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NOTE 

Riemann and the Cauchy-Hadamard Formula for the 
Convergence of Power Series 

DETLEF LAUGWITZ 

Fachbereich Mathematik, Technische Hochschule, Schlossgartenstrasse 7, 
D-64289 Darmstadt, Germany 

AND 

ERWIN NEUENSCHWANDER 

Mathematisches Institut, Universitdt Ziirich-Irchel, Winterthurerstrasse 190, 
CH-8057 Ziirich, Switzerland 

The Cauchy-Hadamard formula for the radius of convergence of a power series was 
stated and proved by Riemann in his lectures of November 1856. This discovery revises 
the widespread opinion that, after Cauchy's publication in 1821, the formula was ignored 
until its rediscovery by Hadamard around 1890. © 1994 Academic Press, Inc. 

Riemann hat die Cauchy-Hadamard-Formel for den Konvergenzradius einer Potenzreihe 
in seinen Vorlesungen im November 1856 aufgestellt und bewiesen. Diese Entdeckung fiihrt 
zur Revision der allgemeinen Meinung, die Formel sei nach ihrer Ver6ffentlichung durch 
Cauchy im Jahre 1821 bis zu ihrer Wiederentdeckung durch Hadamard um 1890 unbeachtet 
geblieben. © 1994 Academic Press, Inc. 

Riemann a pr6sent6 et d6montr6 darts ses cours, au mois de novembre 1856, la formule de 
Cauchy-Hadamard sur le rayon de convergence d'une s6rie enti~re. Cette d6couverte infirme 
l'opinion tr~s r6pandue selon laquelle la formule serait rest6e dans l'oubli apr~s sa publication 
par Cauchy en 1821 jusqu'h sa red6couverte par Hadamard vers 1890. © 1994 Academic Press, 
Inc. 
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1. T H E  F O R M U L A  IN R I E M A N N ' S  N O T E S  O F  1856 

In  his Cours  d 'analyse  C a u c h y  [1821, 151 ,286  et passim] stated and  p roved  

that  a power  series E3=0 a , z  n has the radius  of  c onve r ge nc e  p, where  p -  ~ equa ls  

" t h e  l imit or  the greates t  of  the l imi t s "  of the sequence  laZ/n. The  w e l l - k n o w n  

story is that  this resul t  passed  unno t i c ed  unti l  the 1890's, w h e n  it was  r ed i scove red  

by  H a d a m a r d  [Pr ingsheim 1898, 81, note  168; K n o p p  1922, 148, no te  1; Bo t tazz in i  

1986, 116]. Therefore ,  we were  surpr i sed  to find the fo rmula  and  out l ines  of  a 

p roof  in no tes  of  R i e m a n n ' s  f rom the years  1855 and  1856. The  more  a d v a n c e d  

of  these  no tes  were  wr i t ten  w h e n  R i e m a n n  was  prepar ing  the i n t roduc to ry  par t  
of  his lec tures  on  complex  analys is  in N o v e m b e r  1856. They  have  been  p re se rved  
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in the Riemann Nachlass at the University Library in G6ttingen (Nieders/ichsische 
Staats- und Universit/itsbibliothek G6ttingen [= NSUB G6ttingen]) in the file 
Cod. Ms. Riemann 23.4. For  facsimile reproductions,  see [Neuenschwander  1987, 
100-1041. 

In his lectures of  November  1856, Riemann had already shown, by the Cauchy 
Integral Formula,  that f ( z )  has a power  series development  which converges in 
the largest open disk around z0 containing no singularity, and that it diverges for 
Iz - z0l > P if p is the radius of the disk. Then he observed that the value of  t9 
depends on the behaviour  of la2/n for growing values of  n, and that the series 
does not converge if these quantities grow to infinity. 

He stated: If  the sequence la.l TM remains bounded, let f ( m )  denote the least 
upper bound of  lanl l/n for n > m. The function f ( m )  is non-increasing. Let  
8 = limm== f ( m ) .  Then,  his proposition is that the series converges for 
Izl < 1/8, and diverges for Izl > 1/8. For  the original German text,  see Appendix 
[A]. 

