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Abstract
Given a pair of topological vector spaces X , Y where X is a proper linear subspace
of Y it is examined whether Y \ X is residual in Y (topological genericity), whether
Y \X contains a dense linear subspace of Y except 0 (algebraic genericity) andwhether
Y \ X contains a closed infinite dimensional subspace of Y except 0 (spaceability). In
the present paper the spaces X and Y are either sequence spaces or spaces of analytic
functions on the unit disc regarded as sequence spaces via the identification of a
functionwith the sequence of its Taylor coefficients. For the spaces under consideration
we give an affirmative answer to each of these questions providing general proofs
which extend previous results.
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1 Introduction

In [4, 7], the chain of spaces ∩p>α�p (α ≥ 0), �p (0 < p < +∞), c0, �∞ was
considered and, for any pair (X ,Y ) with X � Y belonging to this chain, topological
and algebraic genericity and spaceabilitywere investigated, extending previous results.
We recall the definitions. Given a pair (X ,Y ) where Y is a topological vector space
and X is a proper linear subspace of Y , we say that we have topological genericity
if X is contained in an Fσ - meager subset of Y , equivalently if Y � X is residual
in Y . This is always the case for the pairs of sequence spaces belonging to the above
chain and then a question that arises naturally is whether X is indeed equal to an Fσ

subset of Y or not. Furthermore, we say that we have algebraic genericity for the pair
(X ,Y ) if there exists a linear subspace G of Y , dense in Y , such that G is contained
in (Y � X) ∪ {0}. Finally, we have spaceability if (Y � X) ∪ {0} contains a closed
infinite dimensional subspace of Y .

In the present paper we extend the above chain by adding the space A∞(D) which
is contained in ∩p>0�

p and the spaces H(D) ⊂ CN0 which contain �∞. The spaces
A∞(D) and H(D) are spaces of holomorphic functions on the open unit disc D of the
complex plane C, but they can also be seen as sequence spaces via the identification
of any holomorphic function on D with the sequence of its Taylor coefficients. More
precisely, for f = ∑∞

n=0 anz
n , we have that f belongs to A∞(D) if and only if, for

every k = 1, 2, . . ., it holds that nkan → 0 as n → +∞, while f belongs to H(D) if
and only if lim sup n

√|an| ≤ 1.
For all pairs of spaces X ,Y with X � Y belonging to this extended chain, we

examine topological and algebraic genericity and spaceability, completing thus the
results of [7] and [4]. The same questions may be considered in the future for several
chains of topological vector spaces such as Hardy spaces, Bergman spaces of analytic
functions, Bloch spaces or intersections of the above spaces. We also mention the
remarkable papers [6] and [8] which are related to this work.

For algebraic genericity and spaceability we refer the reader to [5] and [1]. For
topological genericity we refer to [3].

2 Topological genericity

We begin with the following

Proposition 2.1 LetCN0 be the set of sequences (an)∞n=0 with an ∈ C, n = 0, 1, 2, . . . ,
endowed with the usual operations, pointwise addition, scalar multiplication+, ·. Let
X ,Y be two F-spaces which are linear subspaces ofCN0 . We assume that convergence
of a sequence am = (

amn
)∞
n=0 in either X or Y implies pointwise convergence, that is,

if am
m→∞−−−−→ a in X or in Y , then amn

m→∞−−−−→ an for all n = 0, 1, 2, . . . If X ⊂ Y then
the inclusion map I : X → Y , I (a) = a, is continuous.
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Proof This follows immediately from the closed graph theorem.

Indeed, let (am, I (am)) = (am, am) ∈ Gr(I ) such that (am, am)
m−→∞−−−−→ (a, b).

It suffices to show that a = b. From our assumption, am → a in X . It follows that
amn → an as m → ∞ for every n. Similarly from the convergence in Y , we have that
amn → bn as m → ∞ for every n = 0, 1, 2, . . . It follows that a = b. ��
Proposition 2.2 If, in addition to the assumptions of Proposition 2.1, X is different
from Y , then X is contained in an Fσ meager subset of Y .

Proof This follows from Proposition 2.1 and a theorem of Banach which is a version
of the open mapping theorem ([9], Theorem 2.11), since the inclusion map I : X →
Y , I (a) = a, is linear, continuous and not surjective. ��

The above find application when X ,Y are among the spaces �p for 0 < p <

∞,
⋂

p>α �p for 0 ≤ α < ∞, c0 and �∞ ([7] and [4]). In the present paper, we

extend this chain by adding the spaces A∞(D) ⊂ ⋂
p>0 �p and �∞ ⊂ H(D) ⊂ CN0 ,

where D is the open unit disc in C.
Let us first recall the definitions.

