intrinsi volumes, there is a fruitful line of researh on-neting the faial struture of Gaussian polytopes and random projetions



288 G. PAOURIS, P. PIVOVAROV, P. VALETTASof simplies, e.g., [4,8℄; see [12℄ for further history and referenes. We alsofous on Gaussian measure as opposed to other forms of randomness suhas random polytopes in onvex bodies; see, e.g., [6, 11℄ and the referenestherein for the limiting theory and, e.g., [13℄ and the referenes therein fora non-asymptoti framework.In the study of high-dimensional onvex bodies, Gaussian matries, orrandom orthogonal projetions, play an essential role. For example, theyarise in probabilisti proofs of Dvoretzky's Theorem. V. Milman's randomversion of the latter [24℄ asserts that given any " > 0, N and onvex bodyC ⊆ R
N , there is a ritial dimension k∗(C) and a onstant  = (")suh that whenever k ≤ (")k∗(C), \most" rank-k projetions of C areessentially Eulidean balls, i.e.,(1− ")w(C)PEBN2 ⊆ PEC ⊆ (1 + ")w(C)PEBN2 ; (7)here w(C) denotes half of the mean width of C, BN2 is the Eulideanball, PE is the orthogonal projetion onto E and the inlusion holds withhigh probability (with respet to the Haar probability measure �N;k onthe Grassmannian manifold GN;k of k-dimensional subspaes E ⊆ R

N ).The fous in this study is on phenomena that hold for arbitrary onvexbodies C, the dimension N is large and the ritial dimension k∗(C) growswith N . For example, if C is in L�owner's position, i.e., BN2 is the mini-mal volume ellipsoid ontaining C, then k∗(C) > 1 logN , where 1 is anabsolute onstant. The latter is sharp for C = BN1 , while for C = BN
∞the parameter k∗(BN

∞) is proportional to N . For a detailed introdution tothis fundamental result and its inuene in Asymptoti Geometri Anal-ysis, we refer to the reent book by Artstein-Avidan, Giannopoulos, andV. Milman [1℄.Variants of Gaussian polytopes, when N is linear in n, also arise asounter-examples, e.g., Gluskin's theorem whih exhibits onvex bodies ofnearly extremal Banah{Mazur distane [16℄; see also the survey [27℄ formuh related work in this diretion. Whereas these relate to the shape ofsuh bodies, our interest here is on the intrinsi volumes.Despite the fat that suh sets have been studied from di�erent points ofview and in di�erent asymptoti regimes, there are some ommon under-lying probabilisti harateristis. Our aim is to plae a family of problemson intrinsi volumes of suh sets in a general framework. The goal is to de-termine how the probabilisti behavior of Vk(GC) reets the geometry ofC ⊆ R
N and vie-versa. We study the expetation, variane, onentration



GAUSSIAN CONVEX BODIES 289around the mean, small and large deviations and small ball probabilities.We address these topis in a non-asymptoti setting with preise study ofthe dependene on C, k; n and N .All of the above topis are meaningful even when n = 1. Then G issimply a 1 × N row vetor, say G = g, and GC = {〈g; 〉 :  ∈ C} ⊆ R:Sudakov's seminal work on in�nite-dimensional Gaussian proesses [40℄gives as a speial ase,
E supx∈C〈x; g〉 = 1√2�V1(C): (8)The latter onnets the �rst intrinsi volume V1(C) (suitably normalizedmean width of C) with the supremum of an assoiated Gaussian proessindexed by C. The aforementioned onentration properties are non-trivialeven for the support funtion of C; for example for the `Np -norm whenp = p(N), the variane has only been understood in the last several years[21, 32, 35℄.For n > 1, even less is known about higher order onentration proper-ties of GC. Conerning the expetation of Vn(GC), Tsirelson [42℄ extendedSudakov's identity (8) and it an be formulated as

EVn(GC) = Edet(GG∗)1=2 ∫GN;n Vn(PEC)d�N;n(E): (9)Sine the righthand side is a multiple of the n-th intrinsi volume of C, thelatter identity is sometimes alled the Gaussian representation of intrinsivolumes, e.g., [44℄. When n = 1, then (9) amounts to (8). The latter pro-vides a diret onnetion between GC and random orthogonal projetionsof C.Milman's random version of Dvoretzky's theorem (7) and Tsirelson'sidentity (9) together imply that the quantity EVk(GC), up to normalizingonstants, behaves like w(C)k , provided k does not exeed the ritialdimension k∗(C). Moreover, for families of onvex bodies CN ⊆ R
N , withN → ∞ and k �xed, the assumption k 6 k∗(CN ) is trivially satis�edif k∗(CN ) → ∞, as N → ∞. Thus the above reasoning readily implieslaws of large numbers for Vk(GCN )=wk(CN ) whenever k∗(CN ) → ∞, G =G(n;N) and N → ∞; this ours, e.g., when eah CN is in L�owner'sposition. However, sine (7) onerns set inlusions, there is no reasonto expet that the rates of onvergene for Vk(GCN ) should be preiselydetermined from (7) alone. Indeed, a more detailed analysis of Vk(GC)



290 G. PAOURIS, P. PIVOVAROV, P. VALETTASinvolves parameters other than k∗(C). In [29℄, we show that Alexandrov'sfundamental inequality for intrinsi volumes an be reversed beyond whatan be expeted by the Dvoretzky number. An important parameter in [29℄,and in previous study of Gaussian onentration of norms as in [32,33,35℄,is �∗(C) de�ned by �∗(C) = Var[hC(g)℄(E[hC(g)℄)2 ; (10)where hC denotes the support funtion of C and g is a standard N -dimensional Gaussian vetor in R
N . In this paper, we use these reenttools to prove onentration properties that are sharper than those follow-ing from random versions of Dvoretzky's theorem.Theorem 1.1. Let C be a symmetri onvex body in R

N ,u(x) =√x log(e=x); p > 0; and 2 6 k 6 n 6 N:If 2 6 k 6 1�−1
∗ (C), then(EV pk (GC)) 1kp(EVk(GC)) 1k 6

√1 + max{u(k�∗(C)); kpnk∗(C)}; (11)where ; 1 are absolute onstants. Moreover, if 2 6 k 6 1�−1
∗ (C) and0 < p 6 2k�∗(C) , then

