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 ANNALS OF MATHEMATICS

 Vol. 46, No. 2, April, 1945

 THE DISCOVERY OF INCOMMENSURABILITY BY
 HIPPASUS OF METAPONTUM*

 BY KURT VON FRITZ

 (Received October 23, 1944)

 The discovery of incommensurability is one of the most amazing and far-
 reaching accomplishments of early Greek mathematics. It is all the more amaz-

 ing because, according to ancient tradition, the discovery was made at a time
 when Greek mathematical science was still in its infancy and apparently con-

 cerned with the most elementary, or, as many modern mathematicians are in-
 clined to say, most trivial, problems, while at the same time, as recent discoveries
 have shown, the Egyptians and Babylonians had already elaborated very highly
 developed and complicated methods for the solution of mathematical problems
 of a higher order, and yet, as far as we can see, never even suspected the exist-
 ence of the problem.

 No wonder, therefore, that modern historians of mathematics have been in-
 clined to disbelieve the ancient tradition which dates the discovery in the middle
 of the 5th century B.C.,' and that there has been a strong tendency to date the
 event much later, even as late as the first quarter of the 4th century.2 But the
 question can hardly be decided on the basis of general considerations. It is the
 purpose of this paper to prove: 1) that the early Greek tradition which places
 the second stage of the development of the theory of incommensurability in the
 last quarter of the 5th century, and therefore implies that the first discovery
 itself was made still earlier is of such a nature that its authenticity can hardly
 be doubted, 2) that this tradition is strongly supported by indirect evidence, 3)
 that the discovery can have been made on the 'elementary' level which, even

 * This article owes much to discussions of the early history of Greek mathematics which
 were carried on more than ten years ago between the author and Professor S. Bochner, now
 of Princeton University. This does not mean, of course, that Dr. Bochner has any part
 in whatever deficiencies the present article may have.

 1 This tradition will be discussed below, pp. 244 ff.
 2 The first to make an attempt to show that the discovery of incommensurability was

 'late,' and certainly later than ancient tradition indicates, was Erich Frank in his book on
 Platon und die sogenannten Pythagoreer (Halle, Max Niemeyer, 1923). He does not commit
 himself to a definite date, but contends that the discovery cannot have been made before
 the last years of the 5th century (p. 228 ff.). 0. Neugebauer, the most outstanding living
 authority on the earliest history of mathematics, goes even farther. In a letter to the
 author of the present paper he expressed the opinion that the discovery could not have been
 made before Archytas of Tarentum. Since Archytas was head of the government of Taren-
 tum in 362 B.C., this seems to indicate that in his opinion the discovery was not made before
 the early 4th century at the earliest. It was also he who based his opinion on the 'trivial'
 character of 5th century Greek mathematics. In the present paper an attempt will be made
 to show that Greek mathematics in that period was in fact very elementary in many respects
 when compared with contemporary or earlier Babylonian and Egyptian mathematics, but

 by no means 'trivial.'

 242
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 THE DISCOVERY OF INCOMMENSURABILITY 243

 according to E. Frank and 0. Neugebauer,3 Greek mathematics had reached in
 the middle of the 5th century, 4) that the character of scientific investigation as
 developed in the early part of the 5th century makes it not only possible but very
 probable that the discovery was made at the time in which the late ancient tradi-

 tion places it, and 5) that this late tradition itself contains some hints as to the
 way in which the discovery, in all likelihood, actually was made.

 The earliest precise and definite tradition concerning a phase in the develop-
 ment of the theory of incommensurability is found in Plato's dialogue Theaetetus,
 p. 147 B. This dialogue was written in the year 368/67 B.C., shortly after the
 death of the mathematician Theaetetus after a battle in which he had been
 fatally wounded.4 The fictive date of the dialogue is the year 399 B.C., that is,
 the year of the death of Socrates. In the first part of the dialogue the old mathe-
 matician Theodorus of Cyrene is represented as demonstrating to a group of

 young men, among them young Theaetetus, who is represented as a youngster
 of about seventeen, the irrationality of the square roots of 3, 5, 6, etc. up to 17.
 Though the dialogue itself is, of course, fictive, it seems hardly possible to assume
 that Plato, in a dialogue dedicated to the memory of a friend who has just died
 prematurely and who had had a very important part in the development of the

 theory of incommensurability and irrationality5 would have attributed to some-
 one else what was really his friend's own accomplishment. The inevitable con-
 clusion, therefore, is that what Theodorus demonstrates in the introduction to

 the dialogue was actually known when Theaetetus was a boy of seventeen.6
 Theodorus of Cyrene is represented as an old man in Plato's dialogue. Ac-

 cording to an extract from Eudemus' history of mathematics7 he was a con-
 temporary of Hippocrates of Chios and belonged to the generation following
 that of Anaxagoras and preceding that of Plato. Since Anaxagoras was born
 in ca 500, and Plato in 428, this implies that Theodorus was born about 470 or
 460, which agrees with Plato's statement that he was an old man in 399. Plato

 3See the preceding note.

 4This was proved by Eva Sachs in her dissertation De Theaeteto mathematics (Berlin,
 1914). Her results in this respect seem absolutely certain and have been universally ac-
 cepted.

 5 For details see my article Theaitetos in Pauly-Wissowa, Realencyclopddie, vol. V A,
 p. 1351-72.

 6 E. Frank (op. cit., pp. 59, 228, and passim) and others have quoted a passage in Plato's
 Laws (p. 819c ff.) as a proof of their assumption that the discovery of incommensurability
 cannot have been made before the end of the fifth or the beginning of the fourth century.
 In this passage 'the old Athenian,' who is usually identified with Plato, says that he became
 acquainted with the discovery of incommensurability only late in his life and that it is a
 shame that 'all the Greeks' are still ignorant of the fact. It is quite clear that the latter
 statement is a rhetorical exaggeration since 'all the Greeks,' if taken literally, would in-
 clude the Athenian himself, who by now obviously does know. The passage then proves
 nothing but that even striking mathematical discoveries in the fifth century did not become
 known to the general educated public. But this is also true of the fourth and third cen-
 turies.

 7In Proclus' commentary to Euclid's Elements, p. 66 Friedlein.
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 does not say that what Theodorus demonstrated to Theaetetus and the other
 youngsters in 399 was at that time an entirely new discovery, though the fact
 that he gave a proof for each one of the different cases separately shows that the

 theory had not yet reached a more advanced stage.8 But even if we assume

 that Theodorus' demonstrations had been worked out for the first time not so

 very long before, Plato's dialogue would still indicate that the irrationality of

 the square root of 2, or the incommensurability of the side and diameter of a

 square had been discovered by someone else. For it is difficult to see why he
 should have made Theodorus start with the square root of 3, unless he wished

 to give an historical hint that this was the point where Theodorus' own contribu-

 tion to mathematical theory began. This in itself then would be quite sufficient

 to show that the discovery of incommensurability must have been made in the
 earlier part of the last quarter of the 5th century at the very latest, and since
 mathematical knowledge at that time traveled very slowly, may very well have

 been made earlier.9
 What can be inferred from Plato's dialogue Theaetetus receives strong confirma-

 tion from indirect evidence which has been presented by H. Hasse and H.
 Scholz.'0 It is perhaps not necessary to accept their interpretation of the doc-
 trines of Zenon of Elea in every detail. But there can hardly be any doubt that

 they have proved conclusively that there must have been a connection between

 some of Zeno's famous arguments against motion, and the discovery of incom-
 mensurability." Since Zenon was born not later than 490 B.C., acceptance of
 the results of the treatise quoted would lead to the conclusion that the discovery
 of incommensurability must have been made not later than the middle of the

 5th century, which is also the date indicated by ancient tradition.
 In contrast to the tradition concerning the second phase of the development

 of the theory of incommensurability the tradition concerning the first discovery

 itself has been preserved only in the works of very late authors, and is frequently
 connected with stories of obviously legendary character."2 But the tradition is

 Concerning the probable steps from the first discovery to the theory of Theodorus, see

 infra pp. 254 ff.

 I See note 6.

 10 H. Hasse and H. Scholz, Die Grundlagenkrisis der griechischen Mllathematik, Charlot-
 tenburg, Kurt Metzner, 1928, pp. 10 ff.

