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Foreword

The original impulse which led to the research incorporated in the following
essay was the desire to probe into the philosophical basis of concepts, especially
those of number, space and limit, which were the keystone of the immense
proliferation of mathematical discoveries during the 17" century. With wider
knowledge of the original texts, manuscript and printed, and through deeper
appreciation of the complexities involved, that impulse became modified into
a more restricted and concrete shape: the study of the particular mathematical
forms which developed in the 17 century with emphasis on their interconnec-
tions rather than on their philosophical aspects.

There were many reasons for this change of interest. In particular, there
exists a great richness of material bearing on developments in technique as
against a paucity of anything which can be interpreted as original comment on
underlying structure or methods of proof, and a change of viewpoint brought
with it an immense increase in study-material. Moreover, to some extent I found
myself captivated by the beauties and intricacies of solutions given to particular
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180 D. T. WairEsipE: Mathematical thought in the later 17tk century

problems—the BROUNCKER continued fraction is an example —which in the original
plan for study could have found place only as a set of unwieldy appendices.
But, above all, I became convinced that by the 17t century mathematical struc-
tures had become too systematised and too remote from any possible physical
origins to allow any further incursion of concepts from without, that mathematical
development took place almost entirely within its own tight field, and that there-
fore extended discussion of a philosophical background, existing or postulated,
would be largely irrelevant.

This is not to deny in any way the immense influence which mathematical
technique had in other fields, and especially, at that time, in giving a precisely
definable numerical basis to physical reality through closely tied concepts of
spatial and temporal dimension, force, mass and weight, and that with the
17" century quantitative rather than qualitative examination of natural phenom-
ena becomes significant. The crucial point here is that the mathematical
structures set up to mirror aspects of physical reality were taken over whole,
suitably and ingeniously interpreted but unmodified. Thus, NEWTON’s proof
that a point traversing an elliptical path is directed to a focus by an attraction
varying as the inverse square of its distance away from it is a strict deduction
from purely mathematical premisses, elaborated for the most part in Greek times
but with the novelty of a concept of geometrical fluxion due to NEwTON himself.
A great deal may be said in extramathematical justification of the physical inter-
pretation of this result—and was indeed said at great length at the close of the
172 century—but we can assess its mathematical importance and validity only
within the very narrow conceptual frame within which it was evolved.

Along with this virtual rejection of a viewpoint which emphasises extramathe-
matical aspects of mathematical advance, in the more technical, particularised
discussion given I have neglected a prevailing fashion which sees mathematics
as a mere handmaiden to the sciences, and the 17' century scientific achieve-
ment as a revolution in which scientific thought was freed from the largely sterile
dominance of scholastic authority under a universal guiding principle of the
primacy of theory induced from observed instances in phenomena. Though many
historians are now willing to search out the tangled complexity which is the
178 century scientific achievement rather than reinforce a simplicity which it
never had, to see the period as less original in thought than it claimed to be and
vastly more indebted to previous centuries—in short, to strip away all the irritat-
ing mystique which has in the past surrounded the ‘“scientific revolution” —
to consider mathematical development in the context of its scientific influence
seems too external a study. Rather, I have found myself returning to the detailed
analysis of mathematical concepts which has, since MONTUCLA, been characteristic
of the technical histories of mathematics.

In the two centuries since the Histoire des mathématiques was first pub-
lished the technical historians have, through repeated revision and addition,
gradually built up a store of hard fact together with exact reference tc original
manuscript and text. Such amassing of incontrovertible detail is possible in
mathematics, for centuries the model and inspiration of exact thought, —perhaps
more so than in any other intellectual study—but the danger of such an approach
is that our ideas on and evaluations of particular mathematical forms and periods
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of advance become solidified, that we continue to accept an undisputed historical
fact as important when it is completely trivial. The great need is for the con-
tinued introduction of mew approaches and fresh insights along with factual addi-
tions. It is perhaps fortunate, therefore, that with the rapid growth of mathe-
matics the all-inclusive descriptive account of development, for so long the
historians’ ideal, is no longer possible. Today a growing importance, reflected
in the increasing number of histories of particular mathematical concepts, is
attached to the historical study of methods in mathematics, an approach in
which details, rather than existing as the primary object of study, are chosen to
highlight significant points and aspects of conceptual development. There, how-
ever, the tendency is to be imprecise—to tailor the niceties of historical develop-
ment to an oversimplified interpretation of available fact, disregarding incon-
sistencies as unimportant if not trivial. The great problem would appear to be
to isolate significant trends of development without denying—and leaving the
way open to modification by—the richnesses, idiosyncracies and reduplications
which seem concomitant with any widening of the boundaries of human experience,
and within the context of 17 century mathematical advance I have tried to
resolve it. '

In this essay a detailed analysis is given of aspects of later 17 century
mathematics, some of which—especially the calculus—have been extensively
studied, while others—such as synthetic geometry—hardly at all. Wherever
possible manuscript and original printed material has been used to give added
insight into more familiar sources. The restriction of geographical area to Britain
is made largely to give a workable study-field rather than to insist on the
separateness of English mathematics in the period. In fact, of course, many of
the English mathematicians received a training on the Continent—as JAMES
GREGORY—or through Continental literature—as Wartis and NewTtoN—and
English mathematics is to be characterised more by certain localisations of
interest than as a separate entity. Further, in many cases it has been im-
possible to give a comprehensive discussion except by including details of non-
English developments.

To some extent the verbal text is independent of the numerous examples
included in it. These, however, do something more than illuminate the general
themes developed—by their mutual dependence on each other for proof they
impress the fact that mathematics had then become an integral structure. More
often than not a sketch of the proof given—and where necessary a complete
account—is inserted as well as a description of the result itself. With few ex-
ceptions historians have in the past considered it not very important to study
outdated forms of proof, considering them-—if at all-—the subject matter of
logic and preferring to substitute modern proofs. From the present viewpoint,
however, the proof-structure is at least as important as the particular result
obtained by it, and it becomes possible many times to see how the inadequacy
or lack of proof-structures conditioned the development of whole classes of results.
For the most part—notably in examining the method of exhaustion—where the
original notations would seem to obscure ideas which can be clarified in appropri-
ate symbolism, anachronistic notation is used. This concession to concise ex-
pression and to nnderstanding was not made without hesitation, but rather than
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182 D. T. Warresipe: Mathematical thought in the later 17th century

become involved in an intricate study of the modifying influence of symbolism
it seemed preferable to substitute a cautious use of modern notation for the often
unnecessarily cumbrous original.

One final personal remark may be not out of place. Working with a wide
range of written and printed material, it is very tempting to base a final judgment
on the written word alone (in the form of reference notes) without trying to
recapture the thought which underlies it, to write mere textual criticism without
attempting a wider view. The word, whether in print or manuscript, is there
before us, pleasantly concrete and unchanging, fixed in form but for a possible
dubious reading, misprint or contradictory alternative draft. Its existence is
independent of any commentary we may choose to make on it, and it must there-
fore be treated with the utmost respect. In contrast, the thought which a word
is designed and chosen to convey seems often a vague, fleeting and almost illusory
thing, rough and inexact in the freshness of inspiration and so often seeming to
escape the net of a precise definition. Indeed, the very independence of a word
form with its attached layers of conventionally accepted meaning can make any
adequate expression of the thought almost insuperably difficult. But we must
try to go beyond the written word, accepting its inadequacy as a means of expres-
sion, and-—since there can be no personal appeal to the author for clarification
of a 17% century text—make a leap into darkness, however considered, in the
attempt to bridge the chasm between word and concept. From growing familiarity
with the work, especially in manuscript, of individual writers and with the effort
to see into their minds there appears gradually, along with the excitement of
recreating a process of thought and the pleasure of seeing a way through some
difficulty, a very complex web of impressions and convictions, barely tangible
and ever ready to be broken, which it pleases us to see as the truth. To penetrate
further into this process would be to enter on a study of the psychology of under-
standing and belief, but unless we use the intricate pattern of knowledge, often
felt as much as intellectually perceived, which crystallizes out our criticism may
often be inadequate. Not always may we be able fully to document some insight
—though we must always try—and in the absence of a factual basis it can seem
worthwhile to formulate hypotheses.

In conclusion, I am much indebted for material on NEwToN’S mathematical
thought to original papers in the Portsmouth Collection deposited in the Uni-
versity Library, Cambridge. Other acknowledgements are made in footnotes to
the text and, more generally, in the bibliography. I would like to acknowledge
my debt to my thesis supervisor, Dr. M. A. HosKIN, for the warmth of his encour-
agement at all times, and to Professor R.B. BRAITHWAITE, who sponsored me
in the all-important first year of my research. Finally, I extend my thanks to
the librarians of the University Library, Cambridge, of the Bodleian, of the Bri-
tish Museum and of Trinity College, Cambridge for the generous access to original
documents and rare texts allowed to me.
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1. The ‘““mathematickal art’ : basic elements and philosophical attitudes

At each except the most primitive level mathematical thinking has been
something more than a mere calculating routine whose only criterion of value
is that it gives an answer to a problem. Since Greek times each succeeding
generation has inherited an increasing bulk of concepts, techniques, unsolved
problems and paradoxes, often mingled in a bewilderingly disordered way.
Above all, at the beginning of the 17 century the inheritance was almost too
rich and too confusing, compounded of elements from Greek, Arabic and medieval
sources as well as from contemporary Europe which were part mathematics,
part philosophy, part religion, part mysticism, part literature. It must have
seemed at times an insuperable task to see a way through it all, but within a
century that great mass of inconsistent elements had formed a richly suggestive
amalgam which was the foundation for the more unified mathematical advances
of modern times. Since the 17 century there has been no significant external
influence on the growth of this European tradition of mathematics, and with its
roots now spread throughout the world, none would seem possible—which takes
from its colourful side perhaps, but adds immeasurably to its firmness and
solidarity.

As a preliminary, however, to a discussion of certain aspects of the contri-
butions of the 17t century to this tradition— particularised, though not absolutely,
to the latter part of the century in time, and to the school of English mathematics
which centred on Cambridge, Oxford and London in geographical location—an
outline of the basis on which these achievements rested and depended is not
out of place.

The clearer insight into proof structures and deductive procedures which has
come with the vast elaboration of techniques of logical exploration in the last
few decades now allows us to see certain tendencies as valuable and to ignore
others as being merely the product of muddled thinking if not incomprehension,
But its very success in exact symbolic formulation of most of the classical logical
forms, its notational facilities which allow us to see the nature of a block to a
process of thought and its axiomatic formulation of conditions which can remove
such a block has, in one sense, made it difficult to see the value of outdated and
inadequate forms of proof. In particular, since we are now able accurately to
define in some suitable notation all the proof structures used in mathematics,
we tend to judge past attempts at such definition by more or less the same stand-
ards, criticising a proof, perhaps, because an unstated axiom is used implicitly,
or a deductive procedure because no exact definition of a limit procedure is formu-
lated. We tend, too, to assume that mathematics has always been developed in
abstraction from any model other than a logical one, forgetting, for example,
that before the 19" century geometry was in part developed on the basis of
conventional ideas of real physical space, and that it might in some ways be more
fitting to see it as a theory of allowable transformations in space in the period
before modern axiomatic treafments were developed. In fact, extramathematical
(‘ psychological”’) considerations still play a large role in 17 century mathematical
procedures, but thereby compensate for the apparent lack of rigour or loose
assumptions rather than invalidate the proof forms used.
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To one accustomed to the idea that exact proof-trees shall be set down in
rigorous mathematical argumentation very few proofs of any kind in classical
mathematics will be allowable, and certainly none were gi{ven in the 17 century
on any but the most elementary numerical level. Rather, we would do well to
criticize the form of a 17™ century mathematical proof from the viewpoint that
it is a psychologically satisfying sketch and no more. Such a proof does, in a
very strong sense, prove a result which we find valuable and new (if only in the
sense of not previously being seen logically to follow from the given structure),
and in historical fact very often mirrors more adequately than a tight and rigorous
modern form the thought-processes which led to its formulation. Mostly, too,
it has a directness and immediacy—even a warmth and guilelessness—which is
very often lacking in the cool surgical precision of its modern equivalent, and which
is to be appreciated only-through familiarity with 17 century mathematical
writings. Perhaps the precision and rigour of the modern proof is obtainable
only by sacrificing the lack of generality which is so often the basis for such feel-
ings of immediacy, but it remains true that the particular results obtained by
such methods seem largely justified at a heuristic level by the forms of deduction
which were historically given for them and by which they ‘were in most instances
derived. It is unfortunate only that the plausible is not always true (or, at least,
not probably true or false).

Those 17% century authors! who tried to make precise the nature of mathe-
matics and mathematical argument for the most part accepted classical Greek
theories of causality and proof. Partly this was due to the continued veneration
of all things Greek, but the need for justification of deductive procedures had
been felt from early Greek times. Whatever the debt to previous civilizations?,
Greek thinkers had squarely faced questions of mathematical existence, the nature
of mathematical truth, the cogency of proof and its connection with the allied
philosophical concept of causality; and the views of ARISTOTLE in his Organon
and Physics, and to a lesser extent of PLATO in his Republic, but above all the
model mathematical text of EUCLID’s Elements influenced attitudes to the nature
of mathematics over the next two thousand years. ARISTOTLE’S main object3
had been to codify something of the subtle and intricate way in which verbal

1 In England especially Barrow, WaLLis, RarasoN and NewToN—specifically
(Barrow) LM, given in 1664 — 1666 as the Lucasian lectures at Cambridge; (WALLIS)
MU and institutio logicae ... which is virtually a university textbook on ARISTOTLE’s
syllogistic canon, with medieval clarifications and additions of ““fallacies” and ‘‘di-
lemmas”’; (RarHSON) SR; and (NEwTON) AU, especially preface and the introduction
to ‘the appendix aequationum constructio linearis (279ff.), and various drafts of an
essay on proof-methods by analysis and composition in CUL Add. 3963.

2 Bruins, E. M., in: On the system of Babylonian geometry. Sumer 11 (1955):
44—49, developing ideas of F. THUREAU-DANGIN in his Textes mathématiques baby-
loniens, Leyden 1938, traces the beginning of a deductive system in Babylonian
mathematics on the basis of extant texts containing area-formulas. Arguing that a
concept of similarity and proportion is implicit in them and keeping in mind that no
Babylonian words for such concepts as “angle’” and ““parallel” exist, he reconstructs
a plausible proof of ‘“PyTHAGORAS’” theorem connecting the sides of a (EUCLIDEAN)
right triangle.

3 Cf. J. Lurasiewicz: Aristotle’s syllogistic from the standpoint of modern formal
logic, Oxford, 1951; and J.M. BoceENsKI: Formale Logik, Miinchen, 1956: 47—114.
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language communicates meaning and especially the concept of propositional
truth, and to that end in his Organon had developed a class-calculus theory of
the syllogism. Elsewhere, but especially in the Physics, he had formulated views
on number and infinity which were to influence medieval attitudes véry strongly,
and to be passed on to 17" century mathematicians through the scholastic com-
mentaries rather than directly. PLATONIC viewpoints, after a lapse from favour
in the later medieval period, became influential again with the Neoplatonist
movement of the Renaissance, and most 17% century writers find PLATO’S
theory of ideal and real and the limits which his philosophy puts to sense-percep-
tion not unattractive. EucLiD, building on the work of Eupoxus and other
unknown systematizers, had restricted himself in the Elements to a specific
programme which had for its ideal—if not wholly successfully carried out—an
elaboration of elementary geometry on the basis of stated axioms (which were
to be accepted as “self-evident’’) by deduction procedures which were those of
any reasoned proof. The brilliance of his achievement made the Elements a model
of mathematical reasoning and ome still accepted as a guide throughout the
17t century, while the idea of axiomatic deductive proof, implicit only in the
Elements but discussed explicitly in Greek, Arabic and European commentaries
became an acceptable part of 17® century mathematical propaedeutic. Coalescing
together in the 17™ century, these three approaches to the nature of mathematics
became a general eclectic attitude, differing to a greater or less degree with the
individual exponent, but comprising well-defined elements. Mathematical
reasoning was seen as a mental art rather than a physical one, with all the causal
force and necessity and empirical unverifiability of a theoretical process, and
mathematical creation took on a PLATONIC coat of inspiration from a divine
intelligence,-while a mixture of EUCLIDEAN axjomatics and ARISTOTLEAN syllo-
gistic (in its developed scholastic forms) came to be accepted as a basis for practical
reasoning.

Unfortunately, this fusion of classical theory seems to have been more a
veneer of respectability than a living creative exploration of mathematical reality.
Certainly, unlike the development of techniques of mathematical logic in the past
century, it seems to have contributed nothing to mathematical advance, and is
treated with mere casual respect by the professional mathematicians if not by out-
right impatience?. Typically BARROW?® discusses the concept of mathematical
proof and logical deduction, seeing the subject matter of mathematics as lying
in the abstractions from the particular properties and affections of really exist-
ing phenomena—a process of abstraction not to be explained solely as a numerical
induction from particular instances—and emphasising that mathematical struc-
ture must mirror that which exists as a basis for the real, perceptible world.
Granted that the argument is put too baldly—Bagrrow, in fact, argues the case
with the precision of a modern linguistic analyst, and very often in strange

1 As the young JamEs GREGORY wrote: “‘I warn students of mathematics how
futile is the attempt to promote mathematics by the aid of fictive philosophical
reasons which are useful merely for influencing the common credulous throng; for in
mathematics there is no logic except geometry, nor any philosophy which by geometry’s
help is not raised on infallible experiments” (see VCHQ: proemium: vi).

5 LM: (1664): lectiones 4 —8.
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anticipation of his verbal fluency—there yet remains little for the practising mathe-
matician but a faith on which to live, and certainly no guide to practical prosecu-
tion of the subject*. Moreover, the 17 century mathematician had faith enough
in his own ability and the richness of the subject matter remaining to be explored
not to be worried about the nature of proof and deductive cogency. For him,
a series expansion showed the value and importance of mathematical investigation
more than any inquiry into foundations, and it is significant that BARROW in
his later work became interested in the creation of original mathematics to the
exclusion of developed thoughts on the nature of mathematics?.

It is easier and seemingly more worthwhile to inquire into the particular
definitions and concepts which were accepted as basic and necessary in the study
of more complex mathematical forms.

The concept of (positive) integer is fundamental in all numerical mathematics,
and the standard way of introducing it is through a model in which some quantity,
suitably defined, is used as a unit on which to measure (““count out”) the rest.
WaLLIs gives a typical treatment in his mathesis universalis® suitably ordering

* This is not to deny that such a philosophical basis afforded very often a neat
tie between metaphysics and psychology. The PrLaTtonic theory of sense-perception,
insisting on the limits of observed reality and the supremacy of the ideal theoretical
structure on which our perception of reality is based—as a flickering shadow cast
by a fire on a wall, in PLATO’s analogy, merely reflects the nature of the body casting
the shadow—is attractively joined with the Aristotelian concept of actual (limit)
infinity (which is strictly unobservable and so non-admissible), and potential (un-
boundedly large) infinity which mirrors a popular 17 century attitude that by suit-
ably controlled experiment we can reach ever nearer to absolute truth. Closely
allied was a growing feeling that physical space, structured mathematically, extended
into infinity (a view itself justified by an appeal® to the concept of a free variable)
—a scheme in which such conventional attributes of God as his being absolute,
unknowable, all-including and all-pervading had a natural place. Indeed, on very
much this basis is developed both the view of God in PascaL’s Pensées and the concept
that God is to be equated with the whole of infinite space as a universal”.

The view that mathematical structure should, in some way, mirror physical reality
is, of course, basic to all schemes which apply mathematical techniques in analysis
of the real, observable world. But there is something of the flatness and boredom
of the obvious truth about it which can only be removed by making precise the nature
of such contact of mathematical structure with observed reality, and on that point
we would not expect to be enlightened by BENTLEY, RaPHsoN and SaAMUEL CLARKE
(proponents of such views in the period in England) who are derivative in their mathe-
matical ideas, however creative and provoking in the fields of phllosophy, religion
and literary criticism. As the development of symbolic methods in mathematics was
to show, and especially the slow recognition of non-EUCLIDEAN geometries as admissible
mathematical structures, the view that mathematics be tied always to existing per-
ceived reality could become a block to conceptual expansion. (It is irrelevant that
non-EUCLIDEAN structures were to be admitted into physical explanations at the
close of the 19tk century. During the period in which non-EucLIDEAN concepts were
rejected from mathematics on the basis that the parallel postulate was ‘‘self-evident”’
and necessary, perceived reality was accepted axiomatically as EUCLIDEAN.)

¢ For example, in RAPHSON’s SR cap. 3: 37—53: de infintto abstracte considerato.

7 See A. Kovre: From the closed world to the infinite universe, New York, 1957:
passim: and Max JammEeRr: Concepts of space: Harvard, 1954: ch. 4: The concept of
absolute space.

8 Especially in his LG.

® MU : chs. 10ff.
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the individual integers by n<.n--1 (and allowing extension to negative integers
by: x=—a for x+a=0) and giving them conventional names, we can arrange
them arbitrarily into sets, and then use the (ordered) integers to count these sets.
So1® WarLls divides 27 units, numbered ‘1’ to ‘27’ into 3 sets each of 3 sets of
3 units, and again into 6 sets of 4 units with 3 units over. Clearly, definitions of
addition and multiplication are immediate (together with their inverses, subtrac-
tion and division): When

a set with 4 units, {A>, <3

is added to a second set |

1 )
with y of the same units r
{uy, the resulting set <D <5 >
will have A4y of those  —— 3 [ { o —+ 3

units, and we denote it ¢, 5y ) < B D W D W
by (A4uy;andsimilar- c22 oo o002 CTUD 000 CToo 022

000 000 000 0600 000 200 000 000 000

ly we can divide some R S o J )
set of Ap mnits into 4 ¢4y, Gy W W W WO WO
sets each of A units {(or . N N N L )
4 sets each of y units) or
<65 <>

oy = uy X LAY
= Ay X<y KA

Denoting the set (1) by A, we can then codify the four admissible operations of
arithmetic in the following rules, assumed if not stated explicitly in one form or
another by all 17" century mathematicians:

Adu=p+4, AXu=ux2a,
At{p+y) =0A+u) -+, AX (g Xv) = (A Xu) xv,
AX(u+9) =Axpu+ Axv, [(p xv)* = u* x %]

(where p*=pu Xu X X --- Xu, A times). Further, there are three special integers,
0,1, co which satisfy these operation rules in an exceptional way:

A+0=24, AxX1 =14,
[A+ (—o0) =—o0], Ax0=0,
At oo =00, AX o0 =00,

It is in these three integers that all the difficulty of the concept of integer lies.
With the modern strict distinction between a set and its members, it is perhaps
difficult to feel the confusion which arises when the distinction is not made.
An element which does not exist cannot be used as a unit to count off the members
of a set, and yet the null set <0} is, in modern treatments, used to count off the
members of a set. WALLIS in his introductory text on mathematics® takes up
this point, and discourses at iength on the difference between no quantity (“nul-
lum”’) and the property of being no quantity, of being a member of the zero class
(“nullitas”). Similarly, a careful distinction between one quantity (“unum”,

10 MU : ch. 11,
U MU : ibid.
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an element) and the property of being unity (“‘unitas”) is drawn and used to
resolve the medieval antimony (ARISTOTELIAN in origin) which argues that unity
cannot be divisible when to divide it increases its number, which is absurd—an
argument which confuses a number-element and a number-set of unity. Such
difficulties are largely the result of verbal muddle, and, in the absence of a sym-
bolic notation which can clarify them in an obvious way, number-mystical con-
cepts of a type popular in logical texts of high scholasticism are easy to introduce
but difficult to refute convincingly by verbal argument.

It is, however, significant that the integer was largely accepted in the period
as a self-evident quantity whose importance lay in its being useful in computation
and numerical mathematics generally, and WaLLIS" detailed discussion is quite
untypical*. The professional mathematician especially, in comparison with
the rich and abundant consequences which he could draw from the concept, saw
inquiry into its basis and the distinction between an element and a class as being,
if not reprehensible on an intellectual level, as trivial as logic-chopping.

The case was different with the notion of a general real number and the theory
of proportion built on it, which were widely seen for the genuinely subtle con-
cepts they are. Unlike the integer, dealt with simply by defining it operationally,
the standard 17 century introduction to the general real number was through
the geometrical model of an (infinite) line-segment!? though this is sometimes
lightly disguised as a continuum of time (*“duratio”). The fundamental idea is

0 4 X
10) (1) (x)

that we can take a fix-point O on the given line-integral, the distance 04 from
which to a second fix-point 4 on the line is taken as a unit to measure the distance
(%) from O to any third point X of the line. When 0X is an exact multiple of 04,
(%) will be an integer, and using this as a basis—in particular, the fact that the
integers are naturally ordered by —oo< -+ << —1<0<1< -+ < +o0o—Wwe can
set up an equivalent order of a denumerable number of points X [where (x)
is integral] of the line. Immediately, the way to order all points X of the line
is suggested by the geometrical concept of ““betweenness”’, and thereby the class
of integers is seen as part of (““embedded in”’) the class of reals—or, on the model,
line-segments OX which are of integral length (x) are part of the whole collection

0 A A X X 4 A,
. 1 U ) P\
(0) (L) (1) (a) () ) (&) A1)

of line-segments OX, (x) real. Specifically, a general segment OX of length (x)
is such that x is defined uniquely by being between integers A and A+1: A<z <
A+1, or, in the model, X, = (1)< X< X,=(4+1). Further division of the unit-
interval O4 into » parts (each of length (1/»)) allows a narrower inequality

—’3— <z ﬁilj—and onthemodel X1 = (—';i) <X<X;= (.”_':—1) (where u is the unique

* So BArRrRoOW in his lectiones mathematz’cae, probably a Cambridge equivalent to
WatrLis’ introductory lectures, skims lightly over the concept.
12 Compare WaLris MU . ch. 14; Barrow LG lectio 1.
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integer such that A» <u,u-+1=(A+1)» which has X; <X < X;). Finally by
choosing a sufficiently narrow measuring-interval 04’ = (1/v), we can find points
on the line which approximate to X with any desired accuracy but which still
satisfy the ordering (inequality) X; <X < X;. (When, for some integer », x =pfy,
we have a general rational point X.) It was, of course, an achievement of early
Greek mathematics to show that--assuming the constructions of EUCLIDEAN
geometry, and especially “ PYTHAGORAS'”’ theorem on the sides of right triangles
which defines its metric—points on the line exist which cannot be measured in
the ordering by any length (ufy), u,v integers*, and the Eupoxian formulation
which, as given in EucrLIiD Bk. 5, overcame the difficulty’® was accepted in
17'" century treatments as standard. (BArRrRow thinks its subtlety great enough
to devote almost the whole of part 3 of LM to its explication4 and on the Continent
ARNAULD in his Elémens'® discussed it at equal length, if less thoroughly.) On the
geometrical model the two complementary forms of the EUDOXIAN definition **
of real number seem more heuristically plausible than in an abstract symbolism,
and it is in this way that BARROW introduces them in his lectiones mathematicae.
In this formulation

. m n
w«=p if (m,n)(oc%7-z~ﬂéﬁ);
and
(Em"n')(oc> Z,gﬂ), or
a>f if .
n

(Em"”, n") (ocg -

V
=
g

"

3

which on the model straightforwardly expresses the coincidence, or separateness,
of the points (), (B): the points («), (f) are separate, or otherwise, according as
we can, or cannot, find a third point (»#/m) which lies between them, and if we can
find such a point then, say (&) > (n/m) > (8), this defines («) > () and conversely.
The Eupoxian definition can then be used, as in the Elements, to prove all the

* Specifically, EvcrLip Bk 10 shows that, for » a non-square integer, (]/ﬁ) is such
a point.

** Two reals a =a/b, f =c¢/d are equal if for all integers m, %, ma = nb if and only
if mec=mnd; and unequal if we can find integers m’, »’ such that m’ e =m’ b while
m’c<n'd (or, equivalently, we can find integers m”’, #’’ such that m” a> »"’b while
m'c En"d).

13 Modern research suggests that the discovery of such ‘‘irrationales’’ —numbers
which cannot be defined as the ratio between two integers and so cannot have any
ratio at all in the Greek sense —occasioned a crisis in the 5th century BC, and that a
first inadequate way out of the difficulty was by a continued-fraction approximation
approach, later discarded when the improved EupoxiaN definition was introduced.
Cf. K. von Frirz: The discovery of incommensuyability by Hippasos of Metapontum.
Annals of Math. 48 (1945): 242—264; O. BECKER: Eudoxon-Studien, I —IV: Quellen
und Studien zur Geschichte der Math. B 2 (1933): 311—333, 369—387; 3 (1936—):
370—388; and B.L. vanx DER WAERDEN: Ontwakende Weienschap (Science awaken-
ing): Groningen, 1954: chs. 4, 5. Traces of the early continued-fraction theory have
been found in Arabic commentators—see E.B. Prooiy: Euclid’s conception of vatio
and his definition of proportional magnitudes as criticized by Avabian commentators,
Rotterdam, 1950.

4 LM pt. 3 (1666): lectiones 3—38.

15 ARNAULD, A.: Nouveaux élémens de géoméirie ... Paris, 1667, 1683.
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other properties of reals. So BArRROW!® gives the proof that, where a, £, y, 0
are reals, then a>f-=-y>§ where a/f=7y/8: for otherwise we could find integers
m, n such that moa>nf with my <nd, which defines a/f>yp/é («>8,y=4
implies that o/f>1=y/6).

The most significant property of the real number is that it satisfies the oper-
ational scheme for integers!? and the importance of placing it on a rigid basis
is that the whole of analysis restricted to real functions can be developed—if not
with advantage—by suitable definitions using that operational scheme as foun-
dation*. Much of 17 century mathematical work was carried out, if not
rigorously, very much in modern style, with suitable introduction of number
bases (which implicitly contain a concept of successor function when systematic
notation is used to denominate them) and even, as we shall see later, of simple
functions. However, along with such analytical treatment, many developments
were still made using the restricted but equivalent form of proportion theory,
especially in geometry—a theory perhaps unjustly treated by recent writers?s.

Apparently the theory, like so many aspects of 17 century mathematics,
Greek in origin®®, had developed as an offshoot of the concept of ratio (defined
most generally between two reals). In particular by PYTHAGOREAN times two
proportions (dvadoyin) had been introduced to relate integers (and, by extension,
reals) 4, b, ¢, d, viz:

the arithmetic proportion (A4) (¢, 4; ¢, d) defined by
and a—b=c—d,

the geometric proportion (G) (a, ; ¢, d) defined by afb=c/d.
Closely related are the three means:

arithmetic mean (4AM)(a,¢) =0 when a —b=08—c,

geometric mean  (GM) (a, ¢c) =b when % = %

and
harmonic mean  (HM) (a, ¢) = b when % -t _ 1

(It is an immediate consequence that (4M)x(HM)=(GM)?, or that (GM) is
a geometric proportional between (4M) and (HM).) In later Greek mathematics
other proportions?® of theoretical rather than practical importance** had been

* And was so developed before and during the 17th century, apart from the small
attention given to complex numbers in the theory of equations.

** It is provable that all such proportions can be defined in terms of (4) and (G):
a fact which mirrors the two basic arithmetical operations of 4, X.

18 .M (1666): lectio 8: 322.

17 See above.

18 For example C.B. BoveEr Proportion, equation, function: thvee steps in the
development of a concept. Scripta Mathematica 12 (1946): 5—13.

19 There is little accurate evidence, but the late Greek authority NicoMacHUSs
in his Eioaywyn dotdunrixr) (Introduction to Avithmetic): transl. by M.L. D’OoGE:
New York, 1926: 151ff. and his commentator IamMBLICHUS (ed. PisTELLI: Leipzig,
1894 : 103 ff.) credit the PyTHAGOREANS with the arithmetic and geometric proportions.

20 MicHEL, P.-H.: De Pythagore & Euclide. Paris, 1950: pt. 2: ch. 1, III.
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developed, but it was above all the geometrical proportion which, basic in the
EupoxiaN definition of reals; remained important in mathematics, and to a
lesser degree also the arithmetic proportion. Over the centuries operations per-
missible in connection with it were codified, and by the end of the medieval
period emphasis was placed on the especial importance of the operation “:”,
where a/b=c[d (or, equivalently, a:b=c:d), then b:a=d:c (invertendo), a:c=
b:d (permutendo) (2+b):b=(¢+d):d (componendo), (a4 —b):b=(c—d):d (divi-
dendo) and a:{a—b)=c:(c—d) (convertendo).Using these operations and one
final main theorem that, where (GM) (4, a,,...,a,)=(a,a, ... a,)"" and

(AM) (a3, a5, ...,8,) = Mn—m—ﬂ’i are generalized geometrical and arithmetical

means, then (GM) < (4AM), a powerful theory of inequalities can be built up
which are the equivalent of corresponding inequalities in real number theory.
So, for instance, there follows at once (HM) (a,, a,) < (GM) (a1, a,) < (AM) (ay, a,),
a4, ==4a,, an inequality extensively used in geometrical texts of the period. In
general, a surprising number of important mathematical developments arose on
the basis of proportion theory, and HuvGeENs?2!, JAMES GREGORY 22 and BARROW 23
made notable use of it in refining approximations to the length of the circle-arcs.
The typical proportion proof has a delightful symmetry, and its elegance, no
doubt, was one reason for its continued use. Further, there seems no reason why
proportion theory could not be extended by the introduction of suitable defini-
tions to cover most of the ground treated in classical mathematics by free-variabled
polynomials, though admittedly the extension would be unwieldy. It is, how-
ever, important to notice that the proportion theory was superseded not as being
theoretically inadequate but as cumbrous at a practical level. In comparison with
the computational facility of polynomial theory (which lent itself to computations
with the decimal-base Hindu-Arabic numerals) treatment by proportions seemed
relatively difficult and not worth the time needed to learn its manipulations. Its
arguments are indeed tricky*, and it is significant that BARrROW in his edition
of ARCHIMEDES (written perhaps about 1665) rewrites the ratio theory proof
forms of the original Greek text in the free variable notation which was passing
into accepted use, and indeed, when faced at one point in the text with a par-
ticularly involved form, cannot believe it the way of ARCHIMEDES' original dis-
covery and supposes the method of analysis used much nearer to the modern

* In particular, the inadequacies of verbal treatment made the distinction between
a multiple of a ratio (AX(a/b)) and the corresponding power ((a/b)*) very tricky.
Many medieval texts fall into the error of confusing the two2*—an error repeated
in the 178 century in the opus geometrvicum of GrEGory St. VINCENT®, an im-
mensely detailed work which had as its main aim the proof of the impossibility of
analytical quadrature of the circle.

2 In de circuli magnitudine inventa. Leyden, 1654.

22 A particularly fine example comparing a limit-sequence with the limit-sum
of a geometrical progression is given iu exfenso in ch. 5 (taken from his VCHQ).

28 Especially lectio 11: appendix of his LG.

24 See, for example, Richard SwiNESHEAD: liber calculationum. Venice, 1520:
tract 11: de loco elementi (36¥b—38va) passim.

B opus geometricum quadraturae civeuli et sectionum coni. Antwerp, 1647, especially
Bk. 11: prop. 53 (1132ff.); and the criticism by Huvcens in theoremata de qua-

dratura hyperboles, ellipsis et civculi ex dato povtionum gravitatis centro. Leyden, 1651:
app. *E&éraois cyclometriae ... Gregovii & Sancto Vincentio ... = HO 11: 315-—337.
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form*. Yet the theory on any evaluation was more than the minor branch of
elementary mathematics which it has today become.

Before, however, the theory fell into disuse many mathematicians were begin-
ning to realize the close analogy, pointed by proportion theory, which exists
between the operations of 4 and X, and which jumps to the eye when we set
down standard results in parallel columns:;

Adu=u+2, LxM=MxL,
Au+v) = Au+ Av, (M xN)t = M* x N%,
A+0=241, Lx1=L,

(AM) (4, p) =3 (A+ ), (GM) (L, M) = (L x M),

(4) (A py,0) =A—pu=v—0, (G M):N1)-=L-+M=N-=1,
to which we can add the arithmetical and geometrical progressions?

(AP) (A, p:x) = Atxxp, (GP)(L, M:K) .= LxM~,
*x=0,1,2,.... K=0,12,....

Thus, a result on the left side becomes a corresponding theorem on the right
where the operations 4, X pass into X and power exponents, and 4, pu, v, 0
become L, M, N, 1. We recognize the mapping as logarithmic—where A=1log (L),
u=log(M), A4+p=log(L xM), maps into L x M —and isomorphic **, but we do
not have to know the precise nature of the correspondence to feel the similarity
of pattern and a full realization of its existence is everywhere in the period.
So it was by analyzing the conditions under which (A4 pu) < (L x M) that NAPIER
set up his canon of logarithms?3, but that was only a beginning. We find a little
later that the correspondence is used virtually to set up dual theories (which are
isomorphic by the mapping), one of which is considered in detail while the other
is merely sketched in. As LEIBNIZ, on a theoretical level, puzzled over the simi-
larity of the two proportion-concepts, arithmetical and geometrical ((4)<-(G))?,
JAaMES GREGORY gave many of the propositions of his VCHQ in dual form3®
and MENGoLI in his geometria speciosa used the uniqueness of the isomorphism
to develop a rigorous basis for the logarithm on the model of the Eupoxian

* ... This is the exact equivalent of the proportion deduced by ARCHIMEDES
(and, to insert a general remark, it reveals sufficiently the sort of analysis he used;
for that he arrived at the result through application of those various compositions,
divisions, alternations and inversions he produces is almost beyond belief: and, if
he did so, it must be supposed by chance rather than by any design that he came on
the true solution, and that this happened time after time can scarcely be believed).”’ 28

** In fact, between the interval [— oo, +o0] and [0, co].

26 Aychimedis opeva ...: 33; commenting on ARCHIMEDES: Sphere and cylinder:
Bk. 2: prop. 5.

# See ch. 5.

28 See ch. 3.

2 Compare KARL Borp: Drei Unlersuchungen zuy Geschichte dev Mathematik.
Schriften der Straffburger Wiss. Gesellschaft in Heidelberg, No. 10. Berlin and Leipzig,
1929: 2 (5—18): Leibniz, Arnauld und de Nonancourt, especially 11 ff.

3 For example, prop. 21 <> prop. 22, prop. 24 <> prop. 25 under the mapping.
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definitions of equality and inequality for reals®. But perhaps most important
of all are the dual forms in which exhaustion proofs can be given, likewise iso-
morphic (and used implicitly by ArcHIMEDES himself in his various works?2).

Clearly, the way was open for a general viewpoint on algebraic structure, but
especially on isomorphic invariance. That it did not happen has no simple ex-
planation—partly, perhaps, the resistance of accepted ideas is to be blamed,
but it seems a more important hindrance was the sudden outpouring in the latter
half of the 17 century of a mass of numerical formulae and infinite sequences
which tended to draw the attention (and creative effort) of the few mathematicians
of sufficient maturity to build such a theory of abstract mathematical structure.
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The comment is general. The 17'™ century had bequeathed to it, especially
from Greek sources, a very rich collection of valuable remarks on points in
mathematics which it very willingly repeated but developed little. So, for example,
the concept of continuity was still universally treated as an unanalyzable concept,
to be expounded ostensively in some suitable model, or to be elaborated meta-
phorically. Thus NicoLAUs MERCATOR, in his introduction to the (anonymous)
elementary geometry text Euclidis elementa geometrica®™ conceives the image
of a stone dropped into a still pond, with ripples spreading out from the impact
point in ever-widening circles, to introduce a real-number measure into geometry.
Each point on a generating circle will, by its motion, traverse a continuous line-
interval, and the set of concentric circles will cover the plane of the pond’s surface
in a (polar) coordinate system. Further, two stones dropped into the pond
simultaneously will generate two separate concentric circle sets, corresponding
members of which meet in two points which will each generate a half-line (from

8L geometria speciosa, Bologna, 1659: especially bks. 4, 5.

32 See ch. 9.

38 Euclidis elementa geometrica, novo ovdine ac methodo feve demonsivata, una cum
introductione brevi qua magnitudinum ortus ex genuinis principiis et ovtarum affectiones
ex ipsa genesi devivaniuy. Londini, 1678: 16.
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O in the diagram). The example is repeated (though not exactly) by RAPHSON 34,
but neither attempts to abstract any general principles, relying exclusively on
an intuitive concept of continuous variation (Fig. 1).

Nor is there any real advance in—what might seem the exception— WALLIS’
treatment of the problem of the horn angle*35, where he sketches in a treatment
using ARCHIMEDES’ lemma38: for a<<b there is some » (finite) with na=5 (a, b
homogeneous magnitudes), and which therefore gives, in effect, the necessary
restriction for rejection that the angle measure be a real-number continuum.
Indeed, this recourse to ARCHIMEDES’ lemma is only the second of six arguments,
the last of which, where he argues that to admit the horn angle would be to deny
the optical properties of conics, is an incomprehending petitio principie. In fact,
allowing n-order differentials of the curves, it is possible consistently to define
A-sections of the horn angle A0B which, measured conventionally as the recti-
linear angle between the two (coincident) tangents to the curves 404’, BOB’
at O, is indefinitely small (and so zero in the limit). WALLIS, basing so much of
his argument on an uncritical appeal to experience, would never allow as meaning-
ful the concept of A-secting an angle of zero magnitude; and even in applying
ARCHIMEDES lemma introduces it on the same, unmodified viewpoint of an angle
as generated by the continuous motion of a line around a fix-point, attaching a
unique number out of the interval [0, 2a&]—or [0, o], allowing the concept
of periodicity. Apparently he does not realize that ARCHIMEDES’ axiom is a postu-
Jate to be denied at will (Fig. 2).

This same lack of rigour in basic definitions is probably a root reason why
such general concepts as function had still to be treated abstractly from geometrica
models at the end of the century, when a wealth of particular functions®? had
been found. So James GREGORY in VCHQ had tried to apply DESCARTES’
concept of an analytical construction?® to the quadrature of a conic segment,
seeking to show that such quadrature is impossible if we restrict ourselves to
sequences starting from areas of rational-measure. Since any area of rational-
measure is definable by (an infinity of) sequences of analytical operations from
any other area of rational-measure, it suffices to show the impossibility of qua-
drature in the case of a single sequence of analytical operations performed on
any given areas of rational-measure. It was easy enough for GREGORY® to

* In general, the angle between two (continuous) curves at a point where they
share a common tangent.

3¢ de spatio veali: 44ff. The concept of a concentric circle generator-system is,
of course, Greek—compare ProcLus’ commentary on EucLip Bk. 1 (French transl.
by P. vEr EECKE, Bruges, 1948), passim.

35 In his de angulo contactus et semicivculi tractatus, printed in operum mathematico-
yum pars altera, Oxford 1656 and republished with a defence in appendix to his Al-
gebra, 1685 - =" opera 2 (1693): 605—630; 631 —634 respectively.

36 DIJKSTERHUIS: Avchimedes : 146ff., see lambanomena 5 of Spheve and cylinder 1.

3 Especially those defined by limit-sequences: see ch. 5 passim.

38 That is, the construction of a number to be obtained from given numbers by
any combination of -+, X and root-extraction—c¢f. Descartes: Géomeélrie: - =+ Dis-
couys ... app. p. 237.

3 See ch. 5. GREGORY’s construction of the sequence he gives in VCHQ is a
generalization of theorems known widely in the 16th century —see TROPFKE, 4 (1923):
218—222. '
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define such a sequence starting with a circumscribed or inscribed polygon whose
limit is a general sector of a conic, and he seems to have thought that the fact
that the sequence was infinite was sufficient to show the non-analytical nature
of the sequence®. The inadequacy of the reasoning becomes clear when we have
a firm control over limit-processes, and rigorous proofs of non-analytical qua-
drature had to wait for stricter formulation of an analytical process in terms of
the zeros of the general algebraic polynomial. (Two converging sequences which
bound a given number (within an estimable error-range) are sufficient to evaluate
the number to any required approximation by ratios, but we cannot, without
further precision of the converging sequences, assume that an infinite sequence
defines an irrational number, and certainly not a transcendental one, as GREGORY
suggests.) :

One final aspect of 17 century mathematics is of a general importance—the
power which an adequate notation gives of emphasising and crystallizing thought-
patterns in a significant way. Itis a common, but none the less important, remark
that general calculus forms are not found historically till usable notations were
developed to express their intricate concepts, and that the general symbolic
treatments beginning in the 18™ century (and synthesized in the 19™ century
in such concepts as the CAUCHY-RIEMANN limit-sum integral) were dependent on
simplification and generalization of 17 century techniques; and the point is
true in general that notational improvement and conceptual mathematical advance
are concomitant.

Not all symbolisms were of course significant in that they gave new insight
into existing concepts#, for they were frequently introduced to make for easier
comprehension by simplifying the visual layout. This was, indeed, the explicit
reason given for their introduction in the 17® century, one which receives con-
crete expression in BARROW’S compressed and cleared-up university texts of
Evucrip (1674), and ARCHIMEDES, APOLLONIUS and THEODOSIUS (1675), typifying
a general movement which sought to substitute simplified, more adequate nota-
tion for the clumsy verbal—and heuristically implausible— Greek treatment.
But implicitly and at a deeper level such notational introductions often fixed
concepts on the outer borders of existing knowledge. Thus, the theory of continued
fractions—for instance, recursive definition of convergents—developed with the
notation which formed it#%; and the convergent analytical sequence given by
James GREGORY®® for deriving approximations to the area and arc-length of

40 It is, of course, a necessary but insufficient condition. BaArRrow, in LM (1666)
1: 175, falls into a similar but opposite error, arguing that, since it is possible to set
up an ARCHIMEDEAN lines a sequence of circumscribing and inscribing regular polygons
Sy, s, whose common limit is a general circle arc, then the general circle arc must be
rational when Sg, s, (and so all §;, s;) are.

41 For example, the simple transition from the ratio-forms of WarLis’ ¢:d and
BarRROW’S #: 6 into the modern constant z.

42 Convergents to unit continued fractions were first defined by DANIEL SCHWEN-
TER in his geowmetriae practicae novae ef auctae tvactatus, Nuremberg, 1618: 1: 58— 59,
and developed in his deliciae physico-mathematicae, Nuremberg, 1636: 111ff. and are
given for the general continued fraction, apparently derived by numerical induction
from the observed pattern of the first few convergents, by WarL1s in AI: prop. 191:
scholium.

4 In VCHQ and in extended form, in EG, passim.

Arch, Hist. Exact Sci., Vol, 1 14
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the circle and rectangular hyperbola depended in large part on the ambiguous
matrix form in which it is clothed. Again, many examples exist in the period
which reveal how notational lack could prove a block to advance. Bricgs surely
failed to give the general binomial expansion# because he used the inadequate
BoMBELLI ring notation for free variable (which had the triple function of distin-
guishing powers of the same variable, different variables and place-value in decimal
expansions) ; while the lack of a symbol for the cross-ratio of four points (together
with the fact that the harmonic case, —1, was treated separately in view of its
importance in conic theory)4s retarded development of a separate projective
treatment of geometry till the 19* century; and WALLIS’ inability to see the term
by term equivalence of the inverse of the BROUNCKER continued fraction for
O(==4/n) with LEIBNIZ’ limit sum-sequence for sz/4 is a failure to apply the
recursively-given general convergents to a continued fraction developed in his
A%, one which reflects the inadequacy and complexity of his notation.

In summary, we can say that basic concepts were not investigated in the
17% century with any insight, but that an adequate basis for mathematics, accepted
as a matter of practice, did exist which was little different, if at all, from that
explored in Greek and medieval times. The 17% century is, in mathematics, a
period of rapid advance using valid but tenuously defined concepts as a basis
for a rich and varied technical achievement. The greatness of that achievement
is to be evaluated by a detailed study not of what 17® century mathematicians
thought but of the evolving pattern of what they did, and to that end the rest of
this essay is an attempt to isolate significant trends in that achievement.

I1. Universal arithmetick and specious algebra

Throughout the 47 century algebraic studies were largely restricted to
their traditional field of the theory of equations.? In particular much attention
was still given to the cubic and quartic equations for which general algebraic
reductions had been given in the 16 century, and a quite disproportionate
amount of time was spent in developing geometrical constructions for their real
roots as the cut-points of two conics.? What from the conceptual viewpoint is
significant in all this is not the detail of the techniques evolved to deal with par-

4 See ch. 4.

4 See ch. 6.

48 See mnote 42, and compare WarLis' letter to CorLLins, 16 September 1676.

2 } e
Rigaud 2: 598—600. Specifically, where @;=14 21 T 23_1 R (2 3 1
X, = Z [(— 1)1 x 1|, then X;= 1 for each 4, and their common limit as
157=i 251 P
becomes infinite is 1/® (= 1/[] in WALLIS’ notation) =X =1z

1 The word ‘“‘algebra’ derives etymologically from ar-Hwarizmr’'s 9th century
treatise hisab aljabr w’'almugabalah (de vestauvatione et de appositione), on restoration
and reduction of equations.

2 The definitive treatment of this was given by PuiLipPE DE LA HIRE in La con-
struction des équations amalytiques, part 3: 297—452 of his Nouveaux élémens ...
Paris, 1679. La Hire showed that the real roots of any cubic or quartic could always
be found by the meets of a circle and a parabola. NEwWTON, in an appendix {written
probably about the same time) to AU, likewise devotes much space to the subject.

’
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ticular equations® but the general methods which were introduced both to define
the equation and to solve it. Above all we owe to this elaboration of equation
theory the general real (and complex) variable.