(

EV −pk (GC))− 1kp(EVk(GC)) 1k > 1− 3max{u(k�∗(C)); pk�∗(C)}; (12)where 2; 3 are absolute onstants.The latter theorem gives reverse H�older inequalities for EVk(GC)p forboth positive and negative powers. By standard arguments, these leadto deviation inequalities, whih we state in Subsetion 3.3. We also notethat the latter theorem provides an immediate ounterpart to (5) for gen-eral Gaussian onvex bodies. Indeed, suppose that (CN )∞N=n is a sequeneof symmetri onvex bodies with eah CN ⊆ R
N , N = n; n + 1; : : :, inL�owner's position. If k; n and p are �xed and N → ∞ and we writeG = G(n;N), then Theorem 1.1 implies(EV pk (G(n;N)CN )) 1p = (nk) !n!n−kNk=2w(CN )k(1− o(1)); (13)



GAUSSIAN CONVEX BODIES 291sine, as mentioned, EVk(GCN ) is of order w(CN )k, up to expliit on-stants. Now, plugging CN = BN1 and p = 1 into (13) gives the sym-metri analogue of (5) and explains why a logarithmi term appears: itorresponds to the mean width of BN1 . One an hek that w(BN1 ) =
√ 2 logNN (1−o(1)); see, e.g., [20℄ for further referenes and related interest-ing questions. In this way, asymptoti expansions for (EV pk (G(n;N)CN ))1=pare diretly redued to those of the mean width of CN . Reently, Kabluhkoand Zaporozhets [19℄ studied asymptotis for expeted intrinsi volumes ofKN , PN and ZN ; in partiular, they further develop onnetions betweenTsirelson's identity (9) and expliit expressions for the intrinsi volumesof the ross-polytope and simplex from [5℄ and the ube; see also [28℄. Theexpansion in (13) is omplementary: it follows from a non-asymptoti ap-proah, for arbitrary symmetri onvex bodies CN and (�xed) powers p.For simpliity, the fous of this paper is symmetri onvex bodies C; onean use a regular simplex insribed in the sphere SN−1 to model the Gauss-ian polytopes PN but some non-trivial tehnial steps in our approah needto be modi�ed appropriately.In the non-asymptoti setting, relations between k, p, n and N a�etthe limiting behavior. While (13) onerns N → ∞ with k; n and p �xed,we also study when p grows with N . For example, we prove the followingomparison of higher moments.Theorem 1.2. Let C ⊆ R

N be a onvex body in L�owner's position andq > p > N logN . Then1√qp 6
(EVk(GC)q) 1kq(EVk(GC)p) 1kp 6 2√qp ; (14)where 1; 2 are absolute onstants.The next proposition shows that the variane of Vk(GC) an be esti-mated using the variane of hC(g), whih we state in terms of �∗(C).Theorem 1.3. Let C ⊆ R

N be a onvex body and let u(x) =√x log(e=x);0 < x 6 1. ThenVar[Vk(GC)℄ 6 k1Nkmax{ k2nk∗(C) ; ku(k�∗(C))} Vk(C)2;



292 G. PAOURIS, P. PIVOVAROV, P. VALETTASwhenever 1 6 k 6 min{n; √nk∗(C); (�∗(C) log 1�∗(C))−1=3}, where ; 1are absolute onstants. Moreover, for all 1 6 k 6 n, we haveVar[Vk(GC)℄ >
k2k2Nk−1Vk(C)2n ;where 2 is an absolute onstant.The latter estimates do not appear to be sharp, even when C is the ube.For omparison, we disuss asymptoti results for zonotopes in Setion 4.At present, the asymptoti and non-asymptoti regimes are not ompletelyomparable. We feel it is of interest to better understand the transitionfrom the non-asymptoti setting to the asymptoti, for spei� bodies likethe ube and ross-polytope, but also in general. The latter theorem does,however, present the �rst general variane estimates, as far as we are aware,for arbitrary Gaussian onvex bodies GC. Moreover, the approah that weexplore here provides further non-trivial information about higher orderonentration properties, whih we disuss further in Setion 3, inludingdeviation inequalities and small ball probabilities.

§2. Preparatory toolsThe setting is R
N equipped with the standard inner-produt 〈·; ·〉 andEulidean norm ‖x‖2 :=√〈x; x〉 for x ∈ R

N ; BN2 is the Eulidean ball ofradius 1; SN−1 is the unit sphere, equipped with the Haar probability mea-sure �. For Borel sets A ⊆ R
N , we use VN (A) or |A| for the Lebesgue mea-sure of A; !N for the Lebesgue measure of BN2 . The Grassmannian man-ifold of all n-dimensional subspaes of R

N is denoted by GN;n, equippedwith the Haar probability measure �N;n. For a subspae E ∈ GN;n, wewrite PE for the orthogonal projetion onto E.Throughout the paper we reserve the symbols ; 1; 2; : : : for absoluteonstants (not neessarily the same in eah ourrene). We use the on-vention S ≃ T to signify that 1T 6 S 6 2T for some positive absoluteonstants 1 and 2. Our results are most meaningful when N is large andwe assume throughout that N exeeds a �xed absolute onstant.A onvex body C ⊆ R
N is a ompat, onvex set with non-emptyinterior. The support funtion of a onvex body C is given byhC(y) = sup{〈x; y〉 : x ∈ C}; y ∈ R

N :



GAUSSIAN CONVEX BODIES 293We say that C is (origin) symmetri if C = −C. For a symmetri onvexbody C the polar body C◦ is de�ned byC◦ := {x ∈ R
N : |〈x; y〉| 6 1; y ∈ C}:For p 6= 0, we de�ne the p-generalized mean width of C bywp(C) :=  ∫SN−1 hpC(�)d�(�)1=p : (15)The irumradius of C is de�ned byR(C) = max�∈SN−1 hC(�) = maxx∈C ‖x‖2:Note that R(C) = w∞(C) := limp→∞ wp(C). In addition, we denote byr(C) the inradius of K, i.e. r(K) = min�∈SN−1 hC(�). Again, we have:r(C) = w−∞(C) := limp→∞ w−p(C). Note that r(C◦) = 1=R(C).The intrinsi volumes of a onvex body C ⊆ R

N an be de�ned via theSteiner formula for the outer parallel volume of C:VN (C + tBN2 ) = N
∑k=0!kVN−k(C)tk; t > 0:Here Vk, k = 1; : : : ; N , is the k-th intrinsi volume of C (we set V0 ≡ 1); VNis volume, 2VN−1 is surfae area and !N−1N!N V1 = w = w1 is half of the meanwidth (f. (15)). Intrinsi volumes are also referred to as quermassintegrals(under an alternate labeling and normalization). For further bakground,see [38, Ch. 4℄. Here we prefer to work with a di�erent normalization,similar to that used in [15, 28℄. As in the introdution, for a onvex bodyC ⊆ R