 1' In contrast to this, E. Frank (op. cit., pp. 219 ff.) has contended that the mathematical
 philosophy of the Pythagoreans which preceded the discovery of incommensurability pre-

 supposes the atomistic theory of Democritus and a fully developed theory of 'the subjec-
 tivity of sensual qualities.' The analysis of the early form of Pythagorean philosophy
 attempted below will, I hope, show that it has nothing whatever to do with Democritus'
 atomism, and is certainly no more dependent on a fully developed theory of the subjectivity
 of sensual qualities than the philosophy of Parmenides, who was born at least 60 years

 earlier than Democritus.
 12 For instance, the story told by lamblichus, that he was drowned in the sea, and that

 this was a divine punishment for his having made public the secret mathematical doctrines
 of the Pythagoreans.
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 THE DISCOVERY OF INCOMMENSURABILITY 245

 unanimous13 in attributing the discovery to a Pythagorean philosopher by the
 name of Hippasus of Metapontum.

 Ancient tradition concerning the life and chronology of Hippasus is scanty.

 Jamblichus in his treatise de communi mathematica scientia'4 says that early Greek
 mathematical science made great progress through the work of Hippocrates of

 Chios and Theodorus of Cyrene, who followed upon Hippasus of Metapontum.

 Since Hippocrates and Theodorus are also mentioned together in the extract

 from the history of mathematics of Eudemus of Rhodes,'5 it seems likely that

 lamblichus' note also goes back to the very reliable work of this disciple of
 Aristotle. According to this work Hippasus belonged to the generation preceding

 that of Theodorus (according to ancient usage this means an average difference

 of age of about 30-40 years), who in his turn was a contemporary of Hippocrates
 of Chios.

 According to Jamblichus' Life of Pythagoras,'6 Hippasus had an important

 part in the political disturbances in which the Pythagorean order became in-

 volved in the second quarter of the 5th century, and which ended in the revolt

 of ca 445, which put an end to Pythagorean domination in southern Italy."7
 This agrees perfectly with the tradition which places him in the generation before
 Theodorus, who, as shown above, was born between 470 and 460. This con-

 firmation is all the more valuable because the tradition of the political history

 of the Pythagoreans which was first collected by Aristoxenus of Tarentum and
 Timaeus of Tauromenium is, on the whole, quite independent from the ancient

 tradition of early Greek mathematics, which was first collected by Eudemus of
 Rhodes.

 The mathematical achievements-apart from the discovery of incommensur-
 ability-ascribed to Hippasus by ancient tradition, are the following:

 1. An anonymous scholion on Plato's Phaedo,"8 quoting a work on music by
 Aristotle's disciple Aristoxenus, says that Hippasus performed an experiment
 with metal discs. He had four metal discs of equal diameter made in such a
 way that the second disc was 1' times as thick, the third 12 times as thick, and

 the fourth twice as thick as the first one. He then showed that by striking any

 two of them the same harmony of sounds would be produced as by two strings
 whose lengths were in the same proportion as the thicknesses of the discs. Theon

 13 The one seeming deviation from the unanimous tradition in Proclus, op. cit. (see note
 7), p. 67, is obviously due to a corrupt reading (&X&ywv for avaX6wywv or avaXo-yciv) in some
 manuscripts.

 14 lamblichus, De communi mathematica scientia, 25, p. 77 Festa.
 15 See note 7.

 16 Iamblichus, De Vita Pythagorae, 257, p. 138 f. Deubner.
 17 For the date see K. von Fritz, Pythagorean Politics in Southern Italy (Columbia Uni-

 versity Press, 1940), pp. 77 ff.

 18 Schol. in Plat. Phaed. 108d; see Scholia Platonica, ed. W. Chase Greene (Philol. Mono-
 graphs publ. by Am. Philol. Ass., vol. VIII, 1938), p. 15. All the passages quoted in notes
 18-24 are also collected, though sometimes in a slightly abbreviated form, in H. Diels, Vorso-
 kratiker, Vol. 1.
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 of Smyrna19 attributes to him a similar experiment with four tumblers, the first
 of which was left empty, while the others were filled 4, 1, and 2 with water.

 2. Boethius20 attributes to him a theory of the musical scale showing how the
 different musical harmonies can mathematically be derived from one another.

 3. Jamblichus2' says that Hippasus concerned himself with the theory of pro-
 portions and 'means' and was the first to change to 'harmonic mean' the name
 of what previously had been called the contrary, or, as some translate, the sub-

 contrary, mean, the formula of which is - = -c But Nicomachus attributes
 c b- c

 this change in terminology to Philolaus.
 4. According to Iamblichus,22 Hippasus was also the first to draw or construct23

 the 'sphere consisting of 12 regular pentagons', or, as he says in another passage,24
 to inscribe the regular dodecahedron in a sphere and to make this construction
 public, which was considered a criminal divulgation of Pythagorean secret
 knowledge.

 Of these four statements the first and fourth are of special importance and must
 be carefully analyzed, while the second and the third are of a certain importance
 for our problem mainly in connection with the first one.

 In regard to Hippasus' experiments it seems relevant to point out that in the
 period in which Hippasus lived other Greek philosophers also conducted scientific
 experiments, while after that time, with one possible exception,25 we do not again
 hear of scientific experiments until the third century. In fact, the philosopher
 to whom most of these experiments are attributed, Empedocles (ca 490 to ca
 430 B.C.), was a native of Sicily, lived for some time in southern Italy, and
 though not a Pythagorean himself, was undoubtedly influenced by Pythagorean
 thought.

 The experiments attributed to Empedocles are the following: 1) an experiment
 to show that drinkable water could be extracted from the sea, in order to show
 that fish did not 'feed on' salt water, but on sweet water which could be extracted
 from it;26 2) an experiment with small open vessels filled with water and swung
 around on a cord, in order to prove the existence of what we would call a cen-
 trifugal force, which in his opinion prevented the celestial bodies from falling
 to the earth;27 3) an experiment with pulverized ore of various kinds and colors,

 19 Theo Smyrnaeus, Expos. Rerum Mathem., p. 59 Hiller.
 20 Boethius, De Institutione musica, 11, 10.
 21 Iamblichus, In Nicomachi arithmet. introd., p. 109 Pistelli.
 22 Jamblichus, De communi mathem. scientia 25 (p. 77 Festa) and Vita Pythag. 18, 88

 (p. 52 Deubner).

 23 The Greek term yp6ai4marO has both meanings.
 24 Vita Pyth. 34,247 (p. 132 Deubner). The name of Hippasus is not mentioned in this

 passage, but since the same story is connected with the divulgation of the discovery as in
 the first passage, there can be no doubt that the reference is to Hippasus.

 25 See infra.

 26 Empedocles, fragm. A 66 in H. Diels, Die Fragmente der Vorsokratiker, vol. 1.
 27 Ibid., A 67.
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 in order to show that the different elements when mixed in this way become in-
 separable, and their original qualities indistinguishable in the mixture;28 4) an

 experiment with a clepsydra or water-clock, in order to prove that seemingly
 completely empty vessels are actually filled with air.29 This experiment and a

 similar one with leather bags is also attributed to Anaxagoras30 (born in ca 500

 B.C.).

 The one possible exception to the statement that the known scientific experi-

 ments of the Greeks belong to the fifth and third (and later) centuries, but not

 to the fourth, is found in a passage from a work of Archytas, quoted literally by

 Nicomachus and Porphyrius.3' In this fragment Archytas propounds the theory
 that sound is produced by a concussion of the air, that the pitch of the sound

 depends on and is proportional to the velocity of the motion producing it, and

 that if the velocities producing two sounds are in certain simple numerical ratios,
 well known musical harmonies result. The arguments by which these theories

 are supported are based on observations which can be made in everyday life,

 and without experimentation; but the way in which the observations are intro-
 duced strongly suggests that, though originally they may have been made inci-
 dentally, they were at least checked by being repeated in an experimental fashion.