The development of the concept of variable is very closely tied up with the
notation used to express it and the slow progress towards an adequate symbolism
is mirrored in the prolonged difficulties over free and bound variable forms. It
was on this basis that NEssELMANN¢ tentatively established a division of algebra
into rhetorical (where the proof is purely verbal and non-symbolic), syncopated
(where systematic abbreviation of the verbal forms occurs) and fully symbolic,
operational forms. But the variable is something more than its mere symbolic de-
notation and NESSELMANN’S classification is perhaps a little narrow and rigid, and
certainly arbitrary. Logically it seems natural to classify a variable by its range, a
basis widely adopted in the 17 century in the view that algebra is a “universal”’
arithmetic, a systematisation not only of equation theory but of all arithmetical
equations—as CorLIN MACLAURIN was to state it3: ““ Algebra is a general method of
computation by certain signs and symbols, which has been contrived for this
purpose and found convenient. It is called an Universal Arithmetick, and proceeds
by operations and rules similar to those in Common Arithmetick, founded upon
the same principles.” In short, algebra was defined as the generalisation of
numerical arithmetic which retains the basic operations of -, ¥ and has variables
ranging over the interval [— oo, - 00] * such that when numerical values are sub-
stituted for the variables (consistently), there results a theorem of arithmetic.

This viewpoint crystallises centuries of developing ideas—the concept of
substitution-variable is as old as Diophantus and is found widely in the works
of the medieval “calculators”,—the final generalisation from substitution-
variables to fully free variables, which we can connect suitably one to another
and so use to define a general structure, came only with the general systematisation
of equation theory which began with VieTa® and BomBeLLI?. To VIETA is due
the first distinction between the single substitution-variable and the general
free variable when he differefitiates between numerical algebra, a mere series
of substitution-instances compacted in a formula, and specious algebra, where
we use the limitations of a defined algebraic structure to derive a ““canon”,
a method of deriving particular solutions. Possibly VIETA himself would have

* Though for a long time the variable, say #, was allowed only to range over the
positive interval [0, oo], and € [—o0, 0] was introduced by defining ¥ = — y, y positive
and ranging over [0, oo]. This has been seized upon as a significant point, but in
fact is easily held in mind and would be troublesome at an early stage only.

3 For a good summary of these techniques see TROPFKE; 3 (1937): B: Die Glei-
chungen: 22—235.

? Compare G.H.F. NESSELMANN: Versuch einev kritischen Geschichie dey Algebra.
1: Die Algebva dev Griechen. Berlin, 1842: 301-—306.

5 CoriNn MAcCLAURIN: Tveatise of algebva. London 1748: part 1, ch. 1, 1—2.

8 VieTa, in fact, developed the first adequate, usable symbolism for the free
variable in a series of works beginning with canon mathematicus, seu triangularis, cum
adpendicibus ... Paris, 1579. Compare FrREDERIC RITTER: Frangois Victe, tnventeur
de Ualgébve modeyne : Notice suy sa vie et son ceuvve. Paris, 1875.

? In his manuscript Algebra, printed in entirety for the first time in E. BorTo-
LotTi: L’algebva opeva di Rafael Bowmbelli di Bologna, Bologna, 1929, BOMBELLI
systematised the whole of the 16t century Italian algebraical achievement.

14*



198 D. T. WaITesIDE: Mathematical thought in the later 17th century

wished to restrict specious algebra expressly to the techniques which examine
the zeros of the polynomial @(x)--the classical problem of equation theory,
in short—but specious algebra soon became identified with universal arithmetick,
and together these were seen as defining a general “analytical” approach to
mathematics. So NEwToN, introducing his Lucasian lectures in the 1670’s,8
writes that ““Computation is carried out either by pure numbers, as in common
arithmetic, or by variables (“species”), as is the habit of the analyst.”

The 17 century mathematicians themselves saw the great triumph of this
analytical method in its applications to geometry and the general treatment of
such traditional concepts as “curve’ (defined from the time of DESCARTES’
Géoméirie as a point-set limited by some ‘“‘relatio’” which exists between co-
ordinate line-lengths).? Consciousness of the new freedom afforded by universal
algebra acted as an inspiration even where its method was not directly applicable
and led to a widespread search for general treatments and a balancing dissatis-
faction with particular cases—an attitude summed up by JAMES GREGORY in
the preface to GPU: “It has been observed by geometers of our century that
mathematics was ill divided by the ancients into geometry, arithmetic etc. ...
and that a better division is into the universal and the particular. The universal
part of mathematics treats of the common proportion which is to be abstracted
from all species of quantity ...: the particular part of mathematics is divided
into geometry, ... which is merely the universal part of mathematics restricted
to the figuration (figura), into arithmetic, which is the same universal mathematics
restricted to number, into statics, the same restricted to motion, and so on.”
(In the sequel, he sees the universal part of geometry as comprising in part the
equivalence transforms, ‘‘transmutations”, to which we can subject given geo-
metrical configurations.)

An interesting objection, not untypical of the age, to allowing algebraic forms
into mathematics was raised by BARrROW?: ““Perhaps someone will perchance
marvel ... why I have not spoken of algebra or the analytical faculty ... Because
to be sure analysis (understood as intimating something distinct from the pro-
positions and rules of geometry and arithmetic) seems to belong to mathematics
no more than to physics, ethics or any other science. For this is merely a part
or species of logic, or a manner of using reason in the solution of questions and
in the finding or proof of conclusions, and of a kind not rarely made use of in
all other sciences. Therefore it is not a part or species but rather the servant of
mathematics; and no more is synthesis, which is a manner of demonstrating
theorems opposite and converse to analysis.”” Here, of course, BARROW is arguing
for a rapidly dating, predominantly Greek viewpoint on mathematics, but his
objection points the fact that, more than a notational or numerical advance, the
introduction of free variable was a logical one: what is new is not that an adequate
symbolism or a suitably widened range has been given to the variable, but that
the logical restrictions on the variable, unexpressed notationally till the 19'* cen-
tury, can themselves delimit a mathematical structure. BARROW’S remark is

8 These lectures were, of course, printed as AU ; compare preface, 1—2.
? See ch. 7.
10 7.M (1664): lectio 2: 31—32.
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significant not in that he was unwilling to accept what seemed an extramathe-
matical logic into mathematics—the trend of the age was wholly against it, and
Barrow himself must have seen the gquestion as purely academical—but that
he realized that the basis of the new universal arithmetic lay in new concepts
which were later to receive such names as quantification of the variable, dummy
variable, tied variable, range of variance, domain of a function and functional
form. Ome could, of course, use the new algebra without consciously being
aware of the underlying subtleties, and in historical fact few 17 century mathe-
maticians (on the whole, eminently practical and not prone to worry over logical
niceties) had the minimal logical training necessary to appreciate them. DEs-
CARTES, JAMES GREGORY and, to some extent, NEWTON had a feel of the logical
basis together with BARROW, but it was LEIBNIZ with his years of study of classical,
medieval and 17 century logical treatments who first began to consider the
concept of function in the abstract.

Refinement in the concepts which were introduced roughly and readily in
the 17" century was a slow process which lasted well into recent times. To the
extent that it created an undue respect for particular results and formulas and
that it needlessly obscured many generalisations, the slowness of recognition
of the logical basis of algebra was a main conditioning factor in the sterility of
much of 18" century mathematics—one could not hope for insight when Mac-
LAURIN could approach the problem only by analogy:' “In geometry the re-
presentations are more natural, in algebra more arbitrary. The former are like
the first attempts towards the expression of objects, which was by drawing their
resemblances; the latter correspond more to the present use of language and
writing.” Yet a solid, usable logical basis exists explicitly in 17® century al-
gebraic studies, however little understood, and is to be appreciated rather through
detailed examination of particular techniques evolved. For that reason, in the
remainder of this chapter—though the strictly algebraic are not to be separated
from related geometrical approaches—certain aspects will be considered of inter-
esting applications of free and bound variable forms which, in abstraction from
particular contexts, can be shown to illuminate each other.

As we have said, much of the mathematical effort in the period—and par-
ticularly the new analytical study of geometrical concepts-—was still reducible
in one way or another to the derivation and solution of an equation between
variables. So were solved many of the problems of astronomy and of applied
mathematics in general, though in many cases the reduction was not immediately
obvious. For example, WREN proposed and solved!? a problem which had ori-
ginally suggested itself in finding the distance of a comet’s (supposed rectilinear)
path fror the earth: Given four coplane lines BA, BF, CG, DH, to find a fifth
GHAF which cuts these such that the respective segments AF, AG, AH are in

11 A4 treatise of algebra. London, 1748: ch. 1, 2:2.

12 About 1661 —see WALLIS: opera 2 (1693): 455—462. (Latin version of 1673
only) Algebra: cap. 105. A similar problem is treated by NEwToN in AU : Prob. 30:
cometae in linea vecta uniformitey progredientis positionem cursus ex tribus observationibus
determinare, while both are akin to ApoLLoNIUS’ studies in de sectione rationis (ed.
HaLrrLeYy), Oxford,.1704.
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agivenratio, say 1:m:n. Taking BC =¢, BD =d; AE =x, EF =yand BE:EF =
f:1, CM:MG=g:1, DN:NH =h:1 (which defines the lines BF, CG, DH in
fixed position with regard to B4), we have where GM, HN, FE are perpendicular
to BA, GM=my, HN=ny, CM=
gmy, BE=fy, DN=hny, AM=mx
and AN=n; or EM=x(m-+1), EN=
x(n+1), CE=c+fy, DE=d+fy, so
that
EM(=CE — CM) = x(m—+1),

and :C+y(f_gm)
EN(=DE — DN)=x(n-+1),
=d+y(f—hn).

We have then two simultaneous linear
equations in ¥ and ¥, and standard
reduction gives a solution.

Such problems, some medieval in origin, are to be found in large number in
all the algebras of the period?3, but more important was the growing conscious-
ness of the values of “indeterminate” equations—general polynomial forms in
one or more variables. The concept is basic to analytical geometry in that a
polynomial form can, when a suitable coordinate system is defined, be seen as
a model of the point-set of an (algebraic) curve, but the application was made
when already the polynomial form had been developed in equation theory as an
independent general algebraic structure, and especially in the special case of a
single variable @(x) = ), (a;%%).

0<isn

Above all, through its origin in theory of equations, a great emphasis had
been put on finding the zeros of a polynomial, on isolating a root and if possible
finding its value. On that basis and particularly in 16% century Italy there
had grown a proliferation of results for removed in many cases from practical
application, incorporating general methods of reduction and the synthesizing
of standard procedure for whole classes of polynomials. In particular, it had
become accepted that a linear equation always has a real root (which may be
non-positive and so unacceptable on a particular view of mathematical reality);
that a quadratic may have two real roots or none (in which case we can, if we

13 Compare G. KINCKHUYSEN: Algebra oste stelkonst, Harlem 1661; R.H. RauN:
“Teutsche Algebra”, Zurich, 1659 (which had a popular English translation by T.
BraANKER, London 1668); J.Prir, who published little himself but whose pupils
BRANKER, RuHONIUS, LITTLEBURY and others printed many of his problems; but above
all J. Kersey: The elements of ... Algebra ... London, 1673, and J. WarL1s: 4 treatise
of Algebra both histovical and practical ... London, 1685, with many additions in the
Latin translation of opera 2 (1693): 1—482.

14 Though, of course, the use of equations in solving problems is at least as old
as the Babylonians of the third millennium B.C., and many standard results on linear
and quadratic equations had been formulated in Greek times (and independently in
India, China and Japan before Western ideas penetrated there). Further particular
examples of higher polynomials had been treated in Arabic texts—for instance,
the solution of the cubic by intersecting conics—and medieval mathematicians such as
Fisonacct had developed successful numerical techniques. See TROPFKE o0p. cit. (note 3).
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wish, extend the range of the root and allow two (conjugate complex) ones so
that the quadratic has always two roots); that a cubic may have three real roots
or only one (or always three if we allow the possibility of a conjugate complex
pair); and similarly for quartics (which may have, likewise, four, two or no roots
or always four). The big block to extending polynomial concepts beyond the
quartic had been that no standard reduction of root-isolation techniques to
those of lower-degree polynomials had been found (and, of course, none is possible:
quintic and higher polynomials are, in general, irreducible). A second hindrance
to general treatment lay in the conventional practice of distributing particular
polynomial forms on either side of the equation so that each coefficient is positive,
which confuses the suggestive denotation of a polynomial as a finite sum-sequence,
> (a; %), ordered by powers of the variable, x—a concept further distorted by
0=isn
those proportion-theory treatments which found it convenient to set the zero
of the polynomial ) (4; #')=0, in proportion-form as A(x):u(x)=7v(x):0(x),
0Zign
where A, u, ¥, 0 are polynomials such that A xo—puxv=K X Y, (4; ).
0<ign
However, particularly through the influence of Vieta, the modern form of
denotation had been more widely accepted by the early 17 century, and we
find ideas on the general polynomial forthcoming in more rapid sequence. Par-
ticularly with the introduction of the curve point-set, we find the concept of a
polynomial having a root which is enumerable, approximately if not exactly,
being transformed into the concept of a polynomial form having a specifiable
number of zeros (its roots) equal in number to its degree$, of which the real zeros
are represented on the geometrical model by the meet of the curve y=®(x)=
> a;x* with the right-line y=0. In some ways the geometrical model offered
0sisn
no immediate guidance, and in particular seemed to suggest no way of isolating
real and complex roots from abstract consideration of the polynomial form: but
adequate techniques were quickly developed in DEscARTES’ rule of signs'?, which
gave upper bounds to the number of positive roots, and more spectacularly, in
NEwTON’s rule, given in his 4 U, which states upper bounds for the number of

15 Compare C.B. BoYER: Proportion, equation, function: three steps in the develop-
ment of a concept. Scripta Mathematica 12 (1946): 5—13.

18 Significantly TROPFKE, 3; 175 cites PETER RoOTHE in his arithmetica philosophica,
Nuremberg, 1609, as the first to state generally that the »!? degree polynomial can have
up to % real roots, and ALBERT GIRARD in his Invention nouvelle en I’ algebye, Amsterdam,
1629, asstating firmly that the #tb-degree polynomial has exactly # roots, real or complex.

17 Given in outline in Géoméirie, Bk. 3: 373, but already in fact, stated in T. HAR-
RIOT: ariis analyticae praxis, London, 1631.

B AU: part 2, ch. 2: 2414f.: de forma aequationis. NEwTON gives no proof, and
this is, in fact, extremely difficult. Despite several attempts in the 18t century
the first rigorous treatment was developed by J.J. SYLvEsTER in the 19*h century
using complex analytical techniques—see J.J. SYLVESTER: On an elementary proof
and gemervalisation of ... Newton’s hitherto undemonstrated vule for the discovery of
imaginary voots, Proc. London Math. Soc. 1 (1865): 1—16, = Collected mathematical
papers, Cambridge: 2 (1904): 498—513; and compare H.W. TurNBULL: The mathe-
matical discoveries of Newton, London, 1945: 49—51. The only way NEwrToN could
reasonably have found his rule with the techniques at his disposal would seem by a
RamanNujan-type induction over numerical instances, or over the lower orders of
polynomials (the lower genera of algebraic curves).
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positive and negative roots (and so, complementarily, a lower bound for the number
of complex ones) in a much tighter way than DESCARTES' rule. But on the whole geo-
metrical curve and algebraic polynomial yielded a rich store when studied together.

So, arising naturally from the abstract study of the polynomial is the realiza-
tion that the roots can be expressed as homogeneous functions of the roots*—an
idea seemingly original with GIRARD (stated for the general polynomial)®®, but
given independently by JAMES GREGORY 20 and NEwWTON 2t who both use the fact
to express the sum-powers of the roots, X'(a}) (A=1,2,3,4,...), in terms of
the polynomial’s coefficients. Elsewhere in 4 U2 NEwTON gives simple applica-
tions to geometrical problems, particularly to the problem of drawing conics
through a specified number of fixed points to touch fixed lines. Perhaps most
interesting, however, is an example which occurs in a draft of his enumeratio®
and which appears to have been the basis for certain of the geometrical properties
of cubics developed there.

Here NEwTON begins 2 by deriving several known results on conics from the 2-
degree polynomial (general quadratic form), using the expansion of the coefficients
in terms of the roots. Though no proofs are given,
the approach is clear. Consider some conic defined
by the five points 0, 0’, P, P’, A, where 04 is
parallel to PP’, and let a third parallel YXY"' be |
drawn meeting the conicin Y, Y’ and OBO' in X.
Taking abscissa 0X = x and (in general oblique)
ordinates ig’i——&yz’ suppose the representing
equation of the conic to be y2—y(ax-+b)+
(Ax®4pux+v)=0. Then, assuming a suitable
sense to the lines, X—0 has x¥=0, y=0 or
—0A4, or y,y,=v=0, and y,+y,=b, =—04;
X —B (the meet of 00/, PP’} has x=0B, y=BP or —BP’, or y,y,=
20B*+u 0B, = —BP-BP', with y,+y,=a0B-+b, =BP —BP’; and finally

* Briefly, where

Il (x—a)= :2 (;29),

0<i=n 0si<n
dp=1, oty = — (@) cg=+ 2 (a,u,-),...,a,,:(—-i)”alaz...a,,
1<isn 1=isn i
1<iza|tF]

¥ Tnvention nowvelle en U'algebre (op. cit., note 16): Def. 11: ciii. Compare H. Bos-
MaNs: Albert Girard et Vieta o propos de la théorie de la *“ syncvése” de ce deyniey. Ann.
Soc. sc. de Bruxelles: 45 (Louvain, 1926): 341f.

20 GREGORY Sees it as an obvious thing, giving, in a letter to CoLLINs of 26 May 1675 .
(*=- GrEGORY TV: 302—204), Z(a}) in terms of the.coefficients of a 7th-degree
polynomial, A=1, 2,..., 7, with the remark . It is no hard matter to give the
rule whereby to contmue this in infinitum; for 1t is so in all equations ...”

2L AU : appendix: de transmutationibus aequationum: 251—252, to be dated in
the 1670’s by manuscript drafts in the Portsmouth Collection and the original Lucasian
lectures (of which a copy is deposited in Cambridge University Library) (Dd. 9.68).

22 For example, in problems 28, 58, and 61.

28 CUL Add. 3961: 19R—23V, especially 19V—20R, to be dated about 1695,
partially published in W.W.R. BarL: Newton's classification of cubic curves, Proc.
London Math. Soc. 22 (1891): 104—143, appx. 1: 132— 140, especially 85— 88.

24 19V -20R.
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X >0’ has x=00’, while one value of v is zero, so that y, v,=2100'24-u 00'=0.
These conditions are sufficient to evaluate all the unknowns, and so, taking
BP—-BP’ BC
—o0o4 T oC
rewrite the defining equation as 32—
94 (x—00)— 2L BE 4100 — x)=0.
In particular, we have shown that
BP-BP
BO-BO"
conic chords PP’ paraliel to 04, which is
“NEwTON’s theorem’ 2 for the conic;
while 04 =0 (4 -0, and so 04 tangent
at 0) yields y2-— %g—gmg— x%(00" — x)
=0, which in the form y2:x (00’ — x)
(=YX?2:0X.X0)=BP?:0B-BO is
ArorLroNius’ defining “symptom’’ for
the general conic.
Extension to the cubic?® is similar. Fig. 5

Let a cubic be cut by the line 04 in three

(real) points A;, 4,, A;, and with respect to some fix-point O on 0A and co-
ordinates 0X =g, XY =1y (where XY, inclined at some fixed angle to OA, meets
the cubic in ¥y, ¥,, ¥;**) take the representing equation of the cubic by

(to define a (unique) point C in 00) @ =— %% and we can

= A*, constant, true for all

v —ytax+b)+ y(rai+sx+8) — A3+ uxttvx+ ) =0.

For X — each of 4,, 4,, A, one corresponding value of y is zero, or for p =04,,
04,, OA; successively y; y, y3=0, =Ag*+pp2+vo-+n. These are sufficient
to define u, », 7 in terms of 4 by u=—2(04;,+0A4,+04,), v=-+A(0A,-0A,+
04,-04;+04;-04,) and w=—4-04,-04,-04,, so that Ax3+pux2tvxt+o=
(*—04,)-(x —O0A,)-(x —O0A4,). Finally, for X at a general point, ¥=0X, y=XY]
or XY, or XY;, so that y; 9, y;=4-(0X —04,) (0X —04,) (0X —04,)=XY].
XY,-XY,, or —)i%/l e e ;2;?2 = A, constant, which is “NEwTON’s” theorem for
transversals in fixed directions from a point to a cubic, and is clearly generalisable
immediately to the n-degree curve.

Implicit in NEWTON’s treatment is the counterpart of the analytical theorem
that a n-degree polynornial has just # zeros—wiz: the idea that a line given a

* Specifically, » =0, p= —A00’; b= —0A,

_ BP-BP'404 04 (BP—BF
¢= OB = ﬁ_( —o4 ~ )
and finally
BP-BP’
BO-BO’ -

** Newron, in fact, to simplify geometrical calculation has, as with the conic,
O coincident with one of 4,, 4,, 4,.

% In fact, ApoLroNIUS: Conics: Bk 3: prop. 17.

26 20R{f.

—BP-BP'=A0B(0OB—00%), or A=
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general position meets an #'® degree algebraic curve in just # points (if all are
real)—and this is basic in a well-known lemma in PM ?: ““ There is no oval figure
whose area, cut off by right lines at pleasure, can be found generally through
equations whose dimensions and number of terms is finite.” [It is not quite
clear what NEWTON means by his “oval figure” (figura ovalis), but it has been
taken by commentators in general as some simple continuous closed curve]:
““... Within an oval let there be given some point around which as pole there
revolves perpetually a line [with uniform motion]*, while at the same time in
that line a moving point goes out from the pole, proceeding always with a speed
proportional to the [square] of the line contained within the oval. By this motion
the point will describe a spiral with infinite gyrations [round the pole].”’ 28 NEw-
TON argues that this spiral is?® ““but one simple curve and irreducible to further
curves” and then introduces the idea of defining its nature by considering its
meet with a line given in general position: since the spiral, so defined, makes an
infinite number of ever-increasing gyrations round the pole, the number of these
meets will be infinite, and, further, the “law’ and “calculus’’ for each meet-
point will be the same. In amplification NEWTON supposes that some defining
equation @(x)=0 exists, which gives each distance, x, of the meet of spiral and
the given line from some fix-point on that line, and that therefore the function
@(x) is unique (giving all intersections of the line and the spiral).

\ More exactly, let us suppose that ON is the
perpendicular to the line from pole O, and that the
line in rotating through some angle @ round O
has some intersection P with the spiral pass into
a new intersection p; and that @'(x, w)=0 is the
equation which defines the distance of the inter-
section # from the same fix-point on the line. After
one whole revolution (w=2z), P will pass into a
second meet P’ of the original fix-line with the
spiral, so that @(x)=0 has a common root with
@' (x, 2m). Similarly @(x)=0 has a zero equal to
one of each @'(x,24m), 41=1,2,3,...,n, and we
conclude that eventually (if @(x) is of finite degree)
we exhaust all zeros of @(x) by identifying them with a zero of each of the
@'(x, 2A7); and so justify its existence (so that we have @(x) unchanged by
revolutions of the line through multiples of 2s). On this preliminary basis (not
given as rigorously as stated, but verbally) NEwWTON argues that, since the spiral
in its infinite ever-increasing revolution round the pole must cut the line in an

Pig. 6

* I use square brackets to denote corrections and additions from PM, (1713).

27 PM,: Bk 1: lemma 28: 105—107 (with corrections from PM,).

% Clearly by simple stretching transforms (continuously defined) along lines
through the pole we can reduce the oval to a circle which has the spiral pole for its
centre, and NEwTON’s argument seems to be merely the inverse generalisation. In
the circle (which we can see as the canonical case) the spiral becomes ARCHIMEDEAN
with (polar) representing equation r = 2@, where » is the positive distance of a general
point on the spiral from the pole, a the radius-length of the circle and ¢ the radian-
measured angle of rotation.

2 PM, (1713).
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infinite number of points, @(x) cannot be an algebraic equation of finite degree
(and so the spiral is likewise not representable by a polynomial of finite degree).

Thus far NEwToN shows a deep insight, but he applies the argument in an
unjustifiable way by considering the spiral whose point-distance, 7, from the pole

isgiven by 7 = zi a?® where 9 is the angle of revolution . Following his argument
7T

¢

we argue: since the area of the corresponding sector 0AQ of the “oval” (here
taken for simplicity as the canonical circle of radius 4 whose centre is the pole
of the spiral) is 42§ %, the distance » can be used to represent the area of the “oval”’
sector*: but the (Cartesian) representing equation of the spiral, which meets
the fix-line above in an infinite number of points, must be of infinite degree, and
so correspondingly the general circle segment cannot be represented by a poly-
nomial of finite degree. The argument is plausible, greatly subtle and involved,
but the conclusion wrong?®, and remarkable for its deft intermanipulation of
concepts derived from the abstract theory of the polynomial and from a cor-
responding geometrical model. **

Much of 17 century work on polynomials was, however, not concerned with
such theoretical existence -considerations, but remained concerned with the
pre-eminently practical viewpoint of producing refined methods of approximat-
ing to the roots of equations. With such an attitude the testable results had
priority over rigour of method—whether, on physical substitution of a particular
value in a polynomial form, a zero was produced (or near enough). So we find
a wide variety of numerical methods introduced without pretension to rigour
or theoretical justification in many cases. Most, in fact, depend on some adapta-
tion of a basic principle—to be formalized rigorously with respect to a tightly
defined concept of continuous function by Borzaxo in the 19 century—that
where @(x) is a polynomial form continuous in the interval x € [a, b] such that

* Since they differ only by the factor of 1/2x.

** The fallacy, never previously pointed out to
my knowledge, lies in the uncritical representation of
circle-sector area by line-length. Restricting our atten-
tion to the (infinite number of) meets of 04, with the
spiral, say 44, =1, 2, 3, ..., what each length 04,
represents is not the simple area of the circle centre
O and radius a, but this same area taken 4 times;

N\
and, in general, where 4,0B, =& and OB, meets the
spiral in successive points B;, OB, measures the circle

area taken (z + 21) times. It is evident that the in-
P

finite gyration of the spiral expresses the periodicity
of the general angle of OB; with 04;=2iz -+ ¢, and
has nothing to do with the circle-area which remains invariable, a basic undefined
quantity.

80 1 take, for simplicity, the canonical form of the oval by the circle of radius #
whose centre is the pole (see note 28).

31 'Which means that the spiral will pass through the meet of the circle with the
tangent to the spiral at the pole (4, in the next diagramm).

% So H. BroucHaM and E.]. RoutH in their An Analytical view of Siv Isaac
Newion’s Principia, London, 1855: 72—74 give the counter-example of the closed
oval y7 = zlr—Lm-(gn — x"), m, n even integers, which has an exact quadrature.

Fig. 7
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D(a) < 0= D(b), there is at least one zero for x between—s and b: that is, for
#€[0, 1], @(a+9 (b —a))=0is true3. The practical use of this is that by taking
a and & closer and closer we can approximate to a zero of @(x) with more and more
accuracy (this is done in an immediate way by splitting the interval [4, 5] into
(smaller) subintervals) so that for one, say [4’, b'], at least it will be true &(a') <
0L P(b), with a<a’, b=V

However, simplicity of application is a keynote of a numerical method, and
early techniques proved very cumbrous to apply®, and perhaps NEWTON’S
modification and simplification of VIETA’s approach® was the first practicable
approximation-method. Thus, in his example, ®(y) =y®— 2y — 5=0 (an example
later to become a standard test for the efficacy of numerical methods) we see
P(2)=—1<0< D(3)=16, and so by the continuity postulate there is a zero at
some y€[2,3]. Take y=2-+p, or &' (p)=—1-+10p+6p2+$*=0. From this
point NEWTON takes the linear approximation —14-10p A0, p ~0.1, and the
processrepeats by p=0.14¢;0.061 +11.239 ~0or ¢ &~ —0.0054, g= — 0.0054+7;
0.005416+11.1627 ~ 0, or # ~0.000048 52, which NEwTON considers sufficiently
exact. The method extends easily to the two-variables polynomial @(x, y)=0,
yielding an appropriate series expansion for y, y=X(x) (where X satisfies
D(x, X (%)) =0).*

This process (after the first stage) of using linear approximation typifies a stand-
ard problem of finding general ways of “iterating’’ a polynomial zero, of system-
atizing ways of deriving successive approximations in a recursive way without the
troublesome task of deriving a new polynomial form at each successive step (which
is necessary in NEwToN’s method). A first step was taken independently by James
GREGORY?® and MicHAEL DARY® in solving equations of the form x= @(x):

* Here, of course, convergence has to be considered, and while NEwrOoN shows
himself familiar with the implicit theoretical restrictions, the lack of rigour makes
exact justification difficult.

33 The assumption is not, of course, original with the 17 century, but used in
numerical methods given by such 16!® century mathematicians as SteviN, Burct
and VieEra—see TROPFKEg 3: 157—159.

3¢ PpLL in mid-century could quote WARNER on VIETA’s approximation method
as saying that ‘‘to attempt the same (finding of a polynomial root) in VieTA’s method
[is] work unfit for a Christian and more proper to one that can undertake to remove
the Ttalian Alps into England ...’ (quoted by CorLiNs in a letter to OLDENBURG
of the early 1670’s—see Ricaup (C) 1: 247—248).

% First made public in a letter to Collins of 20 June 1674 (see Ricaup (C) 2:
362—365), but given generally in his first letter to LEIBNIZ in 1676 (compare OLDEN-
BURG-LEIBN1z, 26 July 1676, = GERHARDT (Bj. 1: 179—192, especially 183 —185).
The method appears widely in the manuscript drafts in the Portsmouth Collection,
and is given in the printed de quadvatura curvarum and HorsLEY’s manuscript collec-
tion, geometria analytica (see HorsLEY ; Newtoni opera 1: 39111.), along with his famous
“parallelogram” rule for dealing with the two-variabled polynomial @(x, y)=0.

38 Reported in a letter to Corrins of 2 April 1674—see GREGORY T'V; 278279,
and compare 394—395. GREGORY considers the equation §*1c="5""2(b+¢)x — 2",

H
N A— by the substitution » ="+ »b_c_.
"2 (b+0) b+e

% Who considers the equation #? =ax?4#n, p>q (or ¥ = (a9 -+ n)l/P) in a letter

to NEwToN of 15 August 1674 (Ricaup (C) 2: 365—366).

which reduces to 3’ =



Arithmetic and algebra 207

choosing some close first approximation x,, the approximation sequence #x,, x,,...
is found by #;,,=P(x;) a simple and plausible method though (neither hint of
restrictions which are necessary for the sequence to converge to a limit*). A more
general procedure was found by NEwToN3® which, though first published in
1685,3% received a very full treatment by JosepE Rapuson?® (though the un-
necessary restriction to an algebraic #-degree polynomial is made). Interestingly,
while RAPHSON bases his development on a cumbersome variable substitution,
he gives virtually a TAYLOR expansion. Consider the #-degree polynomial ®(x) =0
and some suitably close approximation to a root X: RaPHSON defines a new
variable x’ by x=#"+4 X, substitutes in the polynomial and expands to derive
’ ’rg
the equivalent of (0=) @(¥' + X) = ®(X)+ #' ¥'(X) +’;~|2<D”(X) —{—%(D"'(X) +
R i;—l,i@(") (X), or, since ' is small in comparison with X (by choice of a suitable
X), we can take @(X)+x' @(X)=0, very nearly, or x=X~|—x'=X—~§,(§()7,
and in general x; =%, — g,((’;")) .41 (The simple justification by appeal to the

corresponding geometrical representation is not made42.)

An intriguing application of the general continuity principle (— ®@(2) £ 0= D(b)
implies @(a+9 (b —a))==0 for at least one #< [0, 1]—where D(x) is restricted
to being a 2-degree polynomial—) was made by BROUNCKER in his work on the
general FERMAT equation na2-+1 =2, where o, 8 are restricted to being integers

* Justification on the geometrical model is immediate: the sequence defines the
root by generating a continuous broken line between curves y =, y = @(x), parallel
to ordinate and abscissa alternately, which converges to their meet—that is, at the
point such that y = x = D(x).

% Apparently some time in 1675, perhaps in pondering over Davy’s letter (see
note 37), but given in a letter to CorLLINs of 24 July 1675 (Ricaup (C) 1: 372), where
he iterates 4Y by x;, ;= —:; (m—1) %+ prevpreaat ‘

The early 15! century mathematician Jamsip AL-KaST seems to have sketched
in the first stage of Newton’s formula in his Mifiah al-Hisab (Key to arvithmetic)
Bk. 1 (¢f. Russian translation by B.A. RosenNreiLp and A.P. YuSkrvic, Moscow,
1956). Briefly, to derive AY» ArL-KASI takes the equation #” —A4 =0 and a first
approximation x, = [A1/*] (the first integer smaller than A", and 4 = 4" = (%, + #')"
A—x z" — Alin o, 40 —¥ ﬁ i
nx:,“‘l’or =AY ~x waT This
is, of course, the first stage of the NEwToN-RAPHSON iteration (though ar-Kasi does
not iterate, content to take that as his approximation) and is equivalent to the
above. :

3 In WaLrLis’ Algebra: 338.

2 Inhis analysis aequationum universalis seu ad acquationes resolvendas methodus gene-
ralis ... ex nova infinitarum sevierum deducta, London 1690; of which an outline is given
by WatiLis in the Latin edition of his Algebra—see WALLIS opera 2 (1693): 396—397.

# The NEwToN-AL-KAST root approximation recursion follows by taking ®(x) =
w4, D(x) dx

a2 ifi — =

Specifically, where y = (P x), T y Iy
the first rigorous treatments of the method were elaborated on ideas derived from this
geometrical approach—compare J.R. MoURRAILLE: Traité de la véduction des équa-
tions ... Pt. 1: Paris, 1768; J. FOURIER: Analyse des équations déterminées ... Paris,
1818; and F.Cayori: Fourier's improvement of the Newton-Raphson wmethod of ap-
proximation. Bibliotheca mathematica, 11 (1910—1911): 132—137.

yields (2% — A)+n42"12'~0 or #' =~

is the subtangent. Significantly,
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and # is a (non-square) integer.4® Neither WALLIS nor BROUNCKER realized at
first the force of the restriction to integer solutions, and BROUNCKER, using
the identity (lz—n)z—i—n(zﬂ.)z——(lz—}—n)z, contented himself with the rational

) +1= ( e i ) However, a little later BROUNCKER told WAL-

115 of FERMAT’S insistence on integer solutions, and WALLIs derived a recursive rule
for an infinity of solutions, given one, from BROUNCKER'S rule by taking A =7/s*.
There remained the problem of deriving particular solutions systematically, and
this was solved by BROUNCKER. 4

To exemplify his method, consider @,(4)=A42—13a5=1. The continuity
rule gives @, (3ag)<<1< D, (4a,), or A=3a,+3a,, for some $#¢€[0,1]. Taking
A=3ay+a,, we deduce 1=—4a5+6aya;+ a2 = P,(a;), in which D,(a)>1>
D, (2a;) and we take ay=a,+a,. Similarly

solution # - (

1:@3(%):3{/1%——2@1&12—441%: Dyla) <1< Dy(2ay): a; = ay+ ay;
= Oy (ay) = —3a3+ 4a, a5 + 345 Dy(a5) > 1> D,(2a3): a4y = az+ a;

= @y(ay) = 443 — 2aga, — 3 daj: Ds(a,) <1< D5(2a): ag=ay+ as;
=@, (a,) = — a3+ 6a,a;+ 4at: ( ag) >1>Dy(7a5):  a,=6a5+ ag;

= @, (a;) = 4a+ Ga;a; — a5: Dy (ag) <1< Dy(2a5): a5 = ag+ ay;
st(“s) =— 3“s+ 25,4+ 4a7: Dy(a) >1> Dg(2a,):  ag=a,+ ag;
Dy(a;) =303 — 4agas—3a3:  Dylag) <1= Dy (2a5); ;= ag+ ag;

and finally 1= @, (2a,) = a§, which is solved by taking a,=1. So, working back-
wards a,=2, az=3, a;=35, a,=33, a3=38, a,=71, 4,=109, 2,=180, 4 =0649:
13-(180)2-41=(649)2—and the same procedure is to be used in the case of
any n”. We notice that this is, implicitly,' a continued fraction expansion of

I e . R N AN D)

V13~-%—3+7_;, w = o L= |13 V13,
a @2 g

—gpt 1t 1 11 1 1 649 g ticess

=34 T TE TR T 6F 1L 1E 3 = 186 ROUNCKER went on to notice

that the sequence @; can, in fact, be continued indefinitely:

1 = Dy(a,) =3 a5 — 4agay— 3a3: Dy(ag) <1= Dy(2a): a7 =ag+ ay;
1 =Dy, (ag) = — dad+ 2a5a15+ 3 aio: Dy (ag) 21> Dy (2ay):  ag = ayg+ ay;

—_— 2 2
* Spec1f1cally, ( 3’1,2_) +1= (72+% 2) which yields an integer solution if
P —mst e 1. ns y?—ms

42 This work carried out in partial collaboration with Warris in 1657, was published
in (CE) commercium epistolicum de quaestionibus quibusdam wmathematicis nupey
habitum, Oxford, 1658, and summarised in ch. 98 of WarLis’ Algebra (1685): 363—372,
= opera 2 (1693); 418—426. BrounNckeR had received the problem from FERMAT
at the beginning of September 1657 (¢f. CE No. 8: FErRMAT’S “scriptum” is set in
appendix) though FErRMAT had originally posed the problem to FrénicrLe in February
1657 (FErMaT OF 2: 333ff.). A general discussion is in H. KoneN: Die Geschichie
dev Gleichung 1* — Du?—1, Leipzig, 1901, and E.E. WHiTFORD: The Pell equation,
New York, 1912; especially 47— 58; and compare J.E. HorMaNN: Neues iiber Fermats
zahlentheovetische Hevausfordevungen von 1657 : Abh. der PreuB. Akademie der Wissen-
schaften (1943), Nr. 9, Berlin 1944.

44 About November 1657.

% CE:No. 19.
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1 =Py (ay) = 9% — 6y a3y — 4af;r Dylag) = 1< Py 2ay):  ag=ayyt+ay;
1= Oyy(ay) =— 43+ 6ay ap+ ajs.

We notice now that @,(1) = — 44+ 64,4+ 22 =D, (4) if we replace ay;, by
ay, and so the cycle repeats itself: @, =®; .y, k=1, 2,3, .... This, of course,
mirrors the periodicity of the continued fraction for }13:

13 :1121;0(3: 1,1,1,1,6; 1,1,1,1,6; ..., -2 )=(3: 1,1,1,1, 6).

A1

Further, noting with BROUNCKER that @ (1)=—1, 13 (3 +ﬁ -11? 71+_ %)2 —1
is a square and alternate periods of the continued fraction give solutions of
13a5—1=A21%

To return to a more general consideration, many techniques developed in
polynomial theory have an obvious (but not always factual) simplicity and seemed
to require no profound justification, and we find such concepts as: if for all »
D (x) =P(x), then @ =V (where x€ some [, b])*. A particular case is the coeffi-
cient comparison axiom: taking @(x) =2, (4; %), ¥(x)= 2, (b; ") then, if O(x)=

0gisn =i
Y(x), for all ¢ a;= b;—a technique widely used to effect such transforms as reversal
of series or series reciprocation **, and, as we have seen, the (unique) factoring of a
n-degree polynomial f(x)= 2] (4, &%) into its # factors | (x—a;) which can be used
05i<n 1Sisn

* Though, a case in point, some modern axiomatisations of set theory would not
allow it in an unqualified form—which shows its essential arbitrariness.
** Given @(x) = Z (a; #Y), to derive
0=i<n
or less assumed as m—>o0).
46 No integers a,, A can, of course, satisfy #n-a§ —1 =42 where n==3 (mod 4).
The equivalents of other continued fraction expansions are given by BROUNCKER, as

V3= —:2+,2—,8-),

V109 = (10 +:24,4—,3+,5—, 7+, 7—, 5+, 3 —, 4+, 2+, 20 ),
and Va1 = (5—:2F, 2+, 2—, 10—)
Va33
=(21—:5+,44+,24+,3—,4+,14—,3—,2+,13+,4—,3+,2+,4+,5—,42—),

where alternative periods solve na} + 1 = 42 Really, all there remained to do was
the not so difficult task of proving that for all non-square integers # the *“ BROUNCKER "’
periods are finite (and of even length). Indeed WaLLis, in ch. 99 of his Algebra (1685),
tries to show existence of a solution by considering #a® 4 1 = A%. Since a Vo <Vna2 -1

<aln+ 1]/_ , <alVn41, he easily proves that Vna?+1 is the integer next

@(1 ) = Z (b]' Z]') (with convergence more
0<i<n

2aln
2 i
greater than 4 Vu; and so reduces the existence condition to % <p< fi(i;—‘t;b ") s
a
where z=[ap], r= —1T p=[Vn]+1—Vn. WarLis’ further argument is circular,

2]/n
in effect stating that “obviously’™ this condition can be satisfied for all #. Indeed,
J.1. LaGrANGE’s first existence proof (in Solution d'un probleme & avithmétique,
Miscellania Taurinensis 4 (Turin, 1766): 41£f.) uses a not unsimilar reduction; but his
second proof (Sur la détermination des problémes indéteyminés du second degvé,
Histoire de I’ac. sc. de Berlin 23 (1767): 272£f.) uses the easy proof that the continued
fraction expansion of Y is finite-periodic.
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to derive the relations between the a;, a; by equating X’ (¢, ¥*) =a,, [] (x—u,).
0isn- 1<jsn

More generally, we find a widespread use of standard factorisations in the period—
elementary forms of which existed in classical Greek mathematics defined on
a geometrical model of rectangle area®” but of which a compact free variable
notation allowed a much greater conciseness of expression and generality of treat-

ment. A choice example is to be found in the sum-series —V— =1 —}—~3— — % — % +
2y2
% + % — —113— — 11—5 + -+ which NEwToN derived from the factorisation x*-1 =

(x2—[—]/5x+ 1) (x2 —]/Ex—[— 1) * in a neat counterblast to the sum-series 17m=
1—3+1—1+ ... communicated by LEIBNIZ. %8

But what perhaps reveals most fully the incipient power of the free-variabled
polynomial form are the subtle and widely varied structural delimitations to
which it can be successfully applied. Without an adequate concept of and notation
for free variable this would be, in all but the simplest cases, a supremely difficult
if not impossible task. Usually the structural delimitation involves one or more
conditions of the type (x) [K(P(x))], where K(®(x)) is some delimiting condition
on the function @(x). Understandably clear cases of such a reasoning pattern
are rare in the 17%-tentury®, but there occurs a fine example in the form which

1
: of:i; ~f(1+(]/2x+1 + 1+(V}x——1 )dx
[VZ (tan'%ﬁx-{— —}—tan-l(]/an_:—i))}:
= [—1—_— tan—1 —x—]@?]l =.'_:’tT: s
V2 1—2%lp 272

i
=f(1+x2)>< lim (X (=174 ax

n—>00 'y iy

0
. i—1 1 1
"}Lmoo (lgg;,(( R (4i~3 T )»

47 In particular, the results (¥4 ¢)2=s242xy+ 92 and (¥4 ) {(x —y)=
22— 42, to be found in EucLip’s Elements-but probably PYTHAGOREAN.

4 NewroN communicated the series to Leisniz through OLDENBURG (see his
letter to OLDENBURG, 24 October 1676, GERHARDT (B) 1: 203—225, especially 214).
LEeisniz’ series is of course, the very well known expansion of tan~'1 (but given first
in the 15 century by the Hindu mathematician NILAKANTHA, ¢f. ch. 5), and was
communicated in the letter to OLDENBURG of 27 August 1676 (GERHARDT (B) 1:
193 —200, especially 193 —196) but later to be published with faintly plausible but ill-
founded number-mysticism of odd and even, and positive and negative in 4E (1682):
41—46: de vera proportione civeuli ad quadratum inscriptum in nuwmeris vationalibus.
(His derivation of the series is examined by J.E. HoFMANN in Enlwicklungsgeschichte
dev Leibnizschen Mathematik ...; 32—35 on the basis of manuscript sources in the
Royal Library, Hanover.)

4 Perhaps the first such example of delimiting a function by an (implicit) quantified
condition is that given by ARCHIMEDES in his treatise On the equilibvium of planes
Bk 1, where he derives from the conjunction of the two quantified conditions (&) (f(A -+
B +f(A—h)=2f() and (4) (f(A) = —[f(— A)) the result i-f(u) =p-f(1), where A, u
are any real numbers (see DIJKSTERHUIS: Archimedes (op. cit.): 286—305). It is
significant, however, that the largely verbal argument would become increasingly
difficult to control under more complex delimiting conditions on the quantified function.
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BROUNCKER derives to satisfy (%) [®(x — 1)  D(x+1)=x?] (where the variable x
shall range at least over the positive integers) and from which he deduces his
continued fraction expansion for 4/z.* We do not have BROUNCKER's proof of
this derivation but from hints given in WaLLIS’ first published statement of
it, it is possible to restore his train of ideas with some assurance of historical
authenticity.

BROUNCKER'S general result, stated explicitly for a large number of integral val-
32 (2%——1)2)

ues of x,5expands @(x) as the continued fraction lim (x+ 12

H—> 00 2%+ 2x-4 2%
which is itself based on the tighter result, given for the two cases 4=0, oo,52
. 1? o (25—3)® (2i—1)?
(" LRIy Py Y Py e (1+,Z)x—|—(2i—1))
(%, 4) ( 12 (2i—3)2 (2i—1)?
X|x4+14+ ves ! ) = x?
26+ 1)+ 2(x+1)+\\(1+%)x—(2i—1)

Some attempts to justify this (which may be due to WALLIS rather than
BroUNCKER) are sketched in WALLIS’ treatment? which gives the particular cases
1=1,2,3 of the theorem that, where D (x), is denominator of the i convergent

2 —1)2
of B(x),= x+ 2;+ 2i+ (2"“1) ,

. 2.722... ;— 1}2
(), x D+ 2); = (w1 — (— 1) (5 25 A

—a theorem which can only have been derived by induction over particular cases
worked out physically, but which makes plausible the limit-form [@(x).=]
D(x) X P(x+2)=(x+1)2

This does not, however, throw light on the derivation of the form of ®(x),
a process which is restorable from other hints given in the following way3%:
Clearly, since (x—1) (x+1)=2x2—1< 4% P(x)>2x and we may assume that

D(x)=x+

T“E-’:T, o, some constant to be particularised at will. ** Substituting,
AGE

* The application is made in chapter four, where BROUNCKER shows &(1) = []
(=4/7).

** A stép more naturally taken in the 17t2 century, when a continued-fraction
method of numerical approximation was widely used.

8 In AT 1656: prop. 191: propositum sit inquivere quantus sit tevminus 0 [= 4/n] ...
in numeris absolutis quam proxime: idem aliter and scholium.

51 AI: 182.

52 The case A=1 was considered by Gustav BAUER: Von einem Ketienbruch
Euylers und einem Theovem von Wallis, Abhandlungen der kgl. bayr. Akademie der
Wissenschaften zu Miinchen. 11. 2-(1872): 92{f., but the general theorem is given here
for the first time.

53 AI:183.

54 The restoration given was made, in the first instance, solely on the basis of
the text, but was confirmed later on reading various articles by EULER, who concerned
himself with the problem intermittently over much of his life. Compare EULER’s
varying attempts in, for example, de fractionibus continuis observationes, Comm. ac. sc.
Petrop. 11 (1739) 1750: 32—81 =" opera omnia 15 1 (1925): 291—345; de seriebus
in quibus producta ex binis teyminis contiguis datam constituunt progressionem -=-
opuscula analytica 1 (St. Petersburg, 1783): 3—47; and de fractionibus continuis
Wallisii, Méms. de I'ac. des sci. de St. Pétersburg. 5 (1812) 1815: 24—44 - =- opera
omnia 16 2 (1925): 178 —199.

Arch. Hist. Exact Sci., Vol. 1 15
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we have on multiplying and cancelling
— @D (x—1) D (x+ 1)+ o (x+1) Dy {x+ 1)+ oy (x—1) D (x —1)+od=0,

and an obvious reduction is o, =1, or, on rearranging, (@, (x —1) — (x+1)) X
(@ (x+1) —(x—1)) =22 On testing we find a simple way to keep symmetry is the

bstitution @ =2 that R = x2
substitution @, (x) 9.6+' ( PR .50 a(x—|—3+ (x+1))<x 3—|— ( 1)) %,
and we have the begmnmg of a periodic cycle. At some stage we have, say,
— % My — (29— % V=g iplyi -
(x+(2n 1)+ ¢n(x‘+1))(x (2n—1)+ ¢n(x__1)) x2.  Multiplying, cancel
ling and rearranging, an obvious reduction is to take «,= (2% — 1)?, after which we
can arrange to form (@, (x4 1) — (x — (2% —1))) (D, (x+1) — (x+ 27 —1))) =42,
and the substitution @,(x)=2x+ “"*(1 P gives the beginning of the next

e L

Working back from the i stage, we can “unwrap” the cycle, finding @(x)=
p 12 32 (26—3)% (2i—1)®
2x+ 2x+ 2x+ D;(x)
limit-form as £—oo. Further, the extended BROUNCKER results follow by choosing
special forms @,(x-+1), ®,(x—1) which make the condition (x+( n—1)+
(2:2;_;)1) ) (x —(2n—1)+ —g{(%?—_%) = x? an identity.5?