N and 1 6 k 6 N − 1, we writeW[k℄(C) :=  1!k ∫GN;k Vk(PEC) d�N;k(E)1=k :We will need the following generalization of this de�nition: for p 6= 0 wewrite W[k;p℄(C) :=  1!pk ∫GN;k Vk(PEC)p d�N;k(E) 1pk :



294 G. PAOURIS, P. PIVOVAROV, P. VALETTASNote that by Kubota's integral formula,Vk(C) = (Nk) !N!N−kW k[k℄(C): (16)We also set W[N ℄(C) = vrad(C) := ( VN (C)VN (BN2 ))1=N , whih is the volumeradius of C, i.e., the radius of a Eulidean ball with the same volume as C.For ease of referene, we will also expliitly state Alexandrov's inequalities,i.e., for 1 6 n 6 N ,w(C) =W[1℄(C) > · · · > W[n℄(C) > · · · > W[N ℄(C) = vrad(C): (17)Reall the Dvoretzky number k∗(C) of C ⊆ R
N is the maximum dimen-sion k suh that a \random" subspae F ∈ GN;k has the property thatPFC is 4-Eulidean, i.e. 12aPFBN2 ⊆ PFC ⊆ 2aPFBN2 , for some a > 0.Milman's formula (see [26℄) states thatk∗(C) ≃ N w(C)2R(C)2 : (18)We also reall a de�nition of Klartag and Vershynin from [18℄. For asymmetri onvex body C ⊆ R

n, letd∗(C) = min(− log�{� ∈ Sn−1 : 2‖�‖C 6 w(C)}; n):Let C be a onvex body in R
N with support funtion hC(·). We de�ne�∗(C) to be the normalized variane of the support funtion of C withrespet to the standard Gaussian measure in R

N , i.e.�∗(C) := var(hC(g))(EhC(g))2 ; (19)where g is an N -dimensional standard Gaussian vetor.If C is a onvex body in R
N , thenk∗(C) 6

1�∗(C) 6 2d∗(C); (20)where 1; 2 are absolute onstants. For the above inequalities, see [33℄or [34℄. In partiular, when k∗(C) ≃ N , all quantities in (20) are equivalent.The values of k∗(C), �∗(C) and d∗(C) are disussed for partiular examplesin Subsetion 3.4.



GAUSSIAN CONVEX BODIES 295
§3. Gaussian onvex bodies3.1. Gaussian representation of intrinsi volumes and extensions.We realled Kubota's integral formula in (16). There is a version of thelatter formula that uses Gaussian random matries, rather than orthogonalprojetions and integration on the Grassmannian, due to Tsirelson [42℄,sometimes alled the Gaussian representation of intrinsi volumes, see thework of Vitale [44℄. Throughout this setion, we assume that G = (gij) isan n × N matrix with independent standard Gaussian entries. Then then-th intrinsi volume of C ⊂ R

N is given byVn(C) = (2�)n=2!nn! EVn(GC): (21)An extension of the previous representation involving W[n;p℄(C) is provedin [28℄. In partiular it was shown that if C ⊂ R
N is a onvex body andp > −(N − n+ 1), then(EVn(GC)p) 1p = (Edet (GG∗) p2 ) 1pWn[n;p℄(C)!n: (22)The latter is based on the fat thatVn(GC) = det(GG∗)1=2Vn(PEC);where E = Im(G∗). Moreover, E is distributed uniformly on GN;n anddet(GG∗) and Vn(PEC) are independent; see [42℄ or [30℄. The main resultof this subsetion is the following generalization of (22).Proposition 3.1. Let 1 6 k 6 n 6 N and let � be a k × N matrix withindependent standard Gaussian entries. Let C ⊂ R

N be a onvex body.Then for all p > −(N − k + 1),
EW kp[k;p℄(GC) = Edet(��∗) p2W kp[k;p℄(C): (23)In partiular,

Edet(��∗)p=2 = EW kp[k;p℄(GBN2 ): (24)Note that when k = n, (23) amounts to (22).Proof. Let g1; : : : ; gN denote the olumns of G. For any subspae E ∈Gn;k, de�ne �E by �E := PEG = [PEg1 · · ·PEgN ℄



296 G. PAOURIS, P. PIVOVAROV, P. VALETTASand note that �E and � have the same distribution. Thus using Fubini'stheorem and (22), we have
EW kp[k;p℄(GC) = !−1k E

∫Gn;k Vk(PEGC)pd�n;k(E)= !−1k ∫Gn;k EVk(�EC)pd�n;k(E)= ∫Gn;k Edet(�E�∗E) p2 d�n;k(E)W kp[k;p℄(C)= Edet(��∗) p2W kp[k;p℄(C): �The random matrix GG∗ is distributed aording to the Wishart dis-tribution. Formulae for the expetation of det(GG∗) are well known (seee.g. [3, Chapter 7℄). We will make use of the following onentration in-equality for det(GG∗); a proof is given for the reader's onveniene.Proposition 3.2. Let n 6 N=2 and 0 < p 6 N4 . Then1 + 1pN 6

(

E[det(GG∗)℄ p2 ) 1pn (
E[det(GG∗)℄− p2 ) 1pn

6 1 + 2pN ; (25)where 1; 2 > 0 are absolute onstants. Furthermore, for p > 2,
√1 + 1pN 6

(Edet(GG∗)p=2) 1pn(Edet(GG∗)1=2) 1n 6

√1 + 2pN : (26)Moreover, we have 1− nN 6
(Edet(GG∗)) 1n

E‖g‖22 6 1: (27)Finally, we have
E(det(GG∗)1=2)1=n ≃

√N; Var[(det(GG∗)1=2)1=n℄ ≃ 1: (28)Proof. Let d > 1, q ∈ [−d2 ;∞) and let ad;q := (E‖g‖q2) 1q , where g isa d-dimensional Gaussian vetor. A straightforward omputation showsthat ad;q := √2(�(d+q2 )�(d2 ) ) 1q :



GAUSSIAN CONVEX BODIES 297Thus, for 0 < q 6 d2 ,1(E‖g‖q2) 1q
(

E‖g‖−q2 )− 1q = ad;qad;−q = (�(d+q2 )�(d−q2 )(�(d2 ))2 )
1q = 1 +�(qd) : (29)Let h1; · · · ; hn be the olumns ofG∗. LetH0 = {0} and for k = 1; · · · ; n−1,set Hk := span{h1; · · · ; hk}. Then, as in e.g. [3, Chapter 7℄, we may write:det(GG∗) p2 = n

∏k=1 ‖PH⊥k−1hk‖p2:Integrating �rst with respet to hn, then hn−1, and so forth we get that:
Edet(GG∗) p2 = n