The outline of  the proof  in his notes contains not a single word. In the following 
passage we reproduce the mathematical symbols of  Riemann's  notes, linked by 
our own English text and a few additions in brackets.  Riemann writes mod z for 

Izl. 
[Proof.] Let  z = re ~i. 
Suppose first that r > 1/& Since f ( m )  >= 8, f ( m ) r  - r8 > 1. [It follows that 

some n > m exists such that] 

rood (anz n) >- (rS) n [> 1]. (*) 

The series diverges, since its members do not converge to 0. Suppose now that 
r < 1/8, or r8 < 1. [Choose a such that] r8 < a < l, [and /z such that] 
r f ( m )  < a for all m > / z .  Since 

(mod an)lZnr < r f ( m )  for all n > m (**) 

we obtain 

and, finally, 

(mod an) TM r < a for all n > p. 

mod (anz") < a n for all n > /x .  

[Since a < 1, the series converges.] 
The last formula is underlined. In the formula preceding (**), < should be 

replaced by =<. Also, (*) should be slightly modified. Riemann is not content  with 
lanzn[ < a n, but adds anz n = bn + cni, bn < a n for n > / z ,  and, omitting absolute 
values, writes down estimates of  the real parts 

b v + by+ 1 + b~+ 2 + + b~, < a ~+1 + a ~+2 + + a~, = aV+l 1 - a ~'-~ 
. . . . . .  1 - a  
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The introductory remarks, including the definition off(m),  are on fol. 115 verso 
dated (on the recto) 22 November 1856, which was a Saturday. Fol. 96 recto 
contains proposition and proof. On fol. 97 recto, dated 28 November, the definition 
of f (m)  is briefly repeated in the margin. 

An earlier attempt, presumably dating from the summer of 1855, can be found 
in Cod. Ms. Riemann 23.4, fol. 198 recto. Riemann says that ~/~--a-+ a n cannot become 
infinitely large, or grow beyond any limit, and defines p as the greatest value of 
this expression if n > v. He says that p, as a function of v, is non-increasing, and 
lets p = limp. Then, the series £ a n x  ~ will converge ifx < 1/p.  The obvious proof, 
by comparison with a geometric series, is sketched (see Appendix [B]). This is 
obviously confined to real a n and x > 0, and is less than what he could have learnt 
from [Cauchy 1821]. On the other hand, the introduction of the function p ( v ) ,  or 
f ( m )  in 1856, is a valuable step toward a clarification of the lim-sup concept. 

2. THE MINOR ROLE OF THE FORMULA 
WITHIN RIEMANN'S APPROACH 

The lectures of winter 1856/1857 were announced for Friday, 12-1, and Satur- 
day, 1 I-1. Apparently, Riemann prepared his notes shortly before the lectures. 
In general, he gave very careful summaries of the preceding lectures, and state- 
ments of his further plans, written down--with some corrections--in a meticulous 
form. In contrast to this, the formal contents of his lectures are quite often only 
briefly sketched. 

Riemann did, indeed, present the statement of the formula and its proof in his 
lectures of 1856. There exist notes by his students E. Schering (Cod. Ms. Riemann 
37, pp. 203-205) and R. Dedekind (NSUB Grttingen, Cod. Ms. Dedekind 1,15, 
pp. 17 f.) which are virtually identical with our reconstruction, including separate 
estimates for real and imaginary parts of the series at the end. Also, there is a 
very brief discussion of the series for the derivative. The formula does not appear 
in Riemann's publications, nor did it become a standard part of his lectures. 

Riemann never gave a t h e o r y  of real or complex power series, in contrast to 
[Cauchy 1821]. His treatment of series in the lectures seems to have been cursory, 
and some of the copies made by his students display errors even in fundamental 
statements: for example, as a general condition for convergence they have that 
S,+m - sn must converge to 0 for n ---> ~, for each value of m. Here, sn denotes 
the partial sum [Neuenschwander 1987, 35]. 

A careful statement of the Cauchy convergence criterion can be found on an 
undated sheet (Cod. Ms. Riemann 23.4, fol. 18): "That an infinite series has a 
value can be said only if the sum s, of its first n terms depends on n in such a 
way that s,, - s, will become infinitely small if both n and n' become infinitely 
large; i.e. if any positive nonzero quantity 8 be given, one can always find a 
quantity v such that, if both n and n' are greater than v, that is, n' > v, n > v, 
then, if abstraction is made of the sign, s, ,  - Sn < 8." (See Appendix [C].) 