Unless the letters in which BROUNCKER revealed his ideas to WaLLIs still
exist—they appear irretrievably lost®—such restoration must remain merely
plausible, and perhaps, after all, they were merely abstracted by induction from
particular instances.’? Yet the development remains a fascinating example of

, and the BROUNCKER expansion is the

% In fact a general form (worked out with a little trouble) is
(2n—1)2 ) (2n—1)2
r+2n—1)+ —r (x—(z'n— Y+ — ) =2,
( (1—{-”—;—))(-—(211—1) (1+A) x+(2rn—1)
but the particular cases

(A=0) (#+(2r—1)) (x—(z'n——ﬂ—l—

_(2n—1)® ) sy
x4+ (2n—1)
(A=o0) (x+(2n—1) 792/‘2—%2?) (r—(2n—1))=x*
given by BROUNCKER are more immediate.

5 These letters according to remarks in AJ: prop. 191; idem aliter seem to have
been communicated some time in 1654 — 1655, while the earliest extent correspondence
between WaLLis and BROUNCKER (that printed in CE) dates from 1657. Pavr Tan-
NERY, however cites unpublished letters of WaLL1S to BROUNCKER of 16 and 20 Oc-
tober 1656 which he found in Vienna in 1899 in a collection then in the Hofbibliothek
(manuscript 7050: 424 —425) (see Mémoives scientifiques, 6: 373). Perhaps some light
will be shed if these are traced.

57 A strong argument against accepting such an induction as plausible is that the
BrounNcker continued fraction expansion of @(#) is in no sense unique. So (for
general 1) an alternative form is

g & (GHDP(42B) (43 a(ataf) (35 (a+26) (@+H6) .
PR=A2E I T Gy To+h) + $F2h) + ’

where =(x+1)2—AA—2), f=2x+2-—24),

and
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a quantified delimitation, and the result of a subtlety not to be surpassed in the
178 century.

Finally, other than in free variable analysis little was done in 17t century
algebra, though much now formulated in an abstract algebraic form—various
concepts of transform, for example—was developed elsewhere, as part of pure
geometry or in an unrelated technique. So, it is an historical curiosity that the
theory of permutations remained a mere numerical study (tied up with a “La-
PLACIAN" probability theory) which did little more than enumerate possible
varieties under varying conditions without examining their nature (and so
developing such concepts as group, invariance and identity transform). In
general, transition to a developed concept of algebraic structure had to wait
till ever-broadening ideas and techniques had been systematised and operational
methods developed, and above all till analytical techniques in geometry were
given an algebraical, and not as in the 17™ century a classically intuitive and
largely extra-logical, basis. Meanwhile the study of algebra had to remain
inevitably an unsystematic, piecemeal collection of methods and results.

=°€—(%-1)ﬂ;

and, in particular, when A=x-+2(a=y=1, =0),
1 (x+1)2 (x+3)2
¥+24+ 44 4+ :

More generally we note that the functional equation x2 = @(¥ — 1) X ®(x + 1) is satis-
fied by

and

D(¥) = x +

B(23, 1) rEEN
D)= (x4 1) ——t "2 o N 4 )
B(_”_t& L) p(iﬂ)
4 "2 4
which we prove easily by defining
B(x—H 1)
&(x) 4 2
X#) = PAwEES B(x+3 1
4 ’5)
(compare ch. 4) and using the reduction
¥+5 1
B( 4 ’3) Eas
B(x-H i) T ox+3
4 ' 2
in fact, B(x_g.s i)
B(x) P(x +2) = (3 + 1) = (x + 1) (¥ + 3) —— 2L
S5
4 2

can be rearranged as X(x)-X(x 4-2) =1, true for all x in some interval, or X(x)=1.
‘Wherefore, any continued fraction expansion which takes on the values of (¥ -+ 1) X
B ( ¥+3 1 )

2 2
B ( #+1 1

2 2
D(x) D(¥ 4 2) = (x + 1)?, x€ [a, b]. (The BROUNCKER expansion satisfies it for 0 < x < oo,
with @(x)=— &(—ux).)

over some interval, ¥¢ [a, b] say, will satisfy the functional equation

15%



214 D. T. WaitesipE: Mathematical thought in the later 17th century

III. Concépt of function
1. The logarithm as a type-function

The general idea of a function arose gradually over many years and through
many increasingly abstract stages. Defined generally as a mapping f(x, ¥):
%—>y of one variable, %, into a second, y, it is a product of the early 19* century
effort to place the concepts of analysis on a rigorous basis: a stage which could
be reached only after long familiarity with particular functions in the attempt
to synthesize generally applicable methods and.techniques. A previous stage,
when a mass of particular functions but few standard methods were known,
had been reached in the late 18" century (through the diligence of such mathe-
maticians as EULER, LAGRANGE, the BERNoOULLIS and JACOBI), but in the 17" cen-
tury even particular functions known were few, and general methods were largely
restricted to what was obvious treatment of the geometrical models in which they
were widely used—notably areas and arc-lengths of the various species of conics—:
an approach which, with all its advantages of immediacy and tangibility, was
hardly conducive to the development of abstract treatment

For that reason a comprehensive general account, while possible, seems not
very worthwhile, and it seems preferable to sketch in the complexities of 17 cen-
tury functional treatments with regard to a particular function, seeing the dif-
ficulties faced and overcome by the evolving concept as in many ways typical.
Such an approach, while bringing-a considerable amount of cohesion to what
must, in historical fact, inevitably be a collection of scattered aspects, however
firmly linked, must depend for its value on the particular function chosen for
study. Fortunately, in the later 17 century the logarithm is an almost automatic
choice: an important and basic analytical function given a wide variety of treat-
ment and interpretation in the period, both abstractly as a correspondence and
geometrically as hyperbola-area (in which form it ties-in closely with the trigono-
metrical functions themselves defined on the geometrical model of the circle or
general ellipse*). As such, an understanding of its ramifications and varieties
of form are essential to a full comprehension of 17%® century mathematics and
its limitations, and those aspects—notably, general series-expansions!—which
are not treated in detail elsewhere will be discussed here approximately in chro-
nological sequence.

Historically, the logarithmic function developed? as the attempt to render
precise and to evaluate numerically the correspondence which exists between
two sets of numbers, one increasing (or decreasing) in an arithmetical ratio,
A+Eku while the other increases in a geometrical ratio L X M*, where k varies

* Such a dual definition, analytical and geometrical, was typical of the 17tE cen-
tury, and it is important to notice that each aspect reinforced the other both concep-
tually and as a matter of practical technique. While such things as series-expansions
(in the case of the logarithm and trigonometrical functions) and periodicity (restricted
at first to the trigonometrical functions) are better dealt with analytically, others
—especially the interrelationship of logarithm and trigonometrical function—are
more naturally treated on the geometrical model.

1 To be developed at length in the following chapters.

2 Around the beginning of the 16tk century. A detailed modern account with full
references —which I will not try to duplicate—is given in TROPFKE; 2 (1933): Section E
(204 —262): Die Logarithmen, especially 207ff. -
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among some integer set, —r, —(r—1),..., —1,0,1,2,...,(s—1),s say, in
the first instance, and later (by natural extension) as a full real variable in the
continuum [—oo, 4+ o). Clearly the functional mapping f(a,, 4;): a,—4,,
where a,=A+kpu, A,=LxM* is given by a,=log(4,) if A=log(L) and
p=Ilog(M).* When the concept of ratio had become widely understood in the
late medieval period, such correspondences were used in the attempt to interpret
natural phenomena on a mathematical basis?® and especially to formulate a
satisfactory law of resisted motion% Typically the medieval approach was to

* The particular case 1 4 u =log (L X M) seems to have been the overriding reason
for the late 16" and early 17th century attempts at extensive tabulation of the loga-
rithm.

? For example, historically one of the oldest such correspondences is the concept
of speed, whose origins go back beyond exact record. Specifically, this is the cor-
respondence between the two linear continua of space traversed by a moving body
and time taken to traverse that space conventionally given by the numerical ratio:
———-—dli‘_c;r:e , where the time and distance are measured in suitable units —a ratio which,

i

: . : . time
if taken in the inverse form of “‘inverse speed”: ——————
: distance

of the difficulties which clogged medieval attempts to formulate the speed of a moving

body as varying with time taken or, again, with distance traversed (but which, in
the form, speed = il%;%;i was seen as a ‘‘natural” definition to be upheld at all
cost). (Compare note 4 below.) The derived motion of instantaneous speed, the limit-

would have removed some

form where the distance—and time—intervals shrink to zero (a contribution, ap-
parently, of the 14t century Merton School at Oxford) became increasingly mathe-
matically valuable and is, indeed, the model on which Napier develops his theory of
the logarithm. It is an unanswered (if answerable) question as to how far, if at all,
the use made by the medieval philosophers of the idea of instantaneous speed in
developing theoretical problems on motion which use a law of motion which is logarith-
mical in form —though defined by them only as a correspondence between two number
sets varying in a simple way—influenced the early modern theories of the logarithm,
notably NAPIER’s (see note 4 and compare J.E. HoFrMANN: Geschichte der Mathematik
1(1953): 135).

4 Especially in the critical studies of the early 14th century Merton School at Oxford
whose influence was to be passed on through the late 14t century Paris school (of
such scholastics as Buripan and OresME) and early 15t century Spain and Italy
to the Renaissance. Dissatisfied with the inconsistent (if at all exactly formulable)
AR1STOTELIAN law of resisted motion—which we may take perhaps as speed
(V)oc motive power ()

resistance (R)
seemed better to correspond with physical fact: “The proportion of the speeds in
motion follows the proportion of the proportions of the motive power to resistance”,

—THOMAS BRADWARDINE had proposed a variant form which

2
or, setting up a table of correspondences, 1==1, 2, 3, ..., if Vle%l, then lVl<—>(~—Jg—1)
1 1
l¢f. H.L. CrosBY: Thomas of Bradwardine : his ‘ tractatus de proportionibus ...’, Madison

(Wisconsin), 1955, 12ff.]. Here, we are not concerned with the efficacy of this as a
law of nature—for that see ANNELIESE MAIER: Die Vorldgufer Galileis im 14. Jahr-
hundert, Rome 1949, and its excellent review by KovrE [Archives Internationales
de I'Hist. des Sc. 4 (1951): 7691f.] —but many recent treatments uncritically state
the law in its modern form Voclog (M/R). Such an exact functional correspondence
is found in no text before the 17 century, and completely distorts a function-form
which was seen as exponential only in the vaguest way. So it is with all known
scholastic and scholastic-influenced treatments: RicHARD SWINESHEAD [cf. the
14t8 century liber caloulationum (printed) Venice, 1520: especially tract 11: de loco
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tabulate instances on some numerical basis of two covarying phenomena, and
it is natural to suppose—on a basic principle of the simplicity of nature—that the
connection will manifest itself in an obvious way when we compare corresponding
instances. Likewise in the 16% century we find the same method of tabulation
of instances used in exploring the relations between numbers and power-indices®—
a case which corresponds to L=1 (log (L)=A=0) above. Using the decimal
number base, it is natural that M be taken as 10 and y=1 (which defines the
logarithmic base also to be 10), and we then have the type-example of the cor-
respondence studied:

e | s 2l o [ | 5
10"\ 1078 |1o-2|1o-1[ 1 [ 10 [ 102| 108 -+

where x is restricted to being integral. Clearly, the importance of this at a prac-
tical level is that, for x<>10% y<>10%, then x-}y<>10°TY=10%x107, and that
the correspondence allows us to replace the operation of multiplication by that
of addition—a cherished ideal when there were no automatic computing techniques
at more than the most elementary level. If then the (integral) values of x could
so be interpolated that two values x;, %, could be assigned ‘with reasonable
accuracy corresponding to any numbers X, X, which have to be multiplied,
and such that a third number X be found corresponding to (x,+ x,), then X=
X,-X,, and the problem is solved. The obvious way was to set up a “logarithmic
canon” of corresponding values of x and 10*—it is immediate that only values
of x in the interval [1, 10] need be tabulated, since 10%+%=10% x10*—but it
was far from clear how this was to be done systematically, and indeed no general
approach appeared till independent® methods were created by NAPIER and
BUraI at the close of the century.

BURGI's development is by far the simpler?, merely giving an extremely large
number of values of (1.0001)%, £=1, 2, 3, ... .* NAPIER’s ideas® show the signs

elementi : 36vb—387a], WiLLiaM HEvTESBURY [¢f. CURTIS WILSON: William Heyles-
bury. Medieval logic and the vise of mathematical physics, Madison (Wisconsin), 1956:
passim] and DEscarTEs (with regard to the law of motion communicated to MEr-
SENNE in the letter of 13 November 1629 - =- OFE Apam&Miraaup 1: 83—88). The
blunt fact is that, with the possible exception of DESCARTES, none had sufficient ma-
thematical technique at his disposal further to define the correspondence.

* In the general scheme A= 0, L =1; p=1, M = 1.0001. An obvious disadvantage
is that Btrer’s development discards the decimal logarithmic base.

5 Beginning with isolated examples in CHUQUET’s Tviparty (1484) and PacioLr’s
summa (1494) it quickly became obligatory to consider the correspondence in algebra
texts (and remained so till the close of the 16% century), but an outstanding treatment
was given by STIFEL in his arithmetica iniegra (1544): Bk. 3: 250L: 102. Compare
TROPFKE, op. cit: 2; 2061f., and an article by D.E. SmitH, The law of exvponents in
in the works of the 160 century. Napier TV : 81—091.

¢ Both Narier and BirGI seem to have begun their calculations about 1590
(see Naprrer TV : especially Lord Mourton: The invention of logavithms, its genesis
and growth : 1—32; E.W. HoBson: John Napier and the invention of logarithms, London,
1914; and E. VoeLLmY: Jost Biivgi und die Logavithmen, Basel, 1948, who suggests
on manuscript evidence that priority is to be given to BURGI).

? Published in his Arithmetische und geometvische Progress-tabulen, Prag 1620.

8 Given in the comstructio (1617) when his logarithmic canon was already in print
(in the descriptio, 1614).
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of deeper and more imaginative thought, though left tantalisingly vague in his
description of his ideas—a state of affairs which has led to several reconstructions
of his process of thought?, more or less inadequate.

It isindisputable, however, that NAPIER bases his development on a geometrical
model in which he conceives two correlated points moving on separate line-
segments such that one traverses segments in arithmetical progression while the
other traverses corresponding segments which are in geometrical progression.
Returning again to the popular 16t century correspondence between the integers
and index powers, let us set it up on a model. Two simple forms are possible,
the first of which—one naturally suggested by the physical layout of the cor-

i T i
T | 1 I -
- ] -
7 70 700
T 1 T i
x | 1 | -
x_ 11 | [ _
% | | l T
0 7/700 7/70 7
5 P 0
1 | |
i | 1
I | .
| T
Ly L

respondence on the printed page in the typical 16" century treatment-—maps
the function x onto a line-length simply calibrated, and the function 10* on
to a second line to correspond; while the second has the function 10* mapped onto
the simply calibrated line, and the function x onto a second line to correspond.
Taken together the two forms become powerfully suggestivel®, and would seem
the root source of NaPIER'S basic ideas. In fact, NAPIER'S treatment is defined
on a geometrical model slightly adapted from the second—probably for computa-
tional convenience—and introducing an independent continuum of time.
Consider two points P and L moving one on each of two lines. The point P
moves towards a point 0 on its line at a speed which varies directly as its distance
away from it??, while the corresponding point L moves uniformly along its line
with the same speed as that which P has instantaneously at B,. Then if point P

® Particularly in Lord MouLTOoN’s essay (op. cif. note 6), whose derivation seems
much too artificial and far-fetched in comparison with the reconstruction given.

10 Tn the first case the point correspondence is x<>10": in the second the equivalent
10gyy (#)<>%.

11 MouLTON suggestively argues that the peculiar form arises from NAPIER’S aim
that his canon shall ease trigonometrical computation.

12 Curiously —but only coincidentally — SWINESHEAD's law of motion in his liber
calculationum (see note 4). It is interesting to notice that SwiNEsSHEAD argued that
the point P could not reach O in finite time if the starting speed was finite.
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is at P, and point L at L, in the same moment of time, NAPIER defines the segment
LoL, to be the logarithmus (ratio-number) of the segment P,0.23 Clearly, apart
from introducing a time-continuum (whose function mainly is to add plausibility
and empha51se certain obvious but non-trivial details, especially that P and L
are at unique points B, L, at the same moment, or that the correspondence P <> L
is 1, 1), the major modlflcatlon made by NAPIER on the second model above has
been to reverse the sense of the upper line. ‘

It is easy to show the proposition, necessary and sufficient for the correspond-
ence to be logarithmic, that the segments P.O increase in (negative) geometrical
proportion—specifically that, where the corresponding ‘‘logarithm” segments

4 45 5 4 0
—_] | 1
1 f [
— | | | -
] I I ]
L/) ’7 LZ LJ
£ % A &G & 4 4
J— | l | L l
l I I l LI l
—_ [ | [ | 1 ! —_—
I I | I I ]
Lg Lo L Ly Ly Lj
areequal, B, B:BF: ...:RP,:...=FR0:FR0;...: BO;.... It is immediate that

FO: P1'+7'0*1:§R+1 i+ ,+,+1-PBPI:I;-P]-+1=R,0:P,-0, or BOXEFO0=F, ;0 xF0;
or, where L,L,<>F,0, LyL;<> FO, then LyL,+LyL;[=L,L; ;]=L,L;;«F,,;0;
so that, where similarly LyL,«»B,0 and L,L,«<F0, LyL;+L,L; =L,L,+L,L,
(or equivalently ¢+j=£k-+1) implies P, ;0=Fh ,0, or F,OXFO0=FOXEO
(which mirrors the fundamental logarithmic mapping of multiplication onto
addition).

The problem remains of applying this structure, and NAPIER bases his
numerical treatment on a general inequality derived verbally but which is clarified
by being given symbohcally 14 Let us suppose that P traverses each of the
intervals P_; F,, R, B, P_;F, B B, in equal intervals of time (measured by L;L,=
LyL;=L_ Lo—-LoL) thenP P BP=P_,R:R B=FR0:F0=FO0:FO0.

Clearly, since the speed of the point P contmuously decreases as 1t moves
towards O, its speeds at P_;, F, will be greater and less respectively than that
at B, (where P_,0>F,0>F0), so that
K5 PR L_;L, LoLi—LoLo [ _ LyL; RE By .
o i R = 30l> 40 = %o

13 descriptio: def. 6 (and compare constructio: 5ff.). From what is shown below it
follows that, where LyLg=L, L (or a—f=y—6), RO: BO=EQ:RBO; so that L, Lz is
a ‘‘measure of the rat:o PO JO. This concept of a mensura mtwms is fundamental
in many 17t® century analytlcal treatments of the logarithm (and very possibly underlies
NapieR’s choice of the word logarithmus).

14 constyuctio: 81f.
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or, taking FO=ux;, LyL;=Ly (%),

%; < % . . . wmi—%  Ly(x)—Ly(# x;
A , } defines the inequality 7°_ % ~ v (%) — Ly (%) L
Ly (%;) > Ly (%) # ¥y ¥
. ’ ’ — X L ;) — s
In particular, when x,=x, Ly (%) =Ly (%,)=0; or YoM LN () > D%
* &2 %o %o
(x, < xo).

The way is now clear to construction of the numerical canon. NAPIER takes

1

%g=F0=10" and in a series of tables calculates, first, 107 (1 —W>” y=

0,1, 2,...,100% and so finds 107 (1 — T:—);)100=9999 000.000495 0; next, the 51 num-

bers 107 1——1—3, §=0,1,2,...,50; and, finally, the 21 Xx69 numbers 107 X
108 y
J— ,i. P —_— _L_ 7 = N = i i 7
( 104)20(1 102) , $=0,1,2,...,20; g=0,1,2,...,68, finding that 107x
( — ‘1%4—‘) -(1 — 730?)68 is a little less than —12— x10%.16 Using his inequality NAPIER

derives bounds for all this dense set of numbers—or at least of an adequate number,
according as the-circumstances justified”—and finds that, by taking the arith-
metic mean of the two bounds an accuracy of 7 significant figures is to be had.
So he completes his logarithmic canon for x € [1 X107, 107] and by straightforward
extension to the remaining interval x € [0, 1 X 107], and the whole canon is adapted
to trigonometrical computation by changing the argument from natural instances
to tabulated instances of 107-sind, ¢ taken at 1’ intervals, 0<<$<9(°.18

While the numerical aspect of logarithmic computation is not devoid of theo-
retical interest!?, it is the structure on which such numerical calculations are
made which is significant in the concept of a logarithmic function.

* These inequalities correspond to the more familiar ones of natural logarithms:
a—b > log (a) —log (b) > a—b
b 1 a

a > b implies We cannot, of course—since Ly(1)

is not zero—suppose Ly (a) — Ly (B) [:LN (%) —Ly(1)

the same as Ly (%) .

15 A computation which can be made simply by successive subtraction:

1 \r+ - 1\ 1 1\
10°(1—-1 ) =107 <1——_) _( —~—) .
( ‘107) [ 107 107 ! 107
16 The object, clearly, is to find a large number of approximately geometrical

means in the interval [107, 4 X 107] and so have a fairly dense point-set scattered over

100
it: 107 (1 ——11—) ~~ 107 (1 _TL)' for example.

o7 0t
17 Mostly he seems merely to have calculated bounds for the 21 X 69 numbers
107-(1 —ng)p (1 —7%?)q which form his ‘‘radical table’’, and to have filled in the

remaining numbers by linear interpolation.

18 The canon was a gigantic labour of love which took twenty years to compute
and check. It is a tribute to the accuracy of NariEr’s work (and to that of Bricas,
who carried through an even more stupendous programme of calculation for his AL)
that, even with the improved techniques available, no essentially new recalculation
was made for a century. Bricas’ adaptation to a decimal base (** common logarithms”’)
involved merely the subtraction and division of constants and a change of sign.

1 As will be seen in the next chapter, numerical approximation is important in
the early stages of interpolation theories.
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If we take up NAPIER’s basic idea, the concept can, in fact, be made to yield
more than was ever taken from it in the 17% century. Consider once more the
upper line in the NAPIERIAN definition, and as before suppose that the point P
moves so that its speed varies as its distance from O, where F,0=10". Now
i consider the two-dimensional space in
5;7 which a Cartesian coordinate system is

defined by P O=x and where P,Q,=y,
(i normal to P,0, measures the “inverse”
instantaneous speed (=1/speed) of P
at P. By loose limit considerations,
the law of motion of P demands that
“distance” PO X 1/“speed” FQ;,=
“time’’ = constant,* or xy=F,0xXF,Q,
] =F,0xPQ,=107, since NAPIER de-
[0 fines the instantaneous speed of P at
P, to be unit speed—which shows the
point-set of the Q; to be a rectangular
hyperbola of centre 0 and one asymptote F,0. Further, the hyperbola-area
Hyp (B, P.Q,Q,) gives the total time taken by P to traverse the segment F, B**;
and so, in the above notation,

3

)
TINTE

@

<o
o

Fig. 8

2p=107
107 107
Ly(r=B0) =Hyp (B R Q; 00 = [ (=15} dv=107log 1],
x,"———P,-O ¢
the known relation connecting the NAPIERIAN logarithm Ly (x;) and the natural
logarithm log(x;). Finally, if we consider two general points F, F; and their
corresponding Q;, @;, the areal inequality (where F,0>F,0)

PP XP,Q; =rectangle F,Q,> Hyp (B E Q; Q;) > rectangle F,Q; = FEEXF(;
proves
FOixBF; >[HYP (PP Q;Q) 1 Hyp (BP0 Q) —Hyp (R EQ; Qo) - FQix BB
B0 BO = B0 PO’
wi—  Ly(y)—Ln(m)  %i—%

or, where x,>x;, > - >——", which is NAPIER’S in-

equality. (We see, inéidentally, hovov accurate is NAPIER'S final inspiration of
taking the middle term as the arithmetic mean of the two bounds—on the model
this is equivalent to equating the trapezium P, B Q,;Q; with Hyp (£ FQ,;0),
slightly the smaller in fact.)2

Clearly, the use of hyperbola-area as a model of the logarithmic function is
a richly suggestive idea, and one which, using an exhaustion proof, could fully

* The law has a comnstant time increment d¢= (?)de, where ds, dt are incre-
s

ments of distance and time respectively.

t=t

t
**x Where #; is the time taken by P over F P, {;= f(%) cds= f dt.
0

=0

20 The whole argument, deliberately kept loose in keeping with Napier's own
distance-speed model treatment, would have been understood by a 14t century
scholastic, and indeed is medieval rather than modern, however attractive its rigorous
treatment by calculus concepts.
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be justified on mathematical techniques existing in the early 17% century.
Historically, however, we find a curious time-lag. Apparently the connection
between the logarithm (and its basic property, log («) + log (8) =log (a X 8) +log (1))
and the hyperbola-area was first to be noticed only half a century after NAPIER’S
work by the relatively obscure Belgian Jesuit A.A. DE SArasa 2! reading through
the opus geometricum?® of his friend GREGORY ST. VINCENT (in whom a general
viewpoint seemed to have been obscured by his love of detail). In fact, we can
find in the opus geometricum everything except a statement of the logarithmic
nature of hyperbola area: specifically, GREGORY proves that, where the points
D, P,H, K are on a rectangular hyperbola of asymptotes AF, AC, then—if,
say DE:PQ=(A:p)" and HI: KC=(A:u)"—Hyp(EQPD):Hyp(ICKH)=m:n.*
GREGORY’s proof? re-
duces the problem to the f g\
case m, n=1 by dividing
EQ,IC in m,n segments
respectively in geometrical
progression of ratio (4:u)
(decreasing from A4) : specifi-
cally,if DE:PQ(=AQ:AE) 7y
=HI:KC (=AC:Al) de- W
fines the hyperbola DPHK ; 0 7

A
2224

such that, for any ordinates 7 A A ' P bier €
}“ilui: L'iMi’ ALXLM,Z Fig. 9
ALXxL,M,(=K?constant),
then Hyp(EQPD)=Hyp(ICKH). The demonstration is carried through by an
exhaustion method **. The general proof, however, is incomplete in that no freedom
* ¢ .. superficiem .DEQP toties continere superficiem HICK quoties ratio lineae
DE and PQ multiplicat rationem HI and KC.”
** Where AE <A 1;<<AX;1,<AQ orders the points of the segment EQ, we can
set up a corresponding ordering A7 < AL;<<AL; ,<AC of IC by A4, 4;2; . =AL;:
L;L;.y, and show that

24 s L; M,
ZM;’+1X{ P =LiLi+1X{ 1z
i+1 Mt i1 Mgy
. . . L (Ar< Al s e
Finally, using the mequahtles{ ' 1 or the equivalent{ it = At i , we
AL; <ALy LiM;>Lipy My,
have the Archimedean exhaustion scheme
(i) (Ai = A Ay X Ay, > Byp (A Ay pryga ) > A Apa X dj i pla = & )
By=LiLipa XL M;>Hyp (L Ly s My s M) > LiLi XLy Mgy = by

where 4; = B;, a; = b;—which proves Hyp (A; 4; 1y ;114 = Hyp (L;L;, , M, M}), and
this is true for each pair of segments A; 4,14, L; L;y;.

# In an “appendix” to the opus geometvicum (see note22) published shortly
afterwards, solutio problematis a ... Mersenno propositi: datis tribus quibuscungue
magnitudinibus, vationalibus vel ivvationalibus, datisque duavum ex illis logavithmis,
tertiae logavithmum geometvice invenive.

22 GREGORY ST. VINCENT OG: Antwerp, 1647. See J.E. HormannN: Das Opus
Geowmetricum des Gregorius a S. Vincentio und seine Einwirkung auf Leibniz, Abh. der
Preuf3. Akad. der Wiss., 1941, No. 13. Berlin 1942.

2 0G: Bk. 6: de hyperbola, pt. 4: de segmentis hyperbolicis convexis et concavis:
583 —603; especially prop.125: 594.
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is allowed for extension beyond rational values of the ratio m:# (m,n are
restricted to being integers, and GREGORY'S GP-section divides the hyp-areas
into respectively m, # equal hyp-areas), though Eudoxian schemes are easy to
apply.

While GREGORY’S opus geometricum attracted wide notice for another reason 2,
mathematicians were at first slow to extend the hyperbola-area model of the
logarithm2, Perhaps the correspondence seemed merely to convert a difficult
analytical concept into an equally difficult one of hyperbola-area. In particular,
how could the hyperbola-area be calculated for a suitable range of values of the
asymptote—the very basis for setting up an improved logarithmic canon? It
is this question, defined and solved with increasing precision from the early
1650’s, which finally provoked the elementary infinite sum-series developments
for the logarithm in the late 1660’s. 26

Perhaps the first attempt to calculate hyperbola-areas systematically was
formulated by BROUNCKER in the mid-1650’s. JoHN WaLLls, having had some
success in finding approximations to circle-area using the (CARTESIAN) represent-

ing equation y=JR2?— 2, had tried (in his A7) to apply the same techniques
to the hyperbola, y =} R?-}- x2, and, failing, suggested the problem to BROUNCKER.?
BRrOUNCKER succeeded in dissecting hyperbola-areas systematically, apparently
in mid-1655, but did not publish his method for a decade.?®

The BROUNCKERIAN approach typifies the solid, common-sense attitude to
mathematical difficulties which so often—contrary to myth—yields a workable
solution*. When confronted by some area whose numerical measure in terms of
unit-area we wish to find, we naturally narrow approximation error by suitably
splitting the area. So BROUNCKER, faced with the hyperbola-area 4 BCE, where
031 is an asymptote and general point y on the (rectangular) hyperbola AEC is
defined by OA xAu=K?, begins by repeated bisection of the base-line 4B such
that at some-A™ stage the points a’, ¥, ¢/, ... dissect the interval AB into 2%
equal intervals Aa'=a'b’'=b'c'=.--=g'B; and then considers two distinct
ways of approximation. First, we can see hyp-area {4 BCE) as the limit of the
sum sequence of inscribed rectangles (denoted as in the figure): [(JABCF+-
OKFNAd+IMNPb+4[JHKLf+- ---; or secondly, we can take it as the limit

* Though I do not deny that outstanding advance has taken place on the basis
of a flash of insight or a clarifying redefinition of the problem.

2?4 His illusory proof that circle quadrature is impossible—c¢f. ch. 1, note 2,

2 Though both HuvcENs and NEwToN realized its full significance at an early
point in their mathematical development and use the logarithmic function in full
generality in geometrical schemes. Cf. Huvgens OFE 12 1910): 234ff., in which
with a “‘édgnxa, 27 October 1657 he reduces the rectification of the parabola to a
suitable hyperbola-area; and CUL. Add 4004: (to be dated early 1665) where NEw-
TON notes: ““In y¢ Hyperbola 3¢ area of it beares ¥¢ same respect to its asymptote weh
a logarithme doth [to its] number.”

26 Compare the next chapters.

27 See WALLIS: adversus M. Meibomii de proportionibus dialogum : dedicatio -=-
operum wmathematicorum pars prima, Oxford 1657: dedicatio, iii, -=- opera 1 (1695):
231—232.

28 In PT 3 (1668): 645—649: The squaring of the hyperbola by an infinite series
of rational numbers ....
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of the (negative) sum sequence of inscribed triangles: [1ABDE —[A\CED+
A CAE+ (AABE+ACfd)+---].* In BROUNCKER'S example, K*=1, =01 Xy,
and 04 = AE=AB (so that hyp-area (4 BCE) =log2). Using the first approach,
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we find, since AE=1, aa’'= -, bb' = 10 .,gg’:%,BC:% that [1ABCF
_—._1f2, [1KFNd (=Dd’ANd—[]d’AFk)=3‘i4x—— 34 MNPb—56
(JHKLf =,—71_§, -..;and so the general law of formation is clear to the eye. That is,
- = = .02
hyp-area (4 BCE) (= log 2) —|— + 5 6 + > 8 .

* A basic assumption made is, of course, that the hyperbola uEC is everywhere
convex (except at points at infinity, but these do not trouble in the present case).
2 This is, of course, the ‘““MERCATOR” expansion of log 2.
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By the second approach we find ACDE=—, ACdE= ;_4, /\dbE
=7 5 e ANCld=—— T 7 g and so, in this case,
hyp- area(ABCE)—1—(——-|- ORI ST | )
234 456 678 )

Clearly, the method is general* but laborious—what makes the method ap-
pealing is that the complicated expressions reduce (as the particular case x=1 of
the general series below) to more amenable shape. The same is true for a similar
approach instituted by PIETRO MENGOLI®, apparently some time in the mid-
1650’s also. MENGOLI'S method, in fact, yields the same series for log 2 as
BROUNCKER’s approach by rectangles, but the interesting conceptual development
arises by suitable definition and particularisation from a deliberate attempt to
create an analytical theory of the logarithm, based on the model of hyperbola-
area in inspiration but independent of it in form.**

MexnGoL!I begins with two basic (and complementary) concepts: the ““hyper-
logarithmus”’, L(m/n),, and the “hypologarithmus” L (#/n),, defined respectively

by - \
il 2, ) 2, 2 )
T L) s o) e (E(2) - L))~

and we can show3?2

L(%)r<£(’::)s’ Z(%)y >f(%)s for 7>s.

* BROUNCKER, indeed, sketches in the extension3® where O4A = AE =1, AB=x;
so that hyp-area (4 BCE) =log (1 + #) as a more complicated case of the above dual
procedure. The two approaches, in fact, yield rather unwieldy series expansions for
log (1 + #), namely, where 4, (=2 257,

merdn( 8 3 ()

1<r=n 1<t

(by rectangles)

(by triangles)

1 2 . ( 1 >
x—— — %X lim .
2 1+ n—>00 'ogrzgn 1§§2'_1 Ar s (Ae, s %) (Ay,s—2%)

** This abstraction of structure from geometrical form is MENGoOLI'S professed
ideal throughout GS. It is interesting to interpret the analytical discussion given
here on the model of the hyperbola xy = 1.

30 BROUNCKER, op. ¢it. 349: By any of which ... series it is not hard to calculate,
as near as you please, these and the like hyperbolic spaces, whatever be the rational
proportion of AE to BC.”

31 In MenGoL1: GS; Bologna, 1659. The series expansion for the logarithm seems
to have been introduced while the book was printing, in the lengthy introduction
(¢f. appendix: 73—75 “cum haec scriberem, mihi contigit rectum tramitem invenire
ad persequendos omnium numerosarum rationum logarithmos’’) while the analytical
theory of the logarithm is pursued at great length in Books 4, 5; compare A. AGo-
STINI: L’opeva wmatematica di Pietvo Mengoli, Archives int. de I'hist. des sciences 3
(1950): 816—834.

32 A point proved not quite rigidly by MENGOLI.
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Further
L(7),+ L) =L LG

and similarly
T ({m T [0 T{m TF{0 _ T (m- o
L(%),+L(3).~I(r). 23~ T 05)
Using this as his analytical basis MENGOLI defines log (m/n) as the limit of the two
sum-sequences L and L:
m
n

log (!g) is the function which satisfies L (%)r; log (-’3—) =L ( ) ,forall 7.

4

By use of an analytical counterpart of the exhaustion-method (using, in fact,
the same logical proof-form) the property which defines the logarithmic nature of

log (m/n):
o2+ (3 e (35

is easy to show.
Finally, define the ““prologarithmus” P(n), by

P(n), =l§s§n((7—_1—;n+5),

and it follows immediately that

> Fe)= 3 3 () =, L G

1<r<R 1<y<R 1=s=n 1<1<Rn
Then .
L= 2 (3L LT, Z o= P00
:Igzg',e(\léém(m;_mz) - 1§Z;_:gn((’_11) n+t)> :
Finally

log (%) — lim (L(l”_) ) = lim

R— o0 n /R R-—> o0

(2 (P, — Pw)-*
1Lr<R

Both BROUNCKER’S and MENGOLI'S general expansions for the logarithmic
function are, in practice, clumsy and unwieldy. No workable approximations,
for example, to particular logarithms are forthcoming without a quite unjustified
amount of work. Well into the 1660’s it remained the ideal of many mathemati-
cians to construct methods which, based on the model of hyperbola-area for their
justification, would give a close approximation without undue computation.
This problem was, of course, resolved with the aid of intégration techniques by

* From which BROUNCKER'S “Mercator” series for log 2 follows by taking m =2,
n=1:

2 . 1 . )
]Og(1 ) e :"lgnwlgfzgk(zwiﬁ)ﬂ tapSyra T (;;1)?{)

=Rlimoo Z (__2 11—21 )
- 1<7<R 4 4
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several sum-series expansions which were (or could be made) quickly converging33,
but a wonderfully ingenious and accurate approach had in the meantime been
developed by JaMEs GREGORY as a corollary to the well-known converging
sequences which he abstracts from the geometrical model of a general sector of a
central conic (ellipse or hyperbola).3
Let us take a general sector BPC of the conic whose centre is 4, with the
tangents at B, P meeting in F': it is immediate that AF, meeting BP in I, bisects
BP, and that the tangent DIL is parallel to BP. With more difficulty we can show
that theareas (BAPI)=(GM) (BAPF,BAP),
and (ABDLP)=(HM) (BAPI, BAPF)*; and
now we see the beginning of two converging
sequences (4;), (), in which (ABP)=r1,,
(ABFP)=1,; (ABIP)=1,, (ABDLP)=1,.
In the case of the ellipse 7, is a (convex) area
which has B4, BP for two sides, -and the re-
maining (2%) ones have their end-points in the
ellipse arc BP; and I, is a similar (convex)
area of two sides BA, BP and whose remain-
ing (284 1) sides are each tangent to the ellipse
arc touching it in the end-points of sides of 4.
Fig. 12 The case of the hyperbola 'is similar: we
merely reverse the definitions of 7, I, .3
We have, then, a ‘‘converging sequence’ (series convergens) of (i), (1)
which are generated by

Gy = (GM) (45, 1)),
Iy = (HM) (i34, 13) %
and it is from this that GREGORY derives a subtle numerical technique. Thus,

consider now the hyperbola ISL whose representing (CARTESIAN) equation is
xy=10%, and centre A4, asymptotes AK, AO: The tangents at I, L meet in 4

* 4. By the pole-polar property AI12=AQ-AF, so that
(B4 PI) AI AQ _ (BAP)

(BAPF) ~ AF 4l _ (BAPI)'
QF:—IF?

(BapLpy BAPIF 5w —BPE) 45 opyopr_1r
(BAPF) (BAPF) = AF - QF
_ 24I(AR—AI) _ (HM)(AI, AF) _(HM)(BAPI, BAPF)
AFi—A7F AF = (BAPE)

33 See chapter five. The first published account of the development was given by
MERCATOR in Logarithmotechnia: especially prop 17: 31—33, though several people
developed the method independently.

3¢ The method was developed apparently in postgraduate research at Padua in
the mid-1660’s, but first published in VCHQ : prop. 1£f.

3% The 14, I, are, in GREGORY’S terminology, “regularia inscripta
scripta”’. Clearly lim (i) = Jim (1) = conic sector ABP.

3 Cf. VCHQ: prop. 5: scholium, where GREGORY introduces parameters for this
recursive procedure,

13 e
» .

. circum-
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and A AN is drawn (bisecting the hyperbola chord IL). Taking KA=LM =103,
IK=AM =10, and so KM =0P=9.10'?, so that if we can find Hyp-area
(KMLI), we shall have 10% xlog (10'3/10'%) =102 xlog (10). However,

Hyp-area (KMLI) / Yy
M

= hyperbola — triangle ALST

(since NAKI=/\ALM%*),and we can
find this as the limit of the sequences Yy
i, I, which begin with 7=/ AIL,
I,=area (AL AI). GREGORY evaluates S
ANAIL byshowing it to be equal to the -
trapezium (LOPI)**, and proves area =
(ALAI)=(HM) ((NOPI), (COPQ))***, 7
so that -

ig =22 qom (=0p><_;~ (LO+1P)),
-2 LT X 7
I, = (HM) (9 10%, 9 - 10%) 37 Fig. 13

To these GREGORY applies his formation rule 20 times, and has

190 =23025 85092 99312 03593 18112 4
Ia=123025 85002 99580 61534 17386 4,

which he rounds off by a “triplicating”’ inequality 8, reaching finally Hyp-area
(KMLI)[=10%-log(10)]=102 X 23025 85002 99404 56240 1787, proxime. In
further development he sketches in how the technique might be adapted to
calculating Log (X) using the hyperbola xy=102 deriving by calculating 10% x
log (X) from given (close) values, log (X,), log (X,) where log (X,) <log (X) <log (X,).2¢

Such “brute-force’” methods were rapidly superseded by simpler but—from
a theoretical viewpoint—less subtle methods, and certainly with an increase in
power there was a corresponding lack of rigour. However, the methods of geo-
metrical approximation were, in effect, mere corollaries of the geometrical hyper-
bola-area model of the logarithmic function, and till an adequate analytical
definition was developed—significantly, by abstracting from the geometrical

* For it is the hyperbola property that IK X KA = LM x MA.
** Area (AOLI) — AAOL = area (AOLI) — A A PI, with AOXOL = AP x PI.

*xk 4, (ALI):(ALSI)=(ALSI): (AL AI)

2. (AM):(GM) = (GM):(HM)
(ALI) = (AM) (NOPI, LOPQ) [= (LOPI)]
3. {(ALSI)=(GM) (NOPI, LOPQ), since SX?= SX SX’
=LOX{04=)ON.

3 VCHQ: props. 25~—29.

% Probably that of VCHQ: prop. 24: scholium: sector = Mfgﬁﬂ.
This apparently had been derived einpirically by GREGORY at the time of writing
VCHQ, but is stated in more exact form in BG: 11. Compare GREGORY-OLDENBURG,
25 December 1668 - =- HuvGeENs OE 6; 309.

% Props. 30—32 (and conversely in props. 33, 34), op. cit.

Arch. Hist, Exact Sci., Vol. 1 16
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x

model in the form log |%|= f % —all applications of the logarithmic function

1

in mathematical analysis continued to be on a geometrical basis.

Thus we find that MERCATOR’s publication of his sum-series treatment of
log{1+x) in logarithmotechnia inspired WALLIS® to give an exact form of the

o

equivalent of flog(x)-dx (improving on MERCATOR’S sum-series treatment4).
Stated precisely, by a method equivalent toa cha.nge of order of integration in
double integral his result is that f Hyp b -dx= Hyp b b2(1 —b), where Hyp x

is the area under the hyperbola xy=>b% between x=¢ and x=pf (or Hyp B=
b2 log <% *
The method was, however, used most elegantly and powerfully in England

by JamEs GREGORY?? and Isaac Barrow?. Outstanding in its beauty and
1ngenu1ty as well as its complexity is JAMEs GREGORY s proof of the equivalent

of f secx-dx=—log (sec# — tand}), important for 1ts use in the theory of the
0
MERCATOR projection (GREGORY’S ‘‘nautical planisphere™)#. Of this—in an

1+smi), at least—BarRROW gave a much
sin &

equivalent form: f secx-dx= log(

shorter proof, and its analysis will show the power of the geometrical model
of the logarithm.

BaArrow assumes a geometrical transform of the integral® which in effect,
k4 x=5
yields the equality [secx-dx= [ sec®x-d (sinx). This latter he sets up in geo-
0 x=0
metrical form by considering a circle quadrant ABC (of centre C): taking any

* Substituting this we have the modern form of WALLIS result:
1

f<b2 log (%))-dx =(62 log (%))—bz 1—b), or flog dx:log(—;—)—)——u —¥).
b

4 Tn PT 3 (1668): no 38: 753— 764, which rev1ews MercaTor Log giving extracts
from two letters of his to BRoUNCKER of 8 July and 5 August 1668.

1 Meyvcator Log: prop. 19, where by simple integration of his sum-series MsR-

x
. x x® x® . . .
CATOR gives f log (%) -dx = x(?—w;?)——}—ﬁu-), where the logarithmic function
is defined onothe hyperbola xy = 1.

42 In GPU and EG: appendix especially.

48 In his LG : especially lectio 9ff.

4 EG: 14—21L analogia inter lineam wmevidionalem planisphaerici nautici...,
seu quod secantium natuvalium additio efficiat tangentes avtificiales, especially props. 1, 2:
14—17.

4 BarrOw, LG: lectio 12, appendix: 5—6: 111. As will be seen in chapter 6 of
this work, many years later HALLEY gave a further ingenious proof that the stereo-
graphic projection of a loxodrome on a sphere is a logarithmic spiral. Cf. PT 19
(1695): No. 215.

46 FElaborated in EG: analogia ...: prop. 1: 14—15.
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parallel TA to AC (meeting as shown), we define g on the curve X4 by the meet
of AT with po, drawn parallel to BC through the meet ¢ of the tangent at 7
A

and AC. Then, where ACT =z,
X
22 0%(=2BC?sec?) = zBCZ(_g%)Z N

5)

4

g

BC\2%
| =2TBC? (ﬂ_)
with
AT2=CT?(=BC%) —CA

= (BC+CA)(BC—CA)
if we take u (on the further side of C) in BC

such that AC=Cyu. Further 2BC=B21+ By,
so that v

2. 20%= BC3(Z;AA+B") sc(35+55), /f
A

and it is completely natural to introduce the /
L

rectangular hyperbola LEO (of centre B and
asymptote BC) by: for all points 4’ on it, ;
BA-AN=DBC? We can then reduce further Fig. 14
by:249*=BC (AA'+uy’), and finally, summing

by the elements of BC** over 0= x< ¢, where ¢= ACK defines the maximum
range of integration PC=CQ=sin® X BC, we have

4
> 2BC?sec?x-d(BC-sinw)- (= 2BC3 [ sec?x - d (sin x))
¢

1=0<zr=1s=x=>%

2. BC(AXN 4+ pp') = BC xHyp-area (PQOL)

r=0ZLx=2Lx="0

— BC? 1og(B‘9) BClo g(ﬁtﬁ_“i)

sin ¢

It remains, to complete discussion of 17 century attitudes towards the
logarithm, to note that, in keeping with the increasing analytical tone of the late
17 century, attempts were made to give a fully analytical definition of the
logarithm —specifically, it was required that this definition should lead naturally
and immediately to the known sum-series expansions. In contrast with the

x

flexibility of the modern definition log | x|= f ai_x —which still has the fossil-mark

1
of the hyperbola on it—fluxional calculus, lacking a usable sign for the operation
of integration, had to fall back on a definition which was largely verbal. Inevitably,
too, such verbal definition was in some sense a return to the loosely expressed
kinematical approach of NAPIER.

* Since A¢(=C0):BC(=CT)=secx:1=1:cosx=CT(=BC):iT.
** d(BC sinx) = BC d(sinx).

16*
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So we find it with HALLEY’s attempt at an analytical definition%. Following
a strictly Napierian approach, HALLEY takes as his (verbal) definition of the
logarithm of a number the fact that logarithms are “numbers which are the
exponents of ratios” (numeri rationum exponentes), and considers some very
small “ratiuncula’ which shall be a unit-measure for logarithms. Then to measure
the ratio of the logarithms of two line segments, « and 8, he sets up in each a
scale of continued proportionals of which this unit-ratiuncula is the first segment,
so that, as the unit-ratiuncula is indefinitely decreased in magnitude, the ratio
of the number of geometrical proportionals in each line will approximate ever
more closely to the ratio of their logarithms. Thus, if (1+2)*=4 and (1+4)*=B,
log,A: log,B= %1_11)1;2 (a:b).18

HALLEY now has an ingeniousidea*: *“... if, instead of supposing the logarithms
composed of a number of equal ratiunculae proportional to each ratio, we shall
take the ratio of unity to any number to consist always of the same infinite
number of ratiunculae, their magnitude in this case will be as their number in
the former; wherefore, if between unity and any number proposed there be taken
any infinity of mean proportionals, the infinitely little segment or decrement of
the first of those means from unity will be a ratiuncula; that is, the momentum
or fluxion of the ratio of unity to the said number. And seeing that in these
continued proportionals all the ratiunculae are equal, their sum, or the whole
ratio, will be as the said momentum directly; that is, the logarithm of each ratio
will be as the fluxion thereof. Wherefore, if the root of any infinite power be
extracted out of any number, the differentiola of the said root from unity shall
be as the logarithm of that number.”

The verbal treatment obscures the basic concept—and the whole passage
was not understood widely at the time because of such obscurity of what was
at its clearest a difficult concept—but a symbolic sketch will point his meaning.
Let the ratiunculae of the two line-segments (1+a), (1) be, respectively,
(1+a)t™ —1, (1-+B)*" —1, where m, indefinitely large, is the number of mean
proportionals in each line.. By his verbal argument HALLEY shows that the
magnitudes of these ratiunculae are, in the limit, as the numbers of the original
ones (the ratio of which numbers is as that of the logarithms). Symbolically:

log, (1+ o) : log, (1+6) _—_.”}I_I)nw[((,l + o()I/m - 1) :((1 + ﬂ)l/m . 1)]

(14+0)¥m—1. (14p)V"—1
_ 1/m ’ 1/m

* Significantly, if the above restoration of NAPIER’s thought-process is correct,
HALLEY is unconsciously repeating NAPIER.

7 In A most compendious ... method of constructing the logavithms, exemplified and
demonstrated from the natuve of numbers, without any vegavd to the hyperbola, PT 19
(1695) No. 215. Interestingly, HALLEY gives as his explicit reason for writing the
article: ... I find very few of those who make constant use of logarithms to have
attained an adequate notion of them, to know how to make or examine them, or to
understand the extent of the use of them; contenting themselves with the tables of
them as they find them, without daring to question them, or caring to know how to
rectify them.”

48 This is, of course, a variation of BURGI's approach, and, in particular, had been
developed into a practical technique by MERCATOR in logarithmotechnia, props. 1, 2:
1—10.