∏k=1 apN−k+1;p: (30)Hene using (29) for q = p and d := N − k + 1 > N2 we obtain:
(

Edet(GG∗) p2 ) 1pn
(

Edet(GG∗)− p2 )− 1pn = ( n
∏k=1 apN−k+1;papN−k+1;−p) 1pn= ( n
∏k=1{1 + �( pN − k + 1)}p) 1pn= 1 +�( pN ) :This proves (25). Arguing similarly, we have for q > 2,

(ad;qad;1)2 = 1 +�(qd) :Taking into aount the above estimate and (30) we also get (26).1The last asymptoti estimate follows from Taylor's theorem for the funtion h 7→Gx(h) :=  (x+ h) +  (x− h)− 2 (x), i.e. there exists 0 < �h < h suh thatGx(h) = h22 [ ′′(x+ �h) +  ′′(x− �h)] ;where x = d=2; h = q=2;  (x) := log �(x) and (log �)′′(x) = ∞
∑j=0(x + j)−2 ≃ 1=x forx≫ 1.



298 G. PAOURIS, P. PIVOVAROV, P. VALETTASIn order to prove (27) we note that (30) for p = 2 implies that
Edet(GG∗) = n

∏k=1(N − k + 1):So, (Edet(GG∗)) 1n
E‖g‖22 = (∏nk=1(N − k + 1)Nn )

1n :The result follows.
�3.2. General variane estimates. It is proven in [34, See Claim in theproof of Lemma 6.1℄ that for any onvex body C in R

N ,Var[w(GC)℄ 6 min{Var[hC(Z)℄; R(C)2n } :In [34℄ it is stated for symmetri onvex bodies but an inspetion of theproof shows that the symmetry assumption is not essential. Moreover, wehave the following lower bound:Var[w(GC)℄ >
1w(C)2n :Indeed, integration in polar oordinates and Cauhy{Shwarz inequalityyields Var[w(GC)℄ >

(

Ew(GC)
E‖G‖HS )2Var[‖G‖HS℄:Reall that E‖G‖HS ≃

√nN , Ew(GC) ≃ √Nw(C) and Var(‖G‖HS) ≃ 1.Lemma 3.3. Let C be a symmetri onvex body in R
N and let p > 0.Then(E[w(GC)℄p) 1p 6

√1 + 1pnk∗(C)Ew(GC) =√1 + 1pnk∗(C)E‖g‖2w(C);(31)where g is a standard N-dimensional Gaussian vetor.Proof. We will need the following:Claim. For any n×N matries T1; T2 with rank n we have
|w(T1C)− w(T2C)| 6

R(C)√n ‖T1 − T2‖HS: (32)



GAUSSIAN CONVEX BODIES 299Proof of Claim. Sine w(TC) = ∫Sn−1 hC(T ∗�) d�(�), by the triangle in-equality we get
|w(T1C)− w(T2C)| 6

∫Sn−1 hC((T ∗1 − T ∗2 )�) d�(�)
6 R(C) ∫Sn−1 ‖(T ∗1 − T ∗2 )�‖2 d�(�)
6
R(C)√n ‖(T1 − T2)∗‖HS;whih proves the laim.By the laim, the funtion R
Nn ∋ T 7→ w(TC) is Lipshitz with on-stant R(C)=√n. By [29, Proposition 3.3℄ and the standard Gaussian on-entration, we get the lemma. �Proposition 3.4. Let C be a symmetri onvex body in R

N and let 1 6k 6 n 6 N .i. For all 1 6 k 6 n,Var[W k[k℄(GC)℄ 6 Var[W k[k℄(�C)℄ = Var[vrad(�C)k℄;where � is a Gaussian k ×N matrix.ii. For 2 6 k 6 min{n; √nk∗(C); (�∗(C) log 1�∗(C) )−1=3}, we haveVar[W k[k℄(GC)℄ 6 max{ k2nk∗(C) ; ku(k�∗(C))}W 2k[k℄ (C)tN;k;where tN;k := (Edet(��∗)1=2℄2 = 2k[�(N−k+22 )=�(N2 )℄2 so thatt1=kN;k ≃ N and u(x) =√x log(e=x); 0 < x 6 1.iii. For all 1 6 k 6 n, we haveVar[W k[k℄(GC)℄ > W 2k[k℄ (C) k2nN tN;k:



300 G. PAOURIS, P. PIVOVAROV, P. VALETTASProof. Part (i) follows from the Cauhy{Shwarz inequality. Indeed, ifG;G′ are independent n×N Gaussian matries, then2!2kVarW k[k℄(GC) = E







∫Gn;kVk(PFGC) d�n;k(F )−∫Gn;kVk(PFG′C) d�n;k(F )2
6

∫Gn;k E (Vk(PFGC) − Vk(PFG′C))2 d�n;k(F ):But for �xed F ∈ Gn;k the matries PFG and PFG′ are independent andeah has the same distribution as a Gaussian k × N matrix �. Thus, wemay write:2!2kVar[W k[k℄(GC)℄ 6

∫Gn;kE (Vk(�C)− Vk(�′C))2 d�n;k(F ) = Var[Vk(�C)℄:(ii) Using Alexandrov's inequality (17) and Lemma 3.3, we have
EW 2k[k℄ (GC) 6 E(w(GC))2k 6

(1 + knk∗(C))k (Ew(GC))2k= (1 + knk∗(C))k (E‖g‖2)2kw(C)2k ;where g ∼ N(0; IN ).Next, we also use our reent reverse form of Alexandrov's inequality [29,Theorem 1.1℄, whih states that W[k℄(C) is very lose to w(C) for all k upto �−1
∗ (C). In partiular, it was proved thatW[k℄(C) > (1− u(k�∗(C)))w(C); (33)where u(x) :=√x log(e=x). Thus

EW k[k℄(GC) = Edet(��∗)1=2W k[k℄(C)
> Edet(��∗)1=2(1− u(k�∗(C)))kw(C)k ;as long as k 6 =�∗(C). It follows that

E[W 2k[k℄ (GC)℄(EW k[k℄(GC))2 6

(1 + max{ knk∗(C) ; u(k�∗(C))})k (E‖g‖2)2k(Edet(��∗)1=2)2 :



GAUSSIAN CONVEX BODIES 301Finally, we may hek that(E‖g‖2)2k(Edet(��∗)1=2)2 = a2kN;1
∏ks=1 a2N−s+1;1= [�(N+12 )�(N2 ) ]2k [�(N−k+12 )�(N+12 ) ]2 6

(1 + kN )k ;for all 1 6 k 6 n. Putting all inequalities together we obtain:
E[W 2k[k℄ (GC)℄(EW k[k℄(GC))2 6