 Archytas, however, does not claim to be the author of these theories and to have
 made personally the observations or experiments from which they are derived,
 but attributes them to mathematicians whose names he does not give. At the
 same time it is obvious that these theories and observations represent an ad-
 vanced stage of scientific development as compared with the experiments of

 Hippasus and their results. For in the Archytas fragment Hippasus' demonstra-
 tion of a way in which the same musical harmonies can be produced by any con-
 ceivable kind of sound-producing instrument is integrated with a general physi-
 cal theory of sound. Since, on the other hand, both Hippasus and Archytas were
 Pythagoreans living in southern Italy, since Archytas, as shown above,32 belonged
 to the second generation after Hippasus, and since, nevertheless, Hippasus and
 Archytas are sometimes mentioned together in ancient tradition3 as having

 contributed to the development of a physical theory of sound, there really seems
 to be no reason to doubt that there actually existed a scientific tradition in one
 branch of the Pythagorean school through which a theory of sound was gradually
 developed. Since, finally, the authenticity of the fragment from Archytas' Har-

 28 Ibid., A 34.

 29 Ibid., B 100. Here the description of the experiment is given in its original wording.
 Empedocles in fact does not describe it as an experiment made by himself, but as an illus-
 trative analogy derived from the observation of a young girl playing with a water-clock.
 But this belongs to the poetical style, since Empedocles expounded all his philosophical
 and scientific theories in verse. The minute description of the process leaves no doubt
 whatever that Empedocles must have made the experiment himself.

 30 Anaxagoras, fragm A 68/69 in H. Diels, op. cit.
 31 Archytas, fragm. B 1 (Diels, op. cit.).
 32 See supra p. 245 and note 2.

 3 For instance, Jamblichus, in Nicom. arithm. intr., p. 109 Pistelli.
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 monikos can hardly be doubted, and as far as I can see never has been doubted,
 and since he clearly implies that the theory of sound had reached a rather ad-
 vanced stage before he himself began to contribute to it, it is difficult to see how
 some scholars34 could claim that ancient tradition projected into a much earlier
 time the accomplishments of a later period, when it attributed to Hippasus, a
 man belonging to the second generation before Archytas, the first beginnings of
 a theory which had reached a much more advanced stage before Archytas wrote
 his work.

 Everything then seems to confirm the assumption that the experiments at-
 tributed to Hippasus by ancient tradition actually can have been made, and most
 probably were made, in Southern Italy in the middle of the fifth century, that is,
 when Hippasus is supposed to have lived in that region. To that extent, at
 least, the late tradition, which according to E. Frank and others, is of no value
 whatever, seems to be vindicated.

 But what can Hippasus' experiments with discs and tumblers possibly have
 to do with the discovery of incommensurability? In order to show the inter-
 connection, which is, of course, very indirect, it will be necessary to make a
 further analysis of the purpose and meaning of these experiments.

 All the experiments ascribed to philosophers of the fifth century, as their de-
 scription clearly shows, were obviously undertaken not so much in order to find
 out something new, but rather in order to support and verify an already exist-
 ing theory, for instance, that the fish do not consume salt water as such, but
 extract sweet water from it, that the celestial bodies do not remain in the sky
 because they are lighter than air, etc. The same is true of the experiments
 attributed to Hippasus. That certain musical harmonies would be produced
 if the lengths of two strings of the same kind were in certain ratios had always
 been known. It had also been known in regard to flutes. From this double
 knowledge, then, the general assumption was derived that it would be so in all
 cases. What Hippasus did was, in a way, nothing but a verification of this
 assumption by means of various sound-producing bodies which were not ordi-
 narily used as musical instruments. But two things are significant. Strings
 have, so to speak, only one dimension. In regard to flutes, too, especially if the
 different tones are produced on the same flute, one will not always think of the
 other two dimensions. When Hippasus used tumblers and discs, however, he
 had to point out that the discs, for instance, must be equal in two dimensions and
 differ only in the third if the musical harmonies are to be produced, but that it
 did not matter whether the third dimension was what usually was called length
 or thickness. In this way, then, the result can be most clearly formulated,
 namely, that the musical harmonies are completely independent of the material
 of which the sound-producing body consists, and of the special quality or color
 of the tones produced, and that the production of these harmonics depends ex-
 clusively on simple one-dimensional numerical ratios. We hear then, further,35

 34 See E. Frank, op. cit., p. 69 and passim.
 35 See supra, p. 246, note 20.
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 THE DISCOVERY OF INCOMMENSURABILITY 249

 that Hippasus was not content with having proved this point but also investi-
 gated the mathematical relations between the ratios producing the most out-
 standing harmonies and tried to derive them mathematically from one another.

 As long as Hippasus remained within the limits of the theory of music, all this,
 of course, could not lead to the discovery of incommensurability. But there are

 strong indications that he and his associates did not confine themselves to this
 special field.

 Aristotle very frequently mentions the Pythagoreans or so-called Pytha-

 goreans, and attributes to them the doctrine that 'all things are number.'36
 According to E. Frank these so-called Pythagoreans are not Pythagoreans at
 all,37 but contemporaries of Plato who were deeply influenced by his philosophy.38
 If this were so it would be difficult to see why Aristotle, who should have known,
 never says a word about it, and always seems to imply that Plato's theory of
 numbers is later. It would also be possible to show that the comparatively very
 primitive Pythagorean theory cannot possibly be later than Plato's very com-

 plicated one. But this would require an analysis of considerable length,which
 fortunately is not necessary for the present purpose, since there is more direct

 evidence to show that there must have been Pythagoreans in the fifth century
 who had a doctrine similar to that ascribed to them by Aristotle.

 Archytas in the long fragment quoted above39 says that the same men who

 elaborated a theory of sound had also attained 'clear insight' into problems of
 astronomy, geometry, and arithmetic. Again, of course, he refers to what others
 had done before he wrote his work. Unfortunately, the passages in which he
 described the achievements of his predecessors in astronomy and geometry have
 not come down to us. But since he speaks of the clear insight which they had
 attained, it is not likely that it was only in music that they had arrived at a stage
 so advanced that it must have required a considerable time to attain it. More-
 over, Archytas says that the sciences mentioned are intimately related to one
 another because all of them 'turn back' to 'the first (or fundamental) form of
 everything that is'. This seems a very advanced form of the doctrine which

 36 The doctrine is expressed and explained in a great many different ways by Aristotle;
 for instance, that 'the elements of numbers are the elements of all things' (Metaph. 986a,
 1 ff.), or that 'all things are composed of numbers' (ibid. 1080b, 16 f.), or that 'the things
 themselves are numbers' (ibid., 987b, 29 f.), or that 'number is the essence of everything'
 (ibid., 987a, 19). But the last expression uses specific Aristotelian terminology and is
 obviously an attempt to explain what appeared too odd in its original wording.

 37 op. cit., p. 68 ff.
 38 E. Frank lays great stress on the fact that Aristotle speaks often, though not in the

 majority of cases, of the 'so-called' Pythagoreans, and infers from this that he meant that
 they were not really Pythagoreans. In fact, there was an excellent reason for the use of
 the word 'so-called,' namely, that in Aristotle's time 'Pythagoreans' was the only name
 designating the adherents of a philosophical school or sect that was derived from the name
 of the founder; that is, it was an unusual expression. Confirmation of this can also be found
 in the fact that the only analogy to the name 'Pythagoreans' found in pre-Aristotelian
 literature (Herakleiteans in Plato's Theaet. 179e) is obviously used in fun.

 39 See supra p. 247 and note 31.
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 Aristotle attributes to the 'so-called Pythagoreans'. Again, everything seems
 to indicate that the close connection between arithmetic, geometry, astronomy,
 and musical theory, as well as the somewhat crude theory that 'all things are

 numbers' must have been considerably older than Archytas, that is, at least as

 early as the middle of the fifth century.

 In order to understand the origin and meaning of this latter doctrine, an
 analysis of the Greek terminology of the theory of proportions will be helpful.

 The Greek expression for proportion means literally 'the same ratio'. For our

 term 'ratio' the Greeks have two expressions: diastema, which means literally

 'interval', and logos, which means literally 'word'. The first term clearly shows
 the connection of the early theory of proportions with musical theory.40 But
 the second term is even more significant. The Greeks had two terms for 'word':

 epos and logoS.4' Epos means the spoken word, or the word which appeals to
 the imagination and evokes a picture of things or events. This is the reason
 why it is also specifically applied to epic poetry. Logos designates the word or

 combination of words in as much as they convey a meaning or insight into some-
 thing.42 It is this connotation of the term logos which made it possible for it in
 later times to acquire the meaning of an intrinsic law or the law governing the
 whole world.

 If logos, then, is the term used for a mathematical ratio, this points to the idea

 that the ratio gives an insight into a thing or expresses its intrinsic nature. In
 the case of musical harmonies the harmony itself would be perceived by the ear,
 but it was the mathematical ratio which, in the mind of the Pythagoreans, seemed

 to reveal the nature of the harmony, because through it the harmony could be
 both defined and reproduced in different media.