= lim
m—> 0

y
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or log,(1+a) is proportional to lim

m—>o0

[(1+oc)1’”‘——1

i } More generally, log; (1 +«)

. . . (1 o)V —11* . . .

is proportional to hmoo i and, as HALLEY points out, taking a suit-
m-—> .

able factor of proportionality — lo; = in fact, —gives us logarithms to a particular

base (k). In particular, natural—‘Lord NAPIER'S"” —logarithms arise when the
proportion factor is unity,-or k=e.
. R (1 :ta) 1/m__1
Thisresult, log (1 L o)= 4+ lim [.—W——-—
of the natural logarithm. Using it he finds the sum-series expansions.of log (1 - x) **,
and of the exponential function e=L*** very neatly.

} ,is HALLEY’S analytical definition

By the end of the 17' century we can say that, much more than being a
calculating device suitably well tabulated, the logarithmic function—very largely
on the geometrical model of hyperbola-area—had been accepted into mathe-
matics. When, in the 18 century, this geometrical basis was discarded in
favour of a fully analytical one, no extension or reformulation was necessary—
the concept of “ hyperbola-area’ was transformed painlessly into that of “natural
logarithm”. What remained to bz done at the end of the 17t century was, above
all, to make precise its relationship with that of the circular functions, the narrow-
ness of which seemed clear from several correspondences already verified—
especially the dual nature of GREGORY’s analytical sequences in VCHQ—but
whose nature was to be pin-pointed by suchrelations as COTES’ e%*? =cos® 4-4-sind
(- =-id=log (2_33:—%» Otherwise the (real function) logarithm had been
tolerably well discussed.

*  Indeed

’

lim [Mi} — lim [Miia)o

m—>00 1/m 7n—0 n
the differential (‘' fluxion”’) of
Im (1 4= lim (1 L)V
n—0 " —> 00
then
lim (?zd_“ 4 oc)“’") = lim_(log(1 ) X (1 k&)™) = log (1 £ ),

m—> 00 m
=Jlogk Xlog; (1 + ).
** Expanding by the binomial theorem,

(1—m) 1{1—m) (2—m
21 m?2 oL 31 ms )

log(i'ioc)=mli_r>n°o[(1i7;—oc+1 a3+...)__1}m

=dat+ia?tho® +iat L e

ym__
**k Takelog (14o)=+4L,0or £+ L = lim00 11—:’:—(’;)/—1’:—1] Unwrapping, e*f = 14«
m—>
= lim (1 ;{:%)m; and expanding this by the binomial theorem, e*L =1 4+ L +

m—>0o0

Ager Vypag...
2L i3| —+ .
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IV. Concept of function
2. Interpolation

By the first decades of the 17% century, the elementary mathematical func-
tions (trigonometrical and logarithmic) had been tabulated to the accuracy of
roughly, six or seven decimal figures for a large number of particular values
densely packed in some adequate interval.? As with all tabulated functions it
was a natural desire to seek ways of deriving intermediate values of the function
from neighbouring (known) tabulated instances without the wearisome toil
necessary in calculating each value of the function afresh from first principles.?

Fortunately, these elementary functions are well-behaved, having singularities
only at a few exceptional points. More important—from the viewpoint of 17 cen-
tury mathematics at least—a small variation in the argument provokes in such
functions an equally small increase (or decrease), and such increases for uniform
increase in the argument occur likewise very nearly at a uniform rate. On this
fact is justified (usually only implicitly) the widespread use of linear interpolation
to interpolate values of a function between given tabulated ones ‘““not too widely
differing”’. Briefly, for k€ [0, H] we interpolate the value f(x-+A) between

given values f(x) and f(x-+ H) by assuming f(x—f—h)—f(x):?hfx[f(x—}—H)—
1(®)], or equivalently by /(v-+ H) — f(s-+h) = 2= x [f (x+ H) ~ (2)]. ®

Such a linear interpolation is; however, only accurate to an assignable error,
and with the accuracy required of 17% century mathematical tables the method
did not yield accurate enough tabulations except where the values f (%), f(x -+ H)

differ only very slightly. Where and how, then, were improved methods to be
found ?

In historical fact, the refined methods were introduced by taking into con-
sideration the differences of the differences A’'f(x+AH)=f(x+(A+1)H)—
f(¥+AH), and in general, the general »'™ differences 4"f(x- AH) defined recur-
sively by A*f(x+AH)=A""1f(x+(A-+1) H)—A""f(x+2H). Indeed, the
very form of the number-system accepted —where a general number N is denoted
with respect to some number-base B by the unique sum-series N= } (y, B,

0<izl

1 Beginning with the HipPArRcHUS-PTOLEMY table of chords (which forms part of
ProLEMY’s Almagest), the common trigonometrical functions—tabulated at first in
sexagesimal fractions for suitable division of the interval 0° <#° <90° but in Re-
najssance times more commonly in decimal form—had been calculated to an accuracy
of several figures and roughly at 1’ intervals of angle. Of these outstanding were
RurTicus’ 16t century tabulations. And with NapIer’s table of logarithms (strictly
of logarithmic sines) and Brices’ adaptation to base 10 usable tables of the logarithmic
function existed from the period 1614 —1625 onwards.

2 Years of work must have gone into the comparatively meagre chord tables of
ProLeMy, and we know that lifetimes were spent in the 16 century in improving
the accuracy of existing trigonometrical tables.

3 This is clearly a rounding-off of the general BricGs-NEWTON interpolation formula
elaborated below: viz

f(x+h) [=f(x+ 7fl—xH)J:f(x) —l—%xdlf(x) + e

[where A'f (%) = f(x -+ H) — f(#)]. Such linear interpolation, in particular, was widely
used by Narizr in constructing his canon of logarithms (see previous chapter).
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where each g; is positive integral and less than B—made it natural that such an
approach should arise.* So we find that BRIGGS, in the introduction to his arith-
metica logarithmica® implicitly gives the basis for interpolation with regard to
functions (tabulated at equal intervals of the argument) whose ' differences
are constant—functions, that is (as NEwWTON at least was to see), whose represent-
ing polynomial is of finite degree #.

A clear insight into Bricas’ process of thought is given if we consider in detail
the section of AL 5 where he derives, apparently for the first time, the case n=1%
of the binomial expansion of (14«)*, (Ja|<1).

In an earlier chapter® BricGs had sketched out an improvement on NAPIER'S
method for constructing the logarithms of numbers: briefly, he constructs a
large number of geometric means between 1 and X (whose logarithm we seek)
by repeatedly extracting square roots. In particular, to find? 1=1og (1.007 7696)
he extracts 46 successive square roots and finds

5176 X A = log (1.000 000000000 000109985934),

which is very nearly 10-2 (109985934). ** While historians have largely seen this
method as impractical, BRiGs makes it a workable construction by considering
n® differences8. Symbolising his largely verbal method, we consider 1==1.0077696.
By physical root-extraction Brices tabulates 124, 1=1,2,3,..., 11 in a form

which, taking 22 =K (or K?=22"") we can set out as:
K —1 =0.00003 02331 60505 65775 ...=¢,,
K?—1 =0.00006 04672 35055 30068 ... =¢,,
Kt —1 =0.00012 09381 26397 13459 =,

K28 —000387 72833 36962 45663 o=t
K26 4 =0.00776 96 —eg =4

Looking at this table BrRiGGs saw that ¢; is, for each 4, very nearly equal to
le,,1; and so, taking A}=%Le¢,; —e¢, he sets up a second table of the A},
i=0,1, 2, .... Looking at this Briccs finds that, even more nearly, 4} is ap-
proximately equal to +4j,;, and so considers ‘“modified”” second differences
A2=1A}.,—A}. In general, he finds that the “modified” k% difference A%

* When we consider general types of operation which can be performed on the

two numbers A=}, (a,B%), p=2 (b Bi), the sum or difference 4 4z, seems easiest.
0=i<] 0is]

** Using the approximation (true foru small) log (1 4+ u) ~ u

4 Especially in chapters 8 —13.

5 AL: Chapter 8.

¢ AL : Chapter 6.

? The example arises in finding log (6), since A =9 Xlog(6) — 7 X log (10).

8 AL: ch. 8: 17: “atque ad hunc modum cujuscunque numeri propositi logarith-
mum per continue medios invenire poterimus: quos nobis lateris quadrati inventis
suppenditat satis laboriose. hujus autem fanti laboris molestia minuetuy plurimum per
differentias’ (my italics).
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is very nearly equal toé—A.ﬂ_L and so defines a “modified”’ %--1% difference

recursively by A5 T1= A1+1 A%, Reformulating BricGs’ empirical observations,

the kernel of his in51ght is that, for A% so defined, Jim (A% =
— 00
Brices now unwraps the “modified”” differences, beginning with some stage 1

1
X

and taking all higher differences to be zero. We have then, since Afz—*?;

A — A (or equivalently A} 1= x Ak — Af) , that

—1 1
e =3%¢41—4;,

114 2
Ai —IAH-I'_Ai»

and

A 1 A%

iR Ai+1
or

1 1 5 1 12 —1 1
=5 41— TAi+1+ §4i+1 ~(=1)* A1+1,
and in particular
—lp, 1Al 1.2
e_y=%e— t Ao+ 545 —

It only remains to evaluate these Ai—specifically, taking K=1--¢, BRrIicGs
tabulates the A2 in terms of powers of « 9, expanding ¢,= (1 +a) - 1,7=1,2,3, ....
Thus
‘ Ay=%e—e =302,

Ag— 1A1—A0——— 1(13—{— 80('4

As = —-oc“—}— oc5+ % oc"—f— % oc’—i— st o8,

A = 2805 527a1°+

The general pattern now becomes obvious: A2~* has no powers of « less than
«™—the difficult proof of which BRiGGs does not attempt. After so much that
is dull the final stage becomes enormously exciting. Substituting these expansions
of ¢; in the expansion of e_;=(1+a)*—1 we have, on collecting powers of «,
the binomial expansion

3 1 7
M+a)t—1=%a— i+ FHoaP— Sgattaza®...,

and since Brices specifically notes that he used (an equivalent of) this expansion
in improving NAPIER’S canon, there emerges the interesting fact that the first
construction of logarithms by series-approximations used a binomial expansion
rather than a direct logarithmic function expansion. *

* A similar ‘‘BrIGGSIAN” process with respect to f;,=(1 +a)# using A} =

—1—f¢+1 —f; A= P,:Jrl # ,— 4%, k=1,2,..., yields the (unit-fractional) bino-

4
mial expansion of (1 -4 a)V#,

9 AL: 16, where the BoMBELLI ring-notation for powers of the variable makes
the text extremely difficult to follow.
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BRr1GGS seems to have looked on this method only as a computing convenience,
missing its general significance??, but we know so little about the development of
BricGs’ mathematical thought that it is difficult to begin to guess how highly
he thought of his square-root method. It is clear, however, that he had made a
profound study of the x#™-order finite differences. In later chapters of his AL1
he gives, without prior investigation or justification, rules which contain implicitly
the general “ NEwWTON-Gauss”™ interpolation formula,

FOth) =k AH) = Hn) + (1) 4 (5) + (5 ) 42 () + -,

where the function instances f(x+L-H), L=0, 4+1, 4-2, ... are given at H-inter-
vals of the argument,

A=, and Af(x+L-H)=f(x+ (L+1) H) —f(x+L-H)
A+ (x4 L H) = A (x4 (L+1) - H) — A*f (x4 L - H).

The formula is used, for example, in AL? specifically tied to the logarithmic
function tabulated at unit intervals and rounded off at the second difference,
in the form

log (-t k) mlog(a)+hmlog(a)+@mmg(a), 10h=1,2,...,9

to derive easy rules for finding log (¢+#) from the instances A= —1,0, 1, 2*—
that is, a rule for subtabulating by 1/10® in the interval [, a+1]. More generally,
he seems to have used it in deriving the general rules for treating mean differ-
ences in subtabulation which he lists in AL,

This unwillingness to commit his methods to print contributed without doubt
to the general lack of recognition of BriGGs’ mathematical worth in the 17 cen-

* The instances f(a — 1), f(a), f(a+ 1), f(a 4 2) are obviously sufficient to yield
the necessary second differences.

10 Partly that may be due to the inadequate representation afforded by his ring-
notation for powers, but it is certain that no others in the 17t century, if they under-
stood the equivalence of Briggs’' approach with the general binomial expansion
—which is highly doubtful—, considered it as anything but an abstruse computing
technique for logarithmic tabulations. Curiously BricGs in his (posthumous) #igono-
metvia britanwica. Gouda, 1633 (apparently deriving his inspiration from VIETA)
had given in his ABACUS ITAT'XPHXTOX the construction of a table of figurate
numbers—in effect a ‘“Pascal’’-triangle modified into a rectangular array such that

—1
does he hint that these numbers have anything to do with the coefficients of powers
of « in his expansion, and the application had to wait till NEwron.

11 AL : chapters 12, 13. Chapter 13: 27—32, omitted from Viacg’s continental
edition, is reprinted with the slight changes necessitated by the substitution of sin
and tangent functions for the logarithm in #rigonometria britannica: 381f.

12 4AL: ch.12.

18 AL : 29ff. = trigonometvia britannica: 38. Specifically BricGs gives rules for
correcting the mean differences (as far as the 20t" difference) in quinquisecting the
interval to be subtabulated, and it is significant that they agree exactly with the
rule given by RoGeEr Cores using the NEwToN-BrsseL and NEWTON-STIRLING
formulas in his canonotechnica, sive comstructio tabellavum per diffeventias: prop. 6:
48— 50 (printed at the end of his harmonia mensurarum, London, 1722).

the number in his itk column and 5t row is (z-]}.-] —1 ) = ( H—Ji_ 1 ) Nowhere, however,
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tury* and with his death interest in the theory of tabular interpolation lapsed
till the 1660’s, when it was revived in an elementary way by MERCATOR, perhaps
inspired by a reading of Bricas’ AL, but more especially by NEwToN and JAMES
GREGORY, who clearly saw the equivalence of tabular interpolation with the prob-
lem of fitting an #-degree polynomial to a set of points (the end-points of CARr-
TESIAN coordinate lengths which represent the known tabulated instances) on
the basis of successive differences (up to those of the »'t order).

Meanwhile in the 1650’s JorN WaLLIs had developed a variant type of inter-
polation method which he used virtually to interpolate between integral functions
tabulated for certain regularly separated values of the arguments.’® As WALLIS
gives it the method is very loosely founded on what is basically only a strong
feeling for pattern; yet, though—as will be clear from a detailed analysis—this
laxity could at times introduce more complexities than he could control (or.even
be aware of), when the method is put on a rigorous basis and made precise it
proves very fertile.16

14 Few 17 century mathematicians seem to have read Brices’ lengthy and ap-
parently obscure introductions to his tables—certainly not WatrLis, who is usually
only too ready to overestimate English mathematical achievement. Jamrs GREGORY
is, however, the exception —compare his answer to a query of CoLLINs about Bricags’
subtabulation methods (GREGORY TV 118—122, especially 120). It is tempting to
conjecture (with D.C. FrRasERr: Newton’s intevpolation formulas: 57— 58) that NEwToN
studied Brices’ work at an early stage in his life, but there is nothing in any of the
Portsmouth Collection of Newton manuscripts which corroborates this, and it would
seem likely that if he had done so he would have realized the significance of Brigas’
square-root procedure and given him due credit as a formative influence on his own
ideas along with WatLis (¢f. CUL Add. 4000: 14 V).

Appreciative accounts of Bricgs’ work and its influence are given by CHARLES
Hurron in his historical preface to his revised (5%) edition of SHERWIN's Mathematical
tables London 1785 (==MASERES : scriptores logavithmici, 1 London 1791: i-cxi, especially
Ixiji—Ixxxiii); and in H.W. TURNBULL James Gregory: a study in the early history
of interpolation. Proc. Edinburgh Math. Soc., 3 (1932—33): 151—178, especially
164—168.

1B AI: passim—cf. a faithful but uninspired account in J.F. Scorr: The mathe-
matical work of John Wallis: ch. 4; 26—64. It is interesting to see how WALL1S’
methods may be related to his work on codes during the English Civil War. In par-
ticular, the whole pattern of his layout on the printed page corresponds closely with
the natural way of setting out a coded message for decoding. Moreover, the two
problems are akin on a logical level. Essentially WatL1s in his interpolation approach
sets up the pattern of tabulated instances in a two-dimensional array, and then com-
pares individual instances with surrounding ones in a search for general aspects of
the pattern —much as the decoder uses context checks in trying to abstract a meaning
from the pattern of symbols before him. Codes in use in the Civil War were suggestively
numerical, with easily recognizable frequency patterns occurring among the various
number-sets used —typically, such a pattern as la, le, li, lo, Iu (a consonant together
with the five vowels in order) is represented by the number pattern «+ 18, 1=0, 1,
2, 3, 4, «, B suitable integers (very often multiples of 5 in the codes I havechecked).
Joun Davis in An essay on the avi of decyphering, in which is inserted a discourse
of Dy. Wallis ..., London, 1737: 26 gives a numerically coded letter from the Civil
War period; while two further letters, dated 1689, deciphered by WALLIS are given
in his opera 3 (1699): 660—672 together with keys and transcriptions.

16 Tt was EuLER who, above all others, established more rigorous treatments of
WaLLIs’ suggestive ideas in many papers (too numerous to enumerate here) and inter-
mittently over most of his life,
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WatiLls, after a false start* seeks virtually*? in the latter part of his arith-
metica infinitorum® to interpolate f(3, 1) in tabulated instances, A, u positive

1

integral, of f(4, u) = — **, These “brute-force” tabulations are made

[ (A= athe - dx

0
on the basis of elaborate and diffuse techniques developed in the early part of
AI, Briefly, he gives (with strict proof only for a few particular cases) the

1

equivalent of f xtdx= f—lkT’ where £ is of the form $ or %, P a positive integer,
[

and then assumes the rule true on a mere instinctive basis of analogy for all &

rational. It then becomes possible to evaluate any particular f(, u) by physic-

ally expanding (1 — #*/4#= (1 —k)* as a binomial in powers of 2= "% and then

integrating the resulting sequence term by term. So, for example

1 1
— a2 dyx= —odtadydy=_1 . 1 =1
f(1 )2 dx f“ i) di= s 2yt T 1o
[ 1]
or :
a0l TE+2+1) (342! s
{3, 2) 10[— I'(3+1)-I{2+4+1) — 3t2l — 3lal}”

Next WALLIs sets up a square table of f(4, u), 4, u=1,2,...,10, which
he extends by analogy to include the cases where either (or both) A, u=0.

1
* His aim, to find an approximate circle quadrature by interpolation of [ (1—#2)t.dx
0
1
1 3
. JA—xM-dx
0
trying to interpolate @(2, {) between @(2, 0) and @(2, 1); but with his techniques
he could see no pattern coming through and abandoned it.
1

between suitable integrals, naturally led him first to treat @(4, u) =

** In fact, —f(*;—T: f (1—#Y4¥-dx, which for x>0, is transformable by #1/2 . 3,
into ’ 0
! ' 1 L(2+1)-T(u+1)
(=y)-d(h), = [ =9} d(p*) =, =2B(Apu+1)="T2 AT,
J Jtdon =gy ) = )

0
S0 thlat 220, f(A p)= T}ﬂg)——'—% For » <0, the integral bounds are changed
. . I'(A+p+1) s

to | (1—y¥-d(y}, which takes on %o real values, unlike._ > \V*THETY  Ghich g

of : 3 T(A+1) - T'(u+1)
defined as a real function for g } = — 1 (a fact which is taken up below). We should

At

not despise this too much. EULER, following up many of WALL1s' root ideas, frequently
appeals to the extramathematical concept *‘ex lege continuitatis’’.

7 He has no symbolism for integration but defines the integral loosely as a limit
sum sequence—see chapter 8.

18 A7I: props. 128—191, with omissions.

1% A fuller consideration will be given when we treat of general indivisible theories
(see chapter 8).
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Thus:
2 B
0 1 2 3 oo 10

0 1 1 1 1 1
1 1 2 3 4 11
2 1 3 6 10 66
I S I I

10 1 11 66 286 o 184756

The symmetry of the table, f(4, u)=F(u, 4), stands out, but WarLis also notes
that the number-sequences are figurate (forming a “PascarL” triangle), or
FA1L, p+1)=FA, p+1)+F(A+1, ) *. WaLLis, however, has set himself

the problem of finding /(L. Y\ —_ 1 _4(_T( _ 4 i
@ problem of inding f(, ) Pt == = ) v
0

he denotes by ‘[1]°. This, in preparation for interpolating intermediate values, he

2 “
-3 0 3 1 13 2 2} 3
1 . . . .
2
0 1 . 1 1 1
%. B O B . .
1 1 . 2 3 4
1% . - .
2 1 3 6 10
2.% . . . . .
3 1 4 10 . 20

inserts an expanded version of his table2l, and tries to abstract a general pattern
on which he can introduce interpolated values.

To simplify further discussion we take A=1I, u=31m, f(l, m)=I,=m, (the
tabulated instance to be found on the /** row/column and #'® column/row in the
revised table below).**

WaLLIs, stressing that the tabulated instances are figurate and considering

only the rows—the diagonal symmetry of the table clearly implies that there is
an equivalent treatment by columns—shows numerically that this property

I'(A+n+2) T(+p+2)
* F(hp+ 1)+ {A+1, p)= T+ - T(ut2) + L2 Pl )
_ T@4p+3
TT0+2) T'(u+2) =f(A+1, p+1).
Lo m I+m+2
Fok F(?+—2~+1) p( . _)

by, for I, m=0, = =

F(—é~+1)-r(%+1) dr(fzr—z)-r(mjz) '

20 41I: prop. 131.
21 A71: prop. 169.
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implies, for Z, m both even,

I+m I4+m I+m —1q
2 2 2 I4+m
tm =< m ): m X( m ) =7le—2’

» ”m
2 2

and supposes by ‘“analogy” (and it is immediately provable*) that this holds
for all 7, m (at least, in WALLIS table, /, m == —1). From there the interpolation
goes fairly neatly, yielding the table® (where /;==[] furnishes the basis for
setting up the 1,7, m both odd). [—1_1 is tabulated as infinity—‘ o0’ the

first use of the symbol—for consistency, since —1_,= T 11 X1 _;—>o0; specific-
' imit of — L) limit
ally —1_, is the limit of O TELS where i»o (]"(8))-.”0_]
m
1
-1 ) 1 2 3 4 8
- 1.1 1, 5 105
B A R T B 384
0 1 1 1 1 1 1 1
1 3 4 15 945
t 3 5
2 > 1 > 2 2 3 5
1 4.5 5 8. 35 3465
S e R e M S e 384
3 15 35
st m 3§ S 5
105 . 945 . 3465
8 | 334 T 38 38 13

WarLss finally achieves his interpolation by noting that /<1, , for all /, m
in his table (excluding /, m<<0) and he assumes true for all /, m (positive) by
‘“analogy’’ the “interpolated” law, /,,<l, 1 <<l (or I,<(I+ D <(@42) )

* In fact, I+m-2 I+m
F( x r _)
- 2 _l4m 2 l+m “i
= = _— = 3 -
A )
2 2 2 2
22 AI: prop. 189. This table is a fine example of WaLLis’ lack of control over his
interpolation—it represents f(i, %) = 1~‘1- dx only for I, m =0. In
J(1—x—2flym?
o
fact, WaLL1s’ interpolation, based on the recursive formation rulel,, = Hm Xl g ==my,
I+m m
(5

interpolates g(é, ﬁ)

3 which takes on the values of f(é, 1”»)

F(é—+1)~]’(—yzﬁ+1 2
for all positive /, m, but which —as the table and unlike f(-l—, ﬁ) —is defined also for
I, m = —1 (and indeed for I, m = — 2 with I+ m =—2). ‘2 2
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Using the particular case of this, 1,,<1(,+1y<1(p+2), WALLIS' product arises as
the limit form m—oo: a simplification introduced historically by Newron®3, In
fact, isolating the row 1,, we can tabulate it as

I

m|0[1l2}3!41 s | 6 ]

‘ '3 4 3.5 4.6 3 5 7
N Y e Y ey R E
where

2641 2 1
1, = H( ’;; )X10(=1)=1><—3~><%><—g—><---><- ’;j:

2i+2 B PPEIVE IV IV
= JT (57 <=0 = Oxdx g x 38

and therefore 1(5,-1y<15,<1(2nt1) implies

ax T (353 < I (5 <0 > IT (5

1<ign—1 1<ign
or .
(2i+1)2 - (2i+-1)2 2n-+2
L \2¢(2¢-F2) 2i{2i+2) 2n-+4+14°
I Gias)<ol=2)< I Giamz)~

which, on slight rearrangement, vields the infinite sequence (*“WALLIS’ theorem”)

for }, .
7 ; (24)2 *
5 =Jm Tz“tm“:m)

®—>00 ‘1§i§n

Wavris, however, in his A7, states this in a stronger form, using (the equivalent
of a ScHwWARz inequality) (1,)2>1¢s-1) X 1imi1y*¥*—2 procedure which yields
the more powerful resuit

T ezt <o< JT (o)« ().

To return to a general viewpoint, this reasoning by analogy—or perhaps
more correctly from a feeling for a general pattern which seems to run through
a set of particular results—exemplifies a process which must be fundamental to
any system of interpolation: since there are an infinite number of ways of filling
in a pattern, we choose that way which seems best suited {in a sense wider than
the strictly mathematical), best conforms, to the instances known. WALLIS’
assumptions in his derivation are quite audacious, and in a rigorous treatment
must be carefully justified—yet in following through an intuition that he was

* Found independently by PieTro MENGOLI in much the same way as WarLiis
about 1659, but published only in his cireolo. 2*

** Stated ‘‘by analogy”’ (per analogiam), sc. by induction from a few numerical
instances.

28 In his manuscript annotations from WarLis' AT (to be dated 1665) in CUL
Add. 4000: 16V —17V.

2 civcolo: ... il problema della quadvatuva del circolo. Bologna, 1672.

2 47: prop. 190. It is interesting to note that it is a particular case derivable
from more general theorems given by MeNGOLI in civcolo which draw their analytical
justification from a logarithmic inequality established by MENGOLI at the end of Book 3
of his geometrica speciosa (1659).
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thereby achieving a result which is both true and important WALLIS was doing
something practised by every creative mathematician, however lucky in that
he did not seriously have to consider the boundary-cases where such general
reasoning by pattern must break down.

One aspect, however, of his interpolation scheme did not satisfy WALLIS’
instinct for consistent pattern and harmony. He had gained his continued-
product sequence by assuming a numerical ordering of particular values of /,
(and in particular 1,,), but he had not been able to give a unified treatment which
harmonized the two independent product-sequences,

— 3 5 ..y 2n+1 _ 4. .,6 ,  2nt2
”'1X?XTX X and 12n+1—1:|><3><5><‘ in+1'

WarLis’ instinct for symmetry resented this essential lack of formal similarity
between odd and even values of 1,,, but, despite his trying many ways of modi-
fication, he could find no general pattern which would generate both as par-
ticular instances. Sometime in 1654, therefore, he seems to have asked BROUNGKER
for a solution which should preserve the essential unity of 1,,, independently of

——1—2——. 26 The solution
f(1—m)™2. ax

m being odd or even, present in its definition, 1,,=

o
which BROUNCKER returned is sketched by WaLL1s27—specifically

_ 0 2 4 2m+2 2642
= 2 < o(1) X @(3) XX o2m-+1) XOSIZ"< D(2i-+1) )

where @(x) is that function which satisfies @(x —1) X P(x+1)=x2%* It is an
immediate consequence that 1,(=1)= % X\@_(z‘i)_ , or @(1) =[], and, if the nature
of @(x) can be precisely delimited, we have a calculable value for [](=4/n).
In fact® BrOUNCKER found that @(x) can be given (for x>0 implicitly) by the

g . . T 12 32 (26—1)2) .

infinite continued fraction @(x) _ill)noxo (x+ Y Eaiy o ) from which

the “BROUNCKER’ continued fraction i—~—_.-(-_— £>=_1_ 12 3 is
1) 1+ 24 24

an immediate deduction.?®

* He gives also the immediate extension to general [,,.

2 AI: prop. 191: scholium, where he tries to express this concept in a werbal
statement—compare AI (1656): 181—182. ‘“When I had proposed to Brouncker
some of my propositions and had indicated by what law they proceeded, I asked him
to show in what form that quantity [J could most conveniently be designated.”

27 AL : prop. 191: scholium and idem aliter.

 See the previous chapter.

# 1 find it curious that the process should give this form, whose convergents
(as EurLer showed on many occasions) are the successive convergents to the

NILAKANTHA-LEIBNIZ sum sequence, —— lim (—1)*x 1
4 ﬁwoslgn 22+1

% = lim_ (1 _{_T’_‘__ %L—I— . ]%;Z e ) whose convergents yield WaLL1s’ continued product.
(The latter is given by EULER in de fractionibus continuis observationes, Comm. ac. sc.
Petrop. 11 (1739) [1750]: 39—81, especially § 36: 51 -=- opera 14a 1 (1925): 316;
but the identification of its convergents with successive approximations to Warris’
product-sequence was first made by J. J. SYLVESTER in Note on a new continued frac-
tion applwable to the quadrature of the civcle, Phil. Mag. 37 (1869) 373—375, especially
375 -=- Collected mathematical papers, 2: 692.)

, rather than
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WarLris did not restrict his method of interpolation by “analogy’ to this
example, but a few years later showed the power of the method?® in evaluating
the area under a cissoid.3 Taking his definition of the cissoid as the point set
of B such that BL:AL=AL:KL, where BLK is drawn perpendicular to the
diameter AD of circle ACDC’ and F is the point at infinity on the tangent DH,

he shows that area (4 ]E\?Y*‘/D) =19 Xarea of the semicircle (ACD). In fact, where

AD is unit-length, AL=2x, LK?=2x(1 — x) so that BL= i‘j; = (-ﬁa_)% and area
1

(ABFD)=lim- ¥ (BL-A(4L))= f (fx)*.dx. Similarly, the area of the semi-
(circle ACD) is  “ °

r3 1
—))dx =" = 1
, f(x(’l R dx =% = (Wass) 5,
0
and WALLIS sets up a sequence of integrals,
“justified’’ by appeal to analogy,
1
g flzfxéﬂ — )M dy
0 1
— — x)E 42, =RB{2 X
_f(1 o)k x dx( B<2, 2+1))
0
¢
5 g—ex and .
gﬂzfxg (1 — x)42. dx
0 1
— [ — s dx(=B(2, £
—  fu o ix(=(5. £ 1)
\
Fig. 15 with which to compare these two integrals.

In detail his approach is very much as that developed in 41. Thus, by straight
multiplication and integration, WALLIS tabulates particular values of f;, g,;
A, i positive even: for example,

1 1
= (21— 22 dx = bbb gy dy =1 2 1
fo= [# -0 de = [(d—2ah 2 dy = — o iy
0 0
2:2-4 3 I'@#)-IQ)
= :B'— e ol B
3-5-7( (2’3) () )
Using these tabulated instances, he is able to set up the table:
L]l o | 2 4 ] 6
2 2 2 2.2 4 2.2 46
Al 3 3% | 35557 I 3XEXT Ry

3¢ HuyGENs wrote in a manuscript draft of a letter in 1658: in cissoide apparet
vis methodi. Huvgens OE. 3: 58.

31 In his fractatus duo de cycloide ..., Oxford 1659: especially 81—90, which is a
part transcription of a 1658 letter to HuvGENs—compare JosepHA & J.E. HoFmaNN:
Erste Quadraiuy der Kissoide, Deutsche Mathematik 5 (1940—1941): 571—584,
especially § 2: WaLLis.
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from which he derives the formation-rule (for even 1) f;= -~ Xf;_,. This recur-

l+3
sion rule is assumed by ‘““analogy” to hold generally* and, tabulating f, by its

A=t o] 1| 2 | 3| 4
A
20 2 1 2 2 1 3 2 2 4
A= 3 |20 | 3%5 | 2876 | 373%7
4
Using the recursion g, = —f‘!:s— X g,—2**, he tabulates even values of u in a second
table A
g | —1] o 1| 2 3 | 4
a5 |
40 2 1 2 2 1 3 2,2 4
& |7t | 5 |70 5°7 | 40 8I5X7X9
6

where the odd values of y are tabulated analogously from the known

1 1
= [ —npdr= [ - de=f=1 31
& fx(1 x)tdx fx(1 ) dx=Ff, ST X =10
0 0
: ot
Immediately g_; = f (1 —x) 5—4—1——3><~E—3x fi, and the result follows.
6

0

It has been shrewdly conjectured 3? that such a WALLISIAN principle of induc-
tion by analogy from a set of instances played an important part in the formation
of NEwTON’S mathematical thought, influencing in particular the growth of
his views on infinite series, curve quadrature and above all his statement of the
binomial expansion®?. Indeed, NEwtoN himself, in his letter to OLDENBURG of
October 24, 1676, stresses his debt to WALLIS for the inspiration which led to his
formulation of the general binomial expansion, and ““by similar reasoning there
also came forth the ... area of the hyperbola ...”” 3%, The debt becomes, however,
very obvious when we consult the manuscripts on which NEwToN based his letter %,

- i 3 2
* 1 R 24
In fact, B( —[—) }.—{—3 3(2 2)

** QOr, in m 5 ” )_—‘u~—— (5 'u)
odernstyle B( +1 ,IH—SB 22

32 By J.M. CHiLp in Newion (md the art of discovery, Isaac Newton, 1642—1727,
London 1927: 117—129 especially 117—122.

38 CHILD, op. cit: 117—118 “NeEwTON ... was inspired to consider WaLL1s’ finite
series as capable of bearing an intelligible meaning if they were indefinitely continued
and the rest was perfectly simple and a natural consequence of what Warris had
proved.”’

34 Compare GERHARDT (B): 1: 203—225, especially 203 ff.

35 Especially the undergraduate notebook CUL Add. 4000: 15R—22V: A#nno-
tations out of Dy. Wallis, his avithmetica infinitorum, with an alternative draft in
Add. 3958: 70R—73V.

Arch. Hist. Exact Sci., Vol. 1 17



244 D. T. WurresiDE: Mathematical thought in the later 17th century

NEwToON finds3® the hyperbola-area (apgd), where the rectangular hyperbola
{1+ x) y=1 is defined with regard to centre ¢ and asymptote cq, and where cp=

ap=1, and general ordinate dg=17y corresponds to abscissa cg=1-+x, as the
2|

. x
limit-sum equivalent to f T—:—_; -dx, and it is to this

0
g integral that a WarLis-type induction is applied. So
far NEwToN follows WALLIS’ attempt in his A7% to
7
apply such an induction to F(A, u) f (14 x)#-dx*,
= but with a flash of insight NEWTON solves the knot
Fi; 16 4 by generalizing the integral bounds, leaving the upper

x
one, X, freely variable and tabulating ®(A) = [ (1 + x)*-dx for ascending positive
o
integral powers of A in terms of the coefficients of X, %, %{, “)Tii’ ... in the
X X

ensuing sequence. Thus @(z)zf(1+x)2-dx=f(1—|—2x+x2)~dx=1-X+2-—)§2~
0 0

—I—1-£§i and more generally the coefficient of X#u in @(A) will be that of

X#~1 or the table of coefficients will be a “PascaL” triangle**. By ‘““analogy”

NEWTON assumes that the pattern holds also for negative values of 4, and in

particular for 1= —1 so that the general binomial coefficient (:‘) =_}1‘— X ’1—;1—
oo x 1 pecomes {(fi)]:ixﬂx---x — i =(—1)%. Sub-
1 7 1 2 ?
1
—1 [0} 1 2 3 4
X x 1 1 1 1 1 1
X2
5 X —1 0 1 2 3 4
3
%a X 1 0 0 1 3 6
4
i X —1 0 0 0 1 4
4
5
—‘3‘5— X 1 0 0 0 0 1
Xe
—— — 0 0 0 ¢
3 1 0

* {(A, p) is easily calculable by multlphcatlon and integration for positive integral
%, 1 but V\’ALLIS needed to interpolate f (%, 3) —which yields the area under the hyper-
bola 42 = x(1 -+ x) between x=1 and ¥ =0—and that he could not do.

i+1
o= 3 [
0<isi
3 Add. 4000: 20R — 20V.
37 AJ: props. 165ff.

] in general for A positive integral.
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stituting, he has immediately that hyp-area (apgd) = @(—1)

it1
X 38

3 %
= Jim, 3 |0 T
0si<n

Similarly, by interpolating y(A) = f (1 — #*)*.dx (readily calculable for A positive
0

integral) NewToN finds® with respect to the geometrical model of a general circle

segment X
P(E) =/ (1 — - d[=§ (sin? X+ X(1 — X))
0

RT . ;3 X241
“im 3 ()

Clearly, here we have two binomial expansions in integral form:

X X

f(H—x)‘l-dx: lim ¥ [(;’)xi]-dx,
and ° ° =

X

f(1—[x2])5-dx=ﬁli§c1n

0

3 [(;) [xzy'] dx,

0zisn

and the way is open to abstract the binomial expansion pattern:

14a) = lim [’l.oc"],

( + ) 7—> 00 0 gZL:S_ n (’L)
particularly since it agrees with the known form of the coefficients where 7
is positive integral.

The advance NEwTON has made on WALLIS' inductive approach to integrals
—taking the upper bound of the integral variable—is that, in allowing a free
variable (and its powers) into the pattern, he has been able to use the ordering
of coefficients given by powers of the variable to point a more general aspect
of the pattern lost in WarL1s' tabulated numerical instances. By chance, the
form of these coefficients show them to be the same figurate numbers of WarLL1s’

1

function — and—as CHILD pointed out%°—it only remained for NEw-

J(a—xYNdx

0
TON to rearrange WALLIS' table slightly, and make the same generalization that
in the general expansion the coefficients are likewise figurate.

3 The “MERCATOR” series for log (1 + x), used, in fact, by NewToN in the “ plague””
year 1665 to calculate particular logarithms to impractically large numbers of decimal
places —compare Add. 4000: 14V: “*...in summer 1665, being forced from Cambridge
by the plague, I computed y¢ area of y® hyperbola at Boothby in Lincolnshire (to)
two and fifty figures ...”” Such detailed calculations for ¥ = 4 0.1, +0.2, -+ 0.001,
4 0.002 to differing numbers of places are found variously in CUL A4dd. 4004: 81 R to
81V; Add. 3958: Section 4, and A4dd. 4000: 20R—20V.

% Add. 4000: 18R—18V: “Having y® signe of any angle to find y® angle, or to
find y© content of any segment of a circle.”’See next chapter.

40 CHiLp, op. cit. 1181f.

17*
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With NEWTON this general scheme of interpolation by induction of a general
pattern from inspection of tabulated instances shades into the general theory of
infinite sequences, gradually to be replaced there by a less suggestive but tighter
and more reliable basis in the theory of the integral as the limit of a sum-sequence.
Indeed, uncontrolled use of induction by pattern is valuable only at a certain
stage of discovery, after which its very suggestiveness and vagueness may hinder
the precision of concept needed for further advance. In the mid-17® century it
was not important that WarL1s should, in fact, tabulate a function more general
than the one he defined, but a little later it had become supremely important
that such a confusion should not be made.

The question of precision remained relatively unimportant in the theory of
finite differences which evolved in the 17'® century as, and has remained, an
eminently practical study. It is important, however, to emphasise that the
practical techniques developed were dependent on a pattern of ideas which were
akin to those on which a WarLIs-type induction was based. Further, it is in-
structive to see how the patterning produced by the concept of #'t-order functional
difference played an essential part in that development.

NicoLaus MERCATOR sparked off new interest in the subject with his Jog-
arithmotechnia of 16684, showing himself familiar with the formula (derivable in
an immediate way by unwrapping the differences) ¢;=e¢,+ Z [(;) A(’;}, where

0j<i
the differences A} are defined in the BRIGGSIAN manner by the recursion scheme

1
{ Ay=¢€11— ¢
1 )

At = AL, — AL

More important is how such a codification could lead to apparently unrelated
mathema: ical results. Thus MERCATOR himself, stating an equivalent of

;[ A at+ib
— 1 * . 1 W TR ] < 0, *
2|08 (o)
uses the formula to derive a ¢ root approximation.4? In particular®® he shows

(U AR

1=l2q 05151 054

(since (1'11): Z [(1—11)])

1=i<q
k(2k—1 kR(2k—1) (k—1
=q><(a0+ka1+ ( 3 )a2+ ( 6)( )%_}_...),
o Which has an easy proof, accessible to MERCATOR, by taking log (____.__“'Hb ) -
1 a+t(i+4+1)d
f a- ilb—f—x" -dx, and reducing to a problem in hyperbola-area.

b

# MuRcaTOR: logavithmotechnia; prop.3. Compare J.E. Hormann: Nicolaus
Aercator’s logavithmotechnia (1668), Deutsche Mathematik 3 (1938): 446—466,
especially 449—451.

2 Jogarvithmotechnia @ props. 5—11: 15—23—compare HOFMANN, op. cit. 451 —456.

9 Jogarithmotechnia @ prop. 7.
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1

where k=
:qx(osék( |+ 2O (ot (b — ) gy - 20 (D o)
N&’X( > (5)a] + L5 xA,%-1>
0sish
k
>ex 3 (3]s }
Substituting ¢;= Ki)ai}, we have Z [e>qgxe,. Finally, taking ¢=-

Osisy 0slzg-1

a+(1—»%x l)x

log ,wecanshow > {e,]*—}og(“+x)>‘l Xey=gXeg.q==
a4 (1~~2'>< (£+1))x osi=g—1 T
qxlog(“q"}'x) or that <“+”} > (M) 0= x=a (with a similar proof when
aq—x
¢ is even).*

On a more practical level—an aspect which leads into GrREGORY'S and NEw-
TON’s extensions of the finite-difference formulas—MERCATOR# uses the easily
provable fact that, where e,=* Aj is constant (and so A%71=0) to build up
integral powers of the integers by setting up a suitable difference table.

Conversely, NEwTON could use the convenience of logical form implicit in
the difference table to tackle a problem in any way untypical of the age —the
strengthening of sum-series convergence, Specifically NEwTON takes his start
from the (known) limit-sum Tlﬁ of the geometrical progression lim 2 [

n-—>00 0Sign

Then, given some @(x)=lim ) [4;- 2], we can transform successively by:
B> ggicy

D(x) = a+ @ %+ ap 22+ ag P+ - --

—-%‘f‘%XW'f"(“z““l)X

(g~ a) X

—X 1—x

——a«+(—-—)(a1+( — @) X%+ (a3 — ag) X x2+ - -)

el
X [(ay— @)+ (6 — 200+ &) 2+ (ay — 26+ a3) 23+ ---))

=lim( Z[A]xz) where zxj_’f

. and, as before,
n>00\g<icy X

* Further approximation is possible (and given by MercaToRr) using the term
Ay = 47 -3 a

44 logamthmotechnia, : prop. 12: 23--24.

% In various drafts of a {ract de sevievum proprictatibus (tentatively to be dated
1684) now in CUL 4Add. 3964: Section 3: 7R—20V. The method is not unlike some
presented by James StiruinG in his methodus differentialis, London, 1730: part 4:
1—83: de summiatone sevierum, and STIRLING, indeed, explicitly attributes many of
his ideas to NEwTON’s inspiration.
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By= 27— 457 = 3 (=17 ()]
0<i<i

NEwToN’s development was never published, but MErRCATOR’s finite-differ-
ence technique is interesting in that it reflects how far such techniques had become
accepted into conventional mathematics by the 1660’s.46 MERCATOR, however,
had confined his difference-formula to interpolation at unit intervals of the func-
tion. What remained was to assume that the pattern held good universally.
This step had been taken at least by 1670 by JaMEs GREGORY, developing
the concept of approximating a continuous function by a power-polynomial.4?
Already in 1668 in his exercitationes geometricae*® he had given some examples.
! For approximately equal second differences
# {and where the argument proceeds by unit-
intervals) GREGORY assumes A3 constant,
which restricts the form of the function to
be interpolated to y=ax?®+bx+c. Thus,
where the ordinates v,(=FL), y,(=GK),
yo(==H]J) are applied to corresponding

g abscissas %, (=O0L), %= %4+ h(=0K), x,=

£ %9+2h(=0]), GREGORY derives an equi-

valent of the SiMpsoN rule: area (FGHJL) ~

% ve . 7 %(y0+4y1—|— v,). Though he gives little but
Fig. 17

a sketch proof, we easily restore his ideas.
Analytically, we have some function y;=f(%,--ik)=F(x,)~axi+bx+c,

and so A2=A} 1 — A3= 9313 — 2¥341+ V2=2ak? Then in the geometrical model

shaded area (GH) = trapezium (GH JK) — area (GHJK)

=2 (et w) — [(axtbx+0)-dx

=& (- mp (=) = L A%

6 6 12
and similarly for the shaded area (FG).

* NewTtoN's favourite example transforms

tan'1y=y———;—y3+%y5~-
into
e l ( yz _-3 yz 2 2:4 yZ 3“-)
(tan™y )yx 14-y2 3 (H—yz) + 3-5 (1+y2> :

46 MrRrRCATOR, who wrote or introduced several elementary works on mathematics,
in no way claims the concept of tabulated differences as his own. In fact, his discussion
of the logarithmic concept in logavithmotechnia shows distinct traces of Bricas’
influence. .

47 An ““obvious’ idea, but not to be put on a rigorous footing till WEIERSTRASS
created adequate concepts of continuity.

8 GREGORY EG: 25—26: methodi componendi tabulas tangentium et secantinum
artificialium ex tabulis tawngentium et secantium natuvalium ...—compare GEORG
HEINrICH: Notiz zur Geschichie dev Simpsonschen Regel, Bibliotheca mathematica; 1
(Leipzig, 1900): 90—92.
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Then area (F GTf] L) = area (FGHJL) — (shaded area (FG) + shaded area (GH))
h
=5 (Y2+ 291+ ¥o) — %hlﬁ

and the result follows by substituting for A% its value (y,— 29, +y,) =43.*

By the late 1668 GREGORY seems to have become familiar with Brices’
work on ‘‘interpositions’ 4 and certainly by November 1670 he had a completely
general finite-difference interpolation formula (and apparently also its limit-form
of the “TAYLOR” expansion by which he seems to have derived the general bi-
nomial theorem independently of NEwToN0) giving5! the equivalent of

Forat 2) = f (o) + (7 ) AP (o) + (5 ) A 12 (o) +

where the argument is given at unit intervals, and the variable x is left com-
pletely free. Further H.W. TURNBULL has argued®® that GREGORY knew also
the easily derivable form

Frot ) |[= #{xo+ 2 x H)|

x X

X
x & 2
= f(%0) + (i{) X Ay + (IZI) X Af -+ (H3 )XA?(,,,_H)—i—

F 4
+ <H4 )XA;l(xo-—2H)+ -,

x . X . *%
Tt F:
3
=2 |\ e XAiimt\ 5oy [} Al

* GREGORY gives a tighter rule also by assuming an approximating cubic y =
a-x%+b.

** Where the argument is tabulated at (equal) H-length intervals.

% CorLixns in his letter of 30 December 1668 (see note 14 above) asks GREGORY
to send him his ideas on the subject, and especially a proof of Brices’ results for
corrected #tt differences in his AL.

50 See next chapter.

51 In his letter to Corrins of 23 November 1670—c¢f. GREGORY TV: 117: “I
remember you did once desire of me my method of proportional parts in tables, which
is this . .”” and states the expansion verba.lly with examples:

1. He takes g;=f xo-l-z)—-b(H— )1, so that Ak _b(;f) _1, and so finds the

binomial expansion, where =100, d=6, ¢ i = 100X ( 18(6)) LA

2. In aninteresting generalization of MERCATOR s work in logavithmotechnia, GRE-
GORY wishes to interpolate cubes of integers in the sequence (51)3, 1=0,1, 2,

that is, he takes ¢;= (51)%, or 4}, =2375, A2 =2250, 42 =740, A'_o k>3, and
i3
subtabulates 233 by (23)%=(5(2+1&) )3—(5><2)8+( )A}a-{-( )Aﬁz—i—( )Ag.
3 2

2 In James Gregory: a study in the early history of intevpolation, Proc. Edin. Math.
Soc.; 3 (1932—1933): 151—178, arguing from examples given in an enclosure to
GREGORY’s letter of 23 November 1670—compare G.A. GIBsON: James Gregory’s
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However, the full working out of the theory of finite-difference interpolation
is due to NEWTON, probably during the middle 1670’s, and has been exhaustively
described by D.C. Frasgr.?® NewroN introduced both divided differences35
defined on the recursive pattern of

A% (%g, .\ Fg)— A%y, ...\ Bpry)

A (%, % Hpi1) =
L e Xngl

and adjusted differences, % defined by the pattern

n _ AR
A”*l(xo,xl,...,x,,ﬂ): A% (%o, 2, ..., Hp)— A (X, ..., Fpty)

>

1
" (Fo— Znt1)

and his work, especially that part of it printed in his methodus differentialss,
formed the basis of all later elaborations. 56

The details are too rich to summarise, but from a general viewpoint it is
important to emphasise two points. First, as with GREGORY his methods all

derive from taking a power-polynomial f(x)= ) (4,4%) as a close approximation
0sizn

(for suitable choice of the 4;) to the (continuous) function to be interpolated.