One of the raisons d'rtre of power series in Riemann's introductory lectures is 
analytic continuation, and for that purpose it is useful to know that O is determined 
by the singular points off(z) .  There is no need to know P as a function of the 
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coefficients. In the lectures of 1856, the power series expression of a function is 
merely instrumental. At the beginning of several of the lectures, he underlined 
that there was no need to have a function given by an expression. The class of 
analytic functions is primarily defined by the existence of f '(z), and not by the 
existence of local power series representations; and each single function should 
be characterized by the locations and types of its singularities, and, again, not by 
some explicit expression. (See Appendix [D].) 

As was pointed out in [Neuenschwander 1980, 1981, 1987], one should not 
conclude that Riemann tried to avoid power series as a tool. Rather, we share 
the following claim [Gray 1986, 32]: "Riemann was prepared to use power 
series or Fourier series methods to express a function locally. He described such 
methods in his Theorie derAbelschen Functionen of 1857 as standard techniques." 
To an even greater extent, these remarks apply to Riemann's lectures of later 
years. 

3. WHY DID CAUCHY'S FORMULA FALL INTO OBLIVION? 

No careful reader of the Cours can overlook the formula for the radius of 
convergence of power series [Cauchy 1821, 151,286; application on p. 399; related 
results on pp. 132, 143,280--the corresponding pages of tEuvres (2), Vol. 3 are 
136, 240; 329; 121, 129, 235]. The formula for complex power series (p. 286) is a 
corollary to the most general version (p. 280) on series with complex terms whose 
absolute values are p,: let A -< ~ be the limit or the greatest of the limits of the 
sequence _l/n. then the series converges (diverges) ifA < 1 (A > 1). Pn 

Riemann borrowed the Cours from the University library in January 1847, and 
he may or may not have remembered the results of Cauchy. In any case, his proof 
is an improvement: the auxiliary functionf(m), which was not in the Cours, helps 
to make the argument understandable. 

We saw that Riemann had no use for the formula in his approach to complex 
functions. On the other hand, those who were mainly interested in tests for 
convergence could easily avoid the clumsy "greatest of the limits": A < 1 is 
obviously equivalent to the existence of some q < 1 such that p~/n <- q for all 
n => no; and A > 1 is a very special case of series whose terms do not converge 
to 0. It follows that Cauchy's formula, and even his more general version on 
p. 280, are of little practical value. 

Still, one might wonder why the formula was not hailed by those who--like 
the Weierstrassians--considered power series to be the basic class of functions 
in analysis. The Weierstrassians made much ado about those completeness proper- 
ties of the real numbers that had been obvious banalities for Cauchy and Riemann. 
They really should have welcomed the formula--but they did not even look for 
it! 

Hadamard, at the age of 22, stated and proved the formula in a paper presented 
by Darboux [Hadamard 1888]. His objective was to correct the proof, and general- 
ize the result, of [Lecornu 1887]: If a,/a,+~ or a~ TM has a limit z0, then z0 is the 
only singularity of the series on its circle of convergence. Hadamard's proof of 
the lim-sup formula is correct and straightforward, though less elegant than 
Cauchy's and even less general. 



68 NOTE HM 21 

Neither Lecornu nor Hadamard seems to have been aware of earlier work, and 
even during the following four years, Hadamard did not look very carefully into 
earlier texts. In any case, he failed to mention Cauchy as the discoverer of the 
formula. In his introduction to [Hadamard 1892], he says: "Since the works of 
Abel and of Cauchy, one knows that to each function which is regular in a certain 
circle there corresponds a Taylor expansion, and vice versa." He underlines 
that Weierstrass and M6ray define a function by that series expansion. We may 
conclude, therefore, that the Cours was, by the end of the 19th century, of little 
influence. 

APPENDIX: EXCERPTS FROM RIEMANN'S NOTES 

[A] NSUB GOttingen, Cod. Ms. Riemann 23.4, fol. 115 verso and 96 recto 

a o + alz  + a 2 z 2 . . .  

