
Threshold for the volume spanned by

random points with independent

coordinates

D. Gatzouras and A. Giannopoulos∗

Abstract

Let µ be an even compactly supported Borel probability measure on
the real line. For every N > n consider N independent random vectors
X1, . . . , XN in Rn, with independent coordinates having distribution µ.
We establish a sharp threshold for the volume of the random polytope
KN := conv

{

X1, . . . , XN

}

, provided that the Legendre transform λ of the
cumulant generating function of µ satisfies the condition

(∗) lim
x↑α

− ln µ([x,∞))

λ(x)
= 1,

where α is the right endpoint of the support of µ. The method and the result
generalize work of Dyer, Füredi and McDiarmid on 0/1 polytopes. We verify
(∗) for a large class of distributions.

2000 MSC : Primary 52A22, 60D05, 60F10; Secondary 40E05.

1 Introduction

Our starting point is work of Dyer, Füredi and McDiarmid, establishing a sharp
threshold for the expected volume of random ±1 polytopes. The method they
introduced in [6] proved to be extremely useful and accurate; for example, it also
plays a key role in the approach introduced by Bárány and Pór in [2] in order to
establish that there exist ±1 polytopes with a superexponential number of facets,
which was further developed in [8] and [9].

We will work in a more general framework which we now describe. Let µ be an
even, compactly supported, Borel probability measure on the real line, and consider
a random variable X, on some probability space (Ω,F , P ), with distribution µ, i.e.,

∗The project is co-funded by the European Social Fund and National Resources —
(EPEAEK II) “Pythagoras II”.
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µ(B) := P (X ∈ B), B ∈ B(R). To avoid trivialities, we assume that Var(X) > 0.
In particular, we then have that

(1.1) p = p(µ) := max
x∈R

P (X = x) < 1.

Let also

(1.2) α = α(µ) := sup{x ∈ R : µ([x,∞)) > 0})

be the right endpoint of the support of µ.
Let X1, . . . ,Xn be independent and identically distributed random variables,

defined on the product space (Ωn,F⊗n, Pn), each with distribution µ. Set X =
(X1, . . . ,Xn) and, for a fixed N satisfying N > n, consider N independent copies
X1, . . . ,XN of X, defined on the product space (ΩnN ,F⊗nN ,Prob). This proce-
dure defines the random polytope

(1.3) KN := conv
{

X1, . . . ,XN

}

.

Observe that KN ⊆ [−α, α]n almost surely.
Let ϕ(t) := E

(

etX
)

(t ∈ R) denote the moment generating function of X,
and let ψ(t) := lnϕ(t) be its cumulant generating function (or logarithmic moment
generating function). By Hölder’s inequality, ψ is a convex function on R. Consider
the Legendre transform λ of ψ; this is the function

(1.4) λ(x) := sup{tx − ψ(t) : t ∈ R}.

Define

(1.5) κ = κ(µ) :=
1

2α

∫ α

−α

λ(x)dx.

For a large class of distributions µ we will establish the following threshold for the
expected volume of KN : for every ε > 0,

(1.6) lim
n→∞

sup{(2α)−nE(|KN |) : N 6 exp((κ − ε)n)} = 0

and

(1.7) lim
n→∞

inf{(2α)−nE(|KN |) : N > exp((κ + ε)n)} = 1.

Dyer, Füredi and McDiarmid [6] studied the following two cases:

[DFM 1] If µ({1}) = µ({−1}) = 1
2 then ψ(t) = ln(cosh t). Then, λ : (−1, 1) → R

is given by

(1.8) λ(x) = 1
2 (1 + x) ln(1 + x) + 1

2 (1 − x) ln(1 − x),

and (1.6)–(1.7) hold with κ = ln 2 − 1
2 . This is the case of ±1 polytopes.
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[DFM 2] If µ is the uniform distribution on [−1, 1], then ψ(t) = ln(sinh t/t), and
(1.6)–(1.7) hold with

(1.9) κ =

∫ ∞

0

(

1

u
− 1

eu − 1

)2

du.

We establish the following result:

Theorem 1.1. Let µ be an even, compactly supported, Borel probability measure

on the real line and assume that 0 < κ(µ) < ∞. Then (1.6) holds for every ε > 0.
Furthermore, (1.7) holds for every ε > 0 whenever the distribution µ satisfies

(1.10) lim
x↑α

− ln P (X > x)

λ(x)
= 1.

Note 1. One always has κ(µ) > 0 under our assumptions. Furthermore, our proof
will show that in fact (1.6) remains valid even when κ(µ) = ∞, in the following
sense: sup{(2α)−nE(|KN |) : N 6 ern} → 0 as n → ∞, for any r > 0.

Note 2. Notice also that, in the presence of (1.10),

(1.11) κ(µ) < ∞ ⇐⇒
∫ α

−α

− ln P (X > x) dx < ∞,

giving a criterion for the existence of a threshold for the volume directly in terms
of the distribution function of µ.

We next address the question of which probability measures µ satisfy condition
(1.10). Of course, as is well known, one always has that − lnP (X > x) > λ(x) for
x ∈ (0, α) under our assumptions on µ (see Proposition 2.6). On the other hand, it
is not too hard to see that (1.10) does not hold for arbitrary compactly supported
distributions µ — an example is provided in the last section, at the end of the
paper. We shall verify it for a large class of compactly supported distributions,
however. To begin with, we first recall the following definition (cf. [7, p. 276]).

Definition 1.2. A measurable function L : (0,∞) → (0,∞) is slowly varying at
zero if, for any a > 0, L(ax)/L(x) → 1 as x ↓ 0. As this property is not affected by
the values of L on any interval of the form [b,∞), we shall take it as a requirement
of the definition that such a function is bounded on intervals of the form [b, b′] with
0 < b < b′ < ∞.

We shall also use the following notation:

Notation. For functions f, g : J → (0,∞), where J is an interval in R, and u0 ∈ J̄ ,
f(u) ∼ g(u) as u → u0 means that limu→u0

f(u)/g(u) = 1. In this paper, the
notation f(u) ≈ g(u) as u → u0 shall mean that there exist a neighborhood U of
u0 and constants c1 > 0 and c2 < ∞ such that c1g(u) 6 f(u) 6 c2g(u) for u ∈ U .

We then have the following:
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Theorem 1.3. Condition (1.10) is satisfied in the following cases:

(i) When P (X = α) > 0.

(ii) When P (X > x) ≈ (α − x)ρL(α − x) as x ↑ α, with ρ > 0 and L slowly

varying at zero.

(iii) When − lnP (X > x) ∼ θ(α − x)−ρ as x ↑ α, with ρ, θ > 0.

Remarks. 1. Note that in fact (i) is subsumed by (ii) in Theorem 1.3 (take ρ = 0
and L(x) = P (X > α− x) for all x > 0). Note also that the case [DFM 1] is
covered by (i) of Theorem 1.3, while [DFM 2] is covered by (ii) with ρ = 1
and L(x) = 1

2 for all x > 0.