On that basis it is easily shown that the »™ divided difference A" (and so the

n™ adjusted difference) is constant,’? and merely by successively unwrapping

the differences it is immediate that

F(x) = F(m0) -+ (% — %) A2 (%55, 20) -+ (% — %) (% — 21) A2 (%o, 2y, %)+
st (x- xo) (x_' xl) (x_" xn) A_’i(xﬂx (R xn):

=/(xo)+*(f{—!@)‘dl(xo» xl)‘f“‘(x——:ﬁ%f—x“ﬂllz(xo' %y, %)+

v (x—%,) (x'—;fl') s (F ) A”(xo, Xyy ooy x,,)

(which is a general form of the “ NEwToN-GAUss™ formula where the argument
intervals are unequal).

mathematical work ..., Proc. Edin. Math. Soc. 41 (1922—1923): 2—25. J.E. Hor-
MANN: Uber Gregorys systematische Niherungen fisv dem Sektor eimes Mittelpunki-
kegelschnittes, Centaurus 1 (1950—1951): 24—36 has sketched how these formulas
may have served to derive the approximations to central-conic sectors which Gre-
GORY gives at great length in his EG: 6—8.

53 In Newton's interpolation formulas, London, 1928; and his article Newlon and
interpolation in Isaac Newton, 1642—1727, London, 1927: 45—69.

54 Tn his methodus differentialis, London 1711 —there is a part draft (arranged
in a different sequence) in CUL Add. 4004: 82R—84 R (MD: Props. 1—4).

% In CUL Add. 3964: section 6: vegula diffeventiarum—rprinted by FRASER (with
translation) in his Inferpolation formulas: 75— 95.

56 Especially those of CoTks (in his canonotechwnia, published with his harmonia
mensurarum, London, 1722) and STIRLING (collected in his methodus differentialis,
London 1730).

87 Compare NEwTON’s sketch proof in MD: prop. 1 =CUL Add. 4004: 84R.
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More important, perhaps, is NEWTON’s insistence that all the interpolation
formulas should be subsumed under a single general rule, 5 and it is in this spirit
of generalizing a pattern (which lies deep in the concept of interpolation) that
he introduced adjusted differences as a variant on divided ones. In the scheme
of adjusted differences the interpoland f(x) is incorporated into the tabulated

values f(#;) as a further “instance” (and what remains is to show that lim A" (x,,
n—>00

%, -+, %,) is zero, and that the sum-sequence thus defined for f(x) is convergent
for a suitable range of values)*, In fact, —as NEwTON intended —all particular
finite difference formulas are incorporated in the lozenge-scheme, and NEwTON
must clearly have had some equivalent development in mind. %

In summary, the growth of the concept of interpolation is a typical aspect
of the stage reached in mathematical development in the late 17 century—a
stage where discovery was all-important, and where precision of the logical
structures treated and justification of the methods of investigation both counted
for little in comparison. It is a very practical viewpoint which sees an especial
value in numerical computation—even NEWTON in his long logarithmic calcula-
tions was caught up in the tide—,and we find it equally influential in condition-
ing the development of the concept and technique of series expansions to which
we now turn.

Appendix to IV: Fraser’s lozenge diagram
(¢f. D.C. FRASER: Newton and interpolation, Isaac Newton, 1642—1727: 45—69)

Taking up NEWTON’s concept of adjusted difference:

A”+1(x0; xlx . xn) = A"(xo’ "';xn)_A”(xl' e x”+1)
;X (%o %p11)

we can show that

1. xl-xz;L.!,.,x,, XA (%o, %1, -+ %)+ xo'(;l_;_.1.).!,xn X A" (%g, %y, o.ey Ky
= ”1"‘21;-!-.,;;" X A" (%, %y, .0, xn+1)+£’z:t—,-;-;i.),!x”+l X A% (%5, Ty oeos Xpp1)s
and
2. BT g, e 1)+ T B A (1, 34, 2, )
= o AR, Ty, e, Ky, %),

n!

and so set up the development given overleaf. Here all non-returning routes
passing from left to right across the page yield particular interpolation formulas

* A. FrRASER’s ‘lozenge” diagram underlines the point visually. See appendix to
this chapter.

% As he writes in his vegula differentiavum (FRASER, op. cit. 82): “‘possunt aliae
hujusmodi regulae tradi, sed mallem rem omnem una regula generali complecti, et
ostendere, quomodo series quaevis in loco imperato intercalare possit”.

% So in his MD: prop. 3 he derives ‘‘STIRLING’s’’ and ‘“BrsseL’s’’ formulas as
mere cases 1. and. 2. of his general divided difference expansion.
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which all have the same value (speciﬁca.l]y, that of the bottom-most route,

f(x)).

X f (%) + %4
< g B
/Xf(x1)+x1\ o X A2 (%, #y, %g) + . n
"\ XA (3, 79) + 2 < P
i s P
1\ SX A %y, x,,)+1”—"2’—1‘;f’i< ‘:;___
X.f(xn)'l'xn ) X A%y, %y, x)+0/
e pN X A1 (%,, %) + 0 /
Notm o "
Xo, Xys - X,
ok 0, %15 s ¥p—1
»n! \ Xo*Hys «o0s ¥y
X A" (%g, Xy, ..., Xy) +—2 220
4 %1 F ." + ¥n < (%+1)! \XA”+1(xo,x1,...,xn,Z).
ni P XA (x,, %y, oo, ) + 0
..+0

V. Concept of function
3. Infinite series, limit-processes and convergence

The development of infinite convergent sequences is an accepted highlight
of later 17* century English mathematics, and played a large role in formulating
the need for a concept of limit-convergence which was not, however, adequately to
be defined till the early 19 century.

This concept of a converging sequence must be very old in time in so far as
the infinite sum-sequence is implicit in the theory of numerical approximation.
The complex historical development of adequate notations for representing
numbers, both integers and—especially in the model of a directed, calibrated
line-segment —the general real, gave rise to such ideas as uniqueness and adequacy
of representation. In dealing with large numbers practical considerations led
to the introduction of number bases, along with suitable rules for operating with
such bases*—mnotably (and sufficiently) addition and multiplication, together
with their inverses, subtraction and division. Essentially, in dealing with a
large number 4, we use the property that, given some other number o, a<C4,
there is a unique & such that 2a=< A< {k--1)a; and we can then define a unique
remainder 7, given by I=1—ka (0<!<a). Extending the concept, for a given
set of numbers «; we can develop the sequence

}-:koxao—!"l, ki=ki+lxd"i—|—1+ln—i’ 1::0,1,2,...,7’1:—1,
and so, where l,=£%,, and the [,_, are defined uniquely from %, %, o;15as!
from 4, %, and o,

a=3 [1x IT (a)] +1

0<isn 0=ji=i
=l Lmy+ L {n—1>+ 41,40+, where ()= J] (a).
0<7=i
* Commonly, in historical fact, decimal, sexagesimal and biquinary.
1 Compare chapters 1, 2 passim.
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The further advance implicit in the concept of place-value is that we can denote 4
by the ordered set [ly, 4, ..., 2,, I].*

When the required level of abstract thought is reached? it is natural to con-
sider in what way meaning can be given to the unbounded sequencefy, iy, ..., I, ...
where # is taken unlimitedly large, and where we can define the /, by some recursive
pattern which is sufficient to generate them. In particular, the Eupoxiax
theory of number-ratio had been created to incluglé such cases; but all such
elaborations are dependent on a quantified definition—“for all ¢...”", or ““there
exists ¢ such that ...”, typically—which can have no proof in the general case
though justifiable by an infinity of particularinstances, and the essential arbitrari-
ness of their introduction makes them ‘““unnatural” and difficult to grasp. With,
however, the further introduction of a concept of free variable? the generalization

is immediate from the representation A= 3} [/, x{4)] to the general sum-sequence
0<izn

form A[xg, %, ..., %,] =2 [l;x Li% ], where 4% =[] [x,;] (with the variables
0<izn 0=j=i

x; ranging over defined intervals); and in particular, where all the «x; are the
same variable #, to the general power-polynomial form 1 (x),= 2 [};- ¥'].
0<izn
The first sequences so to be considered were the atithmetical and geometrical
sum-series (codified in Greek times* as theorems in proportion theory and defined

on a geometrical line-interval model), which we can represent analytically by

(4S) (4, p: k) =0s§Sn(A P) (%, k)

and (GS) (L, M:k), = 3 (GP) (L, M:F),

0ZkEn

where (AP) and (GP) are the arithmetical and geometrical progressions A4 &u,
L x M*respectively; or, equivalently, in the recursive schemes (4 S)y= 4, (45);,, —
(AS);=m, and (GS)y=L, (GS);1,/(GS);=M. As » increases indefinitely (45),
is clearly unbounded, but ARCHIMEDES® had given a convergence criterion which
showed (GS), convergent to a limit for |u|<$4 and, more generally, it was ac-
cepted that (GS), is convergent for |u|<1 by the medieval calculators® who
generalised (GS), into the form (GS),= X [kX(GP) (L, M:K)].
- 0kZn

* Thus, in a decimal base, we take each o;=10 (or 0 £/, =9). The complication
is, of course, that we have to introduce a zero-symbol for each [, = 0.

2 Historically, this was at least as early as the Greeks, Hippasus, Euboxus and
others, who in the 5% century B.C. developed theories of such infinite number sequences
todefine real-number ratios. Such an advanceled immediately to the distinction between
actual and potential infinity and to the concept of irrational -=- “incapable of a
(rational) ratio”.

8 The concept, while it existed verbally and defined on a convenient geometrical
line-interval model from Greek times, had no adequate analytical representing nota-
tion 1ill the 16! century (through the invention of BoMBELLI, VigTA and others).
Compare chapter 2.

* And so treated in EvcrLiD’s Elements and by ARCHIMEDES.

® Compare DijksTERHUIS: Avchimedes: 132—133. ARCHIMEDEs applies it, of
course, in his Quadrature of the parabola to the example M=% and derives (GS)
(L, $:k), %L, when % —>co.

¢ Especially SwINESHEAD, who seems to have introduced (GS), in his liber
calculationum, and the 16t century ALvarus THOMAS (who gave a number of infinite
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While it is not known how widely these medieval contributions were familiar
to mathematicians of the 17% century?, they give general credit to GREGORY
ST. VINCENT for a definitive treatment of the geometrical sum-sequence®, Adopt-

ing GREGORY’S terminology, we consider the positive (GP)-ratio % (A<p), and

on the line-length X, X, (as defined by fix-points X,, X;) we find the third
fix-point O such that X,0:X,0=A4:y, and the unbounded sequence of points X,
i=2,3,..., such that X;X, ,:X; ,X;=2:u. Thus, for each i, we easily show
X, X;11: X, X,=(A:p)%, and so we can set up (GS) (L, M:K), on the model by

a

PN
@

X X

o

(GS), =X, X, 4, where L=XX,, M=AJu, or equivalently (GS),= >, | XX, X
. 0si<n
(%%ﬂ =X,X1X 2 [(Ap)*]. Finally GREGORY states the equivalent of : limit-

0“1 0siZn

sum (G S), = X,0.% In effect, since X, X : X; X, (=u: ) =X,0:X,0, X, X,: X ,O=
X, X,:X,0, and we can show in general that X, X,: X,0=X,X,,,: X,0; there-
fore, since XX, << X,0, for all 7 X; X, < X,0, with limit-equality only where
X0 can be made unlimitedly small (and this can clearly be done since the ratio
X,0:X,0=X,X,,,: XoXy=(A:p)} and (Au)’, A<p, can be made as near zero
as we wish for large enough ). * A similar proof holds for the negative case where
Ap€[—1,0],** and further, as GREGORY sketches, the whole argument is
readily put into an exhaustion proof-form.

sum-sequences, based on (GS), in inspiration, to some of which (by comparison with
(GS)y) he could give bounds only in the limit, his ingenuity not being matched by
a corresponding mathematical maturity). Compare H. WIELEITNER: Zur Geschichie
der unendlichen Reihen im christlichen Mittelalter, Bibliotheca mathematica, 14 (1913 to
1914): 150—168.

* The proof has a distinct flavour of Narier’s derivation of his concept of logarithms
by measuring on a calibrated scale the motion of a point traversing in equal times
segments which are in decreasing geometrical progression.

** In a scholium?® to his treatment GREGORY makes the first historical applica-
tion of the limit geometrical progression to the “‘solution” of Zeno’s paradox of
Achilles and the Tortoise—however tempting the supposition there is no factual
evidence to show that any such convergence consideration of the paradox was formu-
lated in Greek times—and gives the now common argument that the corresponding
points in the two line-length continua can be made to coincide in the limit, where
the paths of Achilles and the Tortoise are traversed by points moving at proportional
speeds in the same line-interval (but starting from different fix-points).

? LeisNiz had, however, studied SwiINESHEAD's liber calculationum and possibly
the (corrupt) 16th century printed edition of OrREsME’s tract on proportions.

8 In his opus geometricum, Book 2: 51 —177: de progressionibus geometricis. GRE-
GORY himself admits only to classical influences—compare OG: 51: ‘“Various places
in ArRcHIMEDES and EucLID gave rise to this treatment ...; these particular cases
tickled my imagination and led to my pondering over them seriously, and I now set
out what came to me in thought...”

% GREGORY expresses the concept of limit in Aristotelian terminology by sine
termino ... actu posse (‘‘taken unboundedly ... becomes able actually...”).

10 GREGORY: OG: Book 2: prop. 78, scholium: 101 —105, and compare 52. Appar-
ently GREGORY thought out the application as a contribution to the recent revival
in Belgian Jesuit circles of interest in the logical niceties of ZENO’s arguments.
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The straightforward analytical counterpart of this, using an algebraic free
variable, was given by JoEN WALLIs a little later.®® WarLLis states that

% [apx A =aqy X 11_”‘; and proves it by a perfectly general method by
1gisn -

“brute-force” division for a few small values of ¢ and, though he does not
explicitly give the limit form as n—oo, |1|<<1, he uses it several times in his
arithmetica infinitorum, and indeed it is accepted by all mathematicians of the
period as a standard result.

More generally, the limit-sum of the geometrical progression is a particular
case of the binomial theorem:

(1F 4 =n1_i_r>13° Z [(+£2)*], since (:1> =(—1)1

o0si<n

but the particular application received the name of “MERcCATOR’ division,
deriving from NicorLaus MERCATOR’S use of it to develop the ‘““MERCATOR”

expansion,®® log (14 X)= lim Z [(— 1)i+1 —)f—z} . MERrcATOR’s proof comes
n—>00 15520

straightforwardly enough by defining log (14 X) as the area under the hyperbola

{(1+ %) Xy=1 between x=0and x= X, or by hyp-area (LlmM)[=Log(1+X)]=

fw_i_w-dx——— lim Z [(__ 1)i+1.xi—1]‘dx‘14
: 1+x ; n—)wlgign

1 Warris: MU: ch. 33: progressio geometrica fusius traditur==opevum mathemati-
corum pars prima (1657): 381f. v

12 As NewTtoN pointed out in his letter to OLDENBURG of 24 October 1676.

13 Compare MERCATOR: logarithmotechnia: prop. 17: 31—33. In fact, as we now
know, the MERcaTOR technique of deriving an infinite series by straight division and
then integrating term by term was used (in an equivalent form) by the 15t century
Hindu NiLakanTHA in the ‘““mandapam®’ cobstructions of the Yuktibhisi” (ed.
Ivar & TamparaNn. Trichur, 1948) which is a commentary ¢. 1639 on NILAKANTHA’S
Tantvasangraha to derive the sum-sequence

z 2i
SN B S Voa 1 s g _ - 2
tan .zu—jm dx__z-—-s—z —|—?z _nlgréo Z [( 1) i1l
0 1<isn

a series found independently by Lereniz in 1673 (see J.E. HoFMANN: Entwicklungs-
geschichte . . .: 32— 35) —together with its transform into a more rapidly converging form,
and also the series expansions for sin #, cos & and sin?®. (Compare also various ar-
ticles by C.T. RajacoraL and T.V.V.Alvar in Scripta mathematica: 15 (1949):
201—209; 17 (1951): 65—74; 18 (1952): 25—30).

Moreover, LNz (in the Hanover manuscript quoted in GERHARDT (B) 1: 228)
gives prior discovery of the MERCATOR series to JoHannN Huppe: ‘“Huddius mihi
ostendit se jam anno 1662 habuisse quadraturam hyperbolae quam deprehendi esse
illam ipsam quam Mercator quoque de suo invenit ...", while NEwToN (see for example,
CUL Add. 4000: 20L.—20V) had the series by interpolation by 1665.

0 .
1 1 3\ 1 X
The complementary log (1—_7) = f T dx_nl_x_)rgo Z {7— was found
% 1<ign
by WarLis immediately after publication of MERCATOR’S logarithmotechwia. See his

review of in PT 2 (1668): 753—7509.
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In fact, MERCATOR makes a very bald, loose use of indivisibles and even at
the time, though the series was accepted immediately as an excellent calculating
aid, there seems to have been a widespread desire for a more rigorous justifica-

tion—indeed it is perhaps true to say that the
MERCATOR series was accepted more because its
value for log(1+41)=1og(2) was identical with
that given by BROUNCKER using geometrical
dissection than because of satisfaction with its
logical proof-form. The loose passage to infinity

in particular, introduced casually by MERCATOR,

* was felt to need further justification, and the
Fig. 18 remodelling of the MERCATOR proof in geometri-

cal form by JAMEs GREGORY 5 a few months later

was accepted as and remained its standard derivation. GREGORY’s proof is a
straightforward adaptation to the geometrical model of the hyperbola (defined
by the usual asymptote property ({1 x)y=1) which is tightened up by being
given an exhaustion-form—specifically in GREGORY’s preferred shape of “‘ quatuor
sunt igitur quantitates...” to effect the necessary reversal of inequalities—and
based explicitly'® on GREGORY ST. VINCENT’s limit geometrical progression sum.*

In the late 1660’s, however, there was a sudden proliferation of infinite sum-
sequences (almost all particular logarithmic expansions) not immediately derived
from a combination of limit-sums of geometrical progressions. For example,
both BrounckeR and MENGOLI had developed expansions of the logarithmic
function which share with “MERcATOR’S” series the particular case, log(2)=

lim > [(— 1)i-t. %} Above all the introduction of a whole general class of
#—>00 0SiZn

sum-sequences contained in the general binomial expansion brought with it an on-
rush of particular series, most approximating in the limit to particular geometrical
forms—such as circle area, ellipse-length—which had proved virtually intractable
(at least, on a numerical level) by previous methods. In view of the importance
of the general binomial expansion in later analysis of the period, and because it
typifies how a general result may bring together several independent aspects and
methods, we will go into its development in some detail.

NewToN, deservedly credited with its most general formulation??, has tried
to recapture the original train of thought which led him to the result in the

* But it is worth remarking that GrREGORrY in his later work never uses the geo-
metrical hyperbola-model of the logarithmic function, preferring the analytical
“logarithmus numeri”’ defined by the limit of a suitable sum-sequence.

15 EG: part 2: 9—13: N. Mercatoris quadratura hypevbolae geometrice demonstrvata;
and compare J. E. HorMANN: Weiterbildung dev logarithmischen Reihe Mevcators in
England. Deutsche Mathematik 3 (1938): 598—605, especially 598 —603.

16 GrREGORY’s prop. 1 (‘‘si fuerint quantitates continue proportionales 4, B, C, D,
E, F etc. numero infinitae, quarum prima et maxima A4, erit A—B ad 4 ut 4 ad
summam omnium ") is referred for proof to GREGORY St. VINCENT’s Opus geometricum.

It is striking that one of the two figures given for prop. 4 (11—12)—that for
log (1 + »)—implicitly gives x a value greater than 1, which must have been very
confusing to anyone trying to delimit convergence of the series expansion.

17 Though, as we have seen in the previous chapter, Bricgs had the particular
expansion, (1 + «)}, (in equivalent form) in the 1620’s.
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opening passages of his letter to OLDENBURG of 24 October 1676.1% He begins
by remarking on the diversity of methods by which infinite sum-series had been
obtained in the past, and noting that the general binomial expansion incorporates
“MERCATOR” division and “physical” root-extraction as particular cases, and
then describes the birth of the ideas which led him to give the general formulation:

‘““ At the beginning of my mathematical studies, when I had fallen upon the
works of ... WaLLIS, I came to consider the series through whose interpolation
he develops the area of the circle and the hyperbola...”. ‘He then sketches

K3
WaLLIS’ attempt to interpolate the sequence of integrals f(2)= [ (1 — 28)"*.dx,*

¢
1==0, 2, 4, ... by the odd values of f(1), /(3), ... . Specifically, he multiplies out
and integrates term by term to derive, for A=0,2,4, ...,

x X

A :(%OA)Xfx1 'dx-i-(%il)xf(—aﬂ).dx_}_...: > [(%il)xf(_xz)i.dx

0 0=<i=}a d

1 i 2201
ZO_S_é%A[(zi >x (=) 2i+1}’

3

1
where—as yet—the form of the binomial coefficients (“il)remains hidden, and

they are listed only as numerical values. He begins to think out how to interpolate
x

odd valuesof 4,4=1,3,5,...,and in particular obtain f (1) = [ (1 — x2)}.dx, “ which
‘ 0

is the circle. I considered ... that the denominators [2¢--1] were in arithmetical
progression, and so only the numeral [the binomial] coefficients remained to be
investigated. But these [for even powers of 4] were the figures which represent
powers of the number 1, 1 namely (11)°, (11)%, (11)%..., thatis, ..., 1; 1,1; 1,2,1;
1,2,3,1; 1,4,6,4,1.

““And so I sought how in these sequences, given the two first figures, the rest
might be derived, and I found that, assuming the second figure to be #, the rest

could be produced by continued multiplication of the terms of this sequence:
m—0 m—1 m—2

X5 X 3 X+ etc. |and so he derives the general binomial coefficient
(T) = m'(m_:');'_'__‘(_T_i“}-” ] So I applied this rule to interpolate the
sequence ..."”. Thus, NEwTON supposes this binomial coefficient form to hold

for intermediate values, and, in particular, uses the coefficient

HE bt -9
7 1.2.3.....1;

to evaluate (on the geometrical model of the circle y2=1 — x2) the area of the
x

general circle segment, [ (1 — x?)}-dx.

—— 0

* We note that NEwToN, in being overfair to WALLIs, at the same time removes
implicitly the block of thought Warwis could not overcome, viz: WALLIs instinctively
treated his integrals as having definite bounds, but NEwrTon introduces without
comment the free variable upper bound.

18 First published in WarLis: opera 3 (1699): 624ff., but I use the annotated
version (based on the Hanover copy) of GERHARDT (B) 1: 203—225, especially 203
to 206.
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The original manuscript on which NEwTON based this account exists in the
Portsmouth Collection?®, and gives a fuller, more immediate account than
NEwTON’S own statement of 1676 (which, written over ten years after, tends
to touch up the crudities of the original discovery)., There NEWTON carries
through the interpolation very elaborately, tabulating known (calculable)
instances of f(4) very much in the style of his “model”, WaLLIS' methods of
arithmetica infinitorum—specifically he justifies his generalization of the

binomial coefficient‘( T) to values of m other than positive integers by an argu-
ment from the logical shape of the tabulated coefficients: since the terms (1 — x2)*2,
x
A=0,1,2,..., are in geometrical proportion, their ‘areas [ f (1 ——x2)'”2~d x|...
(1}

g 5 will observe some proportion amongst one another.”’
By considering the geometrical model of the circle

X
quadrant, he deduces that f(1 — #?)}.dx is the area
6

under the circle y?=1—%%between radius Oc=1 and
the parallel half-chord ba=(1—X?2)}, where Oa=X.

J Therefore area (Oabc) [=%-sin1X+31-X-(1—X)¥)
/] a o li 1)é 5 XLy
Fig. 19 =ngI:o oéén[(_ ) (z) 2i+1 }

x
The corresponding interpolation for the hyperbola-area [(1-#%)t.dx is
o

derived in a similar way2: ““ By the same method, again, the interpolated areas
of the other curves [f(4), A odd] are forthcoming, as also the area of the hyperbola

and other alternate terms in this series ... [Whose general term he takes by
x
glu)= {1+ de, p=—1,0,1,2, .. } ... This was my first entrance into these
0
speculations ... .
“But when I had obtained these results, I soon began to see that the terms
(1— 2% (1 —x2)3, (1 — 22, (1— 2% could be interpolated in the same way
as the areas they generate; and for this nothing more was necessary than the

i3]

* From this NEwroN derives his series for sin"'X by sin-1X = 2 X area (Oabc) —
X (1 — X2}, expanding the right side into an infinite sum-sequence.

v CUL Add. 4000: 18 R—19V: “Having y® signs of any angle to find y® angle,
or to find y® content of any segment of a circle”, with a draft in Add. 3958: 70—73.

20 His notation, in particular, islstrongly ‘WaLrLisiaw in flavour. So he defines the

general binomial coefficient aiz(:_.) which is to be inserted in the expansion of

1

. x“‘“
— 23 dx = lim —1)ta; —
[l—mids=pm 3 [(=1faf],
° 0<isn
“ytis$x — IXEXEINPFGXEXIXENS —IXEXEXEXLA--- . This progression may be
0 1 —1 3  —5 7 . . .
deduced from hence —x — X —— X -=X-—=—X—-—-X+-+." The initial coefficient
0*2% 7 *6X 78 *10

ag="8" (=1) is straight out of Warris’ 41.
21 Given more fully in the previous chapter.
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omission of the denominators 1, 3, 5, 7 efc. in the terms expressing the areas ...

. S x2i+1 B L.
which are (—1)*- (2) } . That is, the coefficients of the terms of the

4/ 2141
quantity to be interpolated ..., in general, (1 — %" arise from the continuous
multiplication of the terms of this sequence,

m A m2 ms X[E(WL)J

1 2 3 4

This is a most interesting point—NEwTON had to derive the binomial expan-
sion in an integral form, f (1 — x%)%-dx, before noticing that the same form is

preserved in (1 — x2)¥ if we multiply each power of x, ¥***!, by f«%l—j—l (and so
X

obtain the derivative, (1 — x2)}, from the integral, [ (1 — xz)“z‘-dx). 1t is significant,
0

however, that NEwTON, aware that derivation by such a loose method of pattern-
analogy may not be rigorous, checked the particular expansions (1 - x)™, (1 — 22
as equivalent, term by term, with the sequences arising from dividing and extract-
ing the square root respectively in the standard way: but finally “when I had
very clearly seen through these results, I ignored completely (WALLIS) inter-
polation of sequences, and applied only these operations as being more truly
fundamental [famguam fundamenta magis genwina]”’

NEwWTON, of course, did not (or more accurately perhaps could not2?) publish
this-—in fact, though his general method was widely circulated in his (1669)
de amalysi, no account of it appeared in a printed text till 16852, Meanwhile
both MErcaTOR2* and BROUNCKERZ had apparently rediscovered the Bricas
expansion of (1-+a)?, though all details of how or what they did seem to have

22 His correspondence over the years 1671 —1676 shows him trying desperately
hard to have his research published either independently or in appendix to the pro-
jected English edition of KINCKHUYSEN’s Algebra, but it appears that no publisher
would print it —understandable if we remember that no advanced English mathe-
matical texts at the time could command a sufficient audience to yield a profit unless
the book were to be priced prohibitively high.

22 When WALLIS, in his Algebra: ch. 91, gave an (adapted) extract from NEwTON’S
letter of 24 October 1676: and when JoHN Cralg, in his methodus figurarum lineis
vectis et curvis comprehensavum quadvaturas deteyminandi, used particular examples
of the binomial expansion ‘“secundum methodum celeberrimi D. Isaaci Newtoni”,
for example, in his prob. 12: 14—15: civculi quadvaturam determinare, where he gives
the expansion of# - (1 — (%)2 %. Davip GREGORY in his exercitatio geometrica of 1684 :
19—21 (a work published specifically to give a permanent form to results derived
by his uncle James GREGORY) uses the expansions, (1 + «)¥, (1 4 «)}, but derives
them by physically extracting the square and cube roots respectively.

24 Compare CoLLINS-GREGORY, 7 Jan 1668/9 (-=- GREGOrRY TV: 60) ‘“‘Mr. Mer-
cator hath often ... affirmed with much confidence that he hath now a serjes for the
circle that shall make the sines of any arch and the converse, and give the area of
any sector, segment or zone infinitely true’”’. We know that MercaTor and NEwTON
corresponded in the 1670’s (see NEwTON PM Book 3: prop. 17, theorem 15), and it
would be interesting to know if the topic was introduced.

2 Compare CoLLINS-GREGORY, 2 Feb 1668/9 (GREGOoRY T'V: 66): ... the Lord
Brouncker asserts he can turne the square roote into an infinite series...”

Arch. Hist. Exact Sci., Vol, 1 18
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vanished. More important, DAVID GREGORY?® asserted later, in sketching the
evolution of the mathematical thought of his uncle, JaAMEs GREGORY, that JAMES
had found the binomical expansion independently of NEwToN, “huic rei...
intentus”. Indeed, JAMES gave the binomial expansion in 1670 in its general
(logarithmic) form:??

log b+ [log (b+ ) — log (5)] (=1log [5(1+ %)]%)

dii
=log[b- a./o-—— ],
P () (5]
where #» may be taken indefinitely great, having apparently derived it by use
of his finite-difference interpolation formula (for unit-differences of the argument),

Hot 1) = Fx)+ () 24 (x0) + (&) 42 (x0) +

If this was GREGORY’s derivation, he was on far firmer ground than NEwTON,
who had derived the binomial expansion merely by noticing and formulating a
general pattern which seemed to run through a sequence of particular expansions,
and who could only justify such a generalisation by checking its consistency
with results to be had by other procedures, particularly root-extraction—
unfortunately, no convenient numerical $/¢'® root extraction process existed which
could check the general expansion of (1-«)??. GREGORY's derivation is more
fundamental, and makes the binomial expansion only a particular case of a general
(finite-difference) theorem [even though, very probably, he could give no better
proof for it than NEwTon for his development—that is, by inducing a general
law by analogy with particular (computed) instances]. Above all, the GREGORY
approach is highly suggestive, leading straight to the formulation of the general
“TAYLOR" expansion?—which is the limit form of the general finite-difference

28 op. cit., note 2.

27 In an enclosure to his letter to Corrins of 23 November 1670 + GREGORY
TV: 131—132. The statement, given without any indication of proof is followed
immediately by an example, where b =100, d =6, a = 1, ¢ = 365, and so

oo 2= o

which is treated by his general interpolation formula—compare GREGORY TV:

{ 4
119—120. Taking f(#,+ h)=b(1+%)h, then kf (%) =b and 4if(x,) =b(%)’=_de~_1,
and the binomial expansion is immediate.

2 H.W. Tur~NBULL has, indeed, argued very plausibly that GREGORY was already
using such an expansion by 1672. Compare GREGORY T'V: 356ff. TURNBULL bases
his argument on elaborate calculations for series expansions made on the back of GIpEoN
Suaw’s letter to GREGORY of 29 January 1671 : (p.356): ‘... these sixteen mathematical
items on this double-sheeted manuscript reveal the workings of a mind upon which the
importance of a certain mathematical principle was dawning — the principle of successive
differentiation ...”"; and again (p. 357): ‘... Gregory was familiar with (the Taylor
expansion) in the sense that he applied this rule to a wide variety of trigonometrical
and logarithmic functions. In contrast to his interpolation formula ..., which he
explicitly stated in general form in his letter to Collins of 23 November 1670, the Taylor
series occurs only in applications, [but, if we deny that Gregory had found the Taylor
expansion, we are] faced with the puzzling question how to account for the wealth of
applications of a complicated theorem if the theorem itself were unknown to Gregory."”
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formula,

h h
ﬂ%+%)=fwo+(f)AV@m+(§)A%wa+~~[=f@wH%uH”

(where the argument is given at equal H-intervals), and Broox TAYLOR derived
his expansion on that basis.?® In fact, remodelling the finite-difference formula
and assuming Ax-intervals,

FlratB) = £ (o - A%)

— h Aft(w) | k-l Af (%) | FB-byhy AP(%) | .
=Mt =t ST T T3 (e T

where

b= A (e —i) =h—ids

and so, using AlimoA fi(x) =0, Alimo(hi) =%, and
x> x—>

lim | Id—l‘(xo)
Az->0 (A x)""l

T dx

lim [Afi(”“)]:lim [Af"“(%Mx)—Af"‘l(xo)] d [

dv—>0| (Ax) | 4z—0 (Ax)? =

= (1) = 9 (x0),

the Taylor expansion,

Pt By = Jim, (F(xo+ - Ax)) = Flra) - 1 0) 2 7% (o) +
is immediate.

However, when the binomial expansion had been accepted into mathematics,
the way was clear for the production of an enormous number of particular sum-
series. Beginning with the letters of GREGORY to COLLINS in the 1670’s and the
circulated NEWTON manuscript de analysi, there came forth a bewilderingly rich
and complex collection—series for the lengths of ellipses, zones of circles, for
trigonometrical and corresponding inverse functions. By their immediacy and
constructibility infinite sum-sequences fired the imagination of the lesser mathe-
maticians even more than the great few. Even NEwToN could be caught up in
it all3%: even when later, as an old man, he fell out of love with sheer numerical
computation, he put infinite sum-sequences at the very basis of his mathematical
method. Significantly, in the fluxional controversy he refused to allow LEIBNIZ

2 In his methodus incrementorum divecta et inversa, London, 1715, 21 ff. —compare
A.PrINGSHEIM: Zuy Geschichte des Taylovschen Lehysalzes, Bibliotheca mathematica,
1 (1900—1901): 433—484, especially 433ff.

3¢ As I have said above, the NEwWTON manuscripts contain many drafts of logarith-
mic calculations, admittedly written in extreme youth, —¢f. CUL Add. 3958: 77 Rif.;
4000: 20R1f.; 4004: 81 Rff. —of which NEwTON could say in his letter to OLDENBURG
of 24 October 1676: ‘1 am ashamed to say to how many places of figures I carried
through these computations, having then a great deal of leisure. For then, indeed,
I took an excess of pleasure in these findings ...”” (GERHARDT (B) 1: 207). In fact,
NEwTON’s computations are rounded off variously at 47D—57D, the calculations
themselves often filling a whole manuscript sheet for each case.

18%
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to separate the two methods of infinite series and fluxions because they were
—for him, at least—inextricably involved with each other: nor is this an overstate-
ment calculated to wirf support in the controversy—for NEWTON infinite series
and fluxions became a single analytical method on which all analysis of the infinite
is to be based.®

And there it rested for the 17% century English mathematician who, while
he could marvel (on a numerical level) at the accuracy and flexibility of the
infinite sum-sequence, would be therefore largely unconcerned with such theo-
retical functional considerations as uniqueness, periodicity and limit-convergence.
The later 17 century was truly a period of frontier expansion in mathematical
analysis when everything must bow to that felt need for widening factual know-
ledge: there were such rich vastnesses of virgin territory to be explored that, when
and if the way became in any wise difficult, there was greater immediate profit
to be had by changing direction towards an easier terrain than by carrying on
through the roughnesses of obscurity and complexity. *

But in the mid 17 century before the flood of infinite series developments
broke on the mathematical world, bringing with it a tidal wave of uncritical
ideas, serious attempts had been made to formulate the concept of sequence
on a strict basis and to set up concepts of (and indeed tests for) convergence. 3

Let us return once more to the logarithm (and its geometrical model of hyper-
bola-area) to consider the point.

PieTRO MENGOLI, as we have seen3?, took his inspiration from the model of
the area under xy=1, deriving therefrom sufficient defining conditions to allow

* It is entirely typical, for example, that NEwToN does not answer LEIBNIZ'
serious reflection in 1677 that the transform of f(#, ¥) =0 into the explicit y =g ()
(with real coefficients) cannot give imaginary roots of f, since g(¥), » real, converges
to a real limit. 32

31 Compare his remark in JosEPH RapPHSON’s History of fluxions, London, 1714 - ="
GERHARDT (B), 1, 287: ‘‘In my letter of the 13th of June1676 I said that my method
of series extended to almost all problems, but became not general without some other
methods, meaning ... the method of fluxions and the method of arbitrary series
[sc. NEwToN’s method, an improvement on VIETA’s, of extracting the explicit limit
polynomial expansion y ==g(x) from the implicitly given f(x, ) =0 by substituting
and comparing coefficients —to be equated to zero for each power of ¥—in f (¥, g (¥)) =0]
and now to take those other methods from me is to restrain and restrict the method of
series, and make it cease to be general. In my letter of October 24 1676 I called all
these methods together my general method.”” We can see NEWTON’s ideal worked
out in some detail in CUL Add. 3960: Section 14 (to be dated about 1670), the tract
printed as geometria analytica in S, HorsLEY: Newloni opera. 1: 389—519.

32 See LEIBNIZ’ letter to OLDENBURG of 12 July 1677, GERHARDT (B) 1: 248—249.

33 It is very tempting to equate the disappearance of such rigorous considerations
with the sudden outpouring of the shakily-based series developments. Perhaps the
sheer numerical weight of these new series expansions cheapened their individual
value for the mathematician. Before, one forced out a particular expansion only with
great mental labour and therefore did not leave it in a rough state, but polished it,
tightened it up, defined convergence conditions, related it to known results. A further
factor, however, must be that till the 1670’s functions were very largely defined
with respect to a suitable geometrical model—on such a well-tested and so strongly
visual basis certain restraints of rigour must be automatically applied which have
to be formulated explicitly in an analytically equivalent structure.

34 Compare chapter 3.
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a purely abstract, analytical treatment. Probably it was an attempt to apply
x

an analytical convergence condition to f 1 . 4% which led him to consider the

limit as » increases indefinitely of 2, (1 /z) By an ingenious grouping he was able
1Zi<n

to show that the sum increases indefinitely with #,% but his treatment has an
air of a trick well-done about it.*

BroOUNCKER, however, in his consideration of convergence of the various
sum-sequences he had developed for log(2),% on the basis of the same model of
the area under the hyperbola xy=1 introduced a more obvious and more general
technique. Having shown that

g A F-1
log (2) = area (A BCE) "-“—7——7‘*—— 7—
T A 1 1 1 4
"hm“(rz tyrtsetyst ) 7 —
and similarly, that {
£ Vi
1 — log (2) = area (CDE)
= limit (-1 1 1 Fig.
__hm1t(2_3+4'5+6‘7+ ), £. 20

he states the sufficient condition for the convergence of each {monotonically

_é% + -4_?5_ + ...)) :'1,
—a condition immediately derivable from the model, since area (4 BCE)+

area (CDE)=area(4 BDE)—and shows it true by splitting the general terms

increasing) sequence that limit [(1—— R 3 7 4. ) £ (

t ih . 1 1 . . . 1 _ 1

of the two series Gis1) 2 and 2@ into the part frac‘t:mns(zi__1 57
1 P

and (577 — m) respectively, so that

li { I I }xr {___1___*_1“}
”Lnélgign (2i—1)2¢ + 2%(2141) nlggolgzén 28—1 2i-1
:—1———— lim (—-—1_—),
1 n—oo\ 2% -1

which tends to 1. Abstracting his convergence criterion from this, BROUNCKER

has, in effect, two sequences (a,), (8,), where a,< 4, b,-<B for all 4, and states

that ilim [(44B) — (a;-+b))]=0 is sufficient for lim (a;)= (and Ilm = B).
— 00 1> 00

* Much as James BERNOULLI in his independent rediscovery of the divergence

used the inequality ( .1 ot 212 )> 527 ( = 7) MENGOLI uses ( + i +-1 - ) >3,
a— a

then grouping successwely by threes, he derives 1 +( + + ) (.15,.{-%»{-_1.)
7

totr I (e e D)aemaad S+34+2

35 In his novae quaa’mmme amihmetzcae seu de aafdztwne fractionum ..., Bologna,
1650.
3 Compare chapter 3.
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BrounckERr finds the extension to his more complex method of approximat-
ing by triangles less easy. Thus, he had developed the limit sum-sequence,

area (CDE) = lm [M___.L___
( ) e ogfzgn 1658l (—2) (2—1) 3} ’
where

: A=2"+2s.

Clearly the sequence is monotonically increasing, and further, from the geo-
metrical model, obviously the successive triangulations all lie inside area (CDE),
since the hyperbola is everywhere convex in the range x €[4, 2], but how is the
convergence of the sequence in the limit to area (CDE) to be shown ? —specific-

ally, where ;= how shall we prove lim [area
>0

1
0<r=i 1§$§2"_1[ (}'*2) (}’*'1) Ay

(CDE) —u,]=0?
BROUNCKER’S solution develops an ingenious test, using the limit-sum of a
geometrical progression as a comparison sequence.® Using the inequality

1. 1
4 (a—2)+(a—1)-a

1 + 1
(2a—2) (2a—1)2a (2a—4) (2a—3) (2@—2)]

<|

we can show % H;<<H;1y, and more generally —4%« By <[y, Where I, =g, —t, _1;

. so that
im () =p, 5+ 1im X (&)
f—>o00 k—>00 n<i<k
=T 1) A — 4~
< M%*1+ Hn kl}ﬂ{ogagk—.n) [(4) ]] /’Ln~«1+ 3 Uan-

Clearly, this gives him an estimate for the error at the »™ term. Further, giving
a very sketchy justification, BROUNCKER assumes in “WALLIsian” manner (by

inducing from numerical instances) that E%—“‘i < for all #, so that ﬁ%ﬁi
N i
< (rﬂl’m) . Finally " ! *

- lim (M=) < Jim 3 [(SE)] =P x(i_‘_ )

k—>00 By "m0y C=m My —1 Bp—y

or

Tim (1) < | fu—1 - =22 X [—
e w1 Py g — Hy ’

n—1
from which a second estimate for the error at the #' term can be given. Together,
the two attempts to use a comparison series are highly ingenious, and—despite
the unjustified (but justifiable) assumption that i, ,/f, decreases with increasing
n—more soundly based than any later 17'® century convergence investigation
of a limit sum-sequence.

37 Unconsciously following DrscartEs who had used such a device in treating
the convergence of his method of isoperimetries—see excerpla ex manusoriptis ... in
opuscula posthuma, physica et mathematica, Amsterdam 1701: pt. 6, no. 5. - ==+ DEs-
CARTES: Oeuwres (Ed. Apam & TannERY) 10 Paris, 1908: 304; and compare EULER:
annotationes in locum quendam Cartesii ad civouli quadvaturam spectantem. Novae
comm. Ac, sc. Petrop 8 (1760—1761): 157—~168. - == opera 151, Berne, 1927: 1~—15.
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The sum-sequence, of course, represents the vast bulk of limit-sequences
considered in the 17% century. But, as we have seen, BROUNCKER had developed
a general series of continued-fraction sequences®, while product-sequences were
not unknown. The supreme example of the latter in the period is WALL1S' product
for %o, but an interesting case occurs in a letter of GREGORY to CoLLINs3?, which

in fact generalizes the well-known sequence, A
first given by VIETA,
.o 4
2 (sm Y =} 1 H . Iy
—— == lim (COS——.““*)
. +1
= lim (,?f sin -—n——> Ry zign 2 4
i —»00 i+l

~VixVi+ 87 x Vi+ 3 Vi + 2780 > i

Taking the general circle arc HKL {< =), where
AH, tangent at H meets AL, perpendicular to
HL,in 4; HK, through K (bisector of arc HL)
meets AL in G, and GB is perpendicular to
HG; HS, through S (bisector of arc HK)
meets GB in F, and FC is perpendicular to HF;
and so on through successive stages, we clearly
have an operation-sequence which defines
points A4, B, C ... successively on H4. It is
obvious also that the limit-point 4 defined in

— N
HA is such that HA=HKL, since if AHL =

s S N
d=HOK, then successively BHG =9/2, CHF = §/2?,... and again, HG (=HK+KL)
=2.-HK, HF =28.HS, ...; so that

g
Fig. 21

HA=HOXx lim (2”+1Xsin—§;)=HO xgin%(Sinzg)xzﬁ where :%.

#—r00 g }b?}
Further, 5 s 8
HG:HL =sec—, HF:HG =sec —, HC:HF =sec—., ...

2 22 28

and so 8
Hi=lim [T (sec—)x2HOsin®**
MO0 - 24
1<ism

* Using the recursive scheme cos —4’5 = l/-%—, cos (-g;) +1= Zcosg( i ) .

Py 28+1

** Since HL ==2HO sin HOK.

% See chapter 2. No further continued-fraction limit-sequences were considered
in the 17t century, though RoGer Cotes developed empirically the continued-frac-
tion expansion of ¢: e=(2,1,2; 1,1, 4; 1,1, 6; 1, 1, 8; ...} in his harmonia mensura-
vum, sive analysis et synthesis per vationum et angulorum mensuras promotae, Cambridge
1722: 7. EULER, of course, was to develop general techniques of examination in
numerous papers spread fairly evenly throughout his life, but especially in the late
1730’s.

3% See GREGORY’S letter to CoLLINS, 15 February 1668/9, Grecory TV: 68— 70,
especially 68—69, and compare CHRISTOPH J. SCRIBA: James Gregorys frithe Schriften
zur Infinitesimalvechnung -=- Mitteilungen aus dem Mathem. Seminar GiefSen.
Heft 55: 651f.
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or, on reduction (by eliminating H17),

40
sni? —-mlgnoo H (sec-)

_J.S
This result is connected at a deep level with the convergent analytical sequences
derived by GREGORY in his VCHQ# which are defined recursively from ¢, I,;
Uy1=(GM) (44, 1)), Iy 1= (HM) (4,, I;). The convergence of these sequences
is obvious from the particularised geometrical models given by GREGORY of the
general sector of a central conic, which are parametrisable:

# A &
k—f' Ik:2 tan?{,

(ellipse) 1, = 2F1si
(hyperbola) ik = 2¥"1ginh Eg—_l’ Ik = 2%tanh »21% .

But in fact, GREGORY develops in VCH(Q* a proof which shows convergence
for any 4y, I, (and I think he intended deliberately to make his analysis general
and independent of any particular model). Specifically GREGORY, setting up
his two sequences (z,), ({,) in parallel columns, used the inequality (7, ; —1%,) <
4 (4,1 9— 1,41) to compare convergence of (¢,) with the limit-sum of a geometrical

progression i
0 0
CR A
().
In proof we have:
Tyt — 1 . . .
nt1 " since 2,1 =1,-1,;
Ty—tntq nt1
In—tpty __ fnting since 1, 20T, 2034
L B , - . ==
Iyt1—tnta T NRE tnt it
and Tnt1—tnts _ Inratinty
btz Ity ity
since 12, 3 =14, I,4;; SO that, multiplying these ratios
int1—tn — (bt tnt) (’n+1+"n+2)
Yo tnt1 41

which GREGORY shows to be less than 4.*

* I, o has iy T, (= 154y) >y inpas OF Gy lyyo+iny1<<2,051. Again,

in+1>—'in — 'L'n+1*in [: iy In"‘in+1 {= in‘i‘in—iﬂl}
In+1‘in+1 In_‘in+1 Z.n+1 In+1_'in+1 iy
zﬂ”_tl_, ~1.
tut1

Therefore, (iy41—ts)> (Iy41— in+1) > '(z',,+2 —ipypy), Si0CE Ty iy > Gy pn, O (b + %y p)
<284y, and 4y (4 + iy pe) <2ig1,. Finally

(in Ftntr) Gugr T tnge) = (G inaa+ int1) + Tyg1” (Ot Iuge) < dinyy.

40 The particular case which is Viera’s, when &= n/2, or HL is the diameter
of the circle, was given by Davip GREGORY in his annotated account of his uncle’s
letters and manuscripts. See his exercitatio geometyica de dimensione figurarum, Edin-
burgh, 1684: 34—35.

41 See chapter 3.

42 VCHQ: prop. 15.
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Clearly, GREGORY’S approach is powerful, and indeed he is able to derive
several interesting corollaries. Thus?® setting up the third comparison sequence

o =1o
1y =17
O
M o

(1) where do=fo, ty=f1, fir2—fia=%0iy1—7), #=1,2,..., he shows 7, —7,
(=40y—11))<4(iy—1y), or j,<<i,. Similarly, §,<7, (n=2), so that

”hm (Jps1—7) = 11m Z 71+1—71
= (h— 70) tim ( 2 (:i-V)
n—->O\1<i<n
3 (L —17o)-
I = lim (i) > lim (7,) =%+ 35 (L —70)
=1+ 3 — ). %

A similar procedure?’ using two comparison sequences (7,), J,) yields I <4+
2(Iy—1,).%6 Thus, we define (j,), (J,) recursively such that i,=7,, I,=J;; and

forall» ot = (AM) Gy, J) D=l U 3],
Jorr=AM) (i, L) [= T — 2 . —7a)]-
i1 = (AM) (7o, Jo) = (AM) (4, Lo) > (GM) (iy, 1) =14y,
Jo=(AM) (1, Jo) > (AM) (i1, Io) > (HM) (iy, Io) = L4;

Or

Then

’o I 0 ]'0 f)
Wl h
U

and in general, where j,>¢, and J,>1I,, j,+,>%,4; and J,,,>1I,.,.* Further,

So=tw=t (o= =@ (h—10) = @)" Lo — 1),

and . . . . .
In=Tn-1T% o1 —Tu1)r =fo+EXh—T0)x 2 &)
0<isn—1.
=i+ X T—d)x 2 P
05ign—1

* Intr=(AM) (ju, Jo) > (AM) (2, 1,)> (GM) (1, L) =ty ya,
and Jarr=A(AM) Gpi3, Jo)> (AM) (s, 1) > (HM) (i 1, L) =Ty -

48 VCHQ: prop. 23.

4 In its restriction to the circle-sector model it was given by HuvGENS in his de
ctreuli magnitudine inventa, Leiden, 1654: prop. 5.

% VCHQ: prop. 21.