Definition 2.3 Let H(D) be the vector space of all holomorphic functions on the open
unit discD and endow this spacewith the topology of uniform convergence on compact
subsets of D.

We consider H(D) as a sequence space, by identifying every function f (z) =∑∞
n=0 anz

n with the sequence a = (an)∞n=0 of its Taylor coefficients. It is well known
that f ∈ H(D) if and only if lim supn

{
n
√|an|

} ≤ 1.

Definition 2.4 Let A∞(D) be the vector space of holomorphic functions f on the open
unit disc D such that f and all its derivatives f (l) can be continuously extended on
the closed unit disc D.

We endow A∞(D) with the natural metric d( f , g) = ∑∞
i=0

1
2i

‖ f (i)−g(i)‖∞
1+‖ f (i)−g(i)‖∞

.

As before, we identify every f ∈ A∞(D) with the sequence a = (an)∞n=0 of its

Taylor coefficients. It is easy to see that f ∈ A∞(D) if and only if nkan
n→∞−−−→ 0 for

every k in N0.

Proposition 2.5 Convergence in H(D) implies pointwise convergence.

Proof Let fm(z) = ∑∞
n=0 a

m
n z

n be a sequence in H(D) that converges to f (z) =∑∞
n=0 anz

n in H(D).

It suffices to show that for every n ∈ N0 we have amn
m→∞−−−−→ an .

By the Weierstrass theorem we have that, for every n ∈ N0, f (n)
m converges uni-

formly to f (n) as m → ∞ on each compact subset of D. Thus, in particular, for every
n ∈ N0,

amn = f (n)
m (0)

n!
m→∞−−−−→ f (n)(0)

n! = an

��
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Proposition 2.6 Convergence in A∞(D) implies pointwise convergence.

Proof It is obvious that convergence in A∞(D) implies uniform convergence in D
which implies convergence in H(D). Thus, by Proposition 2.5, we have pointwise
convergence. ��
Remark 2.7 It is obvious that convergence in �∞ implies pointwise convergence, while
by definition CN0 is endowed with the topology of pointwise convergence which is
induced by the metric ρ(a, b) = ∑∞

i=0
1
2i

|ai−bi |
1+|ai−bi | .

Proposition 2.8 The inclusion A∞(D) ⊂ ⋂
p>0 �p holds, and is strict.

Proof Let f (z) = ∑∞
n=0 anz

n ∈ A∞(D) , i.e.
∑∞

n=0 n
k |an| < ∞ for all k ≥ 0 and

let p > 0.
Let k ∈ N be such that kp > 1.
We have nk |an| → 0 so there exists N > 1 such that nk |an| < 1 for every n ≥ N .

Thus
∑∞

n=0 |an|p ≤ ∑N−1
n=0 |an|p + ∑∞

n=N

(
1
nk

)p
< ∞ since kp > 1.

We now show that the inclusion is strict:
Consider the sequence y = (ys) where

ys =
{√

1
s if s = 2k for some k ∈ N
0 otherwise

In other words, y2k =
√

1
2k

and ys = 0 elsewhere. Then 2k y2k = 2k/2 → ∞ so

y /∈ A∞(D).

On the other hand, y ∈ ⋂
p>0 �p since

∑∞
s=0 |ys |p = ∑∞

n=1

∣
∣
∣1/

√
2
∣
∣
∣
np

< ∞ for

every p > 0. ��
Next we prove a slightly stronger fact that will be used later.

Remark 2.9 For every infinite subset A of N0 we can find a sequence y ∈ ⋂
p>0 �p �

A∞(D) which is supported in A.

Proof Let A = {l1, l2, . . . } where l1 < l2 < . . . . We choose k1 < k2 < . . . such that,
for every n ∈ N, lkn ≥ 2n .

We define y = (ys) by ylkn = √
1/lkn and ys = 0 otherwise.

Then lkn ylkn = √
lkn ≥ 2n/2 → ∞ so y /∈ A∞(D), while for every p > 0 we have:

∞∑

s=0

|ys |p ≤
∞∑

n=1

(2−n/2)p < ∞

so y ∈ ⋂
p>0 �p. ��

Proposition 2.10 The inclusion �∞ ⊂ H(D) holds and is strict.
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Proof Let a = (an)n ∈ �∞. Then

lim sup n
√|an| ≤ lim n

√||a||∞ ≤ 1.