 It is easy to see how this general idea could be extended to astronomy, espe-
 cially to the regular motions of the celestial bodies and the interrelations between
 their various cycles.43 But it is the extension of the theory to geometry which
 is of special importance for our problem.

 The mathematical theorem which is in tradition most closely connected with
 Pythagoras and the Pythagoreans, is the theorem that in a right-angled triangle

 the sum of the squares on the sides including the right angle is equal to the square

 40 This is also the case with the word horos designating the terms of a ratio or a propor-
 tion. See K. von Fritz, Philosophie und sprachlicher Ausdruck bei Demokrit, Platon und
 Aristoteles (New York, Stechert, 1938), p. 69.

 41 As to the question of how early the term logos was used in the sense of ratio, see infra
 p. 261 f.

 42 This is also characteristic of the corresponding verb legein. In consequence, the
 Greeks can form the following sentence: N. N. says (there follows a literal quotation of his
 words) saying (there follows an interpretation of their meaning). It is clear that 'saying'
 in this sentence really means 'meaning.' The verb eipein, which corresponds to epos can-
 not be used in the latter sense. It is also significant that those stories which Herodotus,

 for instance, calls logoi are always stories with a moral, that is, with a meaning.
 43 For details see my article on Oinopides of Chios in Pauly-Wissowa Realencyclopaedie,

 vol. 17, p. 2260-67.
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 on the side subtending the right angle. Nobody who knows anything about the

 early history of Greek mathematics has ever doubted that the proof of this

 theorem given by Euclid in the first book of his Elements cannot have been
 found by Pythagoras or his early followers. This is also what the best ancient

 tradition says, since Proclus attributes this proof to Euclid himself.44 Though at

 the time when, in the last quarter of the fifth century, Hippocrates of Chios elab-

 orated his famous theory of the lunulae, the 'Pythagorean theorem' must have

 been considered valid for right-angled triangles whose sides are commensurable
 with one another and for triangles whose sides are incommensurable, and further-

 more must have been extended to cover all similar figures erected on the sides
 of a right-angled triangle, it is not possible for us to find out exactly how the

 early Greek mathematicians proved or tried to prove the theorem in this general
 form, since there exists no tradition about it.45 Fortunately, it is not necessary
 for our purpose to have this knowledge.

 Again, the theory must have started from an observation which had been

 generally known long before the beginning of Greek philosophy, namely, that if
 one puts together three pieces of wood of the respective lengths of 3, 4, and 5, a
 right-angled triangle will result. In fact, this is an old form of a carpenter's

 square. Since the size of carpenter's squares was not standardized, it must also
 have been a matter of common knowledge that the absolute length of the sides

 of the triangle was irrelevant, and that all triangles whose sides were in that pro-
 portion were not only right-angled, but also 'similar' in shape. Finally, it seems

 to have been known of old that the sum of the squares of 3 and 4 was equal to
 the square of 5.

 Even if we had no tradition about it we would have to conclude that the
 Pythagoreans must have been impressed by these facts as soon as they had begun

 to suspect that the nature of a good many things might be found in or expressed
 by numbers, especially since there is indirect evidence to show that even before
 Pythagoras the philosopher Thales (ca 620 to ca 540 B.C.) and his followers had
 concerned themselves with what we may call the ornamental shape of geometri-
 cal figures46 and also seem to have connected this ornamental appearance espe-

 cially with the angles. The fact, at least, that according to Proclus47 they used
 the term 'similar angles' for what later was called 'equal' angles can hardly be
 explained otherwise .48

 On the basis of this earlier development the Pythagoreans can hardly have

 44 Proclus, In primum Euclid. elem. librum Comment., p. 426 Friedlein.

 45 For the various possibilities see the lucid exposition of Th. Heath in his commentated

 translation of Euclid's Elements (Cambridge 1926), vol. 1, pp. 352 ff.
 46 For the evidence see Th. Heath, A History of Greek Mathematics (Oxford, 1921), vol. 1,

 pp. 130 ff.

 47 op. cit., p. 250 Friedlein.

 48 It is perhaps pertinent to observe that the historian Thucydides (I, 77) also uses the
 term 'similar' where he means equality of form (or in this case: procedure). For he uses

 the expression 'similar laws' where, as the context shows, he does not mean similar laws

 but what otherwise was called isonomia or equality before the law.
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 failed to notice that any two triangles will be similar in shape if their sides are
 in proportion, though in actual fact in the earliest period this knowledge can
 have been an exact knowledge only in regard to triangles whose sides are com-

 mensurable with one another. Though this assumption is not supported by
 any direct tradition-probably because it was too obvious to be especially men-

 tioned-it follows not only from the general situation, but especially from the
 close analogy of the Pythagoreans' theory of music and their earliest theory of
 geometrical figures, which is attested everywhere. For just as they declared
 that the musical harmonies which are perceived by the ear 'are' really the num-
 bers by which the proportionate lengths of the strings, etc., producing them are

 measured, so the geometrical figures, whose shape is perceived by the eye but
 cannot otherwise be either exactly determined or expressed in language, 'are'

 really the numbers or sets of numbers constituting the ratios of the lengths of
 their sides by which their shape is determined and can therefore be expressed.4'

 According to ancient tradition, the theory, before the discovery of incommen-
 surability, was further extended in two directions. Proclus" credits Pythagoras
 with a formula which makes it possible to form any number of different rational
 right-angled triangles by finding pairs of numbers the sum of the squares of which

 is equal to a square number.5" It is irrelevant for our purpose whether this
 formula is rightly attributed to Pythagoras personally, but one can safely assume

 that it belongs to the very oldest period of Pythagorean mathematics. For
 Proclus usually relies on the very excellent history of mathematics of Aristotle's
 disciple Eudemus of Rhodes; and in this case what he says seems all the more
 worthy of credit in that he does not claim too much and rather implies a criti-

 cism of the common tradition that Pythagoras 'proved' the 'Pythagorean theo-
 rem' in its general geometrical form.

 Nevertheless, the formula marks a great advance. One has to interpret it in
 terms of Pythagorean philosophy in order to understand its importance in
 regard to our problem. In the theory discussed before, the shape of figures
 which are similar in the mathematical sense of the word is directly related to a
 definite set of integers. Two triangles, with the sides 3, 4, 5 and 8, 15, 17

 respectively are not, on the other hand, similar in the sense of the (modern
 or Euclidean) mathematical term. But they are still 'similar' in regard to the
 ornamental element of one right angle; and this 'similarity' is not related to or
 expressed in one definite set of integers, but is related to the fact that the two

 49 The Pythagoreans were, of course, aware that triangles are the only rectilinear figures

 whose shape is definitely determined by the proportionate length of their sides. That
 they realized the importance of this fact for their theory seems proved by Theon's state-
 ment (op. cit., pp. 40 ff.) that they divided all other rectilinear figures into triangles.

 50 Op. cit. (see note 44), p. 428 Friedlein.
 51 The formula, though expressed in a somewhat more complicated way amounts to the

 statement that if m be any odd number,

 (m2_ 1)2 (m2 + 1)2
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 sets of integers related to the two triangles enter into the same mathematical

 formula. What is important for our problem in this extension of the theory is

 merely that it shows how the Pythagoreans were not content with a simple

 theory but, with an extraordinarily inquisitive spirit, adapted this theory to

 ever more complicated problems.
 The second extension of the Pythagorean theory which is important as a

 preparation for the discovery of incommensurability is the theory of polygonal

 numbers. This theory, the beginnings of which ancient tradition, starting with

 Aristotle,52 attributes also to the early Pythagoreans, was many centuries later

 developed by Diophantus to what is now called indeterminate analysis. But

 for a long time it remained rather sterile from a purely mathematical point of

 view. This is probably the reason why Euclid disregarded it in the arithmetical

 section of his elements and why other high ranking mathematicians from the
 fourth century onwards have done likewise.