* First stated in the restriction to the circle-sector by WILLEBROD SNELL in
cyclometricus: de civculi dimensione secundum logzsmrum abacum. Leiden 1621 (but
not proved till HuvGens gave several demonstrations in his de circuli magnitudine
inventa (op. cit., note 44): especially prop. 5).
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Finally, L . .
y J = Hm g, =dg+ 3 X (Iy — 7p) X lim 2 @
7> 00 n—>00 0<isn—1
with ! i
im ( el ): 2
. oéénﬂl(d 5
and J> 1, since for all # { In = T
o> 1.
GREGORY’s analytical sequences, in fact, contain within their recursive
definitions (in the parametrisation z,==2""1sin ”0_ , I, =2"tan fi) a sufficient
rmrr e 2"

basis on which to set up a general function theory of the circular functions; and
# &
- I,=2"tanh *2;1") also of the hyper-

on—1"’

bolic functions: the standard derivation technique would be by setting up suit-
able inequalities and comparison sequences, GREGORY had more than a glimmer-
ing of this richness and power, and tried to define by his sequences a problem
which had taxed the ingenuity of mathematicians since Greek times—whether
or not an analytical* quadrature of the circle is possible. After GREGORY ST.
VINCENT’s gallant but feeble attempt??, his is perhaps the first (and certainly
in the 417% century the outstanding) attempt to prove that such analytical
quadrature is impossible, as distinct from trying to isolate a particular rational
number which shall be the ratio of circle circumference to diameter. GREGORY’S
reasoning is most interesting and though inconsequential—it was justly if rather
viciously attacked by HuvGENs*8—cut away a lot of the deadwood of obsolete
concepts which lay heavily but uselessly around the problem.

Interpreting his argument?®, let us consider the sequence (z,), ({,,) whose com-
mon limit—when we take the model of the circle—is the quantity which we seek
to derive analytically by some combination of members of (z,), (I,), say n=
0,1,2,3,..., 4 where 4 is finite. GREGORY points out that if we can find an analy-
tical function @ such that @(3,, [,)=® (1, ., I,,.1), then D (iy, L) =nli>1r;° @@,,1,)

=@ (I,I), and we could construct I analytically from 4,, I,**: he therefore

(in the parametrisation 7,=2""1sinh

* That is, in DESCARTES’ sense of some combination of the four operations 4, *
together with root-extraction.

** He gives an example—in correction of a previous one whose inadequacy was
pointed out by HuvGens: Consider the sequences (a,), (4,), where

Ay p1 = (HM) (a’n:An): An+1:‘ (AM) (a’ny An):
&(a,, A,) =a, A, has
Q(“n-;—lx An+1) = “n+1'An+1 = (AM) (a,, A,) X (HM) (a,, 4,)

= [(GM) (“n'An)]gzan'An:‘ qj(“nx An) .
Therefore a
B(ay, A) = B(A, A), or A*—a,A,, where A= lim{ "

7~ 00 "

47 In his opus geometyicum, Antwerp, 1647—compare chapter 1.

4 See E. J. DijksTERHUIs—who is perhaps overfair to HuvGENs in the squabble
— James Gregory and Chyistiaan Huygens, - =+ GREGORY TV: 478—486.

9 YVCHQ: prop. 11 and scholium. There is an interesting interpretation, which
I do not wholly accept, in M. DEun & E. HELLINGER: On James Gregory’s ‘vera
quadratura’ = GREGORY TV: 468—478.
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tries to argue that #no such analytical function @ can exist. We may assume
that GREGORY tried many combinations of (AM), (GM) and (HM) to no effect
before deciding that no such function @ exists. In fact the functions @ which
satisfy must be transcendental since—in the particular case of the circle-area
model —the sequence limit I (the general circle sector) can be shown to be non-
expressible analytically (even more generally, algebraically) in terms of any set of
members of the sequences (z,) (I} *. Thus, perhaps the simplest function @ which
satisfies D (i, 4q, [o1)) = PGy, 1) is B, 1) = I,,( - )* cos (j__")*,**
which is transcendental since cos™ X is transcendental. [This function @ gives

an explicit value of the limit I of either sequence in terms of 7,, Iy—specifically

I=1 0( fo_ )%cos—1 (L"f) *** The two geometrical models considered by
I,—iy I,

ellipse

GREGORY of { area arise by taking

hyperbola

7 = 1 sin 24, I, =tan
fy=%sinh2¢, I,=tanh¢

which induce the parametrisations

C skl P ok B
1, = 2°"'sin = I, = 2"tan -
PN ks Ak ®
1, = 2" 'sinh FT I, = 2*tanh o

which yields as the common limit of the sequences (3,), (1)

[ 0 \E
Ccos (Io>

cosh™t ( %_“—)A'
R ]

’

* The trigonometrical functions are transcendental.
** This follows by:

) . ) , .
1. Ik+1( 1k+1_)‘f=21k k1 X<1k+1+1k )é, =21k< g )’1',

, Thgy— s tpratIp Tp—tp4q Ip—ip
since
bt Ie (D) (e +10)° =( Ay )2>< .
Tp—tp 4y I} —if 11 I (I —1) Tty Iy—iz’
and
2. cos1 (ii) :.,1_ cos—! (2 Xlﬁ_i_ —_— 1) =i cos—1 (M — 1)
Ik+] 2 . Ik+1 2 I
=-— cos~! (zk"’l ) -1 cos™! (iy
I I

R R U )
I"(Io—z‘.,) SN, ) = | g, ) o

2

A
1—A2

=nli>moo L) (=D }1—)1’111 [( )%008'1 l] (=1).

where A= (i,/I,)}.
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1

since sin & cos ¢ )E
i\ tan ¢ ( tan ¢ —sin # cos ¢
xfr) -

1 *
T,—1, tanhﬁ( sinh & cosh & )a; il

tanh 9—sinh & cosh &

It is interesting to see how GREGORY tries to prove the non-existence of (ana-
lytical) @ by parametrising

fo=a*(a+ ),
I, =b0a+10),

and considering the functional equivalence which @ has to satisfy, @ (a%(z-+b),
b2(a+1b)) = P (ab(a+b), 2-ab?). We realise that & cannot be a rational
function, but it is difficult to see any further. GREGORY, however, tries to show
that @ cannot be a general analytical power-polynomial (where the coefficients
may be general real), arguing on a basis of non-homogeneity—specifically, that
the left side is a function of two binomials, while the right is a function of a binomial
and a monomial. Such arguments, even when plausible—and of GREGORY’S
contemporaries HuvGENs at least would not allow even that—are difficult
to check, while the property of homogeneity is not one which is, in general,
unchanged by passage to the limit. We must therefore conclude that GREGORY,
however verbally subtle, is not logically cogent.

These ideas of GREGORY’S on sequence-convergence were not further developed
in the period, and were not re-introduced into mathematical proof systematically
till the rigorous reformulation of mathematics which beganin the early 19% century.
GREGORY himself, after his return to Scotland in 1669, forsook these methods for
the more easily applicable ones afforded by the limit sum-sequence expansion.

The attitude typifies English mathematics from the early 1670’s. The promis-
ing signs of birth of an analytical basis to function theory peter out, and the ease
and rich suggestiveness of the new algorithmic methods flood everywhere. We
now, however, pass on to an aspect of 17® century mathematics where, conversely,
the very rigidity and power of its classically derived structure made the intro-
duction of new concepts a slow and difficult process—geometry.

i, =abla-+5),

which yields .
I, =2ab?

VI. The expanding concept of geometry
1. The synthetic approach

Elementary (EUCLIDEAN) geometry is, in a precise sense, more a psychological
than a mathematical concept, appealing to some extent by its aesthetic purity
but above all as an “obvious’ abstraction from patterns apparent in sensed
experience—an interpretation which agrees with its etymological derivation of
““earth-measure’’. This abstraction has, at least from early Greek times, been
increasingly elaborated and systematised till the present day, when we prefer,
in exact treatment, to study the abstracted logical patterns in total disconnec-
tion from any consideration of the phenomena of physical reality, developing
general sets of axioms which we hope, when operated on by appropriate deduc-
tion-rules, will consistently define an interesting geometry or topology. In the

* The equivalence of the two parametrisations follows from

fo Y sccos-s(0 = 1y 20 x L comhen (o)
I"(Io—‘io) X cos <Io) —_Io(Io_z.o ><1. cosh’ Io).
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17® century the process was not very far advanced on its retreat from reality,
and many particular geometrical concepts found difficult—especially that of
continuity—were in fact justified by appeal to exactly these non-mathematical
concepts of “smoothness”, “unbrokenness” and the like which we prefer to
reject as being insufficiently accurate for a mathematical treatment.

However, we can, I think, adopt a working definition which classifies as
geometrical those 17t century studies which are more or less derivative from the
classical (Greek) formalisation of EUCLIDEAN geometry and which have as typical
undefined elements the ideas of “point”, “line”, “surface” and ““volume”.
Further—following a traditional dichotomy—it will prove convenient to distin-
guish two important aspects as they crystallise out of a mass of inchoate material,
partly original and partly an intellectual rediscovery of Greek geometry: the
synthetic and the analytical. These aspects, however, in the ultimate must not
be—and are not in my treatment—separated: each is a model of the other (and
for any proof-structure in the one we can derive a corresponding proof-structure
in 'the other) complementing it heuristically and as a matter of historical fact,
In this chapter we discuss especially the synthetic aspect.

Perhaps most important in 17 century “pure”’ geometry are the freshly-
studied projective concepts (developing for the most part out of 15 and 16% cen-
tury perspective techniques in art), and, the attempts made to prepare a sound
theoretical basis for them by using aspects of classical Greek geometry, especially
the ApoLLoONIAN derivation of the general conic as the cut of a plane with a
(double-sheeted) cone, and the lemmas on cross-ratio developed by Parpus
in Book 7 of his Mathematical collection®. Towards the middle of the century we
find these systematised in the works of the Frenchmen G. DEsARGUES?, B. Pas-
cAL? and, a little later, Pr. DE LA HIRE®. but their inspiration, after a brief
flowering, faded.® In contrast English geometry, isolated from the 16% century
achievements in art (and in particular the theory of perspective), had little tra-

! See D. J. StruIk’s introduction to Simon StevVIN’s De Dewrsichtige. The prin-
cipal works of Stmon Stevin I1, B. Amsterdam, 1958: especially 7861f.; J.L. COOLIDGE:
The mathematics of great amateurs, Oxford 1949: especially chapters 3, 4, 5, and: 4
history of geometrical methods, Oxford, 1940: especially chapter 6: Descriptive geometry;
and above all MicHREL CHASLES: Apergu historique ..., passim. A recent review of
relevant material is given by R.Taton: La préhistoive de la géométrie wmoderne,
Révue d’Hist. des Sciences 2 {1949): 197—224.

2 Compare R. TATON: L’eeuvve mathématique de Givard Desavgues, Paris 1951;
and two interesting essays by Wwm. M. Ivins, Jr. in Scripta mathematica 9 (1943):
33—48; 13 (1947): 203—210, where he correlates DESARGUES’ apparently esoteric
terminology with technical terms used by 16t® century Italian writers on perspective.

3 Compare P. HumBeRrT: L’euvre scientifique de Blaise Pascal, Paris, 1947:
especially 331f. '

¢ No adequate account is available of La Hire’s work, but see R. TatoN: La premidve
auvve géométyique de Philippe de La Hire, Révue d’Hist. des Sciences 6 (1953): 73 —111.

5 DesARGUES’ treatises on theoretical geometry were largely ignored by his con-
temporaries in favour of his more practical works; PascaL’s projective treatment of
conics were never published apart from the preliminary (privately circulated) hand-
sheet of 1640, Essay pour les coniques, and are now otherwise completely lost except
for a few notes taken by LriBNiz in the 1670’s; while La Hire was admired more
for his strictly Arorronian study on conics (his sectiones conicae, Paris, 1685—cf.
NewToN: Principia, Book 1: prop. 21, prob. 13) rather than for his little known work
of 1673, the revolutionary Nouvelle méthode en géoméirie.
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ditional basis on which to develop projective concepts. Further, the standard
English university course in mathematics of the mid 17 century, in setting up
EvcLip’s Elements as a thought-structure to be viewed as an ideal of reasoned
proof, tended rather to conceal the subtle mathematical concepts which lay
embedded in it than to clarify them. Barrow—himself apparently self-taught—
seems, in his public lectures at Cambridge and London from the 1650’s, to have
been the first university teacher in England® systematically to explore the riches
of the Greek mathematical opus.? Significantly JAMES GREGORY, the greatest
of the English geometers of the period apart from NEwTtoN and possibly WREN,
received his main training under ANGELI during the four years of his stay in
Italy, while NEwTtoN himself had BARRow for master. Other than by personal
tuition there seemed little hope in Eng-
land in the mid-century of gaining the
adequate factual basis of knowledge
which is necessary to complete com-
prehension and to further advance.
Lack of a firmly-based tradition and
standard text-book treatment implies
almost = inevitably an accompanying
clumsiness in thought and expression—
and so we find it, for example, in proof
and application of the equivalent of the
concept of cross-ratio invariance on a
line-pencil. Thus BARRoOW in his Jectiones
geometyicae® shows that where B is the centre of the pencil of lines BD, BR,
BS, BT and PP, parallel to DB, is cut by BR, BS, BT in K, L, G, then
RD  LGXTD+KLXRD *
SD — KGXTD
of cross-ratio on a line-pencil: ** for B(T'DSR)= B (G¥p LK), which, expanded,

* As we shall see later (chapter 10) BaRrROW requires this in the form
n_o_m n n—m
where LG: KG =m:n. DS DR ' DT’

** Not necessarily in exactly the modern, projectively suggestive form (abcd) =
(a’b’c’d’) in which I give it, but also in any equivalent cross-product of line-segments
in lines cut by the line-pencil—a form used by Parrus (in Greek times) and by Bar-
ROW’s strict contemporary La HIRE in an equally general way?®.

¢ FrANzZVAN ScHOOTEN had started such a systematic course at Leyden in the 1640’s
(of which CaristiaaN HUuvGENS was the star pupil), and this could very well have in-
spired BARrRoW. HENRY BRIGGS in the early part of the century had at tempted to inaugu-
rate a stiff mathematical course at London and Cambridge, but the series quickly lapsed.

7 These lectures were developed into his detailed if simplified and modernised texts
of EucLip (various editions of the Elements and “data’ from 1655), but especially

Fig. 22

. The proof is immediate if we use the invariance

thodo nova illusirata et succincte demonstrvaia, London 1675.

8 LG: lectio 7: §§ 3—5 (§ 3 is the particular case where the point T is at infinity
on the line DR).

9 La HirEg, of course, had published nothing in 1669, while the far-different proofs
of cross-ratio invariance of Parrus’ Mathewmatical coliection, Book 7: props. 129, 136,
137, 140 and 142) suggest that BARrOwW was not familiar with Papprus’ work (though
CoMMANDINUS had edited the full text in the later 16! century, and his edition
went through two printings).
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gives %XY% =%{' = %, so that n(g—g — 1) =m(£—g —_ 1). Barrow, how-
ever, gives a long involved proof which reveals his lack of awareness of the
significance of his result: so, taking PM, PN, PO parallel to BT, BS, BR respec-
tively through P, the meet of PP’ and DT, by similar triangles DM x TD=
DN x SD=DOX RD=PD xDB: so that DM xTD = (DM + MN). SD, or

DM - (TD—SD)=MN xSD, and similarly DM-(TD—RD)=MO xRD, or

MN X SD RD—SD . . T
VMOXRD = TD—RD " Finally, MN:MO=LG:KG has LGXSD xTD+ SD x

RD X(KG—LG)=KGXRDXTD, and the result follows. Clearly BarRrOW'S

result has as an immediate corollary the in- 4

variance of cross-ratio on the line-pencil, where

the cross-ratio is defined as the cross-product ¢ £
of line-segments, but BARrROW apparently

failed to see it as more than a useful lemma A

invented to prove a tricky result, and certainly
had no realisation that the theorem in fact de-
fines an invariant of the point-correspondence al
cut on two arbitrary lines by his line-pencil. 10

A similar failure to abstract out any gener-
al concept of cross-ratio invariance may be
found in WALLIS' Angular sections, where /
WaLLIs gives his solution to a problem sub-
mitted to him in 1674 by GEORGE FAIRFAX!1: b
where A is any point on the line 00’ and 3
X,Y,Z are three colline points, show that
KL:LM is constant, where K, L, M are cut A /7
out on an arbitrary line PP’ by AX, AY, , 7
AZ. Again there is an immediate proof by ¢
cross-ratio by considering a second position
A’ of A and showing that KL:IM=K'L':L' M’, where K', L', M' are defined
correspondingly*, and this is indeed WaALLIS' approach. His proof, however,
even more than BARROW’S above, is a long, cumbersome essay on a grand scale
in similar triangles and proportionality, and any general view is lost in a haze
of particularities.

The general ideas which are lacking in BARRow and WALLIS had already
been introduced in Greek mathematics—an aspect of the Greek achievement
which has received too little credit. Much of this Greek work on general point
and line correspondences is now—as it was in the 17t century—seemingly irre-
trievably lost, but its outline is clear whatever its particular historical forms may

Fig. 23

* We have the perspectivities 4 (0o, KLM) = (CXYZ) = A’(oc0pp K'L'M’) where
C is the meet of 44’, XYZ.

10 Barrow, in fact, wants the theorem only to give him relations between the
subtangents BR, BS, BT of curves BR’, BS’, BT’ tangent at B to each respectively.
See LG: lectio 9: §§ 10, 12, 14; 73—74. It is significant that in 9: § 10, where he
rejects the easy cross-ratio proof, BarRrRow’s cumbrous alternative is invalid (see
J.M. CuILD: Geometrical lectures of Isaac Barrow, Chicago, 1916: 107, note).

' Published with his Algebra, London, 1685: ch. 8 = opera mathematica 2 (1693):
592—593.
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have been. In common with other aspects of Greek geometry no adequate nota-
tion had formally been set up to deal with the concept of correspondence, but the
general idea of a cross-product is already old with PArPUS and the concept of
pole-polar with regard to the general conic is fully developed in APoLLONIUS’
Conics'2. Further, as the lemmas in PAarrUs’ Mathematical collection allow us
to restore them, EucLID’s books of porisms®® and several of the minor works
of ApoLLoNIUS but above all ApoLLonius’ Conics show that by the second cen-
tury A.D. there had been obtained equivalents of the constancy of cross-ratio
of the pencil formed by four fix-points on a conic and any fifth variable point
on the conic as pencil-centre—specifically, the “locus ad tres et quatuor lineas” —,
and of “DESARGUES’” theorem of the involution cut on a line by the four sides
of a quadrilateral and the family of circumscribing conics?®, of DESARGUES’
theorem that two triangles with corresponding vertices on copoint lines have
the meets of corresponding sides collineé, and of PascAL’s theorem on the colline
meet of opposite sides of a hexagon inscribed in a conic in the degenerate case
of a line-pair.? It was, however, the problem of the 3/4 line locus * which attracted
most attention among 17% century geometers—probably in the first instance
because it had gained the reputation of being supremely difficult and because
in solving it one might gain insight into the methods of solution of the ancients!8
rather than through any consciousness of its fundamental importance.l® Dgs-
CARTES, in a development confused by many modern historians, had reduced

* The point-set such that the product of its angled distances from two given lines
has a constant ratio to the product of its angled distances from two further given lines
(which may coincide).

2 Especially Book 3: props. 30— 34.

13 An admirable restoration is that of M. CuasrLes: Les trois lvres de povismes
&’'Euclide ..., Paris, 1860; and compare J.J. MILNE: A#n clemeniary treatise on cross-
ratio geometyy ..., Cambridge, 1911: especially appendix 1: 114—129: Pappus’ account
of the porisms of Euclid ...; and CHASLES’ Apergu histovique ..., Paris, 1889: 274 —284:
Note 3: Sur les porismes d’Euclide.

14 Such as his (lost) works On cutting off @ space, On determinate section, but espe-
cially the (extant) On cutting off a vatio (edited by HALLEY from an Arab manuscript,
as de sectione rationis, Oxford, 1706).

15 This is developed in ArorroNrus: Conics: Book 3: props. 16—23, and is a slight
modification only of the constant cross-ratio property by suitably defining invelution.

16 DESARGUES gave this form of the theorem in A. Bosse’s Pratique de la perspec-
tive, Paris, 1648: 3041f., but the Paprus form is stated in “‘porism "’ form (and not quite
fully) but with. an extension not given by DESARGUES. (See Parpus: La collection
mathématique (ed. P. VER EEckE), Paris-Bruges, 1933: Book 7, introduction :=- 2:
488.) The extended theorem survives in a badly mangled text, and its meaning was
restored in modern times only by R. StMson—see Pappi Alexandrini propositiones
duae genevales ... PT 32 (1723): 330— 340.

17 Papprus: Book 7: props. 138, 139.

13 An important reason for 17t® century mathematicians who—not wholly wrongly
—were convinced that the ancient Greeks had ‘‘analytical” methods of solution, not
transmitted to modern times, which they had used to derive many of the results given
in the often artificial and obscure forms of the extant texts.

19 ApoLLONIUS, in the preamble to his Conics, had introduced it as a problem whose
general solution had baffled EvcrLip, remarking intriguingly that its solution was a
corollary to theorems given in his Book 3. It is significant that Newrtox’s solution
depends on exactly those propositions of Book 8 which contain, implicitly, the defini-
tion of a conic as the point-set meet of corresponding rays of equi-cross line-pencils.
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its solution with respect to an oblique coordinate system to a second-degree
polynomial point-set in two variables (the corresponding coordinate lengths)
and so showed the locus a conic; while PAscAL in his lost Traité des sections
coniques claimed a synthetic solution (and, indeed, it is easy to reduce the locus-
property to the condition of colline meets of opposite sides of a hexagon—Pas-
cAL’s ‘“‘hexagramma mysticum” condition, which shows the six vertices of the
hexagon to be on a conic?), but the first extant synthetic solution is that given
by NEwTON. %

Briefly, NEwWTON, taking APOLLONIUS 3:
props. 16—23* as his starting-point, derives
the easy generalization which is equivalent
to DESARGUES’ conic-involution theorem22:
where ABCD is a quadrilateral inscribed in
a conic, and PQ, PR, PS, PT-—the angled
distances of P from 4D, BC, AB, CD re-
spectively —are drawn from any point P on

the conic under given angles PQA4, PRC,

PSB, PTD, the cross-product EQ::—EE is

constant. The 3/4line locus is the easy converse

of this. It is important, however, to notice that

PQX PR _ : ;
Pex BT = A, constant, is strictly

equivalent to the condition that the point set
of P be defined by the constancy of the cross- Fig. 24

ratio P(ACDB)**; and that therefore any

treatment which introduces the one introduces the other in equivalent form.
In fact, NEwTON uses his theorem to derive a whole sequence of propositions
defining several types of point-correpondences, and we may fairly say that

the condition

* These propositions relate to rectangle-segments in a conic, and yield immediately
DESARGUES’ involution-theorem for a trapezium inscribed in a conic.
** AAPD=qXPQXAD=5XPAXPDXsin APD, or PQ=¢ XPAXPDX

. TOF q . .
sin 4 PD (where g = S 4D 1§ some constant>. Similarly

. =T

PR =¢'"X PB X PC %xsin BPC,
TN

PS =s"XPBX PA Xsin APB,
TN

PT =t X PCX PDXsinCPD,

. TN . "
r DOXPR _ 5 by the locus condition) = u X sin APD xsin BPC — ux P(ACDB),
PSxPT in APE X sin EPD
¢ X7 sin A PB Xsin CPD
B= ST

20 A restoration on these lines of PascaL’s solution (using the help of the Lgis-
N1z notes on his Conics) is in an (unpublished) paper of mine, Pascal’s hexagramma
mysticum. For DESCARTES’ solution see the next chapter.

2L In the manuscript de compositione locorum solidoyum (to be dated in the early
1670’s -==- CUL Add. 3963: various drafts in 126 R—149R, later published —not
quite so fully —in PM: Book I: Section 5: lemmas 17—19.

22 Add. 3963: 127R: cons. 2=PM 1: lemma 17.

Arch, Hist. Exact Sci., Vol, 1 19
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NewTON develops that sequence on a basis which involves the projective definition
of a comic as the cut of equi-cross line-pencils (in equivalent form, at least).

In amplification of this point let us consider his manuscript prop. 32 which,
slightly reformulated, proves: given fix-points B, C and fix-lines PR, PT, the
point-set of all points D such that PR:PT is constant, where BD, CD meet
PT, PR respectively in T, R, is a conic; and conversely*. In proof, NEWTON
takes DHIG parallel to PT, DE parallel to PR with CP meeting DE in F. Then,
PQ:DE (=1Q)=PB:HB=PT:DH, and PR:DF=RC:DC=1IG (= PS): DG,

PQxX PR DEXDF

sothat Z&7 T = et
constant for D on the conic

through the fix-points 4, C, P;
B; or, since PQ, PS are given
in magnitude, PR: PT is con-
stant (which shows the con-
verse—the theorem itself is
immediate by reversing the
argument).

This is a powerful porism
in the EUCLIDEAN manner,
but its significance tends to
be hidden in a classically geo-
metrical clothing. (The argu-

~— ¥+ ment may, however, be neatly

“Fig. 25 reduced to a form whichreveals

the implicit use of the cross-

ratio invariancy property more clearly following each step of NEWTON’S argument
exactly. **) Indeed, he derives his ““organic’’ construction of a conic almost in
corollary #—specifically, if the given angles DBM, DCM rotate round fix-points
B, C such that the meets of BM, CM are colline, then the point-set of all D is a
conic. Wehavemerely totake PR, PT through a fix-point P (defined by the organic
construction from a corresponding fix-point N on the given generator-line NM)

such that BPT=BNM, CPR=CNM: then the triangles NBM, PBT;
NCM, PCR are similar, so that PT:MN=PB:NB, PR:MN=PC:NC, or

PT  PBXNC : i

BE = PCXNB’ constant—which shows that D, the
meet of BT, CR is on a conic through B, C, P (and the
meet A of the parallels through B, C to PT, PR re-

spectively).

* Clearly there is a unique point 4 on the conic which
corresponds to R, T both at infinity —specifically, 4 is the
meet of the parallels through B, C to PT, PR.

** Considering a similarly defined point D', PT: PT'=
PR:PR’, and we show B, C to lie on a conic through P, 4,
D, D’: for it is immediate that (Poo T'T’) =(Poo RR’) with
B(PxTT’)=B(PADD’Yy and C(PooRR’)y=C(PADD’),
or B(PADD"Y=C(PADD").

2 Add. 3963: 128 R=PM 1: lemma 20.

Fig. 26 2% dadd. 3963: Prop. 7: 130R—V=PM 1: lemma 21.
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Conceptually, however, NEWTON’s attempt to show the converse is more
revealing of the inadequate grasp even NEwTON had of the homographic definition
of a conic which is implicit in the porism. Though in the manuscript version 2
NeEwTON hints at the necessary and sufficient condition which would validate
his argument, in the published PM version NEWTON is misled in showing the
converse, by his not implausible conclusion that only colline points M, N will
generate a point-conic through B, C, —in fact, any conic through B, C is trans-
formed into a second conic
through B, C under the organic
construction. *-26

Fig. 27 Fig. 28

Elsewhere in PM 2" NEWTON treats of a dual line-porism: if two fix-lines
ME, KQ are given and fix-points M, K on them, and a correspondence between
the points E, @ of the two lines is set up by the condition that ME X KQ is con-
stant, then the line-set of the EQ envelopes a (line-) conic tangent to ME, KQ.
(His proof is closely Apollonian in form, but then AporLoNIUs had, in his Conics,
developed the basis for a general treatment of line-porisms at greater length
than the corresponding one for point-porisms.} Together, as they are given in
PM, these porisms are tied strictly to the easily provable corollaries which give
constructions for conics through given points and tangent to given lines in various
arrangements, and we could easily have the impression that they were thought
up ad hoc during the period 1684—86 (when most of PM was written) expressly

* If point M defines a corresponding point D on the conic through B, C (where
the angles DCM, DBM are constant), the line-pencils (CM) (BM) are transformed
into the respectively equi-cross pencils (CD), (BD); together with, since the point-
set of D is a conic through B, C, the condition that the pencils (CD), (BD) are equi-
cross—which shows the pencils (BM), (CM) are equicross, or the point-set of M is
a (usually) non-degenerate conic through B, C.

% Add. 3963: 130R. The condition there given which suitably restricts the con-
verse is that some point O of the locus ONM be colline but not coincident with B, C—
which implies that the locus ONM reduces to the line-pair ABXONM.

26 The point was first made by J.L. CooLIDGE—see A history of the conic sections
and quadric surfaces, Oxford, 1945: 46.

27 PM: 1:lemma 25, which generalises APOLLONIUS 3: prop. 42, his own lemma 24.

19*
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to prove such constructions. This is far from true?® and a clearer view is obtain-
able from numerous manuscript drafts on geometry in the Portsmouth Collection 2.
In particular, the heading under which the propositions printed in PM were
originally collected, de compositione locorum solidorum, indicates the deliberate
intention to write a systematic treatise (never completed) on the Greek theories
of point- and line-porisms. Striking confirmation is to be found in the manuscripts
which he wrote at the end of his life (from about 1705) when interest in theories
of correspondence and especially the Greek porism theory of point-correspond-
ences was renewed.?® These show that few exact thoughts crystallized out of
a mass of fluid ideas which surged through his mind, but they yet remain tre-
mendously suggestive for future developments.

It is clear that NEwWTON was attempting a clarification and systemisation
of basic concepts in geometry, particularly those of the point-set (locus, ““locus
punctorum”) and line-set {envelope, ‘“locus linearum’) and the relationship
between points and lines which correspond (“fratres sunt”) or are “twin”
(“quantitates gemellae”).3! In particular he elaborates the basic concept of
porism (point-set) at some length3: “The curves (“lineae”) on whose meets are
the required points were called by the ancients the loci of these points, and they
found other loci of the same kind by dropping one defining condition of the

28 Examination of the handwriting style suggests that the tract cited above de
composttions locorum solidovum was written in the early 1670’s.

2 Compare Add. 3963: Sections 1—35, 10, 12—14, but especially sheets 127133,
135, 137, 141 —144, 145—146; Add. 4004: 128—159, 183—185. A large part of these
manuscripts are drafts, to be dated about 1705, of an intended treatise on geometry,
of which perhaps the fullest draft (of Book 1 only) is Add. 4004: 128—159, to be
collated with Add. 3963: 127—133. Many of the subsidiary tracts are specifically
labelled ‘‘ porismata”.

3 A manuscript quoted by S.P. Ricaup in his Historical essay on ... Sir Isaac
Newton’s ‘principia’, Oxford 1838: no. 23: 79 shows that Davip GREeGORY in
May 1701 had the intention of visiting NEwTon to talk among other things “‘about
Euclid, especially the data; and if I should write a Preface, and what instances put in
it” (his edition of the daia came out in 1704 in his Euclid). Further, Harrzy,
in his edition of APoLLONIUS’ de sectione rationis, Oxford, 1706, gave a Latin translation
of Pappus’ description of lost Greek work on porisms in which he wrote of EucrLip’s
main porism —restored by SIMsoN a few years later (see note 1% above—: “ porismatum
descriptio nec mihi intellecta nee lectori profutura; quid sibi vult Pappus haud mihi
datum est conjicere”. To NEwTON that could only have been a challenge to prove
HaLLEY wrong). NEwToN’s work on porisms was based on a wide reading—cf. 4dd.
3963: 157L —of all available commentaries and attempts at restoration, but especially
those of SNELL, VIETA, GHETALDI, ANDERSON and VAN ScHOOTEN, and of the rich if
mangled text of Pappus’ Book 7 itself (which is still our only source for information
on the Greek theories). NEWTON’s porism restorations anticipate to a surprising degree
the later (and completely independent) work of MiceerL CHasLEs published in his Les
trois livves de porismes d’Euclide, Paris 1860, and that agreement in restoration must
clearly give added weight to their plausibility.

31 This concept is discussed in Add. 3963 : Section 5: vegula fratrum (rule of mates) —
¢f. 40R: “fratres voco puncta vel lineas quae eodem modo se habent ad conditiones
problematis”, and again ‘... quantitates gemellae, id est, quae eadem modo se
habeant ad conditiones problematis, quaeque cognitam aliquam habeant relationem
ad invicem: his non impono nomina, sed earum loco usurpo quantitates quae eodem
modo se habeant ad utramque”.

32 Add. 3963: 17R.
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problem and seeking the curve each one of whose points shall satisfy the remain-
ing conditions. Then if each point of one curve satisfy all conditions but one,
and each point of a second curve satisfy all conditions but a second one, their
meets determine those points which satisfy (the union of) all the conditions.”
The natural way to develop this viewpoint is by introducing an analytical free
variable to represent the set which satisfies all conditions but one—clearly, we
have only to introduce some reference system, as Cartesian coordinates*—but
using the pure geometrical model of the straight line we easily define correspond-
ence conditions by restricting the line to joining corresponding points on given
curves and then the whole field of elementary projective geometry lies open to
investigation.

Of this, of course, the most important indi-
vidual result will be the constancy of cross-ratio
on a line-pencil, and we find that NEwTON gives
more or less general (if differing) proofs in the
manuscripts, showing for example® that, where
any line through fix-point 4 meets the copoint
lines Ef, Eg, Eh in B, C, D, then (ABxCD):
(AC xXBD):(AD x BC) are constant ratios—a
theorem which corresponds exactly to our more
sophisticated definition of cross-ratio, since the
cross-products

ACXBD

IPxBE (= (4BCD))

ABXCD
ACxBD

and
(= (4DBC)) Fig. 29

are constant on the line-pencil. NEwTON gives, interestingly, a form of the
Parpus proof which virtually projects D into infinity by taking AFG parallel
to Eh, and again FH parallel to EG: then AB:BD=AF:ED=AH:CD,

A AT ABXCD _ BDxAH _ AF
AH:AC=AF:4G, or Hrs 46 = BDXAC — 4G
actly analogous to (ADBC)=(4 o5, FG), constant.3

The immediate application is to consider the PAppUs lemma which is equi-
valent to DESARGUES’ theorem on perspective triangles, and which NEwTON
formulates?®: where the fix-points A4, B, C are colline and the point-sets F, D
are fix-lines such that FD is through 4, then the point-set E defined as the
meets of BF, CD is a fix-line also (and passes through G, the meet of the point-

, constant—an argument ex-

* This was, in fact, NEWTON’s basis for introducing his ‘‘independent’ Cawr-
TESIAN coordinate system in treating the concept—see the next chapter.

33 Add. 3963: 30R.

3 A complementary analytical sketch, depending on a subtle analysis of condi-
tions for 1, 1 correspondence between points on two lines, exists at 159Rff.; de in-
ventione porismatum—see next chapter.

35 Add. 3963: 29R: porism 12. As NEwToN shows by his figure of an alternative
draft, he is aware that the point-sets E, F, D are copoint at G—a criticism which has
been raised against the PApPUs original, since the point is not made explicitly in the
text or in figure.
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sets (F), (D).38 No proof is given, but the form in which the porism is given allows
us plausibly to reconstruct it in equivalent form: specifically the line-pencils
CE)=C(D)=A(D)=A(F)=B(F)=B|(E), so that the point-set E is (part of)
a conic through B, C; and this we easily show to be the line-pair EE’ x BC,
where E’, colline with B, C, is a point of (E).

But, more generally, NEwWTON considers the correspondences set up by the
meet of a line with higher curves® (perhaps on the model of ApoLLONIUS: On
tangencies, restored in printed form by ViETA and FERMAT, and in manuscript
by TorrICELLI®). This leads easily to a F
general treatment of centres of similitude g

ey

Fig. 30

with respect to pairs of circles. Thus, with regard to the circles (4), (B), consider
the (external) centre of similitude O which is defined on 4B by taking 04 ; OB
in the ratio of the respective circle radii. Then for E on the circle (4) and D on
OE such that OE xOD =04 xOB, we easily show D to be on the circle (B)
and further that a unique circle (C) can be drawn touching the circles at D, E.*
Again, given a point F on the circle (C), a second point F’ on it (colline with
0, F) is defined by OF xOF' (=0E x0D)=0A4 x0B, and from this NEWTON
easily derives solutions of APOLLONIUS’ problem to find the circle tangent to three
given circles, any of which may degenerate.?® But perhaps more important for
NEWTON is that the “puncta gemella’ D, E of the circles (4), (B) define, with
C A S AN Pl
b * Since CED = OFA = D’DB = CDE,
or CE =CD, where AE, BD meet in E.

36 Indeed, NEwTON adds the gener-
alisation that the result holds for 4, B, C,
given in general position in the plane, pro-
vided that B, C and G are colline (in which
/ case the point-sets (D), (E), (F) will not be

copoint). [The proof follows immediately
from Parpus’ theorem on the hexagon
FBACDG inscribed in the line-pair FAD,
BCG.] See Add. 3963: 29R.

37 Add. 3963: 40R—41V.

38 See E. TORRICELLI: opera, 1. 1:239—
202: de tactionibus.

3 Considered in ApoLLONTUS’ (lost) trea-
Fig. 32 tise de tactionibus.
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respect to given O, A, B, a “relatio” (our modern inversion correspondence)
under which important circle properties remain invariant*; and, in this general
viewpoint, the common tangent-circle is but one (simple) example of an element
which remains invariant under the correspondence.

Conversely, the pointiset of the circle—and more widely of the general
conic—may be used to define correspondences in a given line, and NEWTON
develops this aspect at some length.4 Thus, for example, given a circle through
fix-points 4, B and the line «f
(fixed likewisein position), NEW-
TON considers the point-sets
(%), (y) which are cut in «f by
the lines AZ, BZ drawn through

A~ —~

Fig. 33 Fig. 34

an arbitrary point on the circle (and the points y=§, x=v correspond respectively
to the particular cases where x, y are at infinity), and states that the product
Exxvy is constant. His justification depends on setting up a (detached) co-
ordinate system in af (where the coordinate line-lengths are defined by §x=1x,
py=1y), but we note that implicit is the definition of the circle as the meet of
equicross (and indeed congruent) line-pencils**-—a property stated explicitly in
a second porism which follows immediately on: given a circle through fix-points
A, B and the fix-line «f which cuts it in the fix-points E, F, if the lines AZ, BZ
through any arbitrary point Z on the circle cut out the respective point-sets
(%), (v) on af, then ExxXFy:Eyx Fx:LF Xxy are in given ratio.***

* So, if OF is tangent at E to (4), OD is tangent to (B) at D; and, again, corre-
sponding circle chords EE’, DD’ have their meets P colline (on the radical axis (P),
which is itself an invariant of the correspondence).

** Specifically, we take a second point 2’ on the circle to define a second pair of
points #', 3" in «f; then A(aber’)=(oc0,pyy)=vy 10y =Ex:Ex" = (00,5%%") =
B (ab zz"), which shows that 4, B are on a conic through a, b, z, 2’.
ExxFy _ _ _ EFxay
Eynrr - Cr =BV =5 Ty
TON’S ‘porism states equivalently, where the point-set (Z) is a circle, the constructed
point-sets (#), (y) are such that (EF¥y) = (EyFx) is constant—or, alternatively, that
for any Z on the circle (EFxy) =Z (EFAB) is constant. A porism of a similar kind for
the parabola had already been found by FerMAT no later than the middle 1650’s,
and first appeared in print in WALLIS’ commercium epistolicum in 1658 (in Letter 47==
FErMaT-KENELM DiGBY, 19 June 1658: 188). Both the circle and parabola forms
appear (as porisms 3,2 respectively) in his posthumously printed tract on porisms.
(See FERMAT’s varia opera, 1679=0FE 1 (1891): 761f.)

4 Add. 3963: 165 Rif.

**% In fact, the cross-product , and NEw-
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None of this work of NEwWTON’s on the concept of plane correspondences was
published in his time—or, indeed, ever—and had no influence on his contempo-
raries. With NEwToN’s death the topic faded temporarily into oblivion.

The analogous concept, however, of 3-space correspondences, widely studied
since Greek times, attracted wider attention—and especially that part which
dealt in a general way with the continuous mapping of one surface into another.
In particular, an offshoot of the growing science of cartography was the problem
posed by the map-projection: how best shall we map the earth’s surface (ab-
stracted into the form of a sphere-surface) onto a plane? Clearly, a continuous
mapping onto an infinite plane is possible where only one point on the sphere is
not mapped onto a finite point in the plane (but no continuous mapping can
map every point onto a finite point). A further important need in the (descriptive)
map is that “shape’” be preserved, that the mapping be conformal. Combining
both advantages PTOLEMY# set up a perspective mapping of the sphere onto
the equatorial plane from the south pole as perspective pole (known as ““stereo-
graphic’ projection of the sphere after D’AIGUILLON elaborated its theory under
that name), and proved its conformality. With the pressing 16% century demand
for a convenient navigating map, several projections were introduced but especially
that of GERARD MERCATOR?? (the “MERCATOR’ projection) which, while non-
perspective, was continuous, conformal and—most interestingly —direction-
preserving, projecting meridians, parallels and loxodromes on the sphere into
straight lines. In MERCATOR’s time the practical construction of the mapping

o
(which involves an equivalent of [ sec ﬂ-dﬂ) was carried out by approximation,
o
though the underlying theory was worked out only by JAMES GREGORY in 1668
s v
(Who in EG gives the equivalent of [ sec #-d@= —log (sec # — tan ﬁ)), with Jater
[}

simplification of GREGORY’s complexities by BArRrRow and WALL1s. 3 HALLEY
at the end of the century gave a discussion which neatly tied up the stereographic
projection with the MERCATOR scheme,® showing that the stereographical pro-
jection of the loxodrome (the curve on the sphere which cuts all parallels at the
same angle) must be the conformal curve which meets a family of concentric

4 Cf. his Geography: 1, ch. 24 (cf. P. SCHNABEL: Text und Karten des Ptolemdus,
Leipzig, 1939) though the theory is developed in his planispherium (Venice, 1558;
Leipzig, 1907). Compare J.O. Tuomson: History of ancient geography, Cambridge,
1948, and D. J. STRUIK, Outline of a history of diffevential geometyry. 1, Isis 19 (1933):
92—120, especially 94ff. [Full bibliography in Horman~ 7: 188, col. 1.]

22 See H.voN AVERDUNK & J. MULLER-REINHARD: Gevkard Mercator und die
Geographen unter seinen Nachkommen, Gotha, 1914: 128ff.

. 4 Detailed references are given in F. Cajori: On an infegration ante-dating the
integral calculus, Bibliotheca mathematica, 14 (1913 —1914): 312—318.

4 Tn PT 19-(1695): No. 215: An easy demonstvation of the analogy of the logarith-
mick secants to the mevidian line ... In outline the technique used by HaLLEY was
known in the 1670’s—compare CoLLIN’s letter to OLDENBURG (? 1670) (- ="' Rigaup
(Cy: 1, 142—147, especially 144) which apparently reports the manuscript on the
“rhumb spiral” (now in the Royal Society Library) enclosed in GREGORY’s letter
to him of 20 April 1670 (= GrEGOrRY TV: 93—96, especially 94). GREGORY’S
solution, while not so precise as HALLEY’s is based likewise on the stereographic pro-
jection of the loxodrome (‘' rhumb-line”) into the logarithmic spiral.
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circles at that angle—that is, a logarithmic spiral. Proof of the conformality of
stereographic projection is fundamental to the approach, and HALLEY substitutes
a neat demonstration for PToLEMY’S complexities. Consider, then, the vertical
section BPE of a sphere of centre C and south pole E: to show conformality it

P N i
is sufficient to prove that the angle DPA made by the tangent PD to the vertical
N

P4 at the sphere-point P projects into an equal dpa in the equatorial plane

CFd (where pd is the tangent to the projected curve at point $ corresponding

to P). Taking DA, da normal to the vertical plane PO

perpendicular to BE with AK parallel to PO (meeting
S

NS S

EP in K), we easily show AKP=0OPE=APK, or
)

AK=AP, so that dpa (=DKA since DKA, dpa are

P
parallel planes)=DPA.*

But, of course, the most fully worked out case of a
3-space point-correspondence was the classical Apollonian
construction of conics as the meet of aplane with a double-
sheeted cone; or, restating it (but not wholly unclassical-
ly), the perspective correspondence which transforms any
point-conic into any other (degenerate or otherwise), and
conversely. In the Greek treatment, however, when the
basic “symptoms’’ of the conics as plane curves had been
derived, the point-correspondence on the cone was
discarded, and the whole mass of Greek conic theory
—and its systematised development in the 17% century%—had been elaborated
as a plane curve theory, rather cumbersome and turgid in many ways, defined by
“symptoms”’ with respect to a chord and a conjugate diameter. The especial
difficulty of the purely plane approach was that definitions of many important
elements, especially the focus and its polar (the directrix), had to be introduced
in an entirely unobvious way as point-sets restricted by a condition involving
unwieldy ratios of line-segments. (In comparison, DANDELIN'S 19 century
definitions of the foci as the contact-points of the plane which cuts a right circular
cone with two spheres inscribed in the cone, and of the directrices as the meets

Fig. 35

N )
* The rest follows equally neatly by taking DPA = dpa = @, con-
stant (so that the angle between the radius vector Cp and tangent

N
dp will also be @): it is immediate that Cp=DE X tan CEp = CE X

N
tan §(3 # — @), where &= PCp, the angular height of P, so that the
representing (polar equation) of the spiral will be

— log (—gf,)=cot (DX@.

Finally, taking @ =41z and sphere radius CE =1 = Cy’,

° o9-d P 11 F
of sec® - d¥ = pCF = — log [tan (Fm — )], Fig. 36

# In such works as GREGORY ST. VINCENT'S opus geometricum, Antwerp, 1647,
and LA HIRE's sectiones comicae, Paris, 1685 (the first treatise on conics to absorb
the newly found Books 5—7 of Aporronius’ Comics, rather badly published by
BoreLL1 at Florence in 1661).
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of the section-plane with the two planes through the respective circles of contact
of cone and sphere are intuitively appealing.)

During the 17't century, however, we find a new and growing tendency to
make the 3-space construction of the conic fundamental in its detailed treatment,
a tendency which was to develop into the 19 century systematised treatment
by synthetic methods of the geometry of conics and higher curves. Above all,
the concept is introduced of invariance under optical projection from a ‘point-
centre (perspective invariance). Beginning with DESARGUES’ (1639) Browuilion
prodect ...%¢ and PAsSCAL’s (1640) Essay and his lost treatises on conics® and
continued in La Hire’s brilliant essay of 1673, Nowvelle méthode en géométrie
pour les sections des superficies coniques et cylindrigues ..., we have a rapidly grow-
ing study of such projective invariants as cross-ratio, involution, pole-polar
correspondence and tangents, and of the corresponding non-projective properties
which could now be seen as characterising the particular conic and differentiating
it from conics of a different type. Nor was there any theoretical consideration
which limited such an approach to conics, but historically the obstacle to such
an extension was that, apart from a few properties of the corresponding CAR-
TESIAN equation, little was known of the geometrical properties of the higher
algebraic curves. NEWTON, in fact, was the first to carry through such an extension
by classifying the various cubics into five distinct species, each of which is the
set of possible optical projections of one of the five divergent parabolas, and then
using analytical methods to separate out particular genera from each projective
species.?8 (Presumably he could do so only after years of hard work spent in
drawing innumerable particular cubics, and only gradually ordering and collat-
ing his crystallizing thoughts.)

At several places in his manuscripts*® NEwToN has drawn up hurried drafts
of the general basis on which such projective classification is extensible to #®™
degree curves, but perhaps most interesting is his sketch % of how such an optical
classification may be embedded in a general theory of 1, 1 point correspondences:
““As we can from five simpler figures of the third order derive all figures of the
same order, so we can all figures of higher orders from the simplest—and on
that ground they can be differentiated into coordinate genera, positing that
those are of the same genus which mutually transform into each other under
projection. For that reason there is a single genus of second-order curves since
they are all projections of the circle and of each other.... All those and only
those which transform into each other under projection are cognate, and are

46 See R. TaToN (op. cit. note 2).

47 Whose contents can be reconstructed in a general way from the LEIBNI1Z notes
at Hanover—see PAscAL: Oeuvres (ed. BRUNsCHVIG & BOUTROUX), 2 (1908): 217—243,
and especially 234 —243: generatio conisectionum. :

98 This classification, as far as the handwriting of original drafts in the Portsmouth
manuscripts can be dated, seems to have been carried out by NEwToN in the 1670’s,
though nothing was printed save the brief sketch (without proof-suggestions) of the
enumevatio lineavum tertit ovdinis, London, 1704/1711.

19 Compare CUL Add. 3961: 11f.: enumeratio curvarum tvium dimensionum;
and 37ff.: enumeratio curvarum secundi ovdinis.

50 Add. 3963: 131f.: ejusdem ovdinis lineae sic distinguuntur in gewera coordinata
oculo imwmoto ... (the quotation is from 13 R).
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different in kind from those into which they do not transform. And so by the various
cases of projection are families of curves to be split into species.”’