So a ∈ H(D), which implies �∞ ⊂ H(D).
Since limsup n

√
n = 1 it follows that the sequence (n)n is in H(D), but not in �∞.

So �∞ � H(D). ��
Proposition 2.11 The inclusion H(D) ⊂ CN0 holds and is strict.

Proof It is obvious that H(D) ⊂ CN0 .
Since limsup n

√
nn+1 = +∞ it follows that

(
nn+1

)
n /∈ H(D). Therefore, H(D) �

CN0 . ��
Theorem 2.12 Consider the chain of spaces

A∞(D) �
⋂

p>0

�p � �α �
⋂

q>α

�q � �β �
⋂

p>β

�p � c0 � �∞ � H(D) � CN0

where 0 < α < β.
If X � Y are two spaces from this chain then X is contained in an Fσ meager

subset of Y .

Proof This follows by a combination of Propositions 2.2, 2.5, 2.6 and Remark 2.7. ��

3 A constructive approach

In the previous section we showed that if X � Y are spaces as in Theorem 2.12 then
X is contained in an Fσ meager subset of Y.

In this sectionwe examinewhether X itself is an Fσ meager subset of Y.Ourmethod
will be constructive. At the same time we obtain a new proof of Theorem 2.12 without
using Banach’s theorem.

Proposition 3.1 Let X = A∞(D) and Y be a space from the chain of Theorem 2.12
such that X � Y . Then X is an Fσδ subset of Y .

Proof For k ∈ N0, M ∈ N, let Fk
M = {

a = (an) ∈ Y | nk |an| ≤ M ∀n ∈ N0
}
. It is

clear that X = A∞(D) = ⋂∞
k=0

⋃∞
M=1 F

k
M ⊂ ⋃∞

M=1 F
1
M and it remains to show that

the sets Fk
M are closed in Y . Indeed, fix k and M and let (am) be a sequence in Fk

M ,

such that am
m→∞−−−−→ a in Y and thus amn

m→∞−−−−→ an for all n ∈ N0. Then for all n ∈ N
nk |amn | ≤ M and by taking the limit as m goes to ∞ we have nk |an| ≤ M which
implies that a ∈ Fk

M . This completes the proof. ��
Remark 3.2 The proof of Proposition 3.1 can be used to give a new proof of the fact that
A∞(D) is contained in an Fσ meager subset of Y . It suffices to show that

⋃∞
M=1 F

1
M

has empty interior in Y . Indeed, it is obvious that
⋃∞

M=1 F
1
M is a linear subspace of Y .
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500 M. Axarlis et al.

To see that it is a proper subspace, notice that the sequence y = (yn) of Proposition
2.8 is in

⋂
p>0 �p ⊂ Y and y /∈ ⋃∞

M=1 F
1
M because (nyn) is not bounded. It follows

that
⋃∞

M=1 F
1
M has empty interior in Y .

We mention that all cases of Theorem 2.12 can be derived by the method of sect. 3
without using Banach’s Theorem. We will not insist on this point.

Proposition 3.3 Let X = �p for p > 0andY bea space from the chainof Theorem2.12
such that X � Y . Then X is an Fσ meager subset of Y .

Proof It suffices to write �p = ⋃∞
M=1{a = (an)∞n=0 ∈ Y | ∑N

n=0 |an|p ≤ M ∀N ∈ N}
as in [7]. Thus the set �p, being a proper linear subspace of Y , has empty interior in Y
and is equal to a countable union of closed sets in Y . ��
Proposition 3.4 Let X = ⋂

p>c �p for c ≥ 0 and Y be a space from the chain of
theorem 2.12 such that X � Y . Then X is an Fσδ subset of Y .

Proof Let pn = c+ 1
n . We have

⋂
p>c �p = ⋂∞

n=1 �pn . Since �p is Fσ in Y , it follows
that X is Fσδ in Y . ��
Remark 3.5 Obviously c0 is closed in �∞.

Proposition 3.6 Let X = c0 and Y = H(D) or CN0 . Then X is Fσδ in Y .

Proof X = ⋂∞
k=1

⋃∞
n=1 F

k
n where Fk

n = {a = (as) ∈ Y : |as | ≤ 1
k ∀s ≥ n}.

Fk
n are closed in Y . Indeed, fix n, k ∈ N.