 Just like the other geometrical theories of the Pythagoreans discussed so far,

 this theory is concerned with interrelations between numbers and geometrical
 figures. But in this case the figures are not drawn and formed by straight lines
 of certain proportionate measures, but are built up from dots. The theory then

 is concerned with the question from what numbers of dots arranged in a certain
 order the different polygons can be built.53 It seems perfectly clear from the

 evidence presented so far that this theory is a natural product of the develop-

 ment of Pythagorean thought. It, therefore, certainly need not, as E. Frank

 contends,54 be dependent on or, in its original form, even be influenced by the

 physical atomism of Democritus, which has an entirely different origin. What-

 ever chronological inferences E. Frank draws from this incidental affinity are,

 therefore, absolutely unwarranted. 5
 Though the 'atomism' of the theory of polygonal numbers seems most remote

 from the discovery of incommensurability it is here that we come nearest to our
 problem. All the Pythagorean doctrines discussed so far either are based on or
 result in a search for numbers, i.e., integers, from which geometrical figures with

 certain properties can be built up. In the course of these efforts the Pythago-
 reans can hardly have failed to wonder what numbers might be hidden in certain

 52 The relevant passages have been collected by Heath, History (see note 46), 1, 76 ff.
 5 Triangular numbers, for instance, are (1), 3, 6, 10, 15, like this:

 etc.

 54 Op. cit. (see note 2), p. 52 if.

 55 The passage in Aristotle, De Anima, 490a, 10 ff., where Aristotle quite correctly says

 that if one replaces Democritus' material atoms by immaterial dots the result is very
 similar to the quantitative theory of the Pythagoreans, need certainly not have chrono-
 logical implications. But even if it had such implications, this would not prove anything,
 since Aristotle in this passage does not refer to the earliest form of the Pythagorean doc
 trine.
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 well-known figures which had not been built up in this way, for instance, the isos-

 celes right-angled triangle, which was of special importance to the Pythagoreans
 because it was one-half of the square, the latter figure having become a mystical

 symbol in the Pythagorean community. In the case of the isosceles right-angled
 triangle, however, it is not possible to express the ratio between its sides in
 integers. It is perhaps not too far-fetched a speculation if one assumes that the
 early development of the theory of polygonal numbers was partly due to an
 attempt to overcome this difficulty by building up the polygons from dots rather

 than from straight lines. In fact, this seems all the more likely because here
 again the division of polygons and polygonal numbers into triangles and tri-
 angular numbers is one of the main points of the theory. Theon, for instance,
 points outoS that an oblong number can be divided into two equal triangular
 numbers while a square number is made up of two unequal triangular numbers

 whose sides differ by one unit, namely,

 thus . . . and thus . .

 * * /-* 0 * /-

 * 0 0 * . 0/.

 /-* 0 0 /. 0.

 FIG. 1

 But however this may be, men of the inquisitive spirit which characterized
 Hippasus and some of his Pythagorean contemporaries57 can hardly have been
 satisfied with these arithmetical theorems as a substitute for the solution of the
 real problem, namely, the problem of the ratio between the sides of an isosceles
 right-angled triangle. This is again confirmed by ancient tradition; for what
 Plato says about Theodorus' demonstration of the irrationality of the square
 roots of 3, 5, 6, 7, etc. presupposes, as shown above,58 that the irrationality of the
 square root of 2 had already been proved.

 Fortunately, the original demonstration of the irrationality of the square
 root of 2 has been preserved in an appendix to the tenth book of Euclid's ele-

 ments;59 and that this demonstration is actually, at least in its general outline,
 the original one is attested by Aristotle. One glance at this demonstration60

 66 Op. cit., p. 41 Hiller.
 57 See supra p. 245 ff. and p. 252.
 58 See supra, p. 244.
 59 Euclid, Elementa, X, Append. 27, p. 408 if. (This appendix is not included in Heath's

 translation of Euclid's Elements).
 60 In literal translation this demonstration runs as follows: Let ABCD be a square and

 AC its diameter. I say that AC will be incommensurable with AB in length.
 For let us assume that it is commensurable. I say that it will follow that the same

 number is at the same time even and odd. It is clear that the square on AC is double the
 square on AB. Since then (according to our assumption) AC is commensurable with AB,
 AC will be to AB in the ratio of an integer to an integer. Let them have the ratio DE:F
 and let DE and F be the smallest numbers which are in this proportion to one another.
 DE cannot then be the unit. For if DE was the unit and is to F in the same proportion as
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 shows that it does not presuppose any geometrical knowledge beyond the

 Pythagorean theorem in its special application to the isosceles right-angled tri-

 angle, which, as is well-known, can be 'proved' simply by drawing the figure

 in such a way that the truth of the theorem in that particular case is imme-

 diately visible.6" Apart from this the demonstration remains in the purely
 arithmetical field; and since the early Pythagoreans speculated a good deal about

 odd and even numbers62 the demonstration itself cannot have been beyond their

 reach.64

 Yet if this demonstration of the irrationality of the square root of 2 was the
 only way in which incommensurability can have been discovered, one might

 still agree that there are good reasons for Frank's and Neugebauer's hesitation
 to attribute the discovery to the middle of the 5th century. The demonstration

 requires not only a good deal of abstract thinking, but also of strict logical

 reasoning. Apart from this, the labored language of the demonstration as given
 in the appendix in Euclid shows clearly with what difficulties the early Greek

 mathematicians had to struggle when elaborating a proof of this kind. In fact,
 this conclusion is all the more cogent because the demonstration, though some-

 what more archaic in form than Euclid's own demonstrations, uses a form of
 presenting the argument in short concise sentences which has no parallel in Greek

 literature of the fifth century.64 If, then, the proof as such, as the combined
 passages in Plato and Aristotle seem to indicate,65 belongs to the fifth century,

 AC to AB, AC being greater than AB, DE, the unit, will be greater than the integer F,
 which is impossible. Hence DE is not the unit, but an integer (greater than the unit).

 Now since AC:AB = DE:F, it follows that also AC2:AB2 = DE2:F2. But AC2 = 2AB2

 and hence DE2 = 2F2. Hence DE2 is an even number and therefore DE must also be an
 even number. For if it was an odd number its square would also be an odd number. For
 if any number of odd numbers are added to one another so that the number of numbers
 added is an odd number the result is also an odd number. Hence DE will be an even num-
 ber. Let then DE be divided into two equal numbers at the point G. Since DE and F
 are the smallest numbers which are in the same proportion they will be prime to one another.
 Therefore, since DE is an even number, F will be an odd number. For if it was an even

 number the number 2 would measure both DE and F, though they are prime to one another,
 which is impossible. Hence F is not even, but odd. Now since ED = 2EG it follows that
 ED2 = 4EG2. But ED2 = 2F2, and hence F2= 2EG2. Therefore F2 must be an even num-
 ber, and in consequence F also an even number. But it has also been demonstrated that
 F must be an odd number, which is impossible. It follows, therefore, that AC cannot be
 commensurable with AB, which was to be demonstrated.

 61 For examples, see Heath, The Thirteen Books of Euclid's Elements, vol. 1, p. 352.
 62 See, for instance, Aristotle, Physics, 203a, 5 ff.; Metaph., 986a, 22 ff.
 63 Concerning the arithmetical premises of this demonstration and the probable defi-

 ciencies of its original form, see my article on Theodorus of Cyrene in Pauly-Wissowa, RE,
 vol. VA, p. 1817 and 1820 ff.

 64 In order to illustrate this, one may compare the literal fragments of Zenon of Elea
 which show a very high degree of abstract thinking and also of close logical reasoning, but

 at the same time are written in a labored language with long and cumbrous sentences, while
 Aristotle (in the fourth century) and later writers who give an account of Zenon's theory,
 reproduce the same arguments in a sequence of very short sentences very similar to those
 found in the appendix to Euclid.

 65 Plato, Theaetetus p. 147B ff. and Aristotle, Analytica Priora, 41a, 26-31 and 50a, 37.
 See also supra p. 244 and p. 251.
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 it seems safe to assume that in its original form it was still more laborious. Most

 significant, however, is the fact that the whole proof, as presented, uses the terms

 commensurable and incommensurable, just as Theodorus did in Plato's Theae-

 tetus, as something already known. This seems to presuppose that incom-

 mensurability was already known when the demonstration was elaborated.