Such optical projection, to be fully effective in curve-classification, needed
an accompanying construction technique which should derive the various pro-
jected forms in an analogously analytical way, and this NEwTON provides in
his lemma 22 of PM Book 15: To transform figures into others of the same genus.
Taking as the figure to be transformed HGI, the point-set of G, we define the
transform (G)—(g), the point-set %gi (in the figure-plane), in the following way:
given the fix-point O (projection-centre) and fix-lines BH, BI, Bk (= BH)
given in direction, take 0d:0D =dg: DG, where GD meets BI in D, OD meets
BH in d and dg is drawn parallel to Bh. By the same reasoning each point of
the first figure will give a corresponding point of the new figure. Conceive then
the point G as running with a con-
tinuous movement through all points
of the first figure, and the point g
with a like continuous movement
will run through all points of the new
figure and so describe it ...”". Fur-
ther, if the point G touches the first
curve, we can see it as meeting the

curve in two points, coincident in the § /5 7 Vi
limit, of which the corresponding Fig. 37
two points of the transformed curve
will also be coincident in the limit, and so the tangent to HGI at G transforms
into a point-set —easily shown to be a line—tangent to the transformed curve.
With these preliminaries over, NEWTON comes to the point, showing that if
the curves HGI, hgi are referred to respective ordinates GD, gd and abscissas AD,
ad (where OA, Oa are parallel to DG, BD) and the “relatio” which relates the
coordinate-lengths AD, DG is representable by an n-degree algebraic equation
(in variables 4D, DG), then the “relatio” which holds between ad, dg is also -
represented by a (different) #*-degree equation (in variables ad, dg). For suppose
f(X,Y)=0 is the n'™-degree polynomial which relates AD=X and DG=Y:

then ad;oA—_—Od;oDzdg:DG;Ll:::AB:AD, and so AD=—-—OAa;lAB , DG= OAa;idg ;

or, where ad==x, dg=1y; OA=m, AB=mn, j(LX"% "XY)_0 relates ad and ag.
y x X

Immediately, by multiplying through by %", this reduces to a new n'-degree
polynomial equation, so that ““the curves defined by the points G, g are of the
same analytical order”. :

This transform is, in more modern language, a 1,1 point-correspondence
G < g, and therefore projective (though not simply perspective) —an aspect NEwWTON
introduces specifically52: “This lemma serves to resolve more difficult problems

51 See H.W. TurnsULL: The mathematical discovevies of Newfon, London 1945;
55—56; and J.L. CooLIDGE: 4 history of the conic sections and quadric suvfaces, Oxford
1945: 46—47. The lemma occurs in PM (1687): 85—87.

%2 PM (1687): 87. The last part is slightly confused (in attempted clarification)
in PM (1713) into “... may transform one of them, if an hyperbola or parabola,
into an ellipse, and then the ellipse readily into a circle ...”.
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by transforming the given figures into simpler ones. So, any convergent right
lines may be transformed into parallels by taking for first ordinate radius any
line through their meet, for by that their meet is transferred into infinity. * This
lemma is also of use in resolving solid problems, for as often as two conics occur
by whose intersection a problem is to be solved we may transform one of them
into a circle. Likewise a line and a conic ... may be transformed into a line and
acircle”, (Clearly the way is open for an elementary treatment of such projectively
invariant concepts as the pole-polar relation.) In particular, any quadrilateral
may be transformed into a parallelogram by taking the meets of opposite sides
on AO (since the transform will project them both into infinity)—a property
used in his immediately follow-
ing propositions to derive simple
constructions for conics through
given points and touching given
lines.

As it standsin NEwTON’s form
this transformation is a plane
-point-correspondence, seemingly
detached from previous deriva-
tions of conic-projections as a
3-space point-correspondence on
a cone-surface—indeed, its very
baldness made it a thing little
understood at the time, even by HALLEY, a mathematician in his own right. 58
It is tempting, however, for lack of direct evidence to connect it with a similar
(1, 1) plane point-correspondence developed by LA HIrE in his (1673) Les plani-
conigues.®™ La HIRE’s ideas are intimately connected with the standard (if

* Equivalently, we could show, where the points G,, G, (G, in AH,, G, in A1H,,
Ain AO) are such that G, G, is parallel to BH,H,, their transforms g,, g, are such that
£:8, is parallel and equal to A, k,—the first is trivial, and the second follows by:

H,H, _od 8182

G,G, 0D~ G,G,’ 818 =HyHy = Iyhy.

53 HarLEY wrote to NEwToN in the middle of checking proofs of principia (see

HALLEY-NEWTON, 14 October 1686 -==- BaLL: An essay on Newiow's principia
London 1893: 167—168, especially 167): ‘‘In your transmutation of figures according
to-the 22nd lemma ..., to me it seems that the manner of transmuting a trapezium

[general quadrilateral] into a parallelogram needs some further explanation: I have
printed it as you sent it, but I pray you please a little further to describe it by an
example the manner of doing it, for I am not perfectly master of it: a short hint will
suffice ...” In answer (NEwrToN-HALLEY, 18 October 1686 -=- BaLr, 168—1609,
or Ricaup’s Historical essay ..., 43—47) NEwron sketches the proof that the trans-
form of a point G on 04 is at infinity: “For the point G falling upon the line 04,
the point D will fall upon the point 4, and the line OD upon the line 04 ; and so,
becoming parallel to aB, their intersection-point 4 will become infinitely distant,
and so will its point g.”’

8¢ Printed as pp. 73—84 of his Nouvelle méthode en géométrie ... The connection
has been urged (in a slightly different way) by CrasLES in his Apergu historigque ...
31889: Note 19: 347 —348: Sur la méthode de Newton pour changer les figures en d’autres
figures du méme genve.
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unconventionally treated) derivation of conics in the proceding Nowvelle méthode . ..
and without too much distortion we can conveniently abridge them as follows:
Consider the (right) cone of base circle hg’A’ and vertex O (La HIre’s “pole”)
cut by the plane Agh’, and con- ;

struct the parallel plane OLA
(through O) which cuts the
plane of the base-circle in the
“directrice’”” line AL. Then,
taking any line in the base-
circle plane g'K (which meets
the “formatrice” A%’ in K, and
“directrice” AL in L) g'4'4
is the particular line which is
perpendicular to AA4', AL—we
easily show that Kg drawn

parallel to LO meets the gener-
ator-line Og’ in a point g of the
conic section.* If we now col-
lapse the figure into the plane
of the paper, lines and conics
pass into lines and conics, and
we have La HIRE’s plane trans-
form: Taking A'K, AL as ‘““for-
matrice” and ‘“directrice’’, and
tix-point 0 as “"pole”’, any point g
g’ is transformed into (unique)
point g by drawing any line
g’KL through g’ to cut 4A'K,
AL in K, L and defining g as
the meet of Og’ with Kg drawn
parallel to OL. (Clearly, the
transform remains that of the
3-space perspective correspond-
ence, lines passing into lines,
conics into conics—and, indeed, ¢
n-order algebraic curves into
n®-order curves.)) Finally, by
introducing a few subsidiary
lines into NEWTON's lemma we
see how it may be reduced to
La Hire's form. Visualising
NEwTON’s diagram in 3-space
form, we consider the three (in Fig. 40

o~

Fig. 30

pole

formatrice

directrice

* Since OLg’ is a triangle with Kg parallel to OL, Kg does meet Og’ (and in a unique
point). But K is in the plane Agh’ parallel to plane 204, and so Kg meets the conic
as well, and we can show one of the meets is g since the generator-line Og’ meets the
conic kgh’ in (unique) point g.
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general, oblique) planes HBI, HBh, hBI and some point-set HGI in the plane
HBI. Define now, by a simple orthogonal transform (or rotation round BI
when HB is perpendicular to BI) the curve #’gl in the plane 2BI (where g’ is
defined from G by drawing GD parallel to BH and Dg’=DG parallel to Bk).
The point g thus becomes the meet of Og’ with the plane LB% under the per-
spective transform of plane IB% into HBk which has O for optical centre, and
we can then define the curve Agi as the (perspective) transform of hg'l. NEWTON'S
transform then becomes equivalent to La HIRE’s by viewing O as the “pole”
and 4B, LA as formatrix and directrix respectively.

Fig. 41

Whether NEwTON did take his inspiration from LA HIRE’s work is an interest-
ing hypothesis, plausible if difficult to prove. (Certainly Newton had oppor-
tunity 5, but it is also fairly easy to derive the basic transform from first principles
in a way analogous to La HIrRe’s.) What is more important, however, is that
NEWTON’s treatment improves on LA HIRE’s in its deeper consideration of the
“relatio’” which exists between ordinate and abscissa in both original and trans-
formed curves. Above all it is significant that NewTon used a method which is
an equivalent of optical projection to justify his projective ordering of algebraic
curves into (equivalence) classes—a rich basis for later elaborations in the theory
of higher plane curves.

NEWTON was the supreme geometer of 17% century England, and it does not
seem unjust to his contemporaries to dwell on the concepts which he introduced
or refined. WALL1s, though he could introduce tesselations of the plane into his
discussion of the geometrical flat-floor5¢, was no pure geometer, and JAMES
GreEGORY—though he had a complete mastery of traditional techniques which
enabled him, for example, to reduce ALHAZEN’s problem of reflexion at a conical

5 One of the rare copies of La Hire’s Nowuvelle méthode ... exists in the University
Library, Cambridge. In other contexts, too, he had read and appreciated La HIRE’s
work, particularly (1679) Nouveaux élémens des sections contiques ... (of which a copy
exists in his library, now in Trinity College Library) and (1685) sectiones conicae
(which he quotes approvingly in PM in the same section in which he gives his lemma 22).

58 See his mechanica, sive de motu Oxford, 1670: Book 3 ch. 6: de vecte prop. 10.
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‘mirror to that of drawing an ellipse whose foci are light-source and eye-point
to touch the conic® (and later, in the 1670’s, to solve the resulting quartic equa-
tion); and again to derive beautiful if miscellaneous propositions on lines, circles
and conics in his GPU%—rapidly grew away from synthetic methods into ana-
lysis. NEwWTON’s teacher and friend at Trinity, IsAAc BarrRow, has indeed a
great many examples in his LG of elegant proof3®, but he remains—as HuvGeNs’
teacher PELL—only a thoroughly competent university don whose real impor-
tance lies more in his coordination of available knowledge for future use rather
than in introducing new concepts.® Perhaps only CHRISTOPHER WREN, in the
few years he spent at Oxford as Savilian Astronomer before directing himself
to his life’s work as an architect, can be set in comparison to NEWTON in creative
originality. With his highly sensitive visual ability—he received training as an
artist and draughtsman in his youth, and illustrated several contemporary medical
and biological texts—he had a head start in an age when complex transformations
were defined on a geometrical model and the faculty of mental visualization
was a necessity for the geometer. Much of the work he did seems to have been
lost, but the little which has been saved by WALL1s is developed with an elegance
which contrasts powerfully with WALLIS’ own clumsinesses.

NEewToN himself, of course, had a thorough knowledge of classical geometry
and contributed many elegant individual results®? to the mighty (if slightly
sterile) corpus of classical geometry. But, in comparison, none of this achieve-
ment has the richness and fertility of the new projective concepts, and is rather
an ornament of an elaborated theory than the foundation of a fresh insight into
the very concept of geometry itself which is the point- (and line-) correspondence.
We have lost little in ignoring the one and emphasising the second—an approach
which leads naturally into our next chapter: the introduction of analytical tech-
niques into geometrical treatments, a topic which is unjustly lumped into the
single vague idea of “CARTESIAN" coordinate geometry.

57 Compare his optica promota, London 1663: prop. 34.

8 See GPU (1668): 123—132, especially prop. 69: 128 —130.

% Especially lectio 6 (ellipse and hyperbola properties), the appendices to lectiones
11 and 12, lectio 13 (on general parabolas and hyperbolas).

8 It is significant that the myth of BaArRrROW’s mathematical genius is the creation
of WHEWELL in the 19t century and of J.M. CuiLp in this: in contrast, MoNTUCLA
in his Histoire and CHASLEs in his Apergu histovique place a lesser value on his mathe-
matical pre-eminence.

81 In WALLIS’ tractatus de cycloide ... de cissoide ..., Oxford, 1659: especially
(62—74) his work on cycloids, strictly comparable with Pascar’s similar work in
Letives de A. Dettonville, Paris, 1659; and (107£f.) his study of convolution transforms
(with application to the study of the spiral forms of seashells in interesting anticipation
of later studies of the logarithmic spiral in biological structures).

82 Thus, for example, his treatment of general epicyclic forms in PM Book I:
Section 10. But most important in its effects was his thorough knowledge of conic
theory which allowed him, where others (including WrEN, apparently) had failed, to
furnish a proof that the conical path of a freely-failing body implies an attractive force
directed towards a focus which varies inversely as the square of its distance from it
(see PM Book I: Section 3—and the “Locke” proof, in slightly different form, of
CUL Add. 3965: 11f.).
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VII. The expanding concept of geometry
2. The analytical approach

The development of analytical (““CARTESIAN") techniques is one of the more
attractive aspects of 17 century geometry, but—despite a comparatively rich
literature devoted to attempts at explicationl—one not very well understood.
Much of the difficulty of understanding derives from the misguided effort to read
too many concepts which were developed later into the theory as it existed even
in its late 17" century form, —probably under the impression that development
from the 17% to 19" centuries was roughly an implementation and elaboration
of existing concepts. But in its 198 century form analytical geometry is rather
based on ideas of point-distance and invariance under transform to new axes
conceived in the mid 18 century (and especially by EULER) than on original
17 century forms. Again, in previous historical evaluations many false trails
have been laid which confuse the basic issues—in particular, a sterile search for
anticipations and ““ pre-discoverers’’ has distorted a basic fact which should loom
very large. Whatever the level to which the theory of latitude of forms had been
advanced by the medieval calculators, and especially by ORESME, and whatever
slight formulations are to be attributed to FERMAT in the same century, it is
DESCARTES who, collating Greek coordinate systems with the analytical power of
the free variable, which had been moulded in the 16 century to a fluid, usable
state, laid the foundations of an analytical study of geometrical forms; and it was
his Géométrie® which rapidly became standard in the new university mathematical
courses in Western Europe from the middle of the century.® Nor did any con-
temporary mathematician—and least of all the great geometers NEwWTON and
HuvGeEns—deny that fact.

To introduce the CARTESIAN viewpoint, then, I will consider in detail the prob-
lem which is basic to Géoméirie, the solution of the Greek 3/4 line locus.* Given
four fix-lines 4B, AD, EF, GH meeting as shown in the figure® we wish to
examine the nature of the point-set C such that, where CB, CD, CF, CH are
drawn under given angles to them (meeting them in respective points B, D, F, H),

CBxCF=CDxCH.

1 Compare, for example, the notes and bibliography in C.B. BOYER: A4 hisfory
of analytical geometry, New York, 1956.

2 Published in appendix to his Discours de la Méihode pour bien conduire sa Raison
et chevcher la Vévité dans les Sciences, Leyden, 1637; but more importantly in the 1649
and the greatly augmented (2 volumes) 1659—1661 Latin editions. My argument is
based on the original French version, edited by D.E. SmitH & M.L. LaTHAM (,1954).

3 Thus WaLLis seems to have studied DESCARTES in the 1649 edition, NEwToN
in both 1649 and 1659/1661 editions, while HUYGENs, under vaAN ScCHOOTEN's tutelage,
used the original French.

4 Introduced in Book 1: 304—314, but discussed in detail in Book 2: 324—335;
compare G. MILHAUD: Descartes savant, Paris, 1921: ch. 6: 1241f.

5 Slightly adapted and enlarged from DrscarTtes’. It is a mistake common to
all standard editions that the point-set of C, which should pass through G, the meet
of AB, GH, does not (though the error is detected by DescarTES himself in his letter to
VAN SCHOOTEN in September, 1639). See DESCARTES: Oeuvres (ed. ADaM & TANNERY),
2: 574 — 582, especially 574 ff. - =- Correspondence (ed. Apam & MILHAUD), 3: 315—320,
31511,
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DESCARTES begins®: “First I consider the thing already done, and to rid myself
of the confusion of all these lines I consider one of the given lines and one of those
we have to find, for example AB and BC, as the principal ones, and so try to
refer all the others to them. Let the segment of the line 4 B between the points
A and B be named x, and BC be named y, and let all the other given lines be pro-
longed till they cut these two, prolonged as far as necessary and if they are not
parallels”’. Thus, take A B, BC meet-
ing AD, EF, GH in A,R; E, S; G,
T respectively. Then, where x and
vy are measured in the directions
shown in the figure, since all the
angles in the figure are given, we
have, say AB:BR=z:b (constant)

or RB-%’L and CR=— y+

and similarly, where CR: CD—z.c
(constant), CD= ——( —{—-—). Fur-

ther, where we denote the fix-lengths
AE, AG by k1, EB=EA+AB=
k+x, and for BE:BS=z:d (con-

stant) BS~—(k+x) and CS=y-+
(k+x) wh11e for CS:CF =z:e
(constant) CF= iz(y—}— % B+ x)) :

and again for BG:BT=z:f (con-
stant), since BG=1[!-—2x, BT =

L—2) and cT=y+ L2,
while for TC:CH=z:g (constant)
CH= (y + L ! (¢— x)). Finally the defining condition CBxCF=CD xCH can
be represented by

X L(y+L (bt 0) =< (y+ 22) x & (y+ Lo — ),

which is a 2-degree equation in x and y,

Fig. 42

(y—i—zlz—x——— ) —-m2+ox+ P x?,

where the constants are suitably defined. *

* In‘fact 2%(ez —cg) ¥ + z(dez + cfg — beg) #y + befgx? + 2 (dekz—cfgl) y — bcfglﬁ: =0

(and clearly the point-set is through y-g and {;'___i), or points 4 and G); so that
cflg—dekz 2n _ dez+cfg—bog
2 = — R T PO e
22(ez2—cg) 7 2% (ez—cg)
0= — 2mn befgl i_£~ befg
o z 22 (cz—cg) '’ m 2% zlez—cg)

8 Géométyie: 310.
Arch. Hist. Exact Sci., Vol. 1 20
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Simplifying DESCARTES’ rather unsure further argument, we can take this
by y'3=A(x"+pu) (' +v), where y’=y+%x—m, x’:%x, A= z:f; , and the

4
constants y, v are found by equating coefficients. Returning now to the geometrical
model, we can represent x', ¥’ by IL, CL, where IK(=AB):KL:IL=2z:n:7,
and 41, IK are drawn parallel to BC, AB such that Al =m,* and we reduce
the 3/4 line condition to the point-set (x, y) which satisfies the representing equa-
tion y"2=A4x"2+ A (u—+v) x"+ Auv, where I is a fix-point in the plane and IL=«’,
LC=9" are givenin direction.
Before sketching in DESCARTES’ final solution (which shows that the point-set
of C is a conic, possibly degenerate), let us consider in detail the ideas which DEs-
A 8 CARTES has introduced. First, implicitly he
has brought in the concept of dimension
and the assumption that by choice of a suit-
able line-length AB a second line-length

!
Fig. 43 Fig. 44

inclined at some angle through B can be made to pass through any point C in
the plane’—an axiom which virtually defines the plane, and, as such, was assumed
by allhis contemporary mathematicians as well as DESCARTES as “‘ self-evident . **
In a straightforward way® DESCARTES supposes that we can attach {real-number)
measures to both the line intervals 4 B, BC —defined in a suitable sense (indicated
in my diagrams by an arrow pointing in the positive direction)—such that with
respect to a conventional unit, this measure is the EUCLIDEAN length of the lines
AB, BC: in effect, we define a 1, 1 correspondence between the points of a line
extending to infinity in either direction and the numbers of the real interval
[— o0, +o0]. This procedure yields, of course, the classical “CARTESIAN" order-

* Since

BL=BK(=AI)—LK(=§><IK)=m—§><x. and CL=CB(=y)— BL.

** Probably this means little more than “‘ consistent with the EUcLIDEAN scheme
of geometry’’ (with the proviso that no other system of geometry is acceptable). The
concept of dimension is, indeed, an extraordinarily difficult thing to pin down, and a
suitable definition has to allow that 1, 1 point correspondence (though not 1, 1 cor-
respondences of the e-neighbourhoods of points) is not a dimensional invariant. We
cannot, therefore, fairly attack DrscartEs for assuming what is, in fact, a possible
definition of a RIEMANNIAN 2-space (one particular member of the family being the
EucLIDEAN plane).

7 .In the EUcLIDEAN scheme, of course, the axiom that no two distinct parallels
can be drawn through the same point shows the uniqueness of the procedure.

8 The idea is as old as cartography.
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ing of 2-space (and by easy extension #-space) by the 1, 1 correspondence which
exists between every point C and the (unique) values of the measures of 4B (x)
and BC (y)—later to be denoted by the ordered pair (x, ¥). (The equivalent proce-
dure of considering a second axis B"’4 through fix-point 4 such that B” 4 is parallel
(and equal) to CB, and so AB to B”C, and the defining point C by the 1, 1 cor-
respondence of AB(x), AB"(y) with the ordered number pair (x, ¥) came into
general use only in the 18 century?®.)

None of this is new with DESCARTES, but more important there is his implying
no limitation, geometrical or analytical, which restricts his coordinate system
to being EucLIDEAN. In modern treatments this restriction is introduced by
defining the concept of “ point-distance” by the analytical equivalent of “ PyTHA-
GORAS’ " Theorem: for given points C, = (4,, 4,), C, = (a,, b,) the distance between
Cy, Cy is

Dist (Cy, Cy) = [(ay — @5)®+ (b1 — by)? — 2(ay, — ay) (by — by) - cos F]*
where 9 is the angle between AB and BC:
= [(“ — ag)t 4 (b — b2)2]§’

where AB is normal to BC. DESCARTES, however, uses the somewhat different,
if equivalent!® concept of triangles given “in species’’; that is, whose sides are
given in direction, and so in proportion with the angles of inclination given in
absolute magnitude (so that all members of the set of triangles given in the same
species are similar)—a most important aspect of his procedure slurred over in
modern accounts.

Next, taking “unknown’ (free variable) quantities x, y for the line-lengths
AB, BC, DESCARTES reduces a given defining equation on the point C, represented
geometrically as some relation between line-lengths, to an equivalent analytical
representing equation between x and y, say f(x, ¥)=0, where the relation f is
specified by reduction of the original condition into an analytical form: conversely,
each particular relation f(x, ¥) =0 connecting x and y defines a particular point
with respect to coordinate line-lengths AB(x), BC(y) in a EUCLIDEAN plane,

Finally, in a beautiful generalisation, DESCARTES replaces the condition that
each point so defined be restricted by 7(x, ¥)=0 by the free-variabled condition
that the point-set whose members are the particular points defined is restricted
in its analytical model by the representing equation /=0 for all x, y.*

The concept of point-set as, virtually, the class of particular points which
satisfy some restricting condition had, of course, been developed in classical Greek

* More formally, by (#, ¥) (f(*, ¥)=0):%, y€[— oo, +oo].

® Particularly through the influence of EULER's introductio—cf. BOYER (op. cil.
notel). The concept was known, however, to the 17th century mathematician, and
LA Hire, for example, sets the construction up with a terminology of ‘tige” and
“ramean”’. See his Les lieux géométriques, Paris, 1679: introduction.

10 As Warris showed in his de postulato quinto et definitione quinta lib. 6 Euclidis
disceptatio geometrica (given originally as a lecture in the early 1660’s but printed in
his opera mathematica 2 (1693); 665-—678—cf. Uco CassiNa: Sulla dimostrazione di
Wallis del postulato quinto d’ Euclide, Act. Congr. int. Hist. sc. (8): Roma, 1956: 33 —38),
the postulate of the existence of similar triangles is equivalent to that of the parallel
postulate, and so defines the metric to be Euclidean.

20*
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geometry. Thus; the circle was seen as the set of points which are at a constant
distance from a given point, and certain algebraic curves—notably the cissoid
and the conchoid—had been so defined by simple line- and circle-intersection
properties. More obscurely, in the development of “porism” theory™ general
sets of conditions on a point had been shown to imply that the point-set was a
line or circle. But more important of all (and most generally in APOLLONIUS’
Comics) the conic defined as the plane section of a two-sheeted cone, had been
reduced to an equivalent plane defining condition, its “symptom”: where 4, D
are fix-points on a given line and B a variable point on it with BC a line at a given

y
\\
o
\
\
\ 0’ X
LR
Fig. 45 Fig. 46
constant angle to 4 B, then C is on a conic if the ratio BC? __is constant for all
’ ABXBD :

points C—an ellipse or hyperbola according as 4B, BD are taken in the same
or different senses {and the limiting case of each, where one of the fix-points,
say D, is at infinity—or -ﬁ-%i is constant—is a parabola).

Introducing CARTESIAN coordinates we see immediately, that, where AB=x,
BC=y, AD=a, the defining analytical equations are respectively y*=24x(a — x),
y2= A x(a+ x) and y2=2'x, but it is obvious that there are great difficulties in
the way of such an interpretation till we have an adequate analytical concept of
free variable—and the Greeks never departed from the purely geometrical model.
DESCARTES was, in a worthwhile sense, lucky in that he could draw on just such
an adequate concept of free variable for the basis of Gdométrie—no analytical
geometry was possible without it, but with it the development of an analytical
theory of conics was immediate, merely requiring transposition of the Greek plane
‘“symptoms”’ into a free-variabled algebraic form.* _

Returning to DESCARTES’ reduction of the 3/4 line locus to the defining equation
y'2=Ax2+A(u+v) s+ Aur,=22" X (2" +v—p) where x"'=z"+pu, it is now
clear that, apart from degenerate cases, the locus is an ellipse or hyperbola
according as A is greater or less than zero (and a parabola when no term in x’2
is present), and this is DESCARTES’ solution!2. As for the degenerate cases, y'2=0

* In the circumstances, we can only be surprised that so much of Géométrie should
be concerned with the analysis of equations if we accept a modern viewpoint which
sees the procedures there developed as mere algebraic technique. Rather, at a deeper
level, much of Géométrie is concerned with exploring bounding conditions on the
general free-variable polynomial—a study directly related to the analogous theory
of the geometrical point- (and line-) set.

11 See previous chapter.

12 Tn much more detail—see Géomélrie: 327—333.
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is clearly the {doubled) line y'=9y-+3inx—m=0 (which we can then take as
the general equation of a line in the plane) and, where y=v, y'%=1(x"4u)?, or
(v + 2 (' +u)) (y' — ¥ (5" +p)) =0, a line-pair (though DESCARTES admits only
one line, apparently omitting the negative value of the square root3).

The attempt to apply a similar procedure to other problems treated in the
Géoméirie** lacks power in general, especially in the introduction of the unwieldy
circle method for finding the subnormal at a point on the curve {and so indirectly
the subtangent).'® Yet a wealth of ideas and suggestions was put forward which
hinted, for example, —not quite accurately—at a general classification of algebraic
curves by the degree of the representing polynomial, and we can without exaggera-
tion say that Géomeéirie was a rich store-house of thoughts awaiting verification
and elaboration and extension in the learned commentary. In the half-century
after it appeared the study of analytical geometry is largely the history of the
improvement and, in some cases, considered rejection of ideas original with DEs-
CARTES.

In England WALLIS was the first to expound the CARTESIAN method in his
de sectiontbus conics'® perhaps indeed the first elementary textbook of conics
treated by CARTESIAN methods, and his treatment, certainly in no way profound,
had the virtue of being clear and simple. In 44 propositions {and 108 pages)
conic theory was developed from a basic definition as sections of a right cone,
geometrically reduced to the APOLLONIAN plane “symptom”, into the analytical

equivalents of the (easily manipulable) 2™-degree equations, e2=d(l— —?d) ,
p2=1d, h2=d(l + %d) (where e, p, b are ordinates of the ellipse, parabola and

hyperbola respectively with 4, the abscissa, measured from coordinate origin
at a vertex of the conic, / the latus rectum and ¢ the length of the main diameter
conjugate to the ordinate), with a brief consideration of the elementary defined
concepts of tangent (and subtangent) and diameter. The work remains extremely
readable, developing a firm basis for the ideas thrown out by DESCARTES in his
resolution of the 3/4 line locus, but conceptually derivative. In an interesting
appendix” however, WALLIS tries to extend the CARTESIAN approach to higher
plane curves (and specifically!® to the cubical paraboloid). Thus® where we take
the point-set of P defined by y®*=a%x with respect to rectangular coordinates
O0X =x, PX=1y, he deals quite successfully with the problem of finding the sub-
tangent TX=¢ at any point on the curve.* Assuming that the cubical parabola
is “everywhere”’ convex, he considers a second point P’ on the curve (with cor-
responding abscissa 0X’=x') which he will take infinitely near to P. Let P'X’

* The approach is that catalogued as ‘“FERMATIAN" in chapter X.

13 Compare (p. 328): ... ce point C se trouveroit en une autre droite qui ne seroit
pas plus mal aysée a trouver qu'/L ...”.

14 Especially in Book 2 (Book 3 is concerned with applications to the solutions of
equations, and in particular the isolation of roots by interesting conics).

18 See chapter X.

18 de sectionibus conicis nova methodo expositis tractatus, dated on title-page 1655,
but issued as part 2 of operum mathematicorum pars altera, Oxford 1656.

17 op. cit. 104 —112.

B op. cit. props. 46—47: 106—110.

19 op. cit. prop. 46: 106.
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meet tangent PT in X"': then X'P'< X'X" with equality in the limit as P’ — P:
or (X'P)3< (X'X)® (with equality in the limit); but

(X'PYR=y=agx = (x+¢) 1;
and
(X'X")3= (%}3 PX3 = (t+8) y®, where e=21"— x,20
so that in the limit as P’—>P (x —>x, £—0) we can equate these values, and have
on reduction = hm % (3 + 3¢ -{~ t2) 3 x.

7

xy

Fig. 47 Fig. 48

In the following proposition?, however, he loses control over the method,
assuming (on the analogy of the APOLLONIAN parabola) that the curve continued
past the vertex O to P will lie on the same side of 04, tangent at the vertex,
and on this basis tries to develop the concept of diameter: specifically he assumes
that any chord $P through two points of the curve will not meet it again (in a
distinct point, at least), and so tries to find the point-set of D, the chord’s mid-
point—in the case of the simple parabola, of course, a parallel to the axis. In
fact, WarLLis finds a cubic representing equation and concludes the cubic parabola
has no simple diameter.22 His mistake, of course, is that the curve continues
past O on the opposite side of the vertex tangent, and so he recognizes it in the
long dedication* of his adversus M. Meibomii de proportionibus#®—that is, that
a general line PRS may meet the curve in three points (of which two may not

* To BROUNCKER who in private correspondence had pointed out a clear counter
example.

20 Warris uses the (confusing) FERMATIAN o in the original.

2 op. cif. prop. 47: 107 —110.

22 op. cif. 110: “propterea ejusmodi parallelae diametri in paraboloeide cubicali
non reperiuntur ™.

2 gdversus M. Meibomii de propovtionibus dialogum tractatus elenticus, printed in
operum mathematicorum parvs prima, Oxford 1657.
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“exist’’). With the mistake acknowledged it is an easy step to set up (NEw-
TOoN’s) definition of the diameter of a cubic as the point-set of the mean of the
(three) meets of a general line with it. 2

Several important points arise out of this example. First and most obviously
we realize how little the CARTESIAN coordinate framework was understood, that
the very ease with which it could be used as an algorithm could hinder apprecia-
tion of its structure. Yet we must not make too much of this (and of the allied
difficulty of the concept of a negative quadrant) —WALLIS’ example shows how
easily readjustment was made.* Indeed, too little advantage was to be derived
from the imperfectly polished free-variable concept accepted as standard in the
period with its restriction of the variable range to the positive interval [0, o]
(so that for x €[ — oo, 0], the clumsy transform x= —4y, y € [0, co] had to be made).
In the ensuing proliferation of particular cases and corresponding “tied”” signs -
(where the top signs are to be taken together as, say, a positive range of the vari-
able, the bottom as the complementary negative instance) the basic unity of the
CARTESIAN framework was easily obscured—though, again, we must not insist
too strongly on the point: the transition to the full variable range is a natural
extension which merely absorbs the signs 4- into the variable restricted to a
positive range.

Further, we find the important idea—originally, if implicitly, in Géométrie—
that the order of a curve can be defined by the (upper bound of) the number
of its meets with a general line in the plane. While WALLIS uses the concept
only to modify a false viewpoint, NEWTON was to make it basic in many appli-
cations, but especially in his classification of ‘cubics %, showing the close connec-
tion with the general cubic representing polynomial; and more generally Mac-
LAURIN, professedly developing NEwToON’s ideas, was later to reveal? how NEw-
TON’S organic construction of a conic could be generalized into a mapping of com-
binations of algebraic curves into an algebraic curve whose degree is a simple
function of the particular degrees of the defining curves (the precise nature of
which varies, of course, with the type of mapping).

Above, all, WALLIS® treatment typifies a general lack of knowledge in the mid-
century about the form of general algebraic (and transcendental) curves other
than the conic (but including the line treated analytically). Quite suddenly the
mathematical world had been presented with a powerful technique for examining
curves of general form, only to find that there were few existing known higher
curves on which to practise it (and those defined by non-general properties of
products of line-segments). Inevitably increase in knowledge of the higher curves
was slow-paced, even uneventful, and the atmosphere of the work carried through

* In fact, the concept of quadrant (in the CARTESIAN plane) did not really assert
itself till the systematic introduction of coordinate-axes as reference-frame replaced
the existing abscissa-ordinate construction.

24 Developed in manuscript from the middle of 1664 —compare CUL Add. 4004 :
15V —27V. Warris himself, in fact, considers the set of parallels QRS defined by
y =7vx - s (v constant, s free) whose substitution in 43 = a2x gives a cubic in ¥, and so
three values for x (positions of P). _

% Compare CUL Add. 3961: passim, and his printed enumeratio ... .

26 In his geometria ovganica, sive descriptio linearum cuvvarum universalis, London
1720.
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in analytical geometry in the half century is, at first glance, that of drab consolida-
tion. With increasing facility the shapes of the more interesting higher curves,
especially particular cubics and quartics, became familiar—is it a comment on
the dreariness of this process that they were given such vivid names ?—and were
to some extent published in the many elaborate commentaries on the Géoméirie
which appeared in the period?, but meanwhile the conic held the field, with
the line more easily and more naturally, it was thought, treated by the methods
of pure geometry.

In short, typical above all of the period is a growing systemisation of treat-
ment of the general 2"-degree polynomial, and especially the development of
standard reductions to canonical form. Thus LA HIRE, in his Les lieux géomé-
triques®, gives a more or less simplified treatment of what DEscarTEs had
sketched. Typically, his example 2 con-
siders?® the equation %2+ 92 —xy —ay=
ab, which he takes in the form z2-2y2
=2%a?+ab, where z=y—31x—%a and
v=2x—%a. Taking CARTESIAN abscissa
On=x and ordinate ni=1y, with OM =%a
(or Mn=x—%a=v) defining point M
on On, we draw the locus C—a line, in
fact—such that (y=)Cn=10n(=1%x)
and the parallel line 4B such that BC
Fig. 49 (on m)=3%a (or IB=In—(BC+Cn)=

y —(}a+%x)) then where M4 is drawn

parallel to /n (meeting AB in 4) and supposing AB:Mn=r:s (constant) (or

AB:«Z— =1, say), we can take the equation as z2=4 (a2 —v'2), where A=

%({_)2 and a2=%<% a2+ab). Finally, seeing the fix-point 4 as the new

CARTESIAN origin and 4 B=1v', Bl=1z as the new abscissa and ordinate connected
by this representing equation, the locus of / is an ellipse whose centre is at
A and parameter 2aA and whose diameter 4B (of length 2«) lies along the
line AB.*

La HIRE states his method very clumsily, but the general pattern is clear, and
the necessary last touches which complete study of the general 2*-degree curve
were given an exhaustive treatment by JorN Cra1G. % Though CRAIG does not admit
any influences his method is clearly a modification of DESCARTES’ (and perhaps also
of that taught at Cambridge by NEWTON in his Lucasian lectures of the 1670’s™).
22 20l

* Since the representing equation can be put in the form m_ T

27 Compare BOYER (op. cif. notel): ch. 6: 103—137.

28 Printed as Book 2: 179—293 of his Nowveaux élémens des sections coniques,
les lieux géométriques, la construction ou affectation des équations, Paris 1679.

2 op. cit. 274—278.

30 In nova methodus deteyminandi loca geometrica printed as part 2: 62— 76 of his
tractatus mathematicus de figuvarum curvilinearum quadvaturis et locis geometricis,
London, 1693.

31 These lectures are now in Cambridge University Library (CUL Dd. 9. 68), and
formed the basic of his AU.
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So, given the general 22d-degree equation
Ax?4-2Hxy+ By2+2Gx+2Fy+ C =0,
we can (with NEWTON) put it in either of the equivalent forms,
=(Ax+ Hy+ G)? = (H*— AB)y*+ 2(GH — AF) y+ (G* — AC),
25 = (Hx+ By+ F)2 = (H?*— AB) x*+ 2(FH — BG) x+ (F?2 — B(C),

and this is apparently CRAIG’s basis for classification also. In particular, where
%' =p x-0, for suitably chosen g and o the first form can be reduced to z2=
A@2—a'?), 22=pu-&', BA=1"(«2+ 2% according as H? is greater than, equal
to or less than A B, and the familiar test for conic-type is immediate*. CralG
uses this idea in pursuance of his ideal: to give a systematic geometrical construc-
tion of every point-set which
has a 2"d-degree algebraic repre-
senting equation. Thus, in his
theorem 3 he develops® a gen-
eral construction for those point-
sets which have, in the above
general 2-degree form, H2<< AB
(and so are ellipses)—specifi-
cally he gives the derivable gen-
eral equation

(=4

= (Zt—%x—i—l)(;n—x—l),
or (2t — x) % =r:2¢,

where 2=y %x —k and x'= % % —1. Clearly this is an ellipse of transverse

diameter 2¢ and parameter 7, and Cra1G’s construction of it closely follows LA HIRE:
taking abscissa AE = x and corresponding ordinate ED = y, construct the triangle
ABC, where BC is drawn parallel to ED such that AC:AB:BC=e:m:n, and
make AK, parallel to ED, =k, then, taking points G, N, M on the parallel
through % to AC such that KG=I and GN=NM =¢, the required ellipse has
centre N, transverse diameter GM =2t and parameter PG=7.** Finally Craic

* CralG, however, does not seem to know the test for degeneracy (a corollary

of this approach) —certainly known to NEwToN in the 1670’s—that the right side be
a perfect square?2, viz: (H2— AB) (G2— AC) = (GH — AF)?, or

H B F|=0|.
G F C

: A H G
(H*— AB) (F*— BC) = (FH — BG)%|=
** For, where ED meets GM in H, DH =DE + EF — HF = y+——-x—k and

GH =KH — KG-—Wx—l so that the equation is the analytical representatlon of

the geometrical “‘symptom”’, DH2:GH X HM =v:2¢.
32 Compare AU: prob 57: 156—157, for example.
33 tyactatus mathematicus: 71—173.
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expands into the full form,

¥ 2
2t m2

% n? n ve re
yz—l—Z—WTxy—{—(Wq- )xz——zkxy—(zy—n-k—f—wl—l—%—)x—{—

+ (R4 ri 20 =0,

which is to serve as the canonical form of ellipse-construction, applicable to
particular equations by suitable coefficient comparison. **

In all this there is nothing new conceptually, but it is a compact systematic
exposition which remained standard during the next half-century® till EULER
made a thorough restudy of the representation and construction of the 2*d-degree
equation using coordinate axes.

What made all this detailed development comparatively easy was, of course,
that in the APOLLONIAN theory of conics there was a basis already worked out
which developed a corresponding geometrical approach with respect to anal-
ogously defined line-lengths and an equivalent point-set definition of the conic.
No such geometrical basis existed for higher curves—nor indeed for the straight
line—and it is a plausible hypothesis that the very elaborateness of conic theory
was more of a hindrance than an aid to the formulation of general analytical
treatments. As we have seen® NEWTON'S enumeratio linearum teviii ordinis was
the first attempt—on the basis of a long experience of particular forms of the cubic
—to classify the general 3™-degree curve into species analogous to the three types
of (non-degenerate) conic3, but it is significant that only in a projective classi-
fication (distinguishing five projective classes) does he discuss the general cubic
in terms analogous to those he uses with regard to the general conic. *** However
NEwTON’s work was only a rough draft of a possible line of development which

n? n? ¥2 g2
* Clearly szw<%—2~+ 21t

** Typically, in his example 2 CraiG considers the equation y2—2ay -+ #2=0:

=AB.

2
comparing coefficients 2% g (orn=0and wetakem =¢),k =a, 2’;;2- =1 (or7 = 21¢),
m 2
L%Z—f-ﬁ:O (or i= —1), and kz—i—rl—l—%:O (or {=ua), so that the equation is
wm m

(y —a)2=(x+a) (26 — (x +a)); or AG is parallel to GM, and when AG =0, DE=0,
SN
2a (and the ellipse is a circle when AED is right).

*** Though he does, for example, outline how particular analogous concepts can
fruitfully be isolated in the case of the cubic, and especially that of ‘’diameter’’ which

is the (provably linear) point set of the generalized arithmetic mean X (X;X) =0,
1<i<3
where the X, are the three meets of a co-parallel set of lines with the cubic.

84 Tt is, for example, adopted by L’HosPiTAL in his Traité analytique des sections
coniques, Paris 1707: 2131f.; and as late as 1748 by CoLIN MACLAURIN in his Tveatise
of algebva .. .: part 3: Of the application of algebra and geometry to each other, especially
ch. 2: 325—352.

35 See previous chapter.

3¢ Compare H. HiLtoN: Newlon on plane cubic curves in Isaac Newton, 1642 — 1727 :
115—116; and especially W.W.R. BaLr: On Newton’s classification of cubic curves,
Proc. London Math, Soc. 22 (1890): 104 —143, where he examines the drafts of the
enumeratio (more detailed than the printed version) which are to be found in CUL
Add. 3961.
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others—MACLAURIN in his (1720) geometria organica was perhaps the earliest 37—
were to elaborate into a general description of higher curves.

Analogous CARTESIAN treatments of EUCLIDEAN 3-space developed even more
slowly—but earlier than many historians have allowed. In the few examples
which exist in the period, the construction of the basic reference-system of co-
ordinate line-lengths is an extension of the abscissa-ordinate one of 2-space:
a general point is defined (uniquely) by the lengths of three (non-coplanar) line-
lengths each given in direction, OX, XP, PQ, each of whose measures (x, y, z
respectively) may vary over the real interval [— oo, +-o0]. As before the assump-
tion of triangles given in species (the postulate of similarity) implicitly restricts
the space to being EucLIiDEAN. Very often the directions of OX and XP are
seen as defining a (unique) plane OX P in which they lie: then the direction- Q.P
through a general point Q outside |2
the plane will define a unique corre-
sponding point P in the plane, and
the treatment is suitably reduced to a
more controlable treatment in the
plane OX P. Finally, as with the CAr-
TESIAN method in the plane, we note
that little use is made of the equiva-
lent concept of definition of the gen-
eral point Q with respect to fixed
coordinate-axis lengths OX, OP’, 0Q’.

What clearly hindered the rapid development of 3-space analytical methods
was the perceptual difficulty of visualizing complex spatial structures, and an
adequate analytical algorithm which could replace the psychological process
of direct visualisation was not yet feasible. WALLIS' treatise on the cone-wedge

““cono-cuneus”’) 38 shows very well how far analytical techniques still depended
on suitable preliminary geometrical reduction. In its most general form the cone-
wedge was defined as the two sheeted surface which is the set of all lines as, as’
constructed as follows: given two perpendicular diameters DD’, EE’ of the base-
circle DED'F" and equal line-lengths BD, B’D’ raised perpendicularly to the
circle-plane, to point &, the meet of a second plane perpendicular to BB’ with it,

Fig. 51

37 MACLAURIN takes his lead from a generalisation of NEwTON’s organic descrip-
tion of conics, which virtually establishes a 1, 1 correspondence between the points
of two conics (of which their intersection-points are invariants), one of which is con-
veniently assumed to degenerate into a line-pair. In his extension a 1, 1 correspondence
is set up between the points of two #-degree curves, one of which degenerates into an
(n — 1t)-degree curve and a line, or into an (# — 2"d)-degree curve and a line taken
twice: on that basis he introduces an analytical treatment which allows him to make
precise such ideas as nodes, double points and other now well-known defined con-
cepts basic in the study of higher curves.

3 First printed as The shipwright's civcular wedge in appendix to his Algebra
1685, and republished as conocumneus, sew covpus pavtim conum, pariim cuneum ve-
praesentans geowmetrice considevatum ... in Latin translation in his opera mathematica 2
(1693): 681—704. As Warris outlines in introduction the work developed from
the problem of sectioning designs for ships’ hulls proposed in the early 1660’s by
Sir RoBERT Moray and Sir WiLriam PrrTY.
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correspond s, s’ the meets of the base-
circle with this perpendicular plane (so
that ss’ is normal to DD’).*

WarLis’ chief aim in his examination
of the surface is to find plane-sections of
it in a variety of ways, but in each case
treated he neatly avoids using an equi-
valent of the analytical equation for the
surface. Typically he considers a plane
section through the vertex B which meets
the base circle in a line srs’ parallel to
CE, and simplifies by noting that the

~ curve of the meet of surface and cutting
plane lies wholly in that plane Brs, and
so can be given by a suitable “‘relatio”
between abscissa co=x and ordinate
oo =y, where ¢ is a general point on the

—
—
Yo—

Fig. 53

* Analytically, where CR=2%, R=y, ¢o=z and using the proportion go:RS
(= (a2 — x®}) =ap(=b—y):aR(=Db), its representing equation can be taken as
b2z2 = (b — 9)2- (a® — 2?), where the circle-radius is @, and BD = B’D’=b.
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meet and go is taken parallel to 7s. In fact, taking AB==a, AC=b, Cc=c¢ (which
is sufficient to fix the plane Brs) and BC:BA=1:(=(a?+ (b+0c)%)i:a), we
find that Aa=Ax=CR, and so RS=(RDx(DC+CR))i=(a*— 222}, with
BA:Ba=(Bc:Bp =) Ac:ap, or ap=(b+0) X a_a“” ; so that ap:aR (=AC)=

00: RS yields ( “—a}“x ) X (b4c):b=7y: (a2 — 2222}, or the point-set of ¢ in the plane

Brs is the tear-shaped single-looped quartic, a2b?y*=(a%—A%2%)(a—A%)?X
(b+c)2. Without deriving a similar representing equation it is extremely difficult
to visualize the section of the surface by a general plane, but using analogously
derived equations WALLIS is able to sketch a large number of particular sections
for varying values of ¢, and for differently situated sections. The treatment
carries over, too, in WALLIS' suggested extension in
which similar conics through the points a, a, s’ are to
be substituted for straight lines, but it breaks down \
completely when the sections are no longer plane.* P, 4
A more general approach to plane sections of sur- P
faces appeared a little later, in which there is a firmer
grasp of the principle that parallel sections by their
“motion’’ generate families of curves as their meets 4 A Np
with the surface. This is, of course, obvious in the
case of the two-sheeted cone where parallel sections
cut off families of the same species of conic, but it is
interesting to trace the approach in the case of the AN
hyperboloid of revolution. /
WREN had defined the hyperboloid of revolution
by rotating the hyperbola DB round OAM, normal
to the transverse axis BC through the centre 4. Taking
an asymptote GA P and any D on the hyperbola to be Fig. 54
defined by 0D? —0G2=A4 B?, where DGO is drawn par-
allel to BA, we see that a plane section through the asymptote 4G perpendicular
to the hyperbola plane DBC meets the surface in a line (a “generator” of the
surface). ** Therefore, inverting the procedure, it is clear that a line HNR, inclined
at some constant angle GAO to the perpendicular AN7 to the circle-plane BNC,
will by its rotation round the axis OA generate the hyperboloid of revolution.

* Since the section-curve is no longer definable in a CARTESIAN reference-frame-
work by a “‘relatio” between two free variables, but now needs three.

** For, taking plane sections through DOE, BAC perpendicular to the hyperbola
plane, these will be circles on DE, BC as diameters; and so HG?= HO?*(=DO?) —
GO? = BA?= AN? or GH will be equal and parallel to AN for all lines DGO—that
is, the point-set of H will be a line (and similarly for the perpendicular plane section
through the second asymptote KA4).

©® Warris describes it less accurately: ““On a plain base which was ... a circle
(like that of a ... Cone or Cylinder) stood an erect solid whose altitude (being arbitrary)
was there double to the radius of that quadrant; and from every point of its perimeter
straight lines drawn to the vertex met there not in a point (as is the apex of a cone)
nor in a parallel quadrant (as in a ... cylinder) but in a straight line or sharp edge,
like that of a wedge or cuneus”.

% In PT 4 (1669): 961 —062: generatio covporis cylindroidis hyperbolicis elaborandis
lentibus hyperbolicis accommodati. '
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A problem arises: what are the other plane sections of the surface, that is,
those which are not through the hyperbola centre 4 normal to the circle-plane
or are not parallel to the asymptotes G4, KA ? To this NEWTON gave an answer
in the early 1670’s4:. Let the surface be defined (see Fig. 53) by the rotation of
the line XY round axis 4B, where CD is the perpendicular distance between

SN
them and XY is inclined at a given.angle LDF to the plane DCB, and consider
A~

the section by some plane QLKN, inclined at given angle BHQ to the axis AB:
further, draw DF parallel to AB and LG, LF, LM (all of which will be coplane)

Fig. 55

perpendicular to AB, DF, HO respectively. NEwTON then needed only to con-
sider the 2-space curve cut out by the section-plane by a preliminary geometrical
treatment. Denoting HM =x, ML=y, and CD=a, CH=0, MH:HG (=sec

N NS
GHM)=d:e (constant) with FD:FL (=tanFLD)=g:% (constant, then DF
(=CG=CH+GH)=b+2 x and FL:%(Z:JF-;— x); so that
y2=ML?=GL*— MG?*(=HM?*— HG* = GF*(=CD¥++ FL* — (HM?*— HG?
2 B ¢ NV xea(f 4\
=a +-g~(b—l—7x) x —l—(d x) ,

e2(h*+g?) —d?g® , h®be ( o hb?
= %22 x4 ta2-4 -—) ,
(dg)? ag g
2 2 2 2 2
which is a conic, and in particular (Since h ;;g— — % - %—gy — 11%2—) an ellipse,
parabola or hyperbola according as LD isless than, equal to or greater than MH
FD Py HG

PR
(or as angle LDF is less than, equal to or greater than MHG).