Let am, m = 1, 2, . . . be a sequence in Fk
n , such that a

m m→∞−−−−→ a in Y . According

to Proposition 2.5 and Remark 2.7 we have amn
m→∞−−−−→ an , for all n ∈ N0. Then,

for all s ≥ n, |ams | ≤ 1
k and by taking the limit as m goes to ∞ we have, for all

s ≥ n, |as | ≤ 1
k which implies that a ∈ Fk

n . ��
Proposition 3.7 Let X = �∞ and Y be a space from the chain of Theorem 2.12 such
that X � Y . Then X is an Fσ subset of Y .

Proof Let FM = {a = (an) ∈ Y : |an| ≤ M for all n ∈ N0}. Obviously X =⋃∞
M=1 FM . We will show that each set FM is closed in Y.

Indeed, let am be a sequence in FM such that am
m→∞−−−−→ a, for some a ∈ Y .

Convergence in Y implies pointwise convergence, that is amn
m→∞−−−−→ an for every

n ∈ N0. Since |amn | ≤ M for all n ∈ N0 and m ∈ N, it follows that |an| ≤ M for all
n ∈ N0. Thus, a ∈ FM . ��
Proposition 3.8 Let X = H(D) and Y = CN0 . Then X is an Fσδ subset of Y .

Proof X = H(D) = ⋂∞
j=1

⋃∞
k=1 F

j
k , where

F j
k =

{
a = (an) ∈ CN0 | n

√|an| ≤ 1 + 1
j ∀n ≥ k

}
.

The sets F j
k are closed in Y . Indeed, fix j, k ∈ N.

Let am, m = 1, 2, . . . be a sequence in F j
k such that am

m→∞−−−−→ a in Y , so that

amn
m→∞−−−−→ an for all n ∈ N0. Then for all n ≥ k, n

√|amn | ≤ 1 + 1
j and by taking
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the limit as m goes to ∞ we have for all n ≥ k, n
√|an| ≤ 1 + 1

j which implies that

a ∈ F j
k . ��

Remark 3.9 The proof of Proposition 3.8 gives that X = H(D) ⊆ ⋃∞
k=1 F

1
k ⊆ Y =

CN0 where the set
⋃∞

k=1 F
1
k is an Fσ -meager subset of Y . In other words, Y � X

contains the complement of
⋃∞

k=1 F
1
k which is a Gδ-dense subset of Y . We mention

that Y � X also contains the set of sequences (an) with the property that the power
series

∑∞
n=0 anz

n has 0 radius of convergence or where
∑∞

n=0 anz
n is a universal

power series of Seleznev. It is known that these two last sets are Gδ-dense subsets of
Y = CN0 ([3]). A series

∑∞
n=0 anz

n is a universal power series of Seleznev if its partial
sums approximate uniformly every polynomial on any compact set K ⊂ C \ {0} with
connected complement ([10]).

Remark 3.10 In the cases where we show that X is an Fσδ in Y , we believe that this
result can not be improved, that is X itself is not an Fσ subset of Y . This is true in
particular in the case where X = ⋂

p>α �p and Y is equal to either �β or
⋂

q>β �q for
some 0 < α < β < ∞ as shown by Gregoriades in [6].

4 Algebraic genericity

In continuation to the previous project [7] we examine whether we have algebraic
genericity for the couple of spaces (X ,Y ), where X � Y are vector spaces belonging
to the chain of Theorem 2.12.

We recall the definition:

Definition 4.1 Let Y be an F-space and let X be a proper linear subspace of Y . We say
that we have algebraic genericity for the couple (X ,Y ) if there is a linear subspace G
of Y , dense in Y , such that G � {0} ⊂ Y � X .

The main result is that if X and Y are two spaces belonging to the chain of theo-
rem 2.12 then we have algebraic genericity for the couple (X ,Y ). Here we deal with
the case Y �= �∞. When Y = �∞ the proof, due to Papathanasiou [8], follows a
different method since �∞ is non separable.

Lemma 4.2 Let Y be a sequence space which is an F-space and let X be a linear
subspace of Y satisfying the following properties:

1. c00 ⊂ X ⊂ Y ⊂ CN0 , X �= Y
2. If A ⊂ N0 is infinite then there exists y ∈ Y � X supported in A.
3. c00 is dense in Y
4. For every a ∈ X and A ⊂ N0 the product aχA belongs to X.

Then we have algebraic genericity for the pair (X ,Y ).