(1 + max{ knk∗(C) ; u(k�∗(C))})k
6 1 + 1max{ k2nk∗(C) ; ku(k�∗(C))} ;as long as max{ k2nk∗(C) ; ku(k�∗(C))} 6 1. Hene,Var[W k[k℄(GC)℄ = (EW k[k℄(GC))2 ( E[W 2k[k℄ (GC)℄(EW k[k℄(GC))2 − 1)

6 1max{ k2nk∗(C) ; ku(k�∗(C))}W 2k[k℄ (C)[det(��∗)1=2℄2;for all 1 6 k 6 min{n; √nk∗(C);  3√ 1�∗(C)= log 1�∗(C)}.(iii) We apply H�older's inequality to getVar[W k[k℄(GC)℄ = (EW k[k℄(GC))2( E[W 2k[k℄ (GC)℄(EW k[k℄(GC))2 − 1)
> EW k[k℄(GC))2 ( E‖G‖2kHS(E‖G‖kHS)2 − 1)=W 2k[k℄ (C) k2nN [det(��∗)1=2℄2: �3.3. Conentration properties. In this setion we disuss onentra-tion properties of the intrinsi volumes of Gaussian onvex bodies. In ad-dition to [29, Theorem 1.1℄, whih we stated in (33), we will also need thefollowing stronger statement (see Proposition 4.2 in [29℄).



302 G. PAOURIS, P. PIVOVAROV, P. VALETTASProposition 3.5. Let C be a symmetri onvex body in R
n and let 2 6k 6 1�−1

∗ (C). Then for all 0 < p 6 2(k�∗(C))−1,W[k;−p℄(C) > (1− 3max{u(k�∗(C)); pk�∗(C)})w(C); (34)where u(x) :=√x log(e=x).Proposition 3.6. Let C be a symmetri onvex body in R
N , u(x) =

√x log(e=x), p > 0 and 1 6 k 6 n 6 N . Then
(

EW kp[k℄ (GC)) 1kp
6

√1 + 1kpnk∗(C)E‖g‖2w(C); (35)where g is a standard N-dimensional Gaussian vetor. Moreover, if 2 6k 6 1�−1
∗ (C), then

EW[k℄(GC) > (1− 2u(k�∗(C))Edet (��∗) 12k w(C); (36)where � is an k×N Gaussian matrix. In partiular we have that for every2 6 k 6 1�−1
∗ (C) and p > 0,

(

EW kp[k℄ (GC)) 1kp
EW[k℄(GC) 6

√1 + max{u(k�∗(C)); kpnk∗(C)}: (37)Finally we have that for 2 6 k 6 1�−1
∗ (C) and 0 < p 6 2k�∗(C) ,

(

EW−kp[k℄ (GC)) 1
−kp

EW[k℄(GC) > 1− max{u(k�∗(C)); pk�∗(C)}: (38)Proof. By Alexandrov's inequality (17) and Lemma 3.3 we get that
(

EW kp[k℄ (GC)) 1kp
6
(

E[w(GC)℄kp) 1kp 6

√1 + 1kpnk∗(C)E‖g‖2w(C);whih proves (35). Using Proposition 3.1, H�older's inequality and Propo-sition 3.5 we get that
EW[k℄(GC) > EW[k; 1k ℄(GC)= Edet (��∗) 12k W[k; 1k ℄(C)

> (1− 2u(k�∗(C))Edet (��∗) 12k w(C);



GAUSSIAN CONVEX BODIES 303whih proves (36). Next, (37) follows from (36), (35) and Proposition 3.2.Finally, using H�older's inequality, Alexandrov's inequality (17), followedby Propositions 3.1, 3.2 and 3.5, we have(EW−pk[k℄ (GC))− 1pk
EW[k℄(GC) >

(EW−pk[k;−p℄(GC))− 1pk
Ew(GC)

>
(E(det(��∗))− p2 )− 1kp

E‖g‖2 W[k;−p℄(C)w(C)
>

(1− max(p; k)N )

× (1− 3max{u(k�∗); pk�∗(C)})w(C): �Applying the previous proposition and Markov's inequality, we get thefollowing.Proposition 3.7. (Small deviations near the mean) Let C be a symmetrionvex body in R
N and 2 6 k 6 �∗(C) . Set u(x) = √x log(e=x) andr := u(k�∗(C)). Then for every " > r,

P
(W[k℄(GC) > (1 + ")EW[k℄(GC)) 6 e−"2nk∗(C): (39)Moreover, for every r 6 " 6 1,
P
(W[k℄(GC) 6 (1− ")EW[k℄(GC)) 6 e− "2�∗(C) : (40)Proposition 3.8. (Small ball probabilities below the mean) Let 1 6 k 6n 6 N . Assume that C is a symmetri onvex body in R

N . Then for all0 < " < 1,
P
(W[k℄(GC) 6 "EW[k℄(GC)) 6 "d∗(C); (41)where  is an absolute onstant.Proof. Let 0 < p < N − k + 1. We �rst reall an inequality from [15, p.1014℄: W[k;−p℄(C) > 0w−kp(C); (42)where 0 is a positive absolute onstant. By Alexandrov's inequality (17),

EW[k℄(GC) 6 Ew(GC) ≃ √Nw(C): (43)By H�older's inequality and Proposition 3.1, we get
EW−kp[k℄ (GC) 6 EW−kp[k;−p℄(GC) = Edet(��∗)−p=2W−kp[k;−p℄(C): (44)



304 G. PAOURIS, P. PIVOVAROV, P. VALETTASThus,
EW−kp[k℄ (GC) 6 kp1 N−kp=2w−kp

−kp(C):Finally, we apply Markov's inequality with p = d∗(C)=k.
P
(W[k℄(C) 6 "EW[k℄(GC)) = P

(W−kp[k℄ (C) > (")−kp(EW[k℄(GC))−kp)= (")kp(EW[k℄(GC))kpEW−kp[k℄ (GC)
6 "kpfor a suitable absolute onstant . �In [28℄, a general method to estimate small ball probabilities for thevolume of random onvex sets is developed. The method applies beyondGaussian onvex bodies { to random sets similar to (1) but the random-ness involves arbitrary ontinuous distributions with bounded densities.An essential ingredient is the use of aÆne quermassintegrals, whih wereintrodued by E. Lutwak [22℄. For a ompat set C ⊆ R