2. It is perhaps noteworthy that case (ii) also covers, for example, the case
where the function x 7→ P (X > α−x) behaves like the Cantor function near
the origin (e.g., when P (X 6 x) = C(x + 1

2 ) for x ∈ [− 1
2 , 1

2 ], where C is the
usual ternary Cantor function on [0, 1]); in this case ρ = log3 2, L ≡ 1.

3. Finally, note that case (iii) covers the case where P (X > α−x) behaves, near
the origin, like the distribution function of a positive stable random variable
with index in (0, 1). More precisely, if Gρ denotes the distribution function
of a stable random variable Y > 0 of index ρ ∈ (0, 1), then − lnGρ(x) ∼
θx−ρ/(1−ρ) as x ↓ 0, as follows from a Tauberian theorem of de Bruijn [3,
Theorem 4.12.9].

We end with an observation which may be useful. One can get more precise
information than (1.6) regarding the behavior below the threshold under more
stringent assumptions on µ. The following result is a byproduct of the proof of the
first part of Theorem 1.1.

Theorem 1.4. Let µ be an even, compactly supported, Borel probability measure

on the real line and assume that
∫ α

−α
λ(x)2dx < ∞. Then,

(1.12) lim
n→∞

sup{(2α)−nE(|KN |) : N 6 exp((κ − εn)n)} = 0

for any sequence εn > 0 satisfying εn
√

n → ∞.

The present work is, of course, in the realm of stochastic geometry, the study
of randomly generated sets. For discrete aspects of this theory, concerning expec-
tations of geometrically defined random variables or probabilities of events defined
by random geometric configurations, we refer the reader to the survey article by
Schneider ([10]) and references therein. In particular, one of the referees pointed
out that, in the present context, replacing the uniform (and Gaussian) distribution
by more general distributions which fulfill certain regularity conditions has already
been considered by Carnal ([4]), when studying the convex hull of independent
random points in the plane with a common rotationally symmetric distribution.

We close this introductory section by fixing some notation.
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Notation. We work in Rn which is equipped with a Euclidean structure 〈·, ·〉. We
denote by ‖·‖2 the corresponding Euclidean norm and write Bn

2 for the Euclidean
unit ball. Volume and the cardinality of a finite set will be denoted by |·|. All loga-
rithms are natural. The letters c, c′, C, c1, c2 etc. denote absolute positive constants
which may change from line to line.

2 Preliminaries

In this Section we recall some basic facts concerning moment generating and cu-
mulant generating functions. For more information on large deviations techniques
the reader may wish to consult the books [5] and [11].

Let µ be an even, compactly supported, Borel probability measure on the real
line, and consider a random variable X, on some probability space (Ω,F , P ), with
distribution µ. Set α := sup{x ∈ R : µ([x,∞)) > 0}) and I := (−α, α).

Definition 2.1. Let m : [0, α] → [0,∞] be defined by

(2.1) m(x) = − lnµ([x,∞)).

It is clear that m is non-decreasing and that m(α) < ∞ if and only if P (X = α) > 0.
With this definition, condition (1.10) takes the form: m(x) ∼ λ(x) as x ↑ α.

Recall that

(2.2) ϕ(t) := E
(

etX
)

(t ∈ R)

is the moment generating function of X, and

(2.3) ψ(t) := lnϕ(t)

is its cumulant generating function. Since X is bounded, ϕ and ψ are finite for
every t ∈ R. By Hölder’s inequality, ψ is a convex function on R. Therefore, ϕ is
also convex. It is easily checked that ϕ is C∞ on R. The n-th derivative of ϕ is
given by

(2.4) ϕ(n)(t) = E
(

XnetX
)

.

Observe also that, by Markov’s inequality, for any x ∈ (0, α) and any t > 0, one
has that

(2.5) ϕ(t) = E
(

etX
)

> etxµ([x,∞)),

and hence,

(2.6) ψ(t) > tx − m(x).

Definition 2.2. For every t ∈ R define the probability measure Pt on (Ω,F) by

(2.7) Pt(A) := E
(

etX−ψ(t)1A

)

(A ∈ F).

5



Define also µt(A) := Pt(X ∈ A) for A ∈ B(R). Then, µt has finite moments of all
orders, and

(2.8) Et(X) = ψ′(t) and Vart(X) = ψ′′(t).

Notice that P0 = P and µ0 = µ.

Lemma 2.3. ψ′ : R → I is strictly increasing and surjective. In particular,

(2.9) lim
t→±∞

ψ′(t) = ±α.

Proof. Since

(2.10) (ψ′)′(t) = ψ′′(t) = Vart(X) > 0,

ψ′ is strictly increasing. From the inequality −αetX 6 XetX 6 αetX , which holds
with probability one for each fixed t, and the formula ψ′(t) = E

(

XetX
)

/E
(

etX
)

,
which follows from (2.4), it follows immediately that ψ′(t) ∈ (−α, α) for every
t ∈ R.

It remains to show that ψ′ is onto I. Let x ∈ (0, α). Consider the function
gx(t) := tx − ψ(t) (t ∈ R) and fix y ∈ (0, α). From (2.6) we have that ψ(t) >

ty −m(y) for all t > 0; in particular, ψ
(

m(y)/(y − x)
)

> xm(y)/(y − x). It follows

that gx satisfies gx(0) = 0 and gx

(

m(y)/(y − x)
)

6 0. Since gx is concave and
g′x(0) = x > 0, this shows that gx attains its maximum at some point in the open
interval

(

0,m(y)/(y−x)
)

, and hence, ψ′(t) = x for some t in this interval. The same
argument applies for all x ∈ (−α, 0). Finally, for x = 0 we have that ψ′(0) = x. 2

Definition 2.4. Define h : I → R by h := (ψ′)−1.

Remark. Observe that h is a strictly increasing C∞ function, with

(2.11) h′(x) =
1

ψ′′(h(x))
.

Definition 2.5. The Legendre transform of ψ is the function

(2.12) λ(x) := sup{tx − ψ(t) : t ∈ R}, x ∈ R.

Remark. Observe that, since tx − ψ(t) < 0 for t < 0 when x ∈ [0, α), one always
has that

(2.13) λ(x) = sup{tx − ψ(t) : t > 0}

for x ∈ [0, α), and similarly λ(x) = sup{tx − ψ(t) : t 6 0} for x ∈ (−α, 0].

Maximizing over t > 0 in (2.6) leads to the following fundamental inequality:

Proposition 2.6. Let µ be an even, compactly supported, Borel probability measure

on the line. Then, for any x ∈ (0, α), one has that

(2.14) µ([x,∞)) 6 e−λ(x).
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The basic properties of λ are described in the next Lemma.

Lemma 2.7. (i) λ > 0, λ(0) = 0 and λ(x) = ∞ for x ∈ R \ [−α, α].

(ii) For every x ∈ I we have λ(x) = tx − ψ(t) if and only if ψ′(t) = x; hence

(2.15) λ(x) = xh(x) − ψ(h(x)) for x ∈ I.

(iii) λ is a strictly convex C∞ function on I, and

(2.16) λ′(x) = h(x).

(iv) λ attains its unique minimum on I at x = 0. 2

The behaviour of µ at the endpoints of I decides whether λ is bounded or not.
This is a consequence of the following Lemma.