Proof Since c00 is dense in Y it follows that c00 ∩ (Q + iQ)N0 is dense in Y.
Let {x j : j ∈ N} be an enumeration of c00 ∩ (Q + iQ)N0 and let (A j ) j∈N be a

sequence of pairwise disjoint infinite subsets of N. By condition 2, for every j ∈ N
there exists y j ∈ Y � X , y j supported in A j .
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Since Y is a topological vector space, for every j ∈ N, there exists c j ∈ C � {0}
such that c j y j ∈ BY (0, 1

j ). Let f j = x j + c j y j for every j . From dY ( f j , x j ) < 1
j

and the fact that Y does not have isolated points it follows that { f j : j ∈ N} is dense
in Y. This proves that G = 〈 f1, f2, . . . 〉 is dense in Y . Also, f j /∈ X because y j /∈ X .

It remains to show that G ∩ X = {0}.
Suppose that there exists

∑M
j=1 t j f j ∈ X � {0}, t j ∈ C for all j = 1, 2, . . . , M .

Since x1, x2 . . . , xM ∈ c00, there exists N ∈ N such that x j (n) = 0 for all j =
1, 2, . . . , M and n ≥ N . Let j0 ∈ {1, 2, . . . , M} be such that t j0 �= 0.

Then from assumption 4 we have that
∑M

j=1 t j f jχA j0∩[N ,∞) ∈ X , so that

M∑

j=1

t j f jχA j0∩[N ,∞) = t j0 y j0χA j0∩[N ,∞) = t j0 y j0χ[N ,∞) = t j0 y j0 − t j0 y j0χ[0,N ) ∈ X .

Since t j0 y j0χ[0,N ) ∈ c00 ⊂ X , X is a vector space and t j0 �= 0, it follows that y j0 ∈ X ,
which is a contradiction. ��
Remark 4.3 Using the terminology of [2] (Definition 2.1), the assumptions of our
Lemma 4.2 imply that c00 is dense lineable in Y , Y � X is lineable and Y � X is
stronger than c00. Thus, one can also use Theorem 2.2 of [2] to obtain the result of the
previous lemma. We mention that although Theorem 2.2 of [2] is stated for Banach
spaces, it can easily be generalized to F-spaces.

Proposition 4.4 If X ,Y are vector spaces from the chain of Theorem 2.12 such that
X � Y , and Y �= �∞ then conditions 1, 2, 3, 4 of Lemma 4.2 are satisfied.

Proof Let X ,Y be spaces from the chain of Theorem 2.12 such that X ⊂ Y , X �= Y .
It is obvious that condition 1 holds. We now prove that condition 2 holds. Let X =
�p,

⋂
p>α �p, c0 or �∞. Since the inclusion X ⊂ Y is strict, we can choose a ∈ Y �X .

Let A be an infinite subset of N. We can spread out the elements an in such a way that
the support of a is contained in A. To be more precise, let A = {i1, . . . , ik, . . . } be an
enumeration of A such that ik < ik+1 for all k ∈ N. Set:

bn =
{
ak, n = ik, k ∈ N
0, n /∈ A

Then, y = (bn)n ∈ Y � X and has support in A. This proves that condition 2 holds
for these spaces.

If X = A∞(D) then condition 2 follows from Remark 2.9.
If X = H(D) then we construct a sequence supported in A = {l1 < l2 < l3 < · · · }

:

cn =
{
nn if n = lk for some k
0 otherwise

Then, (cn)n ∈ Y � X and has support in A.
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We now prove that condition 3 holds.
If Y = �p, c0, CN0 then it is obvious that c00 is dense in Y .
Let Y = ⋂

p>α �p and consider y ∈ ⋂
p>α �p. The fact that the sequence (yn) of

c00 with yn = yχ[0,n], n ∈ N0, converges to y in each space �p (α < p < ∞) implies
that (yn) converges to y in

⋂
p>α �p. This proves that c00 is dense in

⋂
p>α �p.

Let Y = H(D). Every a ∈ c00 can be identified with a complex polynomial. It is
well known that every holomorphic f ∈ H(D) can be approached by polynomials,
uniformly on the compact subsets of D. It follows that c00 is dense in Y .