Eine Reihe die nach Potenzen fortschreitet h6rt auf zu convergiren ffir einen bes t immten 
Werth des Moduls yon z. Es h~tngt dies davon ab wie sich (rood an) I/n bei wachsendem n 
verh~ilt. Damit die Reihe iiberhaupt convergirt ist es n6thig, dab diese Gr6Ben nicht in's 
Unendliche wachsen 

f ( m )  >= (mod an) I/n, n > m. 

m < m'  f ( m )  >= f ( m ' ) ,  f m  nie zunimmt. 

m = x  

limf(m) = 8, der gr6Bte Werth denf(m) nicht erreicht. 

It is not clear that f (m)  denotes the least upper bound. This is indicated, at the 
end of Riemann's preparations for the preceding lecture, on fol. 115 recto: 

Es h~ingt dies davon ab, wie sich (mod an) ~/" bei wachsendem n verh~ilt. 

f ( m )  >- (mod an) I /" ,  f ( m )  der kleinste Werth, welcher diese Eigenschaft besitzt. 

n > m .  

f ( m )  eine Function, welche nie zunimmt. 

m = ~  

lim f ( m )  = 8 = f oo. 

f ~ der gr/SBte Werth, den sie nicht erreicht. 

Fol. 96 recto: 

Die Reihe convergirt dann fiir alle Werthe von z deren Modul <1/8, und divergirt ffir alle 
Werthe deren Modul >1/8. 

The remainder of fol. 96 recto contains the "proof without words" as printed in 
Section 1. 

[B] Cod. Ms. Riemann 23.4, fol. 198 recto 

ao + a lx  + a2 x2 + . . .  

kann nicht unendlich groB werden / fiber alle Grenzen wachsen. 
p = dem gr6Bten Werth von ff-+an, wahrend n > v. 
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p n immt  immer  ab, oder  wenigstens  nie zu, wenn  v in ' s  Unendl iche wachst ,  l i m p  = P. Dann  
convergirt  die Reihe,  wenn  x < 1/0 xo < 1 .8  ein Werth,  so dab 1 > 8 > xp. Man  vergleiche 
die Reihe[n] 

a o  + a l x  + a2  x 2  + . . .  + an  Xn + . . .  

1 + B +  Bz + . . . +  3n + . . .  

so wird, in Folge yon 8 > xp, zuletzt + an x ~ < 3 ~ und folglich, [ . . . ]  3 > xXC-+a, und 
in Folge yon 8 < 1, Sm' - s m  unendlich klein. 

Riemann explains that s,, S,, S', denote the partial sums of ~'~,B m, Earn xm, 
E +- am xm (= Elamxm[) and observes that: 

Sm - Sin} 
S m, --  Sm,  

S.,. Sm 

~m __ om'  

s in ' - s i n<  1 - 6  " 

[C] Cod. Ms. Riemann 23.4, fol. 18 recto 

Von einem Wer the  einer  unendl ichen Reihe kann man  nur  reden,  wenn  die Summe  der n 
ersten Glieder, s n, sich mit n so ~indert, dab s,, - sn unendlich klein wird, wenn  sowohl  n 
als n '  unendl ich groB werden,  d. h. wenn irgend eine positive GrrBe B, sie sei, was sie wolle, 
wenn  sie nur  nicht Null ist, gegeben wird, so muB sich immer  eine GrfBe v so annehmen  
lassen,  daB, wenn  n und n '  beide grrBer als v also 

n '  > v , n  > v d a n n a b g e s e h e n v o m Z e i c h e n  s n, - s n < 8  wird. 

[D] Cod. Ms. Riemann 23.3, fol. 25 recto 

d. 5. Dec. 
U m  eine Funct ion  einer  complexen  Gr6Be v611ig zu bes t immen,  ist es durchaus  nicht n6thig, 
dab ein Ausdruck  der F[unction] gegeben sei, mit Hiilfe dessen  man  fiir j eden  W[erth] diet] 
ver~inderlichen Gr6Be den zugeh6rigen Werth  der F[unction] finden k6nne.  Wir haben viel- 
mehr  in der vorigen Stunde gesehen,  dab eine Funct ion einer complexen  GrrBe schon v611ig 
bes t immt  ist durch  gewisse Eigenschaften,  welche die Art  wie sie unstet ig wird, betreffen. 
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