4 Printed in AU (1707): prop. 19: 141—142.
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NEWTON keeps his length HC constant, but if we were to vary it we would,
in effect, define the surface by a representing equation in %, y and 4 of the form
y2=A'x24+2u' xb+o'b2+a% This final step was taken by Srusius and
TOWNELEY * in a treatment% whose form clearly shows total independence of
NewToN. Adapting this (and a very ill-drawn figure in R16AUD) we take (Fig. 54)
the base hyperbola LO (L'0’) of centre I, transverse diameter 00’ and asymptotes
DI, dI, and rotate it round the axis IK perpendicular to 0O0’, to form the surface.
This we cut by some plane N'NX at some constant angle NXO to 00’, where N'N
is perpendicular to the hyperbola-plane LOO’L’. Then, drawing T parallel to

a’ /
X \ 4
lg / ‘ 7
/ /
| /
X / ,/
A7 / /
/ 47 !
/ | ‘
// '0, \
~ / \ N
Fig. 56

NX and LDNTKAL' parallel to OO’ (meeting as shown) and denoting IX = x,
XN=y, NN'=z with OI=b and DK:TK:ID=2:u:y (constant) ‘we take the

hyperbola to be defined by LK2—DK?=O0I%> Thus DK =_y, TK — /‘
and so NK= XI—}—TK—x—}—'u y, and LKZ—( )+b2—N’KZ {since LN’L'

is a semicircle) with N'K?2=N'N24+ NK2=:%| (x—l— y) Finally, equating
we have bz—}—(—i« ) —z2+(x—}— £ ) as the representing equation of the hyper-

bolic space, with the important corollary that any particular value of x in [ — oo
+oo] gives a plane-section of the surface as a 2™-degree “‘relatio’’ connecting

* A minor English geometer and a friend of JorNn Kersev.

42 See TowNELEY'S letter to CorLiNs of 13 May 1672, Ricaup (C). 1: 190—195.
TowNELEY’s treatment is apparently partly original, partly suggested by Srusius.
He writes (p. 191): ‘“ After M. de Sluse had proposed to me the solution of Dr. Wren’s
problem more generally ... he writ that the hyperbolical cylindroid might be so cut
as to give all the sections both of cone and cylinder, and withal acquainted me with
the property of an hyper. he had used to find them, and proposed to me the finding
them, which I thus proceeded ...”.
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XN =4y and NN’=2z, and so a conic—that is, for suitable parameter %, the equa-
tion represents a family of such conics. .In particular, the family of conics whose
plane is parallel to an asymptote is given by A= 4-u, or is represented by %+

2% xy-22—b?=0, and the generator lines I'D’, I'd’ are the member which

has x=0, or z==--b. For the family of plane sections parallel to the axis IK
(a case added by Srusius to TOWNELEY’s results3) we have y=0 and so 5%

(%)2 y2=2%4 %% (a family of hyperbolas): for the member through the hyper-
bola vertexQ x= -4 b, or 22== (—i‘—)z 9? (a second line-pair), while for other points X
‘““this equation gives ... two constructions of an hyperbola” (for %> b2 and x2<C b?).

All this could, of course, be derived from the NEwTON example by letting

CH=10 and the angle G@ (or, equivalently, the ratio MH:HG=d:¢) vary,
but the extension made by SLusius and TOWNELEY is a major conceptual advance.
In effect, their approach sketches in the principle of continuity for conics defined
on the hyperboloid of revolution, just as KEPLER had outlined it for plane sections
of a two-sheeted cone half a century earlier44. Specifically, both show that by
continuously varying the position of the section-plane the conic-meets also vary
continuously, and in this general treatment line-pairs, circles and parabolas appear
clearly as degenerate and limiting cases of the general conic (and not as specific
curves in their own right). In general, any plane section of a quadric surface is
a conic and a similar “KEPLER" law of continuity holds, but it is interesting to
note how slowly it was to be realized that the conic is more general than its classical
definition as the plane cut of a cone. Once again, apparently, we have an example
of a case where an overelaborate Greek treatment became a block to further
progress—significantly, no major analysis of the general quadric surface was
made till MONGE. %

In all this rich confusion of developing procedures one basic aspect tended to
be lost sight of: the idea of defining a point-set as a point-correspondence—or
rather perhaps the CARTESIAN approach which set up the general point-set by
its correspondence with two ordered line-lengths tended, by its successful and
fruitful elaboration, to obscure less developed correspondences. NEWTON, as
always, is the proving exception. In his later undergraduate years he had
toyed with a bipolar coordinate reference-system (on the model of the central
conics defined by x +y=241, where x, y are the distances from a general point
on the curve to the foci)®, and later in life he came to consider more general

43 Compare 0p. cit.: 194.

44 In his ad Vitellionem paralipomena quibus pays optica tradituy, Frankfurt, 1604:
ch. 4: de coni sectionibus.

45 A LaLovERE had, however, in his quadratura circuli et hyperbolae segmentorum
ex dato eorum centvo gravitatis, Toulouse, 1651: Book 5, defined the hyperboloid of
one sheet geometrically by plane (conic) sections.

46 As we see from the Waste Book, CUL Add. 4004: 1V (miscellaneous calculations
dated 1664, September) and 50V {f. (more systematic treatments of 1665 and 1666).
General tangent treatments of curves defined by bipolar analytical coordinates are
given in CUL Add. 3960: section 14 (to be dated around 1670—1672), which is Hors-
LEY’S geometria analylica and (in English) CorLson’s Method of fluxions and infinite
sevies, London, 1736.
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aspects of point-correspondence, slowly unloosing himself from the CARTESIAN
idea of having a single fix-point as origin in a coordinate-system.

Already in the 1670’s, as we have seen? NEwTON had used 1, 1 point-cor-
respondences to define conic point-sets—in particular, his * organic construction”
virtually defines a 1, 1 correspondence between the points of two conics, one of
which is a degenerate line-pair. Problem 53 of his AU, probably dating from
the same period8, elaborates a corresponding analytical treatment (after some
preliminary geometrical simplification). Specifically, where two fix-poles 4, B
round which rotate given angles CAD, CBD are such that the meet of AD and
BD is on the fix-line EF, he wishes to examine the corresponding meet of the

Fig. 57

other two arms AC, BC, giving first a neat geometrical reduction which virtually
N N
straightens out the angles CAD, CBD: as the line EF rotates round 4 through
P N
the angle dAD=a — CAD into the line ¢f, let point E of EF pass into ¢, the meet
P

of ef and A B; similarly, as EF rotates round B through the angle = — CBD into
the line ¢'f’ let point F of EF pass into /', the meet of ¢'/’ and AB; and finally,
let F pass into f on ef, and E into ¢’ on ¢'f’. Then, clearly, ¢f (=EF)=¢f', and
to any point D in EF there correspond points 4, @ in ¢f, ¢'f' such that ed:df
(=ED:DF)=¢'d":d'f' (or ed=¢'d’, df=d'f’), further, the point-set C is given
as the set of meets of the lines 44 and d'B. Reformulating we can state the equi-
valent problem: given two equal line-lengths ef, ¢’ and the point-correspondence
defined between them such that, where 4 is in ef, d' in &'f, ed:df=¢'d":d'f' (or
ed=¢'d’, df=d'f’), what is the point-set of C, the meet of the lines d4, 4’B, where
A, B are two fix-points in ¢f'? In answer NEwTON introduces a CARTESIAN
coordinate-system, taking CH, CK (through the locus-point C) parallel respectively
to ef, ¢f (and meeting AB in H, K) and denoting BK=x, KC=y with AB=m,
Ae=a, Bf =c, ¢f=¢f'=0b and CK:CH:HK=d:e-}{ (a constant ratio since the

triangle CHK is given in species): then BK:KC=Bjf":{'d’, or fd' (=fd)=c %,

47 See previous chapter. v

4 Tt exists in his Lucasian lectures of the 1670’s, see CUL Dd. 9.68 - =+ AU (1707):
207 —209.

Arch, Hist. Exact Sci., Vol. 1 21



308 D. T. WurtesiDE: Mathematical thought in the later 17tk century

=ef —ed, or ed::b—c%; again CH:%y and HK=%y, or AH=AK—
HK =(m— %) —% v; and finally the proportion AH:HC=Ae:ed yields

Ny Y
. (m x 7y).*ﬂfy--a.(b c;),
bdx?+ (ae+- bf — cd) xy — cfy? — bdmx+ cdmy = 0,

a conic. Thus NEwWTON has shown that the restricted homographic correspond-
ence of CAd, CBd’ defines a conic point-set. 4

In manuscript papers dating from around 16805 NEWTON took the further
radical step of modifying the CARTESIAN reference-scheme by separating the
coordinate line-lengths on
which his analytical theory
of point-correspondence is to
be defined.

Consider for example,
what is the simplest general
case where the 1,1 corre-
spondence is to be made be-
tween the points of two
lines.3* (NEwTON’S develop-
ment is given, a little arti-
ficially, apparently in the
reverse order of his original
sequence of ideas*, but for the moment we will follow his exposition.} Where
AC and BD are fix-lines on which are located respectively the fix-points 4 and B,
while a third fix-point E is given in general position in the plane, NEWTON con-
siders the point-correspondence set up in the two lines by their meet with a
general line through E. Specifically, let the line ECD set up the correspondence
C<> D (where C is in AC, D in BD), and consider the two directed line-lengths
AC=x%, ED=4y: what is the “relatio’”’ which connects them? In a preliminary
investigation NEWTON clarifies the conditions which must hold in the correspond-
ence. Clearly, since two lines meet in a unique point, any point C defines a unique
line BC through E, and therefore a unique point D in BD, and this must be
incorporated in the “relatio’’—that is, each value of x in the relatio must yield
a unique value of y, and conversely, or the most general form of “relatio’” must,
for x constant, yield a linear equation in y, and conversely.

Fig. 58

* In the tradition, in fact, of the classical Greek synthetic proof.

4 MACLAURIN in his (1720) geometria organica (which generalizes the organic con-
struction) gave an equivalent analytical treatment of the more general 1, 1 correspond-
ence set up between two n-degree curves, one of which is allowed to degenerate suitably.

5 The manuscript de inventione porismatum (CUL Add. 3963: 159—160)—with
several slightly variant minor drafts—sketches verbally the concept of ‘“‘porism”,
including in that concept several particular types of correspondence and showing,
in particular, how knowledge of suitable corresponding points allows suitable restric-
tions to be put on the correspondence, listing several examples (without proof). An
analytical basis, however, is given in the later propositions of the manuscript de
compositione locovum solidorum (Add. 3963: 126—149, especially 132Lff.).

51 Add. 3963: prop. 11: 132R.
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NEWTON now sets this up more precisely on his geometrical model. Draw
EH through E parallel to BD (meeting AC in H) and AL perpendicular to AC
(meeting EH in L): then, taking AL=c¢, EB=b, AF=afb and AL:AH=d:e
(constant) we have the proportions CH:CK=HL:LA and HL:AH=FC:EK,
or CK:EK=HLXCK (=ALXCH):HLXEK {(=AHXFC), =EB:BD; so
that, substituting the analytical measures: of li}e-l_ength, (EB:BD=)b:y=

(% (AH-{-HC):FC:)(H—%x):(%wx), and finally a:bx—{—cy—t—éxy, the

most general form which a 1, 1 correspondence between x and y can take. Clearly,
the contrived nature of the procedure and the simple (and elegant) form of the
result show that, in fact,a “re-
latio” of this form was hy-
pothesized and then the given
values of the given line-lengths
calculated, * and indeed NEw-
TON takes care to assert it.5?

What Newron has shown
is that any 1, 1 correspondence
between two variables x and y
must take the general form
axy+fx+yy+ 6=0, where
o, B, y, 0 are constants to be
chosen to fit. In short, NEw-
TON has the analytical basis
on which to raise an analytical
theory of cross-ratio, involu-
tion and homographic transform exactly as CHASLES was to do later,** and
it is very tempting—though there seems no explicit attempt so to do in the

Fig. 59

* Thus, assuming x and y connected by a “relatio” of theforma=24x+uy +vxy,
we have when y =0, x=AF=%, =—;T— (or A=10); when ¥ =0, y=BG=EB><%—
a

=", =i(or,u=c); and when y = oo, x:AH:——ic, =——f—(01' v=—)‘
c d v e

** Cross-ratio invariance on a line-pencil, for example, follows immediately by
seeing the pencil as setting up a 1, 1 correspondence between the points #;, y; of
any two transversals, or, considering four pairs of corresponding points x;<>y;, ¢ =
1,2, 3, 4, the syzygy-set (ax,+ B9;+ y#; ¥; + 6 = 0) yields, on elimination of the con-
stants o, §, ¥, 6, the cross-ratio equality, (%, — %) (2~ %) = (91— 95) (¥2—94) .

(#1— %,) (%2 — %3) (n—ys) (Y2—s)

%2 Compare Add. 3963: 132R: ‘‘assumatur plenissima quaevis relatio quantitatum

quae ad invicem per simplicem geometriam determinabiles sunt, qualis est haec

a=bx+cy+ —j— xy, ubi @, b, ¢... denotant quantitates datas cum signis suis + et—

affectas, et x et y quantitates incertas ex quarum alterutra cognita supponitur posse
determinari per simplicem geometriam”. (He has defined a ‘“simply geometrical”
procedure at 131R: ‘‘per geometriam simplicem determinabiles esse intelligo quae
per ductum ... linearum sine adminiculo circuli vel anguli dati—hoc est per additionem,
subductionen et inventionem quarfae proportionalis, vel, ut jam loquuntur geometrae,
per multiplicationem et divisionem sine extractione radicis—determinari possent”.
In other words, ““ Simple geometry’ is the geometrical equivalent of an ‘‘analytical”
sequence of operations in the restricted Cartesian sense.)

21%
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manuscripts—to assume that NEWToN used such an analytical basis in deriving
the thoughts on general s, # correspondences given in de tnventione porismatum.

To point this, let us consider3 his theorem 2 which states that if, in the (1,1)
correspondence x<>y, co<>Y and X<> oo then (¥ —X) x(y—Y) is constant—a

Fig. 60

result which is an immediate corollary of the general 1, 1 form above (since the
conditions give respectively oY +f=0, or f=—aY, andaX+y=0, or y= —a X,

SO that Ozaxy——an__aXy_}_a’ or (x____X) (y__ Y)= aXZ—d)

is easily and neatly applied to a wide range of point-correspondences and New-
TON gives®™ a choice few., Thus55 his porism 6 is a simple line-model: given three
lines RR', FS, FT and two fix-
points 4, B, let any point Con RR’
define corresponding points D in
FSand E in FT, where D, E are
the meets of AC with F'S, BC with
FT respectively. In this corre-
spondence D« E, let ocopg<> K,
L<>00py, then by the theorem
DL x EK is constant. More inter-
estingly, a second application %
Fig. 61 of the theorem yields a point-
correspondence proved by NEw-
ToN in his PM on classical lines: where the lines AG, AH are the tangent-pair from
a fix-point 4 in general position to a given conic, consider the 1,1 correspondence
set up in them between their meets B, D with RR’, tangent to the conic. Clearly,
where B« D, E< ooy, and oo,y <> F, or EBXFD is constant (=EH XF4,
=FEA XFG).

The similar consideration of general m, #, correspondences becomes rapidly
unwieldy, especially in a verbal exposition. NEWTON, in fact, goes on to con-
sider some 2, 1 and 2, 2 correspondences set up by conic-tangents in fix-lines in
the plane, but though the applications he makes in the de inventione are clearly

8 Add. 3963: 159 R.

54 op. cit. 159 R1f.

55 op. cit. 160R.
8 op. cit. porism 2: 159V ; and compare previous chapter, note #.

. The theorem
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the product of hard thought they remain little more than a sketch, unimplemented
by a systematic exposition. But the whole subject of m, # correspondence was
a mighty thing for a man no longer young to handle and it is to his credit that he
did so much, and a comment on those who later looked over the manuscripts that
they failed to penetrate his ideas. It was, however, an unfortunate result that the
manuscripts ultimately passed into oblivion while the ideas he had introduced
had to be painfully rediscovered much later.

In general summary of the later 17 century attitude to analytical techniques
in geometry, it is important to stress how little general method there was. Each
proof depended fundamentally to a greater or less degree on a preliminary geo-
metrical reduction to a form where existing techniques could be applied. Indeed
it seems true to say that CARTESIAN analysis, while accepted as a useful form of
proof, was looked upon as essentially eliminable by the substitution of an exactly
corresponding synthetic form. NEwTON’s appendix to his arithmetica universalis™
—an eternal worry to those historians who have tried to read 19 century attitudes
into 17" century mathematics—essentially summarises a prevailing attitude:

“Equations are expressions of arithmetical computation and properly have
no place in geometry except in so far as truly geometrical quantities (that is,
lines, surfaces, solids, and proportions) are thereby shown equal, some to others.
Multiplications, divisions and computations of that kind have been recently
introduced into geometry, unadvisedly and against the first principle of this
science .... Therefore these two sciences ought not to be confounded, and recent
generations by confounding them have lost that simplicity in which all geo-
metrical elegance consists.”

A thin framework for future development had been more or less tentatively
and unsystematically established, but a very great deal remained to be done
before any fully analytical treatment of geometrical concepts was possible. In
historical fact, the process took another century of effort, and it would be fairer
to cite EULER and MONGE as creators of our modern form of analytical theory—if,
that is, there were any real point to making the claim at all.

VIII. Calculus
1. Indivisibles and the arithwmetick of infinites

More so than any other branch of mathematics, the differential and integral
calculus has been seen as the triumph of 17% century exact thought and, indeed,
as one of its most attractive facets. Alonghistoriographical tradition®has sketched
the immense amount of work—developed largely in the geometrical models of
curve-tangent and curvature, and of area, surface, curve-length and volume,

¥ AU.(1707): 282.

1 C.B. BoveR in his Concepls of the calculus (New York, 11939, ,1947, 31959)
includes a massive bibliography which, in regard to secondary works, is fairly complete
up to about 1940. The not inconsiderable amount of work published since is to be
most conveniently found listed in the monthly abstract, Mathematical Reviews.
BovEeRr’s work itself is typical of the dangers inherent in a set attitude to the subject:
approaching his subject with an ideal of rigour which seems to be that of the early
19th century formulations, he tends to make earlier investigations stand or fall by
that criterion, and in particular misses much of the rich significance of geometrical
treatments, widespread throughout the 17t century.
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rather than as an abstract theory of derivative and integral—which preceded
the more sophisticated treatments of later centuries. One might wonder how
anything could now be said which has not been said many times before. Un-
fortunately, in the past too little has been said at too great length and too glibly.
The source material available has been little studied*, and a great deal, both
printed and in manuscript, which deserves to be better known still lies dusty
and undisturbed. It is in a deliberate effort to bring to light some of these un-
explored but richly significant calculus procedures that the artificial division
of the remaining four chapters is made, though I hope at the same time to por-
tray a range of thought typical in a real sense of the 17 century achievement in
arithmetising the infinite.

In this first chapter, in particular, some account will be given of the Cava-
LIERI-TORRICELLI theory of indivisibles, and its English offshoots—an aspect
whose complexity has been little appreciated.?

We can perhaps, tentatively, isolate three formative aspects which coalesced
into the rambling, loosely connected set of concepts treated by CAVALIERT in his
treatises on indivisible methods.? Of these the most immediately obvious in-
fluence is that of the numerical techniques for measuring area, volume and sur-
face—we may name them “‘gauging”’ methods—a collection of often rough and
ready approximative formulisations which yet had within them the germs of
ideas basic to the concept of integration. Such methods, of course, date back
to beyond recorded history in their simplest examples (among the Egyptians and
the Babylonians) and, though have only a few extant arithmetical texts,
such as HERON’S metrica, from which to argue, they must have been a large part
of Greek practical mathematics. By the early 17% century these techniques had
reached a certain level of refinement in the hands of such men as STEVIN® but
especially KEPLER who in his nova stereometria® made general application of
the gauging method of approximating to areas and volumes by suitably drawn
sections. Thus, where we need to approximate to the area of the figure shown
which is cut off between two parallel sections AB, A'B’, we split the area into

* Where, to name but a few of the more important figures, are the authoritative
evaluations of the work of PieTrRO MENGOLI, ANTONIUS LALOVERA, JOHN WALLIS,
NewrTON ?

2 Though C.B. BovEeR in Cavalieri, limits and discavded infinitesimals, Scripta
mathematica 8 (1941): 79—91, has emphasised several errors in the conventional
account—notably that CAVALIERI’S procedures for the most part (and exclusively
in the early work) compare the limit of two ‘‘indivisible” sequences rather than
calculate numerically a single limit-aggregate. Indeed, CAVALIERI’S thought in detail
is unbelievably rich—he had read widely in ARCHIMEDES, STEVIN, KEPLER and others
(and had absorbed the medieval theory of latitude of forms, especially the geometrical
aspects developed by OresME), and his ideas are an amalgam of what he had read and
of the thoughts that reading inspired.

8 Specifically, geometria indivisibilibus continuorum nova quadam vatione promota,
Bologna, 1635 (which is fundamental) ; and exercitationes geometricae sex, Bologna, 1647.
Compare, too, BoYER (0p. cit., note 1): 117—123.

4 See H. Bosmans: Le calcul infinitésimal chez Simon Stévin, Mathesis 37 (1923):
12—18, 55—62, 105—109; and Sur quelques exemples de la méthode des limites chez
Simon Stévin, Annales de la Soc. sc. de Bruxelles 37 (1913): 171 —199.

5 Nova stereometria doliorum vinoviorwm, Linz 1615,
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sections by further parallels 4,B;, 1=1, 2, 3, ..., n, and then consider either of
the summations,

ABXAA,+ A,Byx Ay Ayt -+ A, B, x A, A’

area AA'B'B ~ {
A,B;x AA+ AyByx AyAy+ -+ A'B' X4, 4.
In particular, where we take the section-parallels at equal distances, we have
what is usually thought of as the typical form of indivisible-process—merely
by increasing the number of section-parallels indefinitely we trace a general
sequence whose limit as the number of parallels becomes indefinitely large yields
the required area (to any degree of approximation, at least).* But we do well
to notice that what is important in this extension—the introduction of a limit-
consideration—is a theorefical advance on
(and a redefinition of) the practical gauger’s
idea, which remains a mere numerical
approximating technique. Indeed, in the
whole of 17% century mathematics there
seems only one example where a practical
approximation gave rise to a serious mathe-
matical investigation—that of the inte-

o
gral fsec x-dx—and there circumstances

Fig. 62

B
were quite exceptional.$

Analogous concepts had existed in Greek mathematics, but their significance
was disguised and distorted by the forbidding logical form in which they were
stated, the exhaustion-method.” No contemporary mathematical work examined
the nature of this method of proof, and its rigour, while accepted at a mathe-
matical level, appeared artificial and over-precise. However, several standard
results, proved rigorously by an exhaustion-proof, became the basis of many
of CavaLiErr’s indivisible-comparison theorems {and the exhaustion-proof was
accepted as their ultimate theoretical justification); while later TORRICELLI in

* In fact, as we shall see, this explicit process is not to be found in CAVALIERT'S
geometria indivisibilibus ..., but is a simplification introduced in the 1630’s by several
mathematicians including FERMAT and ROBERVAL.

8 The integral appears in the construction of the MERCATOR map, and for a century
after the projection was introduced was tabulated by the inequalities,

#
Y [sec(ndd)-A8)< [secx-dx < } [sec(n49) 48] (where A4=1/N),
0<n<N-—1 0 1=n=N

which can be made as narrow as we wish by decreasing the tabulation-interval 48
(since the difference of the two bounds is sec &+ A8, which can be made as small as
we wish by decreasing -4). Such a table, calculated at 1’ intervals, x€[0° 45°]
had been given by EDWARD WRIGHT in 1599, and it was by comparing this table
with a table of logarithmic tangents that HENRY BoND in the 1640’s made the hypo-
thesis that the integral is some log tan function —proved formally by JamMes GREGORY
in 1669. It remains a historical curiosity that a table of ‘‘logarithms”’ should exist
before NaPIER or BURGI published their canons (see F. Cajori: O#n an integration
antedating the integral calculus, Bibliotheca mathematica ;14 (1913 —1914): 312—318).
7 See chapter 9.
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his printed works and manuscripts® examined more closely the interconnection
of the “exact” (exhaustion-method) and indivisible proofs. :

Above all, however, close examination of CAVALIERI'S indivisible theories
shows the unmistakable influence of medieval ARISTOTELIAN treatments of such
limit-concepts as instantaneous speed and continuous variation. Most obviously,
in many places he takes over much of the scholastic terminology of the ““calcula-
tors” in developing his own ideas on continuity and on continuously varying
quantities?, but more deeply he gives closely argued verbal justification of his
indivisible theories in the medieval manner despised (and so ignored) by 19%
century historians. Only by stripping away this verbal justification are we left

-with the travesty of his theory which is put forth by many historians. Rather
CAVALIERI’S treatment has, implicitly, many clarifications of the underlying
concepts on which previous analysis of the infinite had been based, and in defin-
ing them both strengthened them and facilitated their use.

Mathematically CAVALIERT develops two major new concepts, that of powers
of line-elements and that of coordinate directions (which are used to derive
theorems which compare powers of variously defined line-elements). The depar-
ture-point for introducing the former is the concept of similarity and of being
similarly situated: two figures (in two or three dimensions in those considerations
developed with strict reference to a geometrical model, but generally in #-dimen-
sions in the more analytical theory later given) are defined to be similar if to
any point in the one corresponds a unique point in the other such that the distance
between two points of one figure bears a constant ratio to the distance between
the two corresponding points in the other.1® On that basis he sets up the concept
of power of a line-(area-, volume-)element.

Consider, for example, the two similar square pyramids O: PQRS, o:pgrs,
and set up corresponding (square sections) parallel to the respective bases 4 BCD,
abed. CAVALIERI visualises these similarly-situated cross-sections as generating
the respective solids, arguing that in some valid sense the solids are made up of
the limit-sums of these cross-sections when the distance between two adjacent
cross-sections becomes indefinitely small. In his mathematical treatment he
is not concerned with the theoretical difficulties inherent in such a limit-procedure
(never making it explicit, for example, whether he sees the limit-process as
being actual or potential in the Aristotelian sense), but treats it only as an
“artificium”’ which works and for which, presumably, a theoretical justification
is possible—as such its nature need not be clarified, and in particular the .
question whether an indivisible had thickness in the limit could be left

8 See his opere (ed. G. Loria & G. Vassura). Faenza, 1919; passim; but espe-
cially the de dimensione parabolae (included in his opera geometrica, Florence, 1644),
where he contrasts numerous proofs of the same result (the quadrature of a para-
bola segment), clearly being more interested in the method used than in what it
derived.

® Compare especially Book 5 of exercitationes geometricae sex: 321—422: in qua
de uniformiter difformitey gvavibus pey indivisibilia instituituy contemplatio, where he
derives a concept of indivisibles of weighted elements in which the weighting func-
tion is expressed in ‘‘gradus gravitatis’’ and defined by a latitude of forms variation
pattern. :

10 Compare geometria indivisibilibus ... Book 1: 111f.,
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undecided™. In some sense, then, we have ) (area 4 BCD)=pyramid (0: PQRS),
and ), (area abcd) =pyramid (O:pgrs), and this he sets up as the proportion

2 (area ABCD): ) (area abcd) = pyramid (O: PQRS): pyramid (o:pgrs)
= QR%:qr®  (by their similarity).

Now project each element parallel to the bases onto the triangular faces OQR,
ogr: then, since the sections are similarly situated in similar solids, area ABCD:
area abcd=BC?:bc?, so that D (BC?:2 (bc?)=(QR)3:(¢7)?, where the limit-
summation is made over corresponding lines BC, b¢ in the similar triangles

q
4
7 )
¢ A

Fig. 63 Fig. 64

OQR, ogr. In a similar way > (BC)=73 (bc)=area OQR:area ogr=(QR)?: (q7)2.
By analogy the general pattern is suggested that

2(BC7): X (be") = (QR)™¥2: (gr)" ™,

and apparently it was in setting up a recursive way of verifying this tfor integral
powers of # that CAvAaLIERI first introduced the concept of coordinate-direction,
though the concept is given a general treatment later in geometria'® independently
of the particular application made of it in Book 1.

Where 0X, OY are two (non-parallel) fix-lines given in direction, consider
the area-segments 4 BCcba, EFGgfe cut off from two given areas by AE, CG
parallel to OY. Taking a third parallel BF to OY (which is CAVALIERI'S ““regula”)
cutting these segments in Bb, Ff respectively, we can denominate the general
parallel BF by its outpoint ¥ with OX* (and in particular AE, CG are X, X, .
respectively): then, viewing the areas as the limit-sum of the segment-lengths

* This is stated only verbally by CAVALIERI without any free variable denomination
of the general parallel BF, but I introduce this adaptation to clarify his treatment.

1 Though in Book 3 of his exercitationes geometriae sex: in qua discutiuntur ea
quae a Paulo Guldino ... in ejusdem ventvobavyca praefatae geometriae indivisibilivm
objicientur he says that, if we wish, we may substitue for the indivisibles small elements
of area, volume, as ARCHIMEDES had done, and gives (pp. 240—241) the analogy of the
parallel threads in a piece of cloth which fill up the whole area of the weave, or again
that of the parallel pages in a book which fill up its thickness. Elsewhere he uses the
Newronian idea that the element generates the whole by a parallel motion, in which
scheme his indivisibles are limit-motions.

12 In geometria ...: Book 7 and exercitationes ...: Book 1.
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cut off from the general parallel BF (where the distance between two adjacent
segments becomes indefinitely small), we can introduce the following symbolism
to clarify CAVALIERI’s verbal treatment*:

area ABCcha = 3, [a(x)], area EFGgfe = 2, [B(¥)]
X,<7<X, X,<r<X,
where o (%), f(x) are the respective lengths of the line-segments cut out of the
respective areas by the general x-parallel BF. (There is an immediate extension
to the model where volumes are cut
by paraliel planes, each parallel to

P . / 2 4 a plane “regula”.)
/ £ 2 = On these two bases, the concept
P ———V b———*—i P of similarity and the concept of
X = = E==—=" _ a coparallel set of cutting lines
, — I (planes), CAVALIERI develops general
X = f————)\ , “indivisible” techniques. Specifi-

cally he isolates two complementary
approaches, his collective theory of
Fig. 63 indivisibles'® and his distributive
theory. 4

g
<

In illustration we can compare the areas A BCcba, EFGgfe above in two concep-
tually distinct ways: “‘ collectivé, hoc est comparando aggregatum ad aggregatum”,
that is, by straightforwardly finding each of X [a(x)], X [B(x)] separately

X, S7SX, X, SsSX,

and then comparing their proportion; and “distributive, sc. comparando singilla-

tim quamlibet rectam figurae ABC [a ()] ... cuilibet rectae figurae EFG [ (x)]

in direction [on the x-parallel, that is] existenti”, that is, we derive the proportion

() : B (%) for each position of the x-parallel, and then (presumably using an averag-

ing technique in the general case, though CAVALIERI considers only the case where

their ratio is constant) to derive 2 [a(%)], Z [ﬂ })]. Where, forall x, « (%) : 8 (%)

X,Sr<X, X215

isaconstantratio l:uwehave 2; [u(x)]: 2 [/3 ]——l u, whichis “ CAVALIERI'S”
X, 225X, XKiSssX,

Theorem—an approach developed later, especially by GREGORY ST. VINCENT!®

but also by WALLIS, JAMES GREGORY, BARROW and other exponents of geometrical

integration techniques, into a general method of geometrical transformation, the

“ductus plani in planum”. Thus, where a general plane x (moving parallel to

some regula-plane) cuts off rectangles ABCD, abed from two solids such that

always ABXxBC:abxbc=JA:u =area ABCD: area abcd, then the respective

volume-segments cut off between two particular planes X;, X, are also in the

ratio A:u. GREGORY ST. VINCENT (and others after him) sees this as a transform,

* CAVALIBRI uses the unwieldy verbal concept of ‘‘omnes lineae (omnia plana) ...
juxta regulam (OY) assumptae (assumpta)...”.

18 Very roughly this is developed in geometria ...: Books 1—6, with additions in
exercitationes ...: Books 21f.

14 Given a detailed treatment in geometria ...: Book 7, exercitationes: Book 1.

15 See his opus geometvicum, Antwerp, 1647: Book 7: 703—864: de ductu ;blam
m planum WaLLIs translated the transform into equivalent analytical form in his

I (1656): 60ff., which is equivalent to defining an integral transform.
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defined by AB xBC:abxbc=A:pu of one volume (of element 4BCD) into a
second volume (of element abcd) which multiplies the measure of the volume by
u/2 (and in particular, when 4B X CD=ab X cd, preserves the measure of the vol-
ume); and it very quickly became an elegant method of reducing geometrical
problems of volume-measure to a more easily workable form.18

— 2\ A A X
S vﬂ—-%—%—\—-—ﬁ
/V = \ 7 | / X,

e

Fig. 66

CAVALIERT himself was content to sketch in a few elegant examples of its
usel? but in contrast developed the collective approach in minute detail.’® To
illustrate his general approach, consider?® the parallelogram ACGE in which 4C,
EG are parallel to the regula OY, BF bisects AC, EG, DH bisects AE, CG, and
CE is a diagonal, Denote the parallels AC, DH, EG by their meets X;, X, X with
the “denoting "’ line OX (through o), X
and in this correspondence denote
the general parallel RSTU by its )}'

>

N .
ESQ
<

meet x. Then RV2=4SU2=RT?%--
TU2L2RT- TU(:Z(SUz—STZ)),

or 2SU2=RT2LTU2-—25T%; so % Y] 77 H
that, by CAVALIERI'S theorem,

2 (SU3= X (RT%+ X']' 3 7 7

p. 47296 X =x=X,
+ X (TU) —2x X (STY. ¢ 7
X SasX, Xa=rsX, Fig. 67

Now consider the symmetrically situated parallel denoted by the meet x where
xXy=X,x.: by symmetry

Y (RTH= 3 (TU%= Z AU
Xasx2X, X,S:cSX1 X, =5

and again
> (RT?: X (ST?) =AC3: BC3=8:1;

X 225X, X =rsX,

16 James GREGORY was a past master in its use—see GPU passim, but especially
EG: 14—21: analogia intev lineam wmevidianam planispherii nautici et tangentes arvti-
ficialis geowmetvice demonstrata ... . In general, its use corresponded to treatments
which involve transform of double integrals (with appropriate variable changes).

17 In geometria ...: Book 7: 17—80. Thus his Theorem 8, Prop. 8: 33 is a proof
that a cylinder has triple the volume of the cone of the same height and standing on
the same base.

18 Over some 500 pages in Books 1—6 of geometria ... .

19 geometria: Book 1: prop. 24: 781f.
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therefore > (SU=4x X (SU?),

X, ,Sx5X, X Sr=£X,
=2X 2 RTH—2 2 (ST?
X <r=X, X <z<X,
=2x8%x 2 (ST?)—2x2x X (ST
X,<x<X, XOSxSX,
or
> (SU9): X (ST = X (RU?: 2 (RTH=(16—4):4=3:1
Xosx=X, Xo=2=2X, Xy=rsX, X x5 X,

—a theorem which has an immediate application to all kinds of conic problems
(and CavavrIEr! develops the aspect very fully in Books 2 to 6 of his geometria).
Here the ) (ST?) is taken over a triangle (that is, ST varies linearly with the line-
segment x X,) and clearly the result is equivalent to

X, X,
J (X X,)2- 2 (x X,) 3Xf (v Xg)2-d(x Xo) =3:1,
or, by taking x X,=x with X; X,=

1

1 1 '
(1=)f12dx: [ 22 dx=3:1 (Orf"z'dx:"%)'
0 0 ¢

The generalization of this approach is sketched by CAVALIERI in his exercita-
tiones®™ but was given a thorough and exhaustive treatment by MEeNGoLIZl.
However—what is significant in a discussion of the development of indivisible
theories in England—simplified and more accessible treatments of many of the
basic theorems were given by ToRRICELLI (who, as CAVALIERI’S pupil, knew his
work at first hand). Thus, TORRICELLI gives?® an inverted treatment of Cav-
ALIERI'S tesult >, (SU?): . (ST?)=3:1, deriving it from a Greek standard

Xosz2=X, X2 X,
result (proved by an exhaustion-method in EucLip): where the parallelogram
BCMH is a rectangle*, rotate it round BM as axis and consider the cylinder

and inscribed cone traced out by the rectangle BCMH and triangle BCM. Then
3 (SU): 3 (STY) |

Xo=x=X; X, =25 X,
= 2, (circle of radius ST): 2, (circle of radius SU)
Xo=2=2Xy Xo=22X, .

= cone with axis BM and base radius BC : cylinder
with axis BM and base-radius BC

=13 :1, by the standard Greek result.

* This involves no loss of generality since we need, in CAVALIERI's result, only to
consider a general parallel STU. CAVALIERI, of course, used the analytical result in
proof of the geometrical one.

20 In Book 4: de usu eorundem indivisibilium in potestatibus cossicis: 2431f., where
he also sketches an analytical approach suggested by BEAUGRAND (who may very
well have communicated hints given him by FERMAT)—one which more closely follows
what is accepted conventionally as CAvALIERIAN indivisible treatment.

2 See his geometria speciosa, Bologna, 1659: Books 2, 3 and especially 6.

22 In his lemma 20 of de dimensione parabolae: 57— 58.
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WatLLis, when he entered on his mathematical career in the early 1650’s,
derived his knowledge of CAVALIERY's theory of indivisibles in the first instance
from TORRICELLI'S opera geometrica, only later being able to read CAVALIERI'S
account in his geometria®, and it was the experience of reading and digesting
TORRICELLY'S treatment which hardened the vague, unformed thoughts which
had already come to him through his reading of EucLID, APOLLONIUS and especially
ARCHIMEDES. Specifically interested, as GREGORY ST. VINCENT before him, in
circle-quadrature, WArLLls developed his ideas on the processes underlying
existing indivisible theory (and the classical Greek exhaustion proofs) very much
with that ideal before him. In particular,
since, in considering the general line-element
of an area to be evaluated, it is often possible
to compare this with some power of a line-
element already known and so to derive

A 4 5/

the numerical value of the ratio of the aggre- T SR 1
gate areas, he hoped to find some general

method which would be applicable to the X v v
line-element of the circle, and so lead to Fig. 68

quadrature. *

Much as RoBERVAL and FErRMAT had already found—though they had not
published their results—WALLIS noticed that the CavaALIERI approach could be
simplified by considering an analytical model of the limit-sum of the #* powers
of integers 2* and this he elaborates at great length in his A2, Thus, in his prop.19
he gives the theorem

26 Y 0 [= k) nd) =2+

0<ix<n Ozign

and this, where » becomes indefinitely large, is equal to %- in the limit (since
% becomes zero). Application to the CavALIERI rectangle BCHM is made by

supposing the denoting segment X;X,=L to be divided into = eqﬁal parts
Ljn, with the general parallel STU cutting off a segment xX, which has 1

1
* In modern terms, since [(1 — x2)*-dx is easily calculable (by multiplication and
0 i

integration) where 1 is positive integral, he hoped to be able to calculate [ (1 — #2)}-dx,
which yields the quadrature of the circle quadrant. See chapter 4. 0

2 WaALLIs gives a detailed account of his mathematical development up to 1655
in the introduction to his 41 (1656):iiff.: ““‘at the end of 1650 I fell on Torricelli’s
mathematical writings (which, being otherwise occupied, I'did not open till the follow-
ing year 1651): there among other things he expounds CAVALIERI'S geometria indivisi-
bilium. CavaLier1’s work itself I had not at hand nor could I find it in the book-
- sellers, but his method, as Torricelli expounds it, was the more pleasing to me because
I had been turning something of the kind over in my mind ever since I first paid my
respects to mathematics almost ...”,

2 A treatment considered (briefly) by Cavariert only in his (1647) exercitationes,
which it is doubtful if WALLIs ever saw (compare previous note).

% See AI: Prop. 11f.; and compare J.P. Scort: The mathematical work of John
Wallis, London 1938, ch. 4, especially 27—49, and BoYEgR (op. cit.): 1411f.
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of them. Then
. L2
3 sva=jim, 3 (x5

d XoS25X, 0=ign
an
> (ST =1lm 3 (AXL.){
N X Zr=X, 0 Gxnt P
so that
3 6v: B om=tin | 3 (k) 2 (ax L]
Xo=xsX, X, E25X, 0<ign 0<isn

= lim [ Z (n2) : Z (].2)}-;3;1
b= lodizn  o0diza
as before. More generally,

2 (SU): X (ST

Y c Xo=xsX, Xy X,

=tm| 3 (): 3 @),

n—>0l g<izn 0<isn

A

and this WALLIS shows in a similar way for small
values of 7 to be (r+1):1* (but extended by

“analogy” to general 7). (Later in AI2% WALLIS

states a recursive process of deriving formulae for

Fig, 69
sums of the »™ powers of integers, showing that

Z [TZXA—HX”_Xl+m-—1]=%xn+1x_”xn+m—1 ntm

15750 2 m 2 m m—+1

An easy general proof of the theorem follows, though WALLIS contents himself
with particular examples.)

All this is not new with WALLIs (though it had never been published before),
nor does he claim originality in his application of it to finding the area under the
ARCHIMEDEAN spiral?” and the general parabolas y=u«", # positive integral?.
What is exciting, however, is his derivation in his props. 55 to 57 of the area under
y =", which he develops on a geometrical model from the allied rule for the area
under y==2x". Specifically his prop. 55 considers the problem of showing that

2 (u): 2 (m)=1:(1+7) in the limit as m becomes illimitably great and in the

0=p=m Osp=m

particular case r=21. Take the parabola 40’0 defined by D’0’2=K x AD’, where

* So, where v =3, WALLIS uses the result that Z (23): Z (%®) =—1—+-—1—.
4 4n
0<i<n  0Ziza
26 AT: prop. 182. The theorem had already been found by FERMAT in 1636 and
used for the same purpose, together with the suggestive inequality,

Z (/1’")<Z”::<Z (™,  m>1.

0<Agn—1 1=Asn

27 AI: prop. 24. The theorem had been given both in CAVALIERI'S geometria and
TORRICELLI’S opera geometrica.

2 Given both an indivisibles and an exhaustion-method treatment in various
manuscripts of TorRICELLI, ROBERVAL and FermaT. Treated by Warris in Arl:
prop. 23: 42ff.
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D'0’ is a general ordinate to the abscisse AD’. Dividing AT=L into equal
2

sections %, of which AT’ has A, it is clear that AD’=%>< (l X —J%—) =T'0" or

area AT'TOO0' : area ATOD:limit( > (A X (nz)), =1:3. Therefore area

n—=>0\ o< i<n 0A<n

AO'OP'D :area ATOD=2:3=1:%. But thisis also lim ( > (D"0"): 2 (DO)),

m—>0\0<usm 0susm
where we divide AD=L’ into m equal sections =, of Fy—r 7
which 4AD" has u, and so D”O”:K*(,u X L—)i; or =~
m 7 N
tim (3 Bax Z Y K%(me_)*) \
m—> 00 o<azm w 0<nzm w \

= Jm (37 i)z 3 o), \

0<usm 0susm

3 1 \
=1:3(=1:(1+1%). ) L )
More generally the result 4 77
1im( S ;Y (n’)):1:(1—|—7) TN
B>ON0<izn 0w L
yields the corresponding result l \\
7" 74 "
lim( () - (m”’)):r:(1+r)=1: PN P ¢
m=eo oguzsm og%sm ( ”) \
This general result, \
lim( S@): Y (n’))=1:(1—|—r), 0 _ 0
B>ONggI<n 0<Asn Fig. 70

where 7 is any real number, is strictly equivalent, where the integration inter-
val [0, X] is divided into » “indivisibles” X/n, to

x x
Ja-dx: [ X dx=1:(147),
[} 0

or
X

X
7. dx = _t r, — 1 r+1
fx x 1’+1fX dx 7+1X
0 )
—the form in which WALLIS prefers to use the theorem in the later, more indi-

vidual propositions of AI [but especially in the proposition which led up to

his interpolation of D:i, where [] is, in equivalent form 1——-1~—2° ,
4 1
J(1—x)%-dx
. [}
though he uses a very cumbrous notation and no hint is given of the quantifica-
tion of these definite integrals into any kind of indefinite forms. 3¢

28 See chapter IV.

30 The introduction of a free variable upper bound in the WArLIs integral is one
of the improvements introduced by NewToN in his manuscript annotations of CUL
Add. 4000: 17ff. Significantly three years afterwards, in 1668, MERCATOR in his

logarithmotechnia (and WALLIs commenting on it) still use the rigid definite integral
forms of the unmodified WaLrris integral.
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With Wa1iL1s indivisible theory had reached, perhaps, its fuil power, but its
mathematical heyday was inevitably short. In particular, the rigidity of its
structure (with an implicit base-interval equisection) was an important defect,
and it is significant that in some of the general theorems of his (1670) mechanica
—in his examination, for example, of the general cycloid and cissoid areas—
WaLL1s himself was already rejecting the indivisible approach in favour of more
general methods. WaLLIS’ AT had in many ways a tremendous influence on the
later development of mathematical analysis, but more especially, perhaps, for
the results contained in it than the methods by which they were derived. In-
evitably in the rapid progress from 1660 onwards WALLIS' (and more generally
CavALIERI'S) indivisible method rapidly became obsolete.

Its two especial inadequacies were, first, that it presupposed (as CAVALIERI'S
collective indivisible theory) an equisection of the base-interval, without which
the method ceased to be rigorous; and, again, that the fundamental theorem on
which its practical application was based,

Sty (n')):i: (1+7)<= f(%)d(%))

lim (
0ZiAgn 0<isn

7n—>00

was restricted to a variable-range over the whole interval 1€ [0, #] (% €[o, 1}) s

and no corresponding theorem could be proved to hold for the general subinter-
val [0, 1] (Which yields the indefinite integral, or the definite integral with free
Aln

variable upper bound [ (i/n)- d(l/n)). Of course, in many cases neither restric-
0

tion mattered, and in other cases existing proofs could be modified to conform to
the requirements of an indivisible proof. Thus, where WREN had rectified the
general cycloid arc virtually by using a
section of the base-interval in geometrical
proportion®, WALLIS reconstructed3? an
indivisible rectification of the whole cycloid
arc (and, indeed, extended it to treat the
more general contracted and protracted
cycloids which had been shown by WREN
and PascAL the previous year to be trans-
formable by length-preserving transforms
A va into ellipse arcs).
Fig. 71 Taking the cycloid arc CXX'4 and
generating circle CZZ'F WaLL1s uses the
property that the cycloid tangent X T at X is parallel to CZ, where C is the vertex
and XY, moving parallel to the base AF, cuts the generator circle in Z. Consider
the n-section of CF =L in which CY has A parts, and, where Y is the next (A4 1)t
section-point, draw IX’SZ'Y through it parallel to the cycloid base: then

L

n’

CY=ixL, 2C=(CYxCFj=(n)ix

31 See next chapter.
32 In his tractatus duo; prior de cycloide ..., posterior ... de cissoide ..., Oxford,

1659: 1151f.
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and CY:ZC=YY'(=Z):2S, or ZS(=XI):(1;~)’3’><%;

so that, since in the limit as # becomes indefinitely large (and so YY’, XTI
indefinitely small) we can take XI as the element XX’ of the cycloid arc,

cycloid arc C/)a:Canli_rgo< > XX :)(%)%x%: > (X;Y’ _——)%)
0<izn 0<i=n /
: . -\ N A
“inl 20 )R

0
=1:(1+(—3) =2:1
which shows C{)?Al =2CF.

It is clear that the indivisible theory is in transition to a more general form
which considers equisections of the line-intervals (here IXT) not parallel to the
basic integration-interval (CF). But no modification of the proof as it stands
can show the more general result that cycloid arc CX =2 x CZ—which follows
as an immediate corollary of WREN’s exhaustion treatment—because the basic

X
indivisible theorem (that, equivalently, f ( ;;_ )—* .d (%) =1 :%, K= 1) cannot be

0
modified to the case where the upper bound is allowed to vary freely in 0, 1.

Apparently WaLL1s himself was not aware of this limitation of his indivisible
method. In a series of letters to him in the 1690’s LE1BNIz tried to suggest these
restrictions but could not make WaLLIS—then an old man-—see his point3,
In his letter of 19 March 1696/7 LE1BNIZ pinpoints the difficulty¢; ““I wish there
were someone to carry through your method (of the arithmetick of infinites) to
higher and more composed lines. For it does not lack usefulness. Since I see
that ... I said* the method could not be extended to quadratures of segments, but
merely covered whole quadratures, ... I wished to look more closely into the
matter in the case of the cissoid ... And it seemed to me that its application to
segments did not lack difficulty, because there collections of numbers into a
single (limit) number have no easy place”. LEiBN1z then sketches?® WaLLIs’
interpolation of the sequence of integrals defined virtually between fixed bounds
x=diameter length, x=0, “by whose help is neatly found the area of the
whole cissoid space, assuming the quadrature of the circle. But, in general, in
the case of the partial segment two terms cannot be added into a single number,
and so that elegant progression of numbers added into a single (limit) number
on which the interpolation depends seems to cease to be of use in consideri