We now prove that condition 4 holds.
Let A be a subset of N0 and a = (an)n ∈ X . Then |anχA| ≤ |an| for

all n ∈ N0 and from this inequality condition 4 is obvious for the spaces
�p,

⋂
q>α �q , 0 ≤ α < ∞, c0. If (an)n ∈ H(D), equivalently lim supn

{
n
√|an|

} ≤ 1,
then lim supn

{
n
√|anχA|} ≤ 1, which proves that aχA ∈ H(D). Similarly, if

(an)n ∈ A∞(D), equivalently nkan
n→∞−−−→ 0 for every k ∈ N, then nkanχA

n→∞−−−→ 0
for every k ∈ N, which implies that aχA ∈ A∞(D). ��
Theorem 4.5 If X ,Y are vector spaces from the chain of Theorem 2.12 with X � Y
and Y �= �∞, then we have algebraic genericity for the couple (X ,Y ).

Proof It follows from Lemma 4.2 and Proposition 4.4. ��
If Y = �∞ then X ⊂ c0. According to Papathanasiou [8] there exists a linear subspace
F of �∞ dense in �∞ such that F�{0} ⊂ �∞ �c0 ⊂ �∞ �X . Thus, we have algebraic
genericity for the couple (X , �∞). Combining this with Theorem 4.5 we obtain:

Theorem 4.6 Let (X ,Y ) be vector spaces from the chain of Theorem 2.12with X � Y .
Then we have algebraic genericity for the couple (X ,Y ).

5 Spaceability

In the final section we examine whether we have spaceability for the couple of spaces
(X ,Y ), where X ,Y are vector spaces from the chain of Theorem 2.12.

Let us first recall the definition:

Definition 5.1 Let Y be an F space and let X be a proper linear subspace of Y . We
say that we have spaceability for the couple (X ,Y ) if there exists a closed infinite
dimensional subspace G of Y such that G � {0} ⊂ Y � X .

The main result is that if X and Y are two spaces from the chain of Theorem 2.12
such that X � Y then we have spaceability for the couple (X ,Y ).

Lemma 5.2 Let Y ⊂ CN0 be a sequence space which is an F space and let X be a
proper linear subspace of Y satisfying the following:

1. If A ⊂ N0 is infinite then there exists y ∈ Y � X supported in A.
2. Convergence in Y implies pointwise convergence.
3. For every a ∈ X and A ⊂ N0 the product aχA belongs to X.
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Then we have spaceability for the pair (X ,Y ).

Proof Let (A j ) j∈N be a sequence of pairwise disjoint infinite subsets of N. By condi-
tion 1, for every j there exists y j ∈ Y � X supported in A j .

Consider G = 〈
y j | j ∈ N

〉
.

It is obvious that G is a closed linear subspace of Y . Since the sets A j are disjoint,
it follows that G is infinite dimensional.

It remains to show that if f ∈ G, f �= 0 then f /∈ X .
Indeed, there exists a sequence f m ∈ 〈{y j | j ∈ N}〉 such that f m m→∞−−−−→ f in Y and

by condition 2 we have f m(i)
m→∞−−−−→ f (i) for all i ∈ N0. For every m we can write

f m = cm1 y1 + cm2 y2 + cm3 y3 + . . . where finitely many of the cmj are non zero, i.e. for
every m the set { j ∈ N | cmj �= 0} is finite.

But f �= 0, so there exists i0 ∈ N such that f (i0) �= 0. If i0 /∈ ⋃
j A j then

f m(i0) = 0 for all m, so f (i0) = limm f m(i0) = 0, which is a contradiction. Hence,
i0 ∈ A j0 for some j0 ∈ N.

Since A1, A2, . . . are pairwise disjoint, we have f m(i) = cmj0 y j0(i) for all i ∈ A j0 .
If y j0(i0) = 0 then f m(i0) = 0 for all m, which is a contradiction as above, so

y j0(i0) �= 0.

Let c j0 = limm cmj0 = limm
f m (i0)
y j0 (i0)

= f (i0)
y j0 (i0)

�= 0.

Then for all i ∈ A j0 we have

f (i) = lim
m

f m(i) = lim
m

cmj0 y j0(i) = c j0 y j0(i)

thus f χA j0
= c j0 y j0χA j0

= c j0 y j0 /∈ X and by condition 3 we have f /∈ X as needed.
��

Theorem 5.3 Let (X ,Y ) be vector spaces from the chain of Theorem 2.12with X � Y .
Then we have spaceability for the couple (X ,Y ).

Proof It suffices to see that conditions 1-3 of Lemma 5.2 hold for any pair of spaces
X ,Y from the chain of Theorem 2.12 with X � Y .

Conditions 1 and 3 have been proved in Proposition 4.4.
Condition 2 has been proved in Sect. 2. ��

Data availability statement Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.
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