 Since the form of the proof as it appears in the appendix to Euclid may not

 be the original one, the form of the proof in Euclid's appendix may not be suf-

 ficient to show with certainty that when the irrationality of the square root of 2

 was demonstrated, the discovery of incommensurability as such had already

 been made, probably in a different mathematical object. But if one considers

 the further evidence presented above, the suspicion that such was the case

 becomes very strong. For it is difficult to believe that the early Greek mathe-

 maticians should have discovered the incommensurability of the diameter of a
 square with its side by a process of reasoning which was obviously so laborious
 for them if they had no previous suspicion that any such thing as incommen-

 surability existed at all. If, on the other hand, they had already discovered the
 fact in a simpler way, it is perfectly in keeping with what we know of their

 methods to assume that they at once made every effort to find out whether
 there were other cases of incommensurability. The isosceles right-angled tri-
 angle in that case was the natural first object of their further investigations.

 It is at this point that the tradition concerning Hippasus' interest in the
 dodecahedron, or 'the sphere out of 12 regular pentagons' has to be considered.
 There can be no doubt that Hippasus was not the author of the mathematical

 construction of the dodecahedron, as Jamblichus claims in one place.66 Quite
 apart from other considerations, this is proved by the fact that the better tradi-

 tion implies that this was an achievement of Theaetetus,67 who belonged to the

 second generation after Hippasus. And in another passage, Iamblichus68
 himself claims merely that Hippasus 'drew' the regular dodecahedron, which is

 probably the original tradition.
 That Hippasus was interested in the dodecahedron and in the dodecahedron

 as a 'sphere made of 12 regular pentagons' is very likely. For regular dodeca-

 hedra occurred in Italy as products of nature in the form of crystals of pyrite.69
 With the Pythagoreans' interest in geometrical forms these crystals must

 certainly have attracted their attention and evoked a desire to analyze their
 form mathematically. In addition, we know that the Pythagoreans used the

 pentagram, i.e., a regular pentagon with its sides prolonged to the point of
 intersection,70 as a token of recognition. It is absolutely in the character of
 Hippasus as we now know him that he should have tried to find out about the

 66 See note 24.

 67 For details see the article quoted in note 5, pp. 1364 ff.
 68 See notes 22 and 23.
 69 See F. Lindemann in Sitz.-Berichte Akad. Miunchen, math.-phys. KMasse, vol. 26, pp.

 725 ff. Lindemann gives also evidence to show that dodecahedra were used as dice in
 Italy at a very early time, and that the regular dodecahedron seems to have had some
 religious importance in Etruria. Especially the latter fact, if known to the Pythagoreans,
 would naturally have increased their interest in the figure.

 70 See Lucian, De lapsu in salutando, 5, and schol. Aristoph. Nubes, 609.
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 numbers and ratios incorporated in the pentagram and regular pentagon. Could

 it then really be a mere coincidence that the same Hippasus is credited with the
 discovery of incommensurability and with an interest in the 'sphere consisting
 of 12 regular pentagons,' and that the regular pentagon is exactly the one
 geometrical figure in which incommensurability can be most easily proved?

 How would the Pythagoreans have gone about it if they wanted to know the
 ratio between the lengths of two straight lines? Again, the method was an old

 one, known by craftsmen as a rule of thumb many centuries before the beginning
 of Greek philosophy and science, namely, the method of mutual subtraction,71
 by which one finds the greatest common measure. It is, of course, impossible
 to discover incommensurability by applying this method in the way in which
 craftsmen do it: with measuring sticks or measuring ropes. But if one looks
 at the pentagram or at a regular pentagon with all its diameters filled in-and
 we have seen that the Pythagoreans were interested in diameters-the fact that
 the process of mutual subtraction goes on infinitely, that therefore there is no
 greatest common measure, and that hence the ratio between diameter and side

 cannot be expressed in integers however great, is apparent almost at first sight.
 For one sees at once that the diameters of the pentagon form a new regular

 pentagon in the centre, that the diameters of this smaller pentagon will again
 form a regular pentagon, and so on in an infinite process.

 A

 E~~~~~~~~~~~~~~~~

 0 C~~D" CI

 FIG. 2

 71 For evidence to show that the Pythagoreans used this method in mathematical theory,
 see infra p. 258.
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 It is then also very easy to see that in the pentagons produced in this way AE =

 AB' and B'D = B'E' and therefore AD - AE = B'E', and likewise AE =

 ED' = EA' and B'E' = B'D B'E and therefore AE - B'E' = B'A', and so

 forth ad infinitum, or, in other words, that the difference between the diameter

 and the side of the greater pentagon is equal to the diameter of the smaller penta-
 gon, and the difference between the side of the greater pentagon and the diameter

 of the smaller pentagon is equal to the side of the smaller pentagon, and again

 the difference between the diameter of the smaller pentagon and its side is equal
 to the diameter of the next smaller pentagon and so forth in infinitum. Since

 ever new regular pentagons are produced by the diameters it is then evident that

 the process of mutual subtraction will go on forever, and that therefore no great-

 est common measure of the diameter and the side of the regular pentagon can
 be found.

 One may, of course, still ask how the Pythagoreans could prove that AE =
 AB' and B'D' = B'E', etc. Now Proclus, probably getting his information
 from Eudemus of Rhodes, states72 that Thales was the author of the theorem

 that in an isosceles triangle the base angles are equal. In connection with this

 it is important to note that Aristotle73 refers to an archaic proof of this proposi-
 tion. He does not quote all the steps of this proof, but what he quotes shows
 that 'mixed angles,' i.e., angles formed by a straight line and the circumference
 of a circle, were used in the demonstration, and that in all likelihood the proof
 was based on a rather primitive method of superimposition.74 It is clear that
 with this latter method the converse of the proposition could be proved without
 difficulty. It follows that the equality of AE with AB' and of B'D with B'E'
 could be derived from the equality of Z AEB' with Z AB'E and of Z B'DE'
 with Z B'E'D, if these angles could be proved to be equal respectively.

 As to this latter proof, the evidence is somewhat less definite. But Eudemus

 of Rhodes75 attributes to the early Pythagoreans the proof that the sum of the
 internal angles in any triangle is equal to two right angles. From this theorem
 the general theorem that in any polygon the sum of the internal angles is equal
 to 2n - 4 right angles can very easily be derived, if one divides the polygon
 into triangles,76 and we know77 that the Pythagoreans constantly experimented
 with dividing polygons into triangles. The proposition furthermore that in any
 polygon the sum of the external angles is equal to four right angles is a mere corol-

 lary of the preceding proposition.78 On the basis of these propositions, finally,

 72 op. cit., p. 250 f. Friedlein.

 73 Aristotle, Analyt. Pr., 41 b, 13 ff.

 7 For details see Heath, Elements (see note 45), 1, 253.

 75 Quoted by Proclus, op. cit., 379 Friedlein.
 76 The proof is quoted by Proclus, op. cit. After the polygon has been divided into tri-

 angles, the proposition about the sum of the angles of a triangle being known, the remainder
 of the proof is a simple addition.

 77 See supra, p. 252, note 49.
 78 Aristotle refers to this proof as to something very well known in Analyt. Post. 99a,

 19 ff and 85b, 38 ff.
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 the equality of the angles figuring in the demonstration suggested above can be
 very easily shown.

 It follows that there is no reason whatever to disbelieve that Hippasus was
 able to demonstrate the incommensurability of the side with the diameter of a

 regular pentagon. For what is needed for the proof suggested is nothing but two
 fundamental geometrical propositions which concern the isosceles triangle and

 the sum of the angles in any triangle, and in addition the old time-honored
 method of finding the greatest common measure by mutual subtraction. All the
 rest is nothing but the simplest addition, subtraction and division. Of the two
 geometrical propositions, the first had undoubtedly been 'proved' in a very primi-
 tive way even before Pythagoras.79 The second one was probably also proved
 in some such way, though we do not know exactly how.80 But there can be no
 doubt whatever that its truth was known long before Hippasus. That the
 proofs of these theorems as existing in the middle of the fifth century did not come
 up to the Euclidean conception of a satisfactory proof is not to the point. For
 the question is not whether Hippasus could give a demonstration which in all
 its steps would have satisfied Euclid or Hilbert, but whether he was able to find
 a proof which at the level which mathematical theory had reached in his time
 was considered absolutely convincing, and as to this there can be no doubt.
 It is, perhaps, not unnecessary to point out specifically that the demonstration of
 incommensurability suggested above does not presuppose any geometrical con-
 struction in the strictly mathematical sense at all, as long as the Pythagoreans
 were able to draw a reasonably accurate regular pentagon in some way, and this
 can hardly be questioned, for a quite beautiful pentagram can be seen on a vase
 of Aristonophus which belongs to the seventh century B.C. This vase was found
 at Caere in Italy and is now in a museum in Rome. Neugebauer's argument,

 therefore, that the discovery of incommensurability could not have been made

 79 It is an interesting fact that all the theorems which ancient tradition attributes to
 Thales are either directly concerned with problems of symmetry and 'provable' by super-
 imposition, or of such a kind that the first step of the proof was obviously based on a con-
 sideration of symmetry and the second step, which brings the proof to its conclusion, is a
 simple addition or subtraction. The much discussed Euclidean proof of the first theorem
 of congruence by superimposition seems, then, the last remnant of a method which once
 had been widely applied and with which Greek scientific geometry had started.