N and 1 6 k 6 N ,we de�ne the k-th aÆne quermassintegral as�[k℄(C) :=  ∫GN;k Vk(PFC)−Nd�N;k(F )− 1Nk : (45)By H�older's inequality, !1=kk W[k℄(C) > �[k℄(C): (46)A ruial inequality from [28℄, that will also be needed here, is an \iso-morphi" solution to a onjeture of E. Lutwak [23℄, namely, for everyonvex body C ⊆ R
N and every 1 6 k 6 N ,�[k℄(C) > √Nk VN (C) 1N : (47)Proposition 3.9. (Small ball probabilities below the volume) Let C be aonvex body in R

N and let 1 6 k 6 n 6 N . Then for every " > 0,
P

(W[k℄(GC) 6 "VN (C) 1N ) 6 (") kN2 : (48)Proof. As in the proof of the previous proposition, we have
EW−kp[k℄ (GC) 6 Edet(��∗)−p=2W−kp[k;−p℄(C): (49)



GAUSSIAN CONVEX BODIES 305Next, we note that for 0 < p 6 N , H�older's inequality and (47) imply thatW−kp[k;−p℄(C) 6 �[k℄(C)−p=N 6 (!1=kk vrad(C))−p=N :By Markov's inequality, we get the result. �By ompatness, !nWnn;p(C) → maxE∈GN;n Vn(PEC) as p → ∞. Thenext proposition provides a quantitative form of this fat.Proposition 3.10. Let C be a symmetri onvex body in R
N and let1 6 n 6 N=2. Then, for all p > N log(R(C)=r(C)) we have: maxF∈GN;n Vn(PFC)1=n 6 !1=nn W[n;p℄(C) 6 maxF∈GN;n Vn(PFC)1=n:For the proof we will need estimates for the metri entropy on the Grass-mannian whih are due to Szarek [41℄ (see also [31℄ for the formulation weuse below).Lemma 3.11. Let 1 6 n 6 N − 1 and let �∞ be the invariant metride�ned by:E;F ∈ GN;n; �∞(E;F ) = inf{‖I − U‖op : U(E) = F; U ∈ O(N)}:We de�ne the \spherial ap" with respet to �∞ of radius " > 0, enteredat F ∈ GN;n, as follows:C∞(F; ") = {E ∈ GN;n : �∞(E;F ) < "}:Then, we have �N;n(C∞(F; ")) > (")n(N−n): (50)Lemma 3.12. Let K be a symmetri onvex body with s=R(C)=r(C) in

R
N . Let E;F ∈ GN;n with �∞(E;F ) = t. Then, there exists U ∈ O(N)suh that U(E) = F and U(PEK) ⊆ (1 + ts)PFK:Proof. We onsider U ∈ O(N) suh that t = ‖I − U‖. Let � ∈ SF . Then,U∗� = � ∈ SE therefore we have ‖� − �‖2 6 t. We may write:hU(PEK)(�)hPFK(�) = hK(�)hK(�) 6 1 + hK(� − �)hK(�) 6 1 + tR(K)r(PFK) :Sine r(PFK) > r(K) the result follows. �Now we are ready to prove the aforementioned result:



306 G. PAOURIS, P. PIVOVAROV, P. VALETTASProof of Proposition 3.10. The rightmost inequality is trivial. For the left-most inequality let F0 ∈ GN;n suh that maxF∈GN;n Vn(PFC) = Vn(PF0C).For any " ∈ (0; 1) note that if F ∈ C∞(F0; "), then by Lemma 3.12 we getVn(PFC) > (1 + "s)−nVn(PF0C), where s = R(C)=r(C). Hene, we maywrite:
∫GN;n Vn(PFC)p d�N;n(F ) >

∫C∞(F0;") Vn(PFC)p d�N;n(F )
> (1 + "s)−pnVn(PF0C)p�N;n(C∞(F0; "))
> (1 + "s)−pn(")nNVn(PF0C)p;where in the last step we have used Lemma 3.11. Choosing " ≃ 1=s we�nd W[n;p℄(C) > 1Vn(PF0C)1=n(2=s)N=p > 3Vn(PF0C)1=n;provided that p > N log(′s), whih is the desired result. �The next proposition is immediate:Proposition 3.13. (Higher moments) Let C be a symmetri onvex bodyin R

N and let 1 6 k 6 n 6 N=2. Then, for any p > N log(R(C)=r(C)),(EW p[k℄(GC)) 1kp(EW[k℄(GC)) ≃
√ pN maxF∈GN;k Vk(PFC) 1kW[k℄(C) : (51)Proof. Using Proposition 3.1, we get(EW p[k℄(GC)) 1kp(EW[k℄(GC)) = (Edet(��∗) p2 ) 1pk(Edet(��∗) 12 ) 1k · W[k;p℄(C)W[k℄(C) :The assertion now follows from Proposition 3.10 and estimate (26). �3.4. Gaussian polytopes and zonotopes. In the previous setions, wepresented general onentration properties of the quantities W[k℄(GC) interms of the parameters k∗(C), d∗(C) and �∗(C) and W[k℄(C). In thissetion, we review bounds on all of the latter quantities when C is theross-polytope BN1 and the ube BN

∞, whih orrespond to KN and ZN ,respetively, as de�ned in the introdution. We also setmk(C) = maxF∈GN;k Vk(PFC) 1k :The following table summarizes the geometri parameters of interest.



GAUSSIAN CONVEX BODIES 307C k∗(C) 1�∗(C) d∗(C) vrad(C) W[k℄(C) w(C) mk(C)BN1 logN log2N > N0 N √ log(eN=k)N √ logNN 1kBN
∞ N N N √N √N √N √NkThe table gives the order of magnitude, up to absolute onstants, of eahof the given parameters; for example k∗(BN1 ) ≃ logN , while for d∗(BN1 ), wehave given just a lower bound in terms of an absolute onstant 0 ∈ (0; 1).For the ube C = BN

∞, one has k∗(BN
∞) ≃ N , by (18). Moreover, using(20) the values of d∗(BN

∞) and 1=�∗(BN
∞) are also of order N . The intrinsivolumes of the ube satisfy

√N ≃ vrad(BN
∞) 6 W[k℄(BN

∞) 6 w(BN
∞) ≃ √N; (52)whih an be seen by diret omputation or as onsequene of Alexandrov'sinequality (17). The �nal entry in the row for BN

∞ follows from, e.g., theinlusion BN
∞ ⊆

√NBN2 and (52).For the ross-polytope BN1 , k∗(BN1 ) ≃ logN , whih an be diretlyomputed using (18). To ompute �∗(BN1 ), it is enough to ompute thevar(maxi6N |gi|), whih is well-known; see, e.g., [10℄. The quantity d∗(BN1 )has been estimated in [28, Props. 6.1, 6.2℄. For the maximal volume k-dimensional projetion of BN1 we will need that every k-odimensionalsetion of BN1 has volume of order k, i.e. VN−k(BN1 ∩ F⊥) 1k ≃ 1 (seee.g. [25℄). Then by Rogers{Shephard inequality [36℄, we have that for everyF ∈ GN;k,Vk(PFBN1 ) 1k 6 Vk(PFBN1 ) 1k VN−k(BN1 ∩ F⊥) 1k 6

(Nk) 1k
6
eNk :Here BN1 = VN (BN1 )− 1NBN1 and VN (BN1 ) 1N ≃ 1N so we get thatmaxF∈GN;k Vk(PFBN1 ) 1k 6

k :On the other side we have that if F is the subspae spanned by {e1; · · · ; ek},then Vk(PF0BN1 ) 1k = Vk(Bk1 ) 1k ≃ 1k .Using the above table of values and the results in the previous setion,we readily get the next theorems.