Lemma 2.8. λ(α) = − lnP (X = α) and λ(x) → − ln P (X = α) as x ↑ α.

Note. If P (X = α) = 0, the convention is that − ln P (X = α) = ∞.

Proof. Since ψ′(t) 6 α for all t, the function t 7→ tα − ψ(t) is non-decreasing.
Therefore,

(2.17) λ(α) = sup
t∈R

[tα − ψ(t)] = lim
t↑∞

[tα − ψ(t)].

However,

(2.18) lim
t↑∞

e−tαϕ(t) = lim
t↑∞

E
(

et(X−α)
)

= E
(

lim
t↑∞

et(X−α)
)

= P (X = α),

by the dominated convergence theorem. It follows that λ(α) = − ln P (X = α).
For the second assertion, observe that λ is lower semi-continuous on R, being

the pointwise supremum of the linear (hence continuous) functions x 7→ tx − ψ(t),
t ∈ R. 2

Corollary 2.9. λ is bounded on I if and only if P (X = α) > 0. 2

We close this Section with one more elementary observation, which we single
out for subsequent use. As already observed, the function ϕ is C∞ on R (cf. (2.4));
since ϕ is also (strictly) positive, the function ψ = lnϕ is also C∞ on R. By (2.8)
we also have that ψ′′(t) > 0 for all t. Finally, it is also easily seen that the function
t 7→ Et

(

|X−ψ′(t)|3
)

is continuous and finite on R. We therefore have the following:

Lemma 2.10. The functions t 7→ t2ψ′′(t) and t 7→ t3Et

(

|X −ψ′(t)|3
)

are bounded

away from 0 and infinity, respectively, on any interval [a, b] with 0 < a 6 b < ∞.
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3 The method of Dyer, Füredi and McDiarmid

The method we use for the proof of the Theorem 1.1 generalizes the one introduced
in [6]. For x = (x1, . . . , xn) ∈ In set

(3.1) Λ(x) =
1

n

n
∑

i=1

λ(xi).

For 0 6 r < λ(α), define Λr by

(3.2) Λr = {x ∈ In : Λ(x) 6 r}.

Since λ is a convex function on I, Λr is a convex body contained in In.
Let U1, . . . , Un be independent random variables, uniformly distributed in I.

Then, for every 0 6 r < λ(α),

(3.3) (2α)−n|Λr| = Prob((U1, . . . , Un) ∈ Λr) = Prob

(

1

n

n
∑

i=1

λ(Ui) 6 r

)

.

Observe that

(3.4) κ = E(λ(Ui)).

By the law of large numbers, we conclude the following:

Lemma 3.1. Assume that 0 < κ(µ) < ∞. For every r ∈ (0, κ) we have that

(3.5) lim
n→∞

(2α)−n|Λr| = 0,

and, similarly, for every r ∈ (κ, λ(α)) we have that

(3.6) lim
n→∞

(2α)−n|Λr| = 1.

Definition 3.2. For x ∈ In, define

(3.7) q(x) := inf{Prob(X ∈ H) : x ∈ H, H a closed halfspace
}

.

Remark. Note that in (3.7), it suffices to consider the infimum only over those
halfspaces H for which x ∈ ∂H — the boundary of H.

Lemma 3.3. For x ∈ In, one has that

(3.8) q(x) 6 exp(−nΛ(x)).

Proof. Fix x ∈ In. Since q(x) is determined by those halfspaces H for which
x ∈ ∂H, we can write

(3.9) q(x) = inf{Pn(〈X − x,u〉 > 0) : u ∈ Rn \ {0}}.
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Set ti := h(xi), i 6 n. Then, (3.9), Markov’s inequality, the independence of the
coordinates of X, and Lemma 2.7 (ii), give that

q(x) 6 Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

6 E
(

e
∑ n

i=1
tiXi

)

e−
∑ n

i=1
tixi =

n
∏

i=1

eψ(ti)−tixi

= exp

(

−
n

∑

i=1

λ(xi)

)

= exp(−nΛ(x)).

This proves the lemma. 2

Lemma 3.4. Let N > n and 0 < r < λ(α). Then

(3.10) E(|KN |) 6 |Λr| + N(2α)ne−rn.

Proof. First write

(3.11) E(|KN |) = E(|KN ∩ Λr|) + E(|KN \ Λr|) 6 |Λr| + E(|KN \ Λr|).

Next observe that if H is a closed halfspace containing x, and if x ∈ KN , then
there exists i 6 N such that Xi ∈ H (otherwise we would have x ∈ KN ⊆ Hc,
where Hc is the complementary halfspace). It follows that

(3.12) Prob(x ∈ KN ) 6 N · q(x).

By Fubini’s theorem, Lemma 3.3, and the definition of Λr, we then obtain that

E(|KN \ Λr|) =

∫

In\Λr

Prob(x ∈ KN ) dx

6

∫

In\Λr

Nq(x) dx

6 N

∫

In\Λr

e−nΛ(x)dx

6 N |In|e−rn.

Inserting this into (3.11) yields (3.10). 2

Proposition 3.5. Assume that 0 < κ(µ) < ∞. Then, for every ε ∈ (0, κ),

(3.13) lim
n→∞

sup{(2α)−nE(|KN |) : N 6 exp((κ − ε)n)} = 0.

Proof. Choose r = κ − ε/2. From Lemma 3.1 we have that

(3.14) lim
n→∞

(2α)−n|Λr| = 0.

On the other hand, if N 6 exp((κ − ε)n), Lemma 3.4 gives that

(3.15) (2α)−nE(|KN |) 6 (2α)−n|Λr| + exp(−εn/2),
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and the right-hand side tends to 0 when n → ∞. 2

In the next Section we shall prove that if the distribution µ satisfies m(x) ∼ λ(x)
as x ↑ α, then one has a threshold for the expected volume of KN at N∗ ∼ exp(κn).

We close this Section by indicating how to obtain a proof of the statement in
Theorem 1.4.

Proof of Theorem 1.4. Assume that
∫ α

−α
λ(x)2dx < ∞. We may then use Cheby-

chev’s inequality to estimate the probability in (3.3):

(3.16) (2α)−n|Λr| = Prob

(

1

n

n
∑

i=1

λ(Ui) 6 r

)

6

∫ α

−α
[λ(x) − κ]2dx

n(κ − r)2(2α)

for any 0 < r < κ.
Let εn > 0 be a sequence satisfying εn

√
n → ∞. Then the choice rn := κ−εn/2

in the proof of Proposition 3.5 yields Theorem 1.4. 2

4 Threshold for the volume

In this Section we complete the proof of Theorem 1.1, by showing (1.7) under the
assumption that m(x) ∼ λ(x) as x ↑ α. Our basic strategy is along the lines of
Dyer, Füredi and McDiarmid ([6]) again. There are, however, some differences, the
most important one being the introduction of condition (1.10) in order to replace
the explicit asymptotics of the two functions appearing in Lemma 2.10, used in [6].

Our primary goal will be to show that, under the assumption m(x) ∼ λ(x)
(x ↑ α), if N > exp((1 + ε)rn + εn) then KN ⊇ Λr with probability close to
one (Lemma 4.9); (1.7) will then follow easily from this and (3.6) (Proposition
4.10). To show the aforementioned inclusion in turn, it will be enough to estimate
q−(Λr) = infx∈Λr

q(x) from below. This is a consequence of the next Lemma
(which essentially appears in [6], [2] and [8]).

Lemma 4.1. Let 0 < r < λ(α). Then

(4.1) 1 − Prob(KN ⊇ Λr) 6

(

N

n

)

pN−n + 2

(

N

n

)

[1 − q−(Λr)]
N−n,

where q−(Λr) := inf{q(x) : x ∈ Λr}.

Proof. For every subset J = {j1, . . . , jn} of {1, . . . , N}, of cardinality n, define the
event AJ as follows: Xj1 , . . . ,Xjn

are affinely independent, and for one of the two
closed half-spaces H1,H2 they determine, say Hi, we have simultaneously KN ⊂ Hi

and Pn(X /∈ Hi) > q−(Λr). Let also A denote the event that KN has non-empty
interior. We then claim that

(4.2) {Λr * KN} ⊆ Ac ∪
⋃

J

AJ .
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Indeed, suppose that KN is full-dimensional and Λr * KN . Then there exists an
x ∈ Λr \ KN , and consequently a facet F of KN separating x and KN . Hence
there exist n affinely independent vertices Xj1 , . . . ,Xjn

of KN with the property
that for one of the two closed half-spaces H1,H2 they determine, say Hi, we have
simultaneously KN ⊂ Hi and Pn(X /∈ Hi) > q(x) > q−(Λr).

From (4.2) we have that

(4.3) Prob
(

Λr * KN

)

6 Prob(Ac) +
∑

J

Prob(AJ ) = Prob(Ac) +

(

N

n

)

Prob(A′),

where A′ := A{1,...,n}. We next show that

(4.4) Prob(A′) 6 2[1 − q−(Λr)]
N−n.

Indeed, on the event that X1, . . . ,Xn are affinely independent, denote by Hi =
Hi(X1, . . . ,Xn), i = 1, 2, the two closed half-spaces determined by X1, . . . ,Xn.
On the event that X1, . . . ,Xn are affinely independent and Pn(X /∈ Hi) > q−(Λr)
we then have that

Prob(Xn+1, . . . ,XN ∈ Hi | X1, . . . ,Xn) 6 [1 − q−(Λr)]
N−n,

and (4.4) follows.
Finally, to obtain a bound on Prob(Ac) we argue as follows. If KN has empty

interior, there exists J = {j1, . . . , jn} ⊂ {1, . . . , N} such that the set {Xj : j /∈ J
}

is contained in the affine hull of {Xj : j ∈ J
}

. Now observe that, if S is a fixed
affine subspace of dimension smaller than n, then Pn(X ∈ S) 6 p. Indeed, fix
a hyperplane H containing S. Then H = {y ∈ Rn : 〈u,y − x〉 = 0} for some
u = (u1, . . . , un) 6= 0 and x = (x1, . . . , xn), and suppose that ui 6= 0. Then

Pn(X ∈ S) 6 Pn(X ∈ H) = Pn

(

Xi = xi − u−1
i

∑

j 6=i

uj(Xj − xj)

)

,

and the latter is 6 p because P (Xi = x) 6 p for any x ∈ R. By conditioning on
{Xj : j ∈ J

}

, we now see that

(4.5) Prob(Ac) 6

(

N

n

)

pN−n.

This completes the proof of the Lemma. 2

We next estimate the function q−(Λr) from below:

Proposition 4.2. Assume that m(x) ∼ λ(x) as x ↑ α. Then, for every ε > 0,
there exists nµ(ε) ∈ N, depending only on ε and µ, such that for all 0 < r < λ(α)
and all n > nµ(ε) we have that

(4.6) q−(Λr) > exp(−(1 + ε)rn − εn),

where q−(Λr) := inf{q(x) : x ∈ Λr}.
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Proof. We first claim that it suffices to show that, for all n sufficiently large,

(4.7) Pn(X ∈ H) > e−(1+ε)rn−εn

for any closed half-space H whose bounding hyperplane supports Λr. Indeed, to see
that this is sufficient, simply observe that, if x ∈ Λr and H is any closed half-space
with x ∈ ∂H, then Pn(X ∈ H) > Pn(X ∈ H ′) where H ′ is the closed half-space
which is contained in H and whose bounding hyperplane is parallel to that of H
and supports Λr.

Let H be a closed half-space whose bounding hyperplane supports Λr. Then

(4.8) Pn(X ∈ H) = Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

,

for some x = (x1, . . . , xn) ∈ ∂(Λr), where ti = λ′(xi) (1 6 i 6 n). Recall that
λ(0) = 0 and that we are assuming that m(x) ∼ λ(x) (x ↑ α). We can thus find
δ > 0 with the following properties:

If 0 6 x < δ then 0 6 λ(x) < ε.(4.9)

If α − δ 6 x < α then P (X > x) > exp(−λ(x)(1 + ε)).(4.10)

Define then

I1 = I1(x) := {i : xi < δ},
I2 = I2(x) := {i : δ 6 xi 6 α − δ},(4.11)

I3 = I3(x) := {i : xi > α − δ},

and set

(4.12) Pj = Pj(x) := Pn

(

∑

i∈Ij

ti(Xi − xi) > 0

)

(j = 1, 2, 3).

By independence we then have that

(4.13) Pn(X ∈ H) = Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

> P1P2P3.

We will consider each Pj separately.
Starting with I1, we write

(4.14) P1 = Pn

(

∑

i∈I1

ti(Xi − xi) > 0

)

> Pn

(

∑

i∈I1

ti(Xi − δ) > 0

)

,

and use the following fact:
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Lemma 4.3. For every δ ∈ (0, α), there exists c(δ) > 0 depending only on δ and

µ, such that for any k ∈ N and any s1, . . . , sk ∈ R with
∑k

i=1 si > 0 we have that

(4.15) P k

(

k
∑

i=1

si(Xi − δ) > 0

)

> c(δ) k−3/2 e−kλ(δ).

Proof. The first part of the argument in [2, Lemma 8.2] shows that

(4.16) P k

(

k
∑

i=1

si(Xi − δ) > 0

)

>
1

k
P k

(

k
∑

i=1

(Xi − δ) > 0

)

for all k. By [1, Theorem 1] on the other hand, there exists a sequence bk of positive
numbers, such that

(4.17)

√
2πk

bk
ekλ(δ) P k

(

k
∑

i=1

(Xi − δ) > 0

)

→ 1 as k → ∞,

with ln bk bounded, and hence bk bounded away from 0. Consequently, there exist
k0 ∈ N and c > 0 such that (4.15) holds with c in place of c(δ) and k > k0. Since
also

(4.18) P k

(

k
∑

i=1

(Xi − δ) > 0

)

> [P (X > δ)]k = e−km(δ)
> e−kλ(δ)e−k0|m(δ)−λ(δ)|

for k < k0, (4.15) holds for all k, with c(δ) = min{c, e−k0|m(δ)−λ(δ)|} > 0. 2

Combining Lemma 4.3 with (4.14), and using the facts that λ(x) 6 ε on [0, δ] and
that λ is increasing on (0, α), we arrive at the following estimate for P1:

Lemma 4.4. We have that

(4.19) P1 > exp

(

−
∑

i∈I1

[λ(xi) + ε] − c1 ln|I1| − c2

)

,

where the constants c1, c2 ∈ [0,∞) depend only on δ and µ. 2

Next we examine I3. By independence, we can write

(4.20) P3 = Pn

(

∑

i∈I3

ti(Xi − xi) > 0

)

>
∏

i∈I3

P (Xi > xi).

Since, by our choice of δ,

(4.21) P (Xi > xi) > e−λ(xi)(1+ε)

for all i ∈ I3, we immediately get the following estimate for P3:
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Lemma 4.5. We have that

(4.22) P3 > exp

(

−(1 + ε)
∑

i∈I3

λ(xi)

)

.

The crux of the Proposition is the estimate for I2. Without loss of generality,
we may assume that I2 = {1, . . . , k} for some k 6 n. Recall that ti = λ′(xi) = h(xi)
for each i, and that this is equivalent to having xi = ψ′(ti) for each i. Define the
probability measure Px1,...,xk

on (Ωk,F⊗k), by

(4.23) Px1,...,xk
(A) := Ek

[

1A · exp

(

k
∑

i=1

[tiXi − ψ(ti)]

)]

for A ∈ F⊗k (Ek denotes expectation with respect to the product measure P k

on F⊗k). Direct computation shows that, under Px1,...,xk
, the random variables

t1X1, . . . , tkXk are independent, with mean, variance and absolute central third
moment given by

Ex1,...,xk
(tiXi) = tiψ

′(ti) = tixi,

Ex1,...,xk

(

|ti(Xi − xi)|2
)

= t2i ψ
′′(ti),

Ex1,...,xk

(

|ti(Xi − xi)|3
)

= |ti|3Eti

(

|X − ψ′(ti)|3
)

,

respectively. Set σ2
i := t2i ψ

′′(ti),

(4.24) s2
k :=

k
∑

i=1

Ex1,...,xk

(

|ti(Xi − xi)|2
)

=

k
∑

i=1

t2i ψ
′′(ti) =

k
∑

i=1

σ2
i

and

(4.25) Sk :=
k

∑

i=1

ti(Xi − xi),

and let Fk : R → R denote the cumulative distribution function of the random
variable Sk/sk under the probability law Px1,...,xk

: Fk(x) := Px1,...,xk
(Sk 6 xsk)

(x ∈ R). Write also µk for the probability measure on R defined by µk(−∞, x] :=
Fk(x) (x ∈ R). Notice that Ex1,...,xk

(Sk/sk) = 0 and Varx1,...,xk
(Sk/sk) = 1.

Lemma 4.6. The following identity holds:

(4.26) P k

(

k
∑

i=1

ti(Xi − xi) > 0

)

=

(

∫

[0,∞)

e−u dµk(u)

)

exp

(

−
k

∑

i=1

λ(xi)

)

.

Proof. By definition of the measure Px1,...,xk
, we have that

P k

(

k
∑

i=1

ti(Xi − xi) > 0

)

= P k(Sk > 0)

= Ex1,...,xk

[

1[0,∞)(Sk) · exp

(

−
k

∑

i=1

[tiXi − ψ(ti)]

)]

.
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It follows that

(4.27) P k

(

k
∑

i=1

ti(Xi − xi) > 0

)

=

∫

[0,∞)

e−u dµk(u) · exp

(

k
∑

i=1

[ψ(ti) − tixi]

)

,

and (4.26) now follows from Lemma 2.6 (ii). 2

We will also use the following consequence of the Berry-Esseen theorem (cf. [7,
Theorem XVI.5,2]).

Lemma 4.7. For any a, b > 0, there exist k0 ∈ N and η > 0 with the following

property : if k > k0, and if Y1, . . . , Yk are independent random variables with

E(Yi) = 0, σ2
i := E(Y 2

i ) > a, E(|Yi|3) 6 b,

then

(4.28) P

(

0 6

k
∑

i=1

Yj 6 sk

)

> η,

where s2
k = σ2

1 + · · · + σ2
k. 2

We now consider two cases for I2. Since δ 6 xi 6 α − δ for all i ∈ I2, we
can find A,B > 0, depending only on δ and µ, such that the random variables
Yi := ti(Xi − xi), i ∈ I2, satisfy

(4.29) σ2
i = Ex1,...,xk

(Y 2
i ) = t2i ψ

′′(ti) > A

and

(4.30) Ex1,...,xk

(

|Yi|3
)

= |ti|3Eti

(

|X − ψ′(ti)|3
)

6 B

for all i ∈ I2 (Lemma 2.9). Let k0 be the constant from Lemma 4.7 corresponding
to A and B, and recall that |I2| = k.

Case 1: |I2| < k0. Then, working as for I3, we see that

(4.31) Pn

(

∑

i∈I2

ti(Xi − xi) > 0

)

>
∏

i∈I2

P (Xi > xi) > e−|I2|m(α−δ)
> e−k0m(α−δ).

Case 2: |I2| > k0. We may then apply Lemma 4.7. From Lemma 4.6 we obtain

(4.32) Pn

(

∑

i∈I2

ti(Xi − xi) > 0

)

> e−skµk([0, sk]) exp

(

−
∑

i∈I2

λ(xi)

)

,

and since

(4.33) s2
k =

∑

i∈I2

Ex1,...,xk
(Y 2

i ) 6
∑

i∈I2

[

Ex1,...,xk

(

|Yi|3
)]2/3

6 B2/3k,
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Lemma 4.7 yields

(4.34) Pn

(

∑

i∈I2

ti(Xi − xi) > 0

)

> η exp

(

−
∑

i∈I2

λ(xi) − c3

√
k

)

,

where c3 = B1/3 > 0 is a constant depending only on µ and δ. Combining Case 1
and Case 2 we finally obtain the following estimate for P2:

Lemma 4.8. We have that

(4.35) P2 > exp

(

−
∑

i∈I2

λ(xi) − c3

√

|I2| − c4

)

,

where the constants c3, c4 ∈ [0,∞) depend only on δ and µ. 2

We can now finish the proof of Proposition 4.2. Collecting the estimates from
Lemma 4.4, Lemma 4.5 and Lemma 4.8 and inserting them into (4.13) yields the
estimate

Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

> P1P2P3

> exp

(

−
∑

i∈I1

λ(xi) − c1 ln|I1| − c2

)

× exp

(

−
∑

i∈I2

λ(xi) − c3

√

|I2| − c4

)

× exp

(

−(1 + ε)
∑

i∈I3

λ(xi)

)

> exp

(

−(1 + ε)
n

∑

i=1

λ(xi) − εn

)

,

provided n > n(µ, ε) for an appropriate n(µ, ε) ∈ N depending only on ε and µ.
This proves (4.7), and hence the result. 2

We can now show that if N is “a little larger” than ern, then KN ⊇ Λr with
probability close to one; we only have to insert the estimate of Proposition 4.2 into
Lemma 4.1:

Lemma 4.9. Let 0 < r < λ(α) and δ > 0. Then there exists nµ(r, δ) ∈ N such

that, if n > nµ(r, δ) and N > exp((1 + δ)rn + δn), then

(4.36) Prob(KN ⊇ Λr) > 1 − 2−n+1.
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Proof. Let δ > 0. By Lemma 4.1 and Proposition 4.2, there exists n0 depending
only on δ and µ, such that for all r ∈ (0, λ(α)) and n > n0 we have that

(4.37) 1−Prob(KN ⊇ Λr) 6

(

N

n

)

pN−n+2

(

N

n

)

[

1−exp
(

−rn− 1
2 (r+1)δn

)]N−n
.

We first claim that

(4.38)

(

N

n

)

pN−n < 2−n

for n sufficiently large, n > n1 say. Indeed, since

(4.39)

(

N

n

)

6 e−1

(

eN

n

)n

,

in order to prove (4.38), it suffices to check that

(4.40) 1 + ln

(

N

n

)

+
N − n

n
ln p < − ln 2.

Set x := N/n. Then, (4.40) is equivalent to

(4.41) −(x − 1) ln p − lnx > 1 + ln 2.

The claim follows from the facts that the function on the left-hand side increases
to infinity as x → ∞, and x = N/n > exp((1 + δ)rn + δn)/n > eδn/n → ∞ when
n → ∞.

Next we check that

(4.42) 2

(

N

n

)

[

1 − exp
(

−rn − (r + 1)δn/2
)]N−n

< 2−n

for all n > n2 (some n2). Since 1− x 6 e−x, and using also (4.39) again, it suffices
to check that

(4.43)

(

2eN

n

)n

exp
(

−(N − n)e−rn−(r+1)δn/2
)

< 1

for n > n2. Setting x := N/n, we see that (4.43) is equivalent to

(4.44) ern+(r+1)δn/2 <
x − 1

1 + ln 2 + lnx
.

Since N > exp(rn + (1 + r)δn), it is readily verified that the right hand side of
(4.44) exceeds ern+2(r+1)δn/3 when n is large enough, n > n2(r, δ) say, and hence
we get (4.42). (4.37), (4.38) and (4.42) prove the result. 2

We now have all the ingredients to complete the proof of Theorem 1.1:
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Proposition 4.10. Assume that m(x) ∼ λ(x) as x ↑ α and that κ(µ) < ∞. Then,
for every ε > 0,

(4.44) lim
n→∞

inf{(2α)−nE(|KN |) : N > exp((κ + ε)n)} = 1.

Proof. Fix ε > 0. Since (κ+x)(1+x)+x ↓ κ as x ↓ 0, we can find δ > 0 such that,
for r = κ + δ we have that (1 + δ)r + δ < κ + ǫ. For this r Lemma 4.9 shows that,
if n > nµ(r, δ), and if N > exp((κ + ε)n) > exp((1 + δ)rn + δn), then

(4.45) E(|KN |) > |Λr| · Prob
(

KN ⊇ Λr) > |Λr|(1 − 2−n+1).

Since r > κ, Lemma 3.1 shows that

(4.46) lim
n→∞

(2α)−n|Λr| = 1.

This completes the proof. 2

5 Proof of Theorem 1.3

Assertion (i) of Corollary 1.3 follows immediately from Lemma 2.7. We next prove
assertion (ii) in a special case first. We need only consider the case ρ > 0.

Proposition 5.1. Assume that P (X > x) ∼ (α−x)ρL(α−x) as x ↑ α, with ρ > 0
and L slowly varying at zero. Then,

(5.1) lim
x↑α

− ln P (X > x)

λ(x)
= 1.

We shall break up the proof into several lemmas. Set

(5.2) G(x) := P (α − X 6 x) = P (X > α − x)

and

(5.3) γ(t) := E
(

et(X−α)
)

=

∫ ∞

0

e−txdG(x).

Note that then ϕ(t) = eαtγ(t), and that G(x) ∼ xρL(x) as x ↓ 0 under the assump-
tions of Proposition 5.1.

Lemma 5.2. If G(x) ∼ xρL(x) as x ↓ 0, with ρ > 0 and L slowly varying at zero,
then

(5.4) γ(t) ∼ Γ (ρ + 1)

tρ
L

(

1

t

)

as t ↑ ∞.

Proof. This is the Tauberian theorem on page 445 of [7] (Theorem 2 in conjunction
with Theorem 3). 2
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Lemma 5.3. If G(x) ∼ xρL(x) as x ↓ 0, with ρ > 0 and L slowly varying at zero,
then t 7→ −tγ′(t)/γ(t), t > 0, is positive and bounded.

Proof. By definition of γ we have that

(5.5) −γ′(t) =

∫ ∞

0

xe−txdG(x) = t

∫ ∞

0

xe−txG(x)dx −
∫ ∞

0

e−txG(x)dx.

The first equality immediately shows that γ′ < 0, and hence −tγ′(t)/γ(t) > 0 for
t > 0. Next, let δ > 0 be such that

(5.6) 1
2 6

G(x)

xρL(x)
6 2 for 0 < x 6 δ.

Then

(5.7) −γ′(t) 6 2t

∫ δ

0

xρ+1e−txL(x) dx + t

∫ ∞

δ

xe−txdx

=
2

tρ+1

∫ tδ

0

xρ+1e−xL(x/t) dx +
(

δ + t−1
)

e−tδ.

Since L varies slowly at zero, we may, without loss, assume that

(5.8) L

(

1

t

)

= a(t) exp

(
∫ t

1/δ

b(s)

s
ds

)

(t > 1/δ),

with b(t) → 0 and a(t) → c as t → ∞, 0 < c < ∞, and a, b measurable and bounded
on finite intervals [7, Corollary on page 282]. It follows from (5.7) and (5.8) that

(5.9) −γ′(t) 6 2
L(1/t)

tρ+1

∫ ∞

0

xρ+1e−xAeǫ|ln x|dx +
(

δ + t−1
)

e−tδ

for t sufficiently large, with A < ∞ and ǫ < ρ + 1, and hence

(5.10) −γ′(t) 6 C
L(1/t)

tρ+1

for all sufficiently large t, with C < ∞. The result follows by combining (5.10) with
Lemma 5.2. 2

Lemma 5.4. If G(x) ∼ xρL(x) as x ↓ 0, with ρ > 0 and L slowly varying at zero,
then

(5.11) −t
γ′(t)

γ(t)
→ ρ (t ↑ ∞).

Proof. We follow the proof of the Lemma on page 446 of [7] (see also [3, Theorem
1.7.2]). Suppose, to obtain a contradiction, that for some ǫ > 0 and some sequence
tn ↑ ∞

(5.12)

∣

∣

∣

∣

−tn
γ′(tn)

γ(tn)
− ρ

∣

∣

∣

∣

> ǫ ∀n ∈ N.
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Observe that γ′′(t) =
∫ ∞
0

x2e−txdG(x) > 0. Therefore, the functions gt(s) :=
tγ′(ts)/γ(t), s > 0, are non-decreasing. By Lemma 5.3, gt(s) is also bounded in t
for each fixed s > 0. It follows from Helly’s selection theorem that there exists a
subsequence (tnk

)k>1 of (tn)n>1, and a right-continuous, non-decreasing function
g : (0,∞) → R, such that gtnk

(s) → g(s) at points of continuity of g.
For 0 < a < b,

(5.13)
γ(ta) − γ(tb)

γ(t)
=

∫ b

a

−γ′(ts)t

γ(t)
ds =

∫ b

a

−gt(s) ds.

The left-hand side in (5.13) tends to a−ρ − b−ρ as t ↑ ∞, by Lemma 5.2, while the

right-most side tends to
∫ b

a
−g(s) ds as t runs through the sequence (tnk

)k>1, by
the bounded convergence theorem. As this is true for any 0 < a < b, we must have
that g(s) = −ρs−ρ−1 almost everywhere on (0,∞), and as g is right continuous,
this equality must after all prevail everywhere on (0,∞). For s = 1 we then have
that

(5.14) −tnk

γ′(tnk
)

γ(tnk
)
→ ρ (k ↑ ∞),

which contradicts (5.12). 2

The following Corollary implies Proposition 5.1:

Corollary 5.5. If G(x) ∼ xρL(x) as x ↓ 0, with ρ > 0 and L slowly varying at

zero, then

(5.15) lim
x↑α

eλ(x)P (X > x) =
(ρ/e)ρ

Γ (ρ + 1)
.

Proof. By Lemma 2.3 and Lemma 2.6 it suffices to show that

(5.16) lim
t↑∞

etψ′(t)−ψ(t)P (X > ψ′(t)) =
(ρ/e)ρ

Γ (ρ + 1)
.

From the relation ϕ(t) = eαtγ(t) it follows that ψ(t) = αt + ln γ(t) and ψ′(t) =
α + γ′(t)/γ(t). Therefore (5.16) is equivalent to

(5.17) lim
t↑∞

etγ′(t)/γ(t)−ln γ(t)G
(

−γ′(t)/γ(t)
)

=
(ρ/e)ρ

Γ (ρ + 1)
.

This however, follows immediately from Lemma 5.2, Lemma 5.4, our assumption
that G(x) ∼ xρL(x) as x ↓ 0 and the representation (5.8) for L. 2

We now show how to modify the above arguments in order to prove Theorem
1.3 (ii) in the general case.

Proposition 5.6. Assume P (X > x) ≈ (α−x)ρL(α−x) as x ↑ α, with ρ > 0 and

L slowly varying at zero. Then,

(5.18) lim
x↑α

− ln P (X > x)

λ(x)
= 1.
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Proof. First choose δ > 0 and c1, c2 ∈ (0,∞) so that

(5.19) c1 6
G(x)

xρL(x)
6 c2 for 0 < x 6 δ.

Then, as in (5.7),

(5.20)
c1

tρ

∫ tδ

0

xρe−txL(x/t) dx 6 γ(t) 6
c2

tρ

∫ tδ

0

xρe−txL(x/t) dx +

∫ ∞

δ

xe−txdx,

and, using the representation (5.8), one sees that

(5.21) γ(t) ≈ Γ (ρ + 1)

tρ
L

(

1

t

)

(t ↑ ∞);

in particular, ln γ(t) ∼ −ρ ln t + lnL(1/t) (t ↑ ∞), and since lnL(1/t) = o(ln t), by
the representation (5.8), it follows that

(5.22) ln γ(t) ∼ −ρ ln t (t ↑ ∞).

We now claim that

(5.23) 0 < lim inf
t→∞

−t
γ′(t)

γ(t)
6 lim sup

t→∞
−t

γ′(t)

γ(t)
< ∞.

This and the assumption that G(x) ≈ xρL(x) as x ↓ 0 imply that

(5.24) − lnG
(

−γ′(t)/γ(t)
)

∼ ρ ln t (t ↑ ∞).

By (5.22), (5.23) and (5.24), we then have that

(5.25) lim
t↑∞

− ln G
(

−γ′(t)/γ(t)
)

tγ′(t)/γ(t) − ln γ(t)
= 1,

which, as explained in Corollary 5.5, implies the result.
It remains to show (5.23). As in Lemma 5.3, one sees that

(5.26) 0 6 −t
γ′(t)

γ(t)
6 C

for all t, for some C < ∞. From this, the right-most inequality in (5.23) follows at
once. Assume next that, for some sequence tn ↑ ∞, we have that

(5.27) −tn
γ′(tn)

γ(tn)
→ 0 (n → ∞).

Using (5.26), we see as in Lemma 5.4 that there exist a non-decreasing, right-
continuous function g : (0,∞) → R, such that −tγ′(ts)/γ(t) → −g(s) as t tends
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to infinity along a subsequence (tnk
)k>1 of (tn)n>1. Since −γ is decreasing, (5.27)

implies that

(5.28) −tnk

γ′(stnk
)

γ(tnk
)

6 −tnk

γ′(tnk
)

γ(tnk
)
→ 0 (k ↑ ∞)

for s > 1. By (5.13) and the bounded convergence theorem we then conclude that

(5.29)
γ(atnk

) − γ(btnk
)

γ(tnk
)

→ 0 (k ↑ ∞)

for any 1 < a < b. By (5.21) however, there exist two constants 0 < C1 < C2 < ∞
such that

(5.30) lim inf
t↑∞

γ(atnk
) − γ(btnk

)

γ(tnk
)

>
C1

C2

1

aρ
− C2

C1

1

bρ
,

and this, for b/a > (C2/C1)
2/ρ, contradicts (5.29). 2

To prove assertion (iii) of Theorem 1.3, we shall use the following Lemma. Set

(5.31) U(t) := − ln γ(t) (t > 0),

and

(5.32) u(t) := U ′(t) = −γ′(t)

γ(t)
(t > 0).

The function U is positive, increasing and concave, with U(0) = 0. It follows that
the function t 7→ tu(t)/U(t) is bounded between 0 and 1, since

(5.33) U(t) =

∫ t

0

u(s) ds > tu(t)

for all t > 0. The following Lemma is proved just like Lemma 5.4 (it is the Lemma
on page 446 of [7]).

Lemma 5.7. Assume that U(t) ∼ trL(1/t) as t ↑ ∞, with r ∈ [0, 1) and L slowly

varying at zero. Then

(5.34) t
u(t)

U(t)
→ r (t ↑ ∞). 2

We shall also need the following Lemma, which is one direction of a Tauberian
theorem of de Bruijn [3, Theorem 4.12.9]. (We decided to retain the proof of the
Lemma for the convenience of the reader).