 80 The proof attributed to the Pythagoreans by Eudemus seems to presuppose the
 famous fifth postulate of Euclid. But Aristotle (An. Pr., 65a, 4) indicates that there
 existed an old mathematical demonstration about parallels and angles which involved a
 vicious circle. It seems, then, quite possible that the equality of alternate angles on
 parallels cut by a straight line was at first considered self-evident on the basis of considera-
 tions of symmetry, that then a faulty attempt to prove the proposition was made, and
 that finally Euclid tried to give the whole theory a sound foundation by his famous postu-
 late. In this case the proof of the proposition concerning the sum of the angles of a triangle
 attributed to the early Pythagoreans by Eudemus may really be very old. But Geminus
 (in Eutocius' commentary on the Conica of Apollonius of Perge, vol. II, 170 of Heiberg's
 ed. of Apoll.) mentions a still older demonstration in which the proposition was proved first
 for the equilateral, then for the isosceles, and finally for the scalene triangle.
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 by Hippasus since Oinopides, who belonged to the succeeding generation, was
 still concerned with the most 'trivial'81 mathematical constructions, has no
 validity.

 There is, then, perhaps some justification for the claim that the analysis so

 far has proved what was promised in the introduction to this paper, namely,

 that the discovery of incommensurability can have been made in the middle of

 the fifth century, that the development of the Pythagorean doctrine of numbers
 as the essence of everything naturally led to this discovery, that ancient tradi-

 tion contains strong hints as to the way in which the discovery actually was

 made, and last but not least, that Greek mathematics in that early period may
 have been very elementary,82 but certainly was not trivial. It was not trivial
 because the Greeks had two peculiarities which the Egyptians and Babylonians
 obviously lacked. They were very prone to build up sweeping general theories
 on very scanty evidence. Of this the Pythagorean theory that 'all things are
 numbers' is a striking example. Yet at the same time they were not content
 with having such a theory, but made unremitting efforts to verify it in all direc-

 tions. It was on account of this second peculiarity that they discovered in-
 commensurability in a very early period.

 It is perhaps advisable to add a brief survey of the immediate consequences
 of the discovery of incommensurability for the further development of the theory
 of proportions. For this will confirm both the opiiion concerning the general
 character of the early scientific investigations of the Greeks and some special
 suggestions which have been made in the course of the present inquiry.

 The discovery of incommensurability must have made an enormous impres-
 sion in Pythagorean circles because it destroyed with one stroke the belief that
 everything could be expressed in integers, on which the whole Pythagorean philos-
 ophy up to then had been based. This impression is clearly reflected in those
 legends which say that Hippasus was punished by the gods for having made
 public his terrible discovery.

 But the consequences of the discovery were not confined to the field of philo-
 sophical speculation. Logos or ratio, as we have seen,83 meant the expression
 of the essence of a thing by a set of integers. It had been assumed that the
 essence of anything could be expressed in that way. Now it had been dis-

 81 In my article on Oinopides (see note 43) I have tried to show that Oinopides' mathe-
 matical constructions were not 'trivial' either, if viewed in connection with the problems
 which he tried to solve. But the solution of the present problem is quite independent from
 the acceptance or rejection of this suggestion.

 82 In the present article only so much mathematical knowledge has been attributed to
 the early Greek mathematicians as can be ascribed to them with the greatest approxima-
 tion to certainty which a historical inquiry can attain. The attempt has then been made
 to show that even if their knowledge did not go beyond this, they nevertheless can have
 discovered incommensurability and by the nature of their theories and methods were
 naturally led to this discovery. But this does not imply that their knowledge must neces-
 sarily have been as limited and elementary as has been assumed in this paper.

 83 See supra p. 249/50.
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 covered that there were things which had no logos. When we speak of irra-
 tionality or incommensurability we mean merely a special quality of certain
 magnitudes in their relation to one another, and we speak even of a special class
 of irrational numbers. But when the Greeks used the term alogos, they meant
 originally, as the term clearly indicates, that there was no logos or ratio.

 Yet this fact must have been very puzzling. It had been generally assumed
 that two triangles which were similar, i.e., which had the same ornamental
 appearance, though differing in size, had the same logos, i.e., that they could
 be expressed by the same set of integers. In fact, this is clearly the original
 meaning of the term ho autos logos (the same logos), which we translate by
 'proportion.' But two isosceles right-angled triangles had still the same orna-
 mental appearance, and therefore should have had the same logos. In fact,
 it seemed evident that their sides did have the same quantitative relation to
 one another. Yet they had no logos.

 The way in which the Greeks amazingly soon after the stunning discovery
 of incommensurability began to deal with this problem is a much greater proof
 of their genius for and their tenacity in the pursuit of scientific theory than the
 discovery of incommensurability itself. For very soon84 they began not only to
 extend the theory of proportion to incommensurables, but also established a
 criterion by which in certain cases it can be determined whether two pairs of
 incommensurables (which in the old sense have no logos at all) have the same
 logos. The terminological difficulty created by this seeming contradiction in
 terms is reflected by the fact that for some time the term alogos for irrational
 was replaced by the term arrhetos (inexpressable) which is merely another way
 of expressing what the term alogos originally meant. It is also interesting to

 see how the term alogos gradually came back. First the term rhetos (rational)
 is created in contrast to arrhetos. Then the term arrhetos disappears; and
 Theaetetus, who developed the theory of irrationality further, reintroduced the
 term alogos but used it only for 'higher' irrationalities, for instance of the form

 V/aV/e, while he called the simple irrationalities of the form V/a dynamei motnon
 rhetoi (literally: rational only in the square). Finally, when logos had become
 a technical term and the incongruity of the statement that two pairs of alogoi
 have the same logos was no longer felt, the Greek mathematicians returned to
 the old terminology and called all irrationals alogos.85 The fact that Theaetetus,
 who died in 369 B.C., had already begun to return to the old terminology is a

 very strong confirmation of the view that the discovery of incommensurability
 must have been made long before, and that the term logos for ratio, from which

 84 The famous demonstrations of Hippocrates of Chius, who belonged to the same genera-
 tion as Theodorus of Cyrene, clearly presuppose that the theory of proportions at his time
 had already been adapted to incommensurables. See F. Rudio, Der Bericht des Simplicius
 uiber die Quadraturen des A ntiphon und des Hippocrates (Leipzig, Teubner, 1907), and infra
 p. 262.

 85 For details see my article on Theaitetos (see note 5). p. 1361 f.

This content downloaded from 195.251.161.31 on Sun, 12 Feb 2017 22:44:40 UTC
All use subject to http://about.jstor.org/terms



 262 KURT VON FRITZ

 alogos is derived, must certainly have been used by the Pythagoreans before the
 middle of the fifth century.

 The extension of the theory of proportion to incommensurables required an

 entirely new concept of ratio and proportion and a new criterion to determine

 whether two pairs of magnitudes which are incommensurable with one another

 have the same logos. The early solution of this problem is most ingenious. In-
 stead of making the result of the process of mutual subtraction the criterion

 of proportionality, namely the two sets of integers determined by measuring

 two commensurable magnitudes with the greatest common measure found by
 mutual subtraction, they used the character of the process of mutual subtraction

 itself as the criterion of proportionality. They established this criterion by

 giving a new definition of proportionality which made it applicable to com-

 mensurables and incommensurables alike. In literal translation this definition
 86

 says: magnitudes have the same logos if they have the same mutual subtraction.

 It is interesting to see that in this definition the term logos has lost its original
 meaning. The sense of the definition is, then, that two sets of magnitudes are
 in proportion if in each case the process of mutual subtraction, even if going on
 in infinitum, nevertheless can be proved always to go in the same direction.