308 G. PAOURIS, P. PIVOVAROV, P. VALETTASTheorem 3.14. For every 1 6 k 6 n 6 0N , and every " > √ kN log Nk ,
P
(W[k℄(ZN ) > (1 + ")EW[k℄(ZN )) 6 e−"2nN (53)and for every " ∈ [√ kN log eNk ; 1℄,

P
(W[k℄(ZN ) 6 (1− ")EW[k℄(ZN )) 6 e−"2N : (54)Moreover for every " > 0,
P
(W[k℄(ZN ) 6 "EW[k℄(ZN )) 6 (") kN2 : (55)Theorem 3.15. For every 1 6 n 6 N , 1 6 k 6 min{log2N;n} and every" > √ klogN log e logNk ,

P
(W[k℄(KN) > (1 + ")EW[k℄(KN )) 6 e−"2n logN (56)and for every " ∈ [√ klogN log e logNk ; 1℄,

P
(W[k℄(KN ) 6 (1− ")EW[k℄(KN)) 6 e−"2 log2N : (57)Moreover for every " > 0,

P
(W[k℄(KN ) 6 "EW[k℄(KN )) 6 (")N0 : (58)Finally, for every p > N logN ,(EVk(KN)p) 1pk(EVk(KN )) 1k ≃

√pNk√log(N=k) : (59)
§4. Asymptoti results for zonotopesIn this setion, we disuss properties of the limiting distributions of theintrinsi volumes of the Gaussian zonotopes ZN = G[−1; 1℄N = N

∑i=1[−gi; gi℄to omplement the non-asymptoti results in the previous setion.A entral limit theorem for the volume of Minkowski sums of randomonvex sets was proved by Vitale [43℄. As a speial ase, it was shown thatas N → ∞, Vn(ZN )− EVn(ZN )
√var(Vn(ZN ) → N (0; 1): (60)In [30℄, we used the latter fat to prove a entral limit theorem for thevolume of random orthogonal projetions of rank n of BN

∞, when n is �xed



GAUSSIAN CONVEX BODIES 309and N → ∞. We also proved bounds for entered moments of the volumeVn(ZN ). The next proposition extends this to other intrinsi volumes. Theproof is a natural generalization of [30, Proposition 4.2℄; detailed proofsare inluded here for ompleteness.Theorem 4.1. Let 1 6 k 6 n 6 N .(1) For eah p > 2,
E|Vk(ZN )− EVk(ZN )|p 6 n;k;pNp(k− 12 ); (61)where n;k;p is a onstant that depends only on n, k and p.(2) The variane of Vk(ZN ) satis�esvar(Vk(ZN))N2k−1 → n;k; (62)where n;k is a positive onstant that depends only on n and k.(3) Vk(ZN ) satis�es the following entral limit theorem:Vk(ZN )− EVk(ZN )

√var(Vk(ZN )) → N(0; 1): (63)To prove Theorem 4.1, it will be useful to reall several results on U -statistis; for bakground, see e.g. [14,37,39℄. Let X1; X2; : : : be a sequeneof i.i.d. random variables with values in a measurable spae (S;S). Leth : Sm → R be a measurable funtion. For N > m, the U -statisti of orderm with kernel h is de�ned byUN = UN(h) = (N −m)!N ! ∑(i1;:::;im)∈ImN h(Xi1 ; : : : ; Xim); (64)where ImN = {(i1; : : : ; im) : ij ∈ N; 1 6 ij 6 N; ij 6= ik if j 6= k} :When h is symmetri, i.e., h(x1; : : : ; xm) = h(x�(1); : : : ; x�(m)) for everypermutation � of m elements, we an writeUN = U(X1; : : : ; XN) = 1
(Nm) ∑16i1<:::<im6N h(Xi1 ; : : : ; Xim); (65)here the sum is taken over all (Nm) subsets {i1; : : : ; im} of {1; : : : ; N}. Wereall several well-known results, whih go bak to Hoe�ding (e.g. [39,Ch. 5℄).



310 G. PAOURIS, P. PIVOVAROV, P. VALETTASTheorem 4.2. For N > m, let UN be a statisti with kernel h : Sm → R.Set � = VarE[h(X1; : : : ; Xm)|X1℄.(1) The variane of UN satis�es VarUN = m2�N +O(N−2) as N → ∞.(2) If E|h(X1; : : : ; Xm)| <∞, then UN a:s:→ EUN as N → ∞.(3) If Eh2(X1; : : : ; Xm) < ∞ and � > 0, then
√N (UN − EUNm√� ) d→ N (0; 1) as N → ∞:We will also reall the following deoupling result for U -statistis. As-sume that h : (Rn)m → R satis�es E|h(X1; : : : ; Xm)| <∞ and let 1 < r 6m. Following [14, De�nition 3.5.1℄, we say that h is degenerate of orderr − 1 if

EXr ;:::;Xmh(x1; : : : ; xr−1; Xr; : : : ; Xm) = Eh(X1; : : : ; Xm)for all x1; : : : ; xr−1 ∈ R
n, and the funtionSr ∋ (x1; : : : ; xr) 7→ EXr+1;:::;Xmh(x1; : : : ; xr; Xr+1; : : : ; Xm)is non-onstant. If h is not degenerate of any positive order r, we say it isnon-degenerate or degenerate of order 0. We will make use of the followingrandomization theorem, whih is a speial ase of [14, Theorem 3.5.3℄.Theorem 4.3. Let 1 6 r 6 m and p > 1. Suppose that h : Sm → R isdegenerate of order r − 1 and E|h(X1; : : : ; Xm)|p < ∞. Setf(x1; : : : ; xm) = h(x1; : : : ; xm)− Eh(X1; : : : ; Xm):Let "1; : : : ; "N denote i.i.d. Rademaher random variables, independent ofX1; : : : ; XN . Then