Lemma 5.8. If − ln G(x) ∼ θx−ρ as x ↓ 0, with θ, ρ > 0, then

(5.35) U(t) ∼ (ρ + 1)θ1/(ρ+1)

(

t

ρ

)ρ/(ρ+1)

(t ↑ ∞).
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Proof. Given ǫ > 0 have δ > 0 such that

(5.36) exp

(

−(1 + ǫ)
θ

xρ

)

6 G(x) 6 exp

(

−(1 − ǫ)
θ

xρ

)

for 0 < x 6 δ.

Since γ(t) = t
∫ ∞
0

e−txG(x) dx, by (5.3), (5.36) implies that

(5.37) t

∫ δ

0

exp

(

−tx−(1+ǫ)
θ

xρ

)

dx 6 γ(t) 6 t

∫ δ

0

exp

(

−tx−(1−ǫ)
θ

xρ

)

dx+e−tδ.

Set x± =
(

(1 ± ǫ)θρ/t
)1/(ρ+1)

. The function x 7→ −tx − (1 ± ǫ)θ/xρ is increasing
on (0, x±) and decreasing on (x±,∞). It follows that

(5.38) t

∫ x−

0

exp

(

−tx − (1 − ǫ)
θ

xρ

)

dx 6 tx− exp

(

−tx− − (1 − ǫ)
θ

xρ
−

)

,

while integration by parts shows that

(5.39) t

∫ ∞

x−

exp

(

−tx − (1 − ǫ)
θ

xρ

)

dx 6 exp

(

−tx− − (1 − ǫ)
θ

xρ
−

)

×
(

1 +

∫ ∞

x−

(1 − ǫ)θρ

xρ+1
dx

)

.

It follows from (5.37), (5.38) and (5.39) that

(5.40) γ(t) 6 p(t) exp

(

−(ρ + 1)[(1 − ǫ)θ]1/(ρ+1)

(

t

ρ

)ρ/(ρ+1)
)

+ e−tδ,

with

(5.41) p(t) = 1 + (ρ + 1)[(1 − ǫ)θ]1/(ρ+1)

(

t

ρ

)ρ/(ρ+1)

.

For t sufficiently large on the other hand,

(5.42) t

∫ δ

0

exp

(

−tx − (1 + ǫ)
θ

xρ

)

dx > t

∫ δ

x+

exp

(

−tx − (1 + ǫ)
θ

xρ

)

dx,

and since x 7→ −(1 + ǫ)θ/xρ is increasing, this yields

(5.43) t

∫ δ

0

exp

(

−tx − (1 + ǫ)
θ

xρ

)

dx > exp

(

−(1 + ǫ)
θ

xρ
+

)
∫ δ

x+

te−txdx

=
(

1 − e−t(δ−x+)
)

exp

(

−(1 + ǫ)
θ

xρ
+

− tx+

)

.
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(5.37) and (5.43) now give the estimate

(5.44) γ(t) >

(

1 − e−t(δ−x+)
)

exp

(

−(ρ + 1)[(1 + ǫ)θ]1/(ρ+1)

(

t

ρ

)ρ/(ρ+1)
)

.

(5.40) and (5.44) yield the result. 2

We can now conclude the proof of Theorem 1.3 (iii):

Proposition 5.9. If − lnP (X > x) ∼ θ(α − x)−ρ as x ↑ α, with θ, ρ > 0, then

(5.45) lim
x↑α

− ln P (X > x)

λ(x)
= 1.

Proof. From Lemma 5.7 and Lemma 5.8 we conclude that

(5.46) lim
x↓0

− lnG
(

−γ′(t)/γ(t)
)

tγ′(t)/γ(t) − ln γ(t)
= 1.

As in the proof of Corollary 5.5 however, this is the same as assertion (5.45). 2

6 Concluding Remarks

1) From the proof of Theorem 1.1 it is evident that the assumption that the
measure µ is symmetric is inessential, and was only used to simplify the
exposition. If instead we only assume that µ is compactly supported, and set

(6.1) β = β(µ) := inf{x ∈ R : µ((−∞, x]) > 0}

to be the left endpoint of the support of µ, then Theorem 1.1 is still valid,
provided we supplement (1.10) with the condition that the measure µ also
satisfies

(6.2) lim
x↓β

− ln P (X 6 x)

λ(x)
= 1.

One then also has the obvious analogue of Theorem 1.3 relating to condition
(6.2).

2) We close with an example of a compactly supported distribution µ which does
not satisfy (1.10). Let λ1 denote the Legendre transform of the log-moment
generating function ψ1(t) = ln(sinh t)− ln t of the uniform distribution µ1 on
[−1, 1]. By Theorem 1.3 (ii),

(6.3) λ1(x) ∼ − ln µ1([x, 1]) ∼ − ln(1 − x) as x ↑ 1.

Define λ2 analogously, with µ2 the symmetric distribution on [−1, 1] given

by µ2([x, 1]) := 1
2e1−1/

√
1−x for 0 < x < 1. By Theorem 1.3 (iii) this time,

(6.4) λ2(x) ∼ − lnµ2([x, 1]) ∼ 1√
1 − x

as x ↑ 1.
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Each λi is a strictly increasing function on (0, 1) with λi((0, 1)) = (0,∞)
(i = 1, 2). Thus there exists x1 > 0 such that λ2(x1) = ln 2. Define the
sequence xn inductively, by defining xn+1 to be the unique number in (0, 1)
satisfying λ1(xn+1) = λ2(xn) for n ∈ N. Now define the measure µ as follows.
Set

(6.5) m(x) = − lnµ([x, 1]) := λ1(xn+1) for xn < x 6 xn+1, n ∈ N,

and m(x) = − lnµ([x, 1]) := λ2(x1) = ln 2 for 0 6 x 6 x1; this defines a
purely atomic measure on [0, 1], with atoms at the points x2, x3, . . . , with

(6.6) µ({xn}) = e−λ1(xn) − e−λ1(xn+1) (n > 2),

and with total mass equal to e−λ1(x2) = e−λ2(x1) = 1
2 , which therefore extends

uniquely to a symmetric probability measure µ on [−1, 1]. By Proposition
2.6,

(6.7) m(x) > λ(x)

for all x ∈ (0, 1), where λ is the Legendre transform corresponding to µ. By
the convexity of λ then,

λ(sxn +(1−s)xn+1) 6 sλ(xn)+(1−s)λ(xn+1) 6 sm(xn)+(1−s)m(xn+1)

= sλ1(xn) + (1 − s)λ1(xn+1) = sλ1(xn) + (1 − s)λ2(xn),

for any s ∈ (0, 1). Therefore,

m(sxn + (1 − s)xn+1)

λ(sxn + (1 − s)xn+1)
=

λ1(xn+1)

λ(sxn + (1 − s)xn+1)

=
λ2(xn)

λ(sxn + (1 − s)xn+1)

>
λ2(xn)

sλ1(xn) + (1 − s)λ2(xn)
,

and hence by (6.3)–(6.4),

lim
n→∞

m(sxn + (1 − s)xn+1)

λ(sxn + (1 − s)xn+1)
>

1

1 − s

for any s ∈ (0, 1). In fact, by choosing sn = 1 − n−1, we see that along the
sequence yn := (1 − n−1)xn + n−1xn+1 we have that m(yn)/λ(yn) → ∞.
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