 To show this is especially easy in the case of the diameters and sides of all

 regular pentagons, since in this case, the diameter being cut in the so-called golden

 section, it is evident that the process will always go exactly one step in each
 direction. But if the practical applicability of the new definition had been
 limited to this case it would have been of little use for the further development

 of mathematical theory. The most important case in which it is very easy to
 prove on the basis of the new definition that two pairs of magnitudes are in
 proportion is the proposition that rectangles and (since parallelograms can very

 easily be converted into rectangles of the same area) parallelograms of the same

 altitude are in proportion with their bases.

 [B A C

 b a c

 For it is easy to see that if b can be subtracted 5 times from a, B can also be
 subtracted 5 times from A, and if the remainder c can be subtracted 8 times
 from b, so can C from B, and so forth in infinitum.87 This proposition is the
 foundation of the famous theorems of Hippocrates of Chios.

 86 See Aristotle, Topica, 158 b, 32 ff.

 87 In literal translation the passage in Aristotle runs like this: 'It seems that in mathe-
 matical theory some propositions cannot easily be proved on account of the lack of a def-
 inition (or: as long as the proper definition is lacking), as for instance the fact that a

 straight line cutting an area parallel to its side cuts the area and its base in the same pro-
 portion (literally: similarly). But as soon as the definition has been found (the truth of)
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 Yet the usefulness of this new definition for the demonstration of geometrical

 propositions is still restricted to a rather limited field. The further expansion

 of the theory of proportions was made possible through. the new and even

 more ingenious definition which was invented by Eudoxus of Cnidus and which

 runs as follows: Magnitudes are said to be in the same logos, the first to the second

 and the third to the fourth, when, if any equirnultiples whatever be taken of the first
 and the third and any equimultiples whatever of the second and the fourth, the

 former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter
 equimultiples respectively taken in corresponding order.88

 If one compares the discovery of incommensurability (assuming that it was
 made in the manner suggested above) with these extensions of the theory of
 proportions, it seems evident that the discovery of incommensurability was by
 far the easiest step. For once the Pythagoreans became interested in the penta-

 gram and the regular pentagon, anyone might be struck by the fact that the

 diameters will always form a new regular pentagon in the centre; and if, further-
 more, the general Pythagorean doctrine required the determination of the

 'logos' of diameters and sides, all the rest followed very easily. Of the two new
 definitions of proportion, that of Eudoxus is perhaps the most ingenious inasmuch
 as it required the greatest effort in abstraction. But the older definition of

 proportion, by which the original concept of logos was replaced by a new one,

 which made it possible to apply the theory of proportion to incommensurables,
 was certainly by far the most important step in the development.

 the proposition is at once manifest. For the areas and their bases have the same mutual
 subtraction; and this is the definition of proportion (ho autos logos)! It seems strange that

 0. Becker in an article published in 1933 (Quellen und Studien zur Geschichte der Mathe-

 matik, Abteilung B, vol. 2, pp. 311 ff.) was the first to give the correct interpretation of the
 expression 'have the same mutual subtraction' in the passage quoted, while Heath, for
 instance, still called the definition 'metaphysical,' and said that it was difficult to see how

 any mathematical facts could be derived from the definition.

 0. Becker in a most excellent analysis has also proved that the greater part of the 10th

 book of Euclid's Elements which contains a very elaborate theory of irrationals can be

 proved by means of this definition, while some of the propositions specifically ascribed to
 Eudoxus cannot be proved on the basis of this definition and presuppose the new definition
 Euclid V, def. 5. Since the most important propositions of the 10th book of Euclid are
 ascribed to Theaetetus, Becker drew the obvious conclusion that Theaetetus worked with
 the old definition quoted by Aristotle.

 This is undoubtedly correct. But his interpretation of the rest of the passage in Aris-

 totle seems to require a slight modification. Though Becker has seen that the 'areas' in
 Aristotle are in fact parallellograms, or rather, rectangles, he believes that the proposition
 about rectangles was from the beginning proved by an elaborate process of reasoning, which
 required that several other propositions had been proved first (op. cit., p. 322). This is
 certainly not what Aristotle indicates, when he says that the truth of the proposition is
 manifest as soon as the definition is found. For this expression shows clearly that orig-
 inally a direct application of the definition to the figure given above was considered suf-
 ficient proof of the proposition. This is an interesting parallel to the first demonstration
 of incommensurability in the pentagon as suggested above.

 88 See Euclid, Elements, V, def. 5 and Scholia in Euclid. Element. V. 3 (Euclidis Opera.
 ed. I. L. Heiberg, vol. V, Leipzig, Teubner, 1889, p. 282.)
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 The fact that the development from the discovery of incommensurability to
 Eudoxus took this course has also chronological implications. Eudoxus was
 born in 400 and died in 347 B.C.89 His last work, which he left uncompleted,
 wyas a large geographical work in many volumes.90 He was also the author of
 the method of exhaustion, of the theorem that the volume of a cone is one-third
 of the volume of a cylinder with the same base and altitude,91 and undoubtedly
 of other stereometric theorems which must have been used in the proof of that
 proposition. All this would have been impossible without the new definition
 of proportion invented by Eudoxus. He therefore must have created this
 definition comparatively early in his life, hardly later than 370. It would,
 then, be little less than micraculous if the first discovery of incommensurability
 had been made 'in the time of Archytas' who, since he was head of the govern-
 ment of Tarentum in 362, can hardly have been born before 430. It is certainly
 much easier to believe that the discovery was made in the middle of the fifth
 century, as ancient tradition claims.

 But the solution of the chronological problem is of importance mainly because
 it makes it possible to acquire a deeper insight into the way in which the Greeks
 laid the foundations of the science of mathematics and into the special qualities
 which enabled them within an amazingly short time to make a discovery which
 their Babylonian and Egyptian predecessors with all their highly developed
 and complicated methods had not made in many centuries of mathematical
 studies.

 COLUMBIA UNIVERSITY

 89 See K. von Fritz, 'Die Lebenszeit des Eudoxos von Knidos' in Philologus, 85 (1930).
 p. 478 ff.

 90 See F. Gisinger, Die Erdbeschreibung des Eudoxos von Knidos, p. 5 if.
 9l See Archimedes, Ep. ad Dositheum in De sphaera et Cylindro, p. 4 Heiberg and Ad

 Eratosth. Methodus, p. 430 Heiberg.

This content downloaded from 195.251.161.31 on Sun, 12 Feb 2017 22:44:40 UTC
All use subject to http://about.jstor.org/terms


	Contents
	p. 242
	p. 243
	p. 244
	p. 245
	p. 246
	p. 247
	p. 248
	p. 249
	p. 250
	p. 251
	p. 252
	p. 253
	p. 254
	p. 255
	p. 256
	p. 257
	p. 258
	p. 259
	p. 260
	p. 261
	p. 262
	p. 263
	p. 264

	Issue Table of Contents
	Annals of Mathematics, Vol. 46, No. 2 (Apr., 1945) pp. 175-356
	On Differentiable Arcs and Curves IVa [pp. 175-181]
	Spaces in Which Every Arc Has Two Sides [pp. 182-193]
	Generalizations of Euler's Summations of the Series <tex-math>$\sum \limits ^\infty _{n = 1} n^{-2m}, \sum \limits ^\infty _{n = 0} (-)^n (2n + 1)^{-2m - 1},$</tex-math> etc. [pp. 194-195]
	Contribution to the Theory of Almost Periodic Functions [pp. 196-219]
	Properties of a Class of Double Intergrals [pp. 220-241]
	The Discovry of Incommensurability by Hippasus of Metapontum [pp. 242-264]
	Statistical Decision Functions Which Minimize the Maximum Risk [pp. 265-280]
	Generalization of a Theorem By v. Neumann Concerning Zero Sum Two Person Games [pp. 281-286]
	The Algebraic Equations of Degrees 5, 9, 157,..., and the Arithmetic Upon an Algebraic Variety [pp. 287-301]
	The Trace of Totally Positive and Real Algebraic Integers [pp. 302-312]
	Sums of <tex-math>$m^{\operatorname{th}}$</tex-math> Powers of Algebraic Integers [pp. 313-339]
	A Mean Value Theorem in Geometry of Numbers [pp. 340-347]
	Abstract Congruence and the Uniqueness of Haar Measure [pp. 348-355]