E
∣

∣

∑(i1;:::;im)∈ImN f(Xi1 ; : : : ; Xim)∣∣p ≃m;p
E
∣

∣

∑(i1;:::;im)∈ImN "i1 · · · "irf(Xi1 ; : : : ; Xim)∣∣p:Here A ≃m;p B means C ′m;pA 6 B 6 C ′′m;pA, where C ′m;p and C ′′m;p areonstants that depend only on m and p.Corollary 4.4. Let 1 6 k 6 n 6 N and let X1; : : : ; XN be i.i.d. ran-dom vetors distributed aording to an absolutely ontinuous probability
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n. Assume that E‖X1‖p2 < ∞ for some p > 2. De�nef : (Rn)k → R byf(x1; : : : ; xk) = ∫Gn;k |det [PEx1 · · ·PExk℄|d�n;k(E)

− E

∫Gn;k |det [PEX1 · · ·PEXk℄|d�n;k(E):Then
E

∣

∣

∣

∑16i1<:::<ik6N f(Xi1 ; : : : ; Xik )∣∣∣p 6 Cn;k;pNp(k− 12 )E|f(X1; : : : ; Xk)|p;where Cn;k;p is a onstant that depends on n; k and p.Proof. Sine � is absolutely ontinuous, dim(span{X1; : : : ; Xr}) = r a.s.for r = 1; : : : ; k. Moreover, f(ax1; : : : ; xk) = |a|f(x1; : : : ; xk) for any a ∈ R,hene f is non-degenerate. By H�older and Hadamard's inequalities,
E







∫Gn;k |det[PEX1 · · ·PEXk℄|d�n;kp
6 E‖X1‖p2 · : : : · E‖Xk‖p2:Thus we may apply Theorem 4.3 with r = 1:

E

∣

∣

∣

∑16i1<:::<ik6N k!f(Xi1 ; : : : ; Xik)∣∣∣p = E

∣

∣

∣

∑(i1;:::;ik)∈IkN f(Xi1 ; : : : ; Xik )∣∣∣p
6 Cn;k;pE∣∣∣ ∑(i1;:::;ik)∈IkN "i1f(Xi1 ; : : : ; Xik)∣∣∣p:Suppose X1; : : : ; XN are �xed. Taking expetation in "=("1; : : : ; "N) andappling Khinthine's inequality and then H�older's inequality, we have

E"∣∣∣ ∑(i1;:::;ik)∈IkN "i1f(Xi1 ; : : : ; Xik )∣∣∣p= E"∣∣∣ N
∑i1=1 "i1 ∑(i2;:::;ik)(i1;:::;ik)∈IkN f(Xi1 ; : : : ; Xik)∣∣∣p
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6 ∣∣∣ N

∑i1=1( ∑(i2;:::;ik)(i1;:::;ik)∈IkN f(Xi1 ; : : : ; Xik ))2∣∣∣ p2
6 ((N − 1k − 1)(k − 1)!)p2 ∣

∣

∣

∑(i1;:::;ik)∈IkN f(Xi1 ; : : : ; Xik)2∣∣∣ p2
6 ((N − 1k − 1)(k − 1)!)p2 ((Nk)k!) p−22 ∑(i1;:::;ik)∈InN |f(Xi1 ; : : : ; Xik)|p;where  is an absolute onstant. Taking expetation in the Xi's gives

E

∣

∣

∣

∑(i1;:::;ik)∈IkN "i1f(Xi1 ; : : : ; Xik)∣∣∣p
6

((N − 1k − 1)(k − 1)!) p2 ((Nk)k!) p−22 (Nk)k!E|f(X1; : : : ; Xk)|p:We omplete the proof by using the estimate (Nk ) 6 (eN=k)k. �Proof of Theorem 4.1. Note that for �n;k := (nk) !n!k!n−k , we haveVk(ZN ) = Vk ( N
∑i=1 [−gi; gi℄)= �n;k ∫Gn;k Vk ( N

∑i=1 [−PEgi; PEgi℄) d�n;k(E)= �n;k ∑
|I|=k ∫Gn;k |det([PEx1; : : : ; PExk℄)|d�n;k(E):Thus if h : (Rn)k → R

+ is the permutation-invariant funtion given byh(x1; : : : ; xk) = �n;k ∫Gn;k |det([PEx1; : : : ; PExk℄)|d�n;k(E); (66)then 1(Nk )Vk(ZN ) is a U -statisti with kernel h.To prove (1), we note that h is non-degenerate. Thus we an applyCorollary 4.4 to the funtionf(x1; : : : ; xk) = h(x1; : : : ; xk)− Eh(g1; : : : ; gk): (67)



GAUSSIAN CONVEX BODIES 313Next, we prove (2). For �xed E ∈ Gn;k, we write
|det[PEg1 · · ·PEgk℄| = ‖v1‖2‖PF⊥1 v2‖2 · : : : · ‖PFk−1vk‖2; (68)where vi = PEgi, for i = 1; : : : ; k and Fr = span{v1; : : : ; vr} for r =1; : : : ; k− 1, while F0 = {0}. Denote the expetation with respet to gr by

Er. Note that for r = 2; : : : ; k − 1, Er+1‖PF⊥r vr+1‖ depends only on thedimension of Fr, whih is equal to r a.s. By Fubini's theorem, integrating�rst in gk, then gk−1, and so on, we have
E2 · : : : · Ek‖PF⊥1 v2‖2 · : : : · ‖PFk−1vk‖2 = k−1

∏r=1 E

√�2r =: �n;k;where �2r denotes a hi-squared random variable with r degrees of freedom,r = 1; : : : ; k−1. Moreover, the latter expression is independent of E. Thus
E[h(g1; : : : ; gk)|g1℄ = E2;:::;k�n;k ∫Gn;k |det[PEg1 · · ·PEgk℄|d�n;k(E)= �n;k�n;k ∫Gn;k ‖PEg1‖2d�n;k(E):Thus � = var(E[h(g1; : : : ; gk)|g1℄) > 0 and hene we an apply Theo-rem 4.2(2), to get

√N (Vk(ZN )− EVk(ZN )
(Nk )k√� )

→ N(0; 1); as N → ∞: (69)On the other hand, by part (1) we have
E|(Vk(ZN ))− EVk(ZN )|4N4k−2 6 Cn;;k;4:This implies that the sequene (Vk(ZN )−EVk(ZN )=Nk− 12 )N is uniformlyintegrable, hene
√var(Vk(ZN ))N− 12 (Nk )k√� → 1 as N → ∞:Part (3) now follows from (69) and Slutsky's theorem